ON THE LASSERRE HIERARCHY OF SEMIDEFINITE
PROGRAMMING RELAXATIONS OF CONVEX POLYNOMIAL
OPTIMIZATION PROBLEMS
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Abstract. The Lasserre hierarchy of semidefinite programming approximations to convex poly-
nomial optimization problems is known to converge finitely under some assumptions. [J.B. Lasserre.
Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19, 1995-2014,
2009.] We give a new proof of the finite convergence property, that does not require the assumption
that the Hessian of the objective be positive definite on the entire feasible set, but only at the optimal
solution. In addition, we show that the number of steps needed for convergence depends on more
than the input size of the problem. In particular, the size of the semidefinite program that gives the
exact reformulation of the convex polynomial optimization problem may be exponential in the input
size.
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1. Polynomial optimization and the Lasserre hierarchy. We consider the

polynomial optimization problem
Pmin = min {po(z) : pi(z) >0(i=1,...,m)}, (1.1)

where each p; : R® - R (i = 0,...,m) is a polynomial. We denote the highest total
degree of the polynomials py, ..., p, by d. We partition the index set {1,...,m} =:
7, UZ, to differentiate between (affine) linear and nonlinear constraints, where Z;
consists of the indices i for which p; is an affine or linear polynomial.

We denote the polynomials with real coefficients in the variables z by R[z]. The
subset of R[x] consisting of the sums of squares of polynomials is denoted by %2.

The feasible set of problem (1.1) is denoted by F, i.e:

F={xeR"|pi(x) >00(=1,...,m)}. (1.2)

We assume that F is compact so that problem (1.1) is guaranteed to have a minimizer.
The quadratic module generated by the polynomials p; (i = 1,...,m) is defined
as:

M(P17~-7Pm) = UO+ZUipi JiEEQ (i:O,...,m) . (13)
=1

The truncated quadratic module of degree 2t, denoted as My(p1, ..., pm), is defined
as the subset of M(p1, ..., pm) where the sum of squares polynomials oy, . . ., 0, meet
the additional conditions:

deg(og) < 2t, deg(oip;) <2t (i=1,...,m). (1.4)
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Lasserre [10] introduced the following hierarchy of approximations to pmin:

pr = max{A | po— A € My(p1,-..,pm)} (1.5)

and showed that, under some assumptions, lim;_,o pt = pmin. Moreover, for each
fixed t, p; may be computed as the optimal value of a semidefinite program. In
particular, this may be done in polynomial time to any fixed accuracy.

1.1. Convex polynomial optimization. Lasserre [11] recently showed that
the hierarchy of approximations (1.5) exhibits finite convergence for certain classes of
convex polynomial optimization problems (Theorem 3.4 in [11]).

We will prove finite convergence for convex polynomial optimization problems
that meet the following conditions.

ASSUMPTION 1. We make the following assumptions on problem (1.1):

1. The polynomials po, —p1, ..., —Pm GTE convex;
2. The Slater condition holds:

Jzg € R™ : pi(xo) > 0 fori € L, and p;(x) > 0 fori € I;.
3. The quadratic module M(p1,...,pm) is Archimedean:
JR>0 : R*—||z]|> € M(p1,...,pm).

4. V2po(z*) = 0 (i.e. the Hessian of po at x* is positive definite) if x* is a
minimizer of (1.1).

Note that the third assumption implies that F is compact (since it is contained
in the ball {z : ||z|| < R}). Moreover, we may assume without loss of generality that
|z|| < R for all z € F, since R? — ||z||> € M(p1,...,pm) for all R > R.

The fourth assumption implies that the minimizer of (1.1) is unique. It is a weaker
assumption than the corresponding assumption in Theorem 3.4 of Lasserre [11] which
requires that V2f(x) = 0 V 2 € F. For example, consider the problem

min z* 4 2z.
z€[—1,1]
Here the Hessian is not positive definite at x = 0, but it is positive definite at the
global minimizer z* = —2~1/5.

2. Convex optimization and the Farkas lemma. The following result is
known as the extended (or convex) Farkas lemma; see [7] for a survey on the topic.
A proof of the result (in this form) is e.g. given in [9, §2.2.3].

THEOREM 2.1 (Farkas). Let f,g1,...,g9m be given convex functions defined on a
nonempty convex set C, and assume that the Slater regularity condition is satisfied.
The inequality system

flx) <0
z €C,

has no solution if and only if there exists a vector § € R such that

f(a:)Jngjgj(x) >0 forallxeC. (2.1)
j=1



3. Finite convergence of the Lasserre hierarchy.

3.1. The general convex case. The aim in this section is to give a proof of the
finite convergence result by Lasserre (Theorem 3.4 in [11]) under weaker assumptions.
This result applies to a polynomial optimization problem of the form (1.1), where
P0,—P1,- - -, —Pm are convex polynomials (and satisfy some additional regularity con-
dition).

