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Abstract. This paper is devoted to high-order numerical time integration of first-order wave
equation systems originating from spatial discretization of Maxwell’s equations. The focus lies on the
accuracy of high-order composition in the presence of source functions. Source functions are known
to generate order reduction, and this is most severe for high-order methods. For two methods based
on two well-known fourth-order symmetric compositions, convergence results are given assuming
simultaneous space-time grid refinement. Herewith physical sources and source functions emanating
from Dirichlet boundary conditions are distinguished. Among other things it is shown that the
reduction can cost two orders. On the other hand, when a certain perturbation of a source function
is used, the reduction is generally diminished by one order. In that case, reduction is absent for
physical sources and for Dirichlet sources the order is equal to at least three under stable simultaneous
space-time grid refinement.
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1. Introduction. Common spatial discretization of the Maxwell equations from
electromagnetism

(1)
µ ∂tH = −∇× E ,

ε ∂tE = ∇×H − σE − JE

results in linear systems of ODEs of the type

(2)

(
Mu 0
0 Mv

)(
u′

v′

)
=

(
0 −K

KT −D

)(
u
v

)
+

(
fu(t)
fv(t)

)
.

The vectors u = u(t) and v = v(t) are the unknown vector (grid) functions approx-
imating the values of the magnetic field H and electric field E on the space grid,
respectively. The matrices K and KT emanate from the curl operator ∇×. The
matrix D is associated with the dissipative conduction term −σE, and the matrices
Mu, Mv typically represent mass matrices such as those arising with finite elements.
They also contain the values of the coefficients µ and ε. Further, the vector func-
tions fu(t) and fv(t) are time-dependent source terms. Normally fv(t) represents the
given source current JE on the grid, but fu(t) and fv(t) may also contain Dirichlet
boundary data.

Hence the partitioned ODE system (2) is of considerable practical interest, as it
is generic for semidiscrete Maxwell equations. In this paper we discuss high-order
numerical integration of (2) when considered as a semidiscrete system. In particular,
we will assume that elementwise

(3) K ∼ 1

h
, h → 0 ,
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440 J. G. VERWER

where h parameterizes the distance of the (possibly nonuniform) space grid and the
dimensions of the arising matrices and vectors. Hence we assume that the dimension
of (2) is variable (PDE setting), and we thus do not consider a single system of fixed
dimension as in the ODE setting.

In the remainder we also assume that we have eliminated the mass matrices so
that instead of (2) we proceed with the semidiscrete system

(4)

(
u′

v′

)
=

(
0 −K

KT −D

)(
u
v

)
+

(
fu(t)
fv(t)

)
.

This somewhat more convenient form is obtained from the mass-matrix form through
a simple transformation (see [1]), and the numerical integration methods we discuss
can be implemented for either choice. In particular, results for (4) always carry over
to (2) and vice versa. For convenience of notation and presentation, we will therefore
proceed with (4). Herein the damping matrix D is symmetric nonnegative definite.
Often K is not square, so the lengths of u and v generally are different. Except for
common sufficient differentiability of the source functions, no further conditions are
imposed on (4).

Composition methods and partitioned systems like (4) form a perfect match;
see, e.g., [6] for a description of the composition technique. One of the most popu-
lar integration methods for Maxwell’s equations, the second-order method (7), is a
composition method; see, e.g., [9, 1]. Composition is an elegant and powerful tech-
nique. One can directly build high-order methods from known compositions from the
literature. Composition methods are also known to be accurate. However, in the
PDE setting of semidiscrete systems, the convergence order of such a method may be
lower than the chosen composition order. Such a reduction of order emanates from
source terms, even from physical ones, and this occurs for composition methods of
order greater than two. We examine this for two methods based on two well-known
fourth-order compositions from the literature.1

In section 2 we will review local error analysis results for the second-order method
(7) since we need these later. In this section we also propose perturbing one of the
source functions in a manner that the second-order method no longer shows local
order reduction. Whereas this is not relevant for the global error of the second-order
method, it is for the global error of higher-order composition methods. We will discuss
this in section 3 for the two methods based on fourth-order composition. For these
two methods, we will prove that due to the perturbation the general PDE order in-
creases by one. Specifically, if one of the source functions contains Dirichlet boundary
data, the order is a least two without the perturbation and at least three with the
perturbation. On the other hand, if boundary data is absent in both, these numbers
are three and four. For given source functions, these convergence orders depend on the
sequence of u and v used in the composition method. We will numerically illustrate
the PDE convergence results in section 4.

2. The second-order method. In this section we review the second-order
method which forms the basis for the composition methods discussed later in the

1When we write order without referring specifically to the PDE setting, we will always mean the
ODE order which is determined by the composition order.
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paper. Let Φτ denote the integration method

(5)

un+1 − un

τ
= −Kvn+1 + fu(tn+1) ,

vn+1 − vn
τ

= KTun −Dvn+1 + fv(tn+1)

and Φ∗
τ its adjoint

(6)

un+1 − un

τ
= −Kvn + fu(tn) ,

vn+1 − vn
τ

= KTun+1 −Dvn + fv(tn) .

The composition Φτ/2 ◦ Φ∗
τ/2 then defines the second-order method

(7)

un+1/2 − un

τ
= −1

2
Kvn +

1

2
fu(tn) ,

vn+1 − vn
τ

= KTun+1/2 −
1

2
D(vn + vn+1) +

1

2
(