A key lemma that we will need is the following Positivstellensatz by Scheiderer
[16].

PRrROPOSITION 3.1 (Example 3.18 in [16]). Let p € Rx] be a polynomial for which
the level set

K :={z eR"|pz) >0}

is compact. Let q € Rlx] be nonnegative on K. Assume that the following conditions
hold:
1. q has only finitely many zeros in IC, each lying in the interior of K.
2. the Hessian V2q is positive definite at each of these zeroes.
Then q = o¢ + poy for some 0,01 € L2.
We now prove the main result of this section, namely that the Lasserre SDP
hierarchy has finite convergence for problem (1.1) under Assumption 1.
THEOREM 3.2 (cf. Theorem 3.4 in [11]). Consider the polynomial optimization
problem (1.1). Under Assumption 1, one has:

P0 — Pmin S M(p17 .o 7pm)7
where the quadratic module M(p1,...,pm) was defined in (1.3).
Proof. We will apply the extended Farkas lemma (Theorem 2.1) with
fi=po—Pmin, gi :=—p; (i=1,...,m), and C := {z | ||z|| < R}.

By construction f(z) > 0ontheset {z € C|g;(z) <0 (j =1,...,m)}, and the Slater
assumption in Theorem 2.1 is met. Thus, by Theorem 2.1, there exists a § € R’ such
that

po(x) — Pmin — Zﬂzpz(x) > 0 VzelC.
We now show that the function

q( ) _pO — Pmin — Zyzpz (31)

has a unique root in C and this root lies in the interior of C. Indeed, ¢(z*) = 0 at the
minimizer «* of problem (1.1), so that z* is a minimizer of ¢ over C and a root of ¢ in
C. As V3q(z*) = V2pg(x*) = 0, z* is the unique minimizer of q in C, which implies
that =* is the unique root of ¢ in C. Moreover, x* lies in the interior of C since we
have assumed that ||z|| < R for all z € F.

We may now apply Proposition 3.1 with p(z) := R? — ||2||? and ¢ as defined in
(3.1), to conclude that

Po() = Pmin = Zyzpz +oo(x) + o1 () (R* — ||z]?)
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for some 0g,01 € ¥2. Since R? — ||z]|> € M(py1,...,pm) by assumption, we obtain
the required result. O

REMARK 3.1. Note that Theorem 3.2 remains valid under different constraint
qualifications. For instance, instead of assuming the existence of a Slater point (as in
Assumption 1 part 2), we may require the Mangasarian-Fromovitz constraint qualifi-
cation:

Jw € R™ wl'Vp;(z*) > 0 Vi € J*, (3.2)

where x* is a minimizer of (1.1) and J* = {i € {1,...,m} | p;(x*) = 0} is the set of
indices corresponding to the active constraints atx*. Indeed, under (3.2), there exist
multipliers 5j; > 0 for which Vpo(xz*) — >, 4:Vpi(x*) = 0 and g;p;(x*) = 0 for all i
(see e.g. [14, §12.6]).

Consider now, as before, the polynomial q := py — Pmin — »_,; Yili- As q is convex
and Vq(z*) = 0, z* is a global minimizer of ¢ over R™ and thus ¢ > q(z*) = 0 on
R™. We can now proceed as in the rest of the proof of Theorem 3.2.

REMARK 3.2. The assumption that the Hessian of py should be positive definite
at the minimizer cannot be omitted in Theorem 3.2.

To see this, consider the problem

Pmin = HllIl {pO(I) 1= HZE”2 > 0}’ (33)
zER™
where po s a convex form (i.e. homogeneous polynomial) of degree at least 4 that is
not a sum of squares.

Then pmin = 0. Indeed, convex n-variate forms are necessarily nonnegative on
R™, since their gradients vanish at zero. On the other hand, they are not always sums
of squares, as was shown by Blekherman [3].1

By construction, problem (3.3) satisfies all the assumptions of Theorem 3.2, except
for the positive definiteness of the Hessian at the minimizer.

Assume we have finite convergence of the Lasserre hierarchy for problem (3.3),
i.e.

po € X2 4 (1 — ||z||?)%2.

By Proposition 4 in De Klerk, Laurent and Parrilo [8], a form belongs to %2 + (1 —
|lz||?)%2 if and only if it is a sum of squares. This contradicts our assumption that
Po ¢ 22.

3.2. The convex quadratic case. Consider problem (1.1) in the special case
when po, p1, ..., pm are quadratic polynomials. Then, as shown in [10], the finite con-
vergence result from Theorem 3.2 can be sharpened to show that the first relaxation
in the hierarchy is exact. Moreover, we do not need to use Scheiderer’s result (Propo-
sition 3.1) since, as is well known, any nonnegative quadratic polynomial is a sum of
squares.

THEOREM 3.3. [10] Let pg, —p1, ..., —pm be convex quadratic polynomials. As-
sume that the feasible set F (as in (1.2)) is compact and let x* be a minimizer of
problem (1.1). Assume moreover that either there is a Slater point or x* satisfies

(3.2). Then, the Lasserre relaxation of order 1 is exact, i.e., p1 is equal to the mini-
mum of (1.1).

11t is interesting to note that Blekherman’s proof is not constructive, and no actual examples are
known of convex forms that are not sums of squares.
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Proof. The first part of the proof is identical to that of Theorem 3.2 (or Remark
3.1), permitting to find multipliers g; > 0 for which ¢ = po — Pmin — D_; UiDi is
nonnegative on C = R™. Now, as ¢ is quadratic polynomial, we can conclude directly
that ¢ is a sum of squares. O

3.3. The bivariate quartic case. We now consider problem (1.1) in the spe-
cial case when there is only one constraint (m = 1) and po,p; are quartic bivariate
polynomials (i.e. n = 2). Again we do not need to use Scheiderer’s result (Proposition
3.1), as we can instead use Hilbert’s result claiming that any nonnegative bivariate
quartic polynomial is a sum of squares.

THEOREM 3.4. Let pg, —p1 be bivariate, quartic, convezr polynomials and assume
that p1(xg) > 0 for some xg € R2. If py is nonnegative on F = {z | p1(x) > 0},
then there exists a § > 0 for which pg — gp1 is a sum of squares. Moreover, if p has
a mainimazer over JF, then the second relaxation in Lasserre’s hierarchy is exact, i.e.,
p2 s equal to the minimum of (1.1).

Proof. Directly applying Farkas’ lemma (Theorem 2.1) combined with the above
mentioned result of Hilbert. a

From this we can derive a result of Henrion [6] which gives an explicit semidefinite
representation of cl(conv(F)), the closure of the convex hull of the set F. Clearly
cl(conv(F)) can be described as the intersection of all its supporting hyperplanes,
which correspond to all linear polynomials nonnegative on F. Let H denote the
subset consisting of all linear polynomials of the form o + Ap;, where A > 0 and o is
a sum of squares of polynomials (thus of degree at most 4). Then

cl(conv(F)) C S(F) :=={zx € R* | f(x) >0 Vf € H}.

The set S(F) admits an explicit semidefinite programming formulation.
COROLLARY 3.5. [6] Let py be a bivariate concave quartic polynomial and assume
that p1(zo) > 0 for some xo € R%. Then cl(conv(F)) = S(F).
Proof. Directly from Theorem 3.4 as every linear polynomial nonnegative on F
belongs to H. O

4. Complexity results. A natural question is whether it is possible to give
a bound on the (finite) number of steps required for convergence by the Lasserre
hierarchy for problem (1.1) under Assumption 1.

Before addressing this question, we briefly discuss known complexity results for
convex polynomial optimization, in order to place the discussion in the correct context.

4.1. Recognizing convex problems. A first point to make is that it is NP-
hard in the Turing model of computation (described in e.g. [5]) to decide if a given
instance of problem (1.1) is a convex optimization problem, due to the following result.

THEOREM 4.1 (Ahmadi et al. [1]). It is strongly NP-hard in the Turing model of
computation to decide if a given form of degree d > 4 is quasi-convex.

4.2. Complexity results via the ellipsoid method. The best known com-
plexity result for solving problem (1.1) under Assumption 1 is by using the ellipsoid
method of Yudin-Nemirovski. For given € > 0, the ellipsoid algorithm can compute
an e-feasible? 2 such that |po(z) — pmin| < € in at most

o(on(?)

2We call z e-feasible for problem (1.1) if the ball of radius € and centered at x intersects the
feasible set F.



iterations, where each iteration requires the evaluation of the polynomials py, ..., pm
as well as the gradient of py and of one polynomial that is negative at the current
iterate (in order to obtain a separating hyperplane); see e.g. [2, §5.2].

It will be convenient to only consider the real number model (also known as BSS
model) of computation [4]. In the real number model, the input is a finite set of real
numbers, and an arithmetic operation between two real numbers requires one unit of
time. Thus, the size of the input of problem (1.1) may be expressed by four numbers:

1. n, the number of variables;

2. m, the number of constraints;

3. d, the largest total degree of pg, ..., pm;

4. the total number of nonzero coefficients of the polynomials pg, ..., p., in the
standard monomial basis, say L := ZZO L;, where L; is the number of
nonzero coefficients of p;.

Note that
d
m+1<L< (m+1)<”§ >
and the exact value of L depends on the sparsity of the polynomials py, . .., pm-

The n-variate polynomial p; of total degree at most d may be evaluated in at
most O(dL;) arithmetic operations. Thus the total complexity of the ellipsoid method

becomes
O <dLn2 In (f’)) : (4.1)

Note that the ellipsoid algorithm uses the parameter R (and not only the fact that it
is finite).

Also, neither the Slater assumption, nor the assumption that the Hessian of the
objective is positive definite at a minimizer, is required by the ellipsoid method (cf.
Assumption 1).

Finally, note that the number of constraints m only enters the complexity bound
(4.1) implicitly, via the value L.

4.3. The rank of the Lasserre hierarchy. We now return to the question of
giving a bound on the (finite) number of steps required for convergence of the Lasserre
hierarchy for problem (1.1) under Assumption 1.

Recall that the Lasserre hierarchy computes the values p; in (1.5) as the optimal
value of suitable semidefinite programs. The size of the semidefinite program that
yields p, is as follows: it has m + 1 positive semidefinite matrix variables of order
("+"), and there are ("$?') linear equality constraints; see [10] or the survey [12] for
details on the semidefinite programming reformulations.

In particular, p, may be computed to € relative accuracy in at most

o(imn("5)) (1))

arithmetic operations using interior point algorithms; see e.g. [2, §6.6.3].

Note that this bound is only polynomial in (n,m,d, L) if t = O(1).

We will call the smallest value of ¢ such that p; = pmin (see (1.1)), the rank of
the Lasserre hierarchy.



We now show that, in a well-defined sense, the rank of the Lasserre hierarchy
must depend on more than just the input size (n,m,d, L) of problem (1.1).

THEOREM 4.2. Consider problem (1.1) under Assumption 1. If deg(pg) > 4, there
is no integer constant C > 0 depending only on (n,m,d, L), such that the Lasserre
hierarchy converges in C' steps.

Proof. The proof uses a similar construction as in Remark 3.2. As in Remark 3.2,
let p be a convex, n-variate form of degree d that is not a sum of squares.

We consider the behavior of the Lasserre hierarchy for the sequence of problems:

1
min {p(:v) + EHxHQ pi(z) :=1—||z)* > O} fork=1,2,... (4.2)

TER™
By construction, for each k, problem (4.2) meets Assumption 1. By Theorem 3.2,
the Lasserre hierarchy therefore converges in finitely many steps for problem (4.2) for
each k=1,2,....
Assume now that there exists an integer ¢ > 0 such that

1
p+ E”»’CH2 € My(p1) Yk,

where M;(p1) is the truncated quadratic module of degree 2¢ generated by p; (see
(1.4)). As the set {x : p1(x) > 0} has a nonempty interior, the set M;(p1) is closed
(see [15]). As a consequence, the limit p of the sequence p + +[|z||* (as k tends to
oo) must also belong to My(p1). As explained in Remark 3.2, this contradicts the
assumption that p is not a sum of squares. O

In the construction used in the proof of Theorem 4.2, the smallest eigenvalue of
the Hessian of the objective function in (4.2) at the minimizer z* = 0 tends to zero
as k — oo. This suggests that the rank of the Lasserre hierarchy may depend on
the value of the smallest eigenvalue of the Hessian at the minimizer z*. The smallest
eigenvalue of the Hessian at * may in turn be viewed as a ‘condition number’ of the
problem that is independent of (n,m,d, L).

5. Conclusion and summary. We have given a new proof of the finite conver-
gence of the Lasserre hierarchy for convex polynomial optimization problems, under
weaker assumptions than were known before (Theorem 3.2). In Remark 3.2 we showed
that our new assumption, namely that the Hessian of the objective is positive definite
at the minimizer, is necessary for finite convergence.

We have also looked at the possibility of bounding the rank of the finite con-
vergence, and gave a negative result about the dependence of such a bound on the
problem data. In particular, we showed that the number of steps needed for conver-
gence cannot be bounded by a quantity that depends only on the input size (in the real
number model of computation). As a consequence, the worst-case complexity bound
for solving problem (1.1) under Assumption 1 to fixed accuracy is not polynomial in
the input size for the Lasserre hierarchy, in contrast to the ellipsoid method. Having
said that, it is important to remember that the number of operations required by the
ellipsoid method will typically equal the worst-case bound, whereas the Lasserre hier-
archy can converge quickly for some convex problems (as we reviewed in Sections 3.2
and 3.3). Moreover, the worst-case complexity bound for the Lasserre hierarchy could
possibly be improved by deriving error bounds on pyin, — p; (see (1.5)) in terms of ¢.
For general polynomial optimization problems, deriving explicit error bounds for the
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Lasserre hierarchy has proved difficult so far (see [13]), but the additional convexity
assumption may simplify this analysis.
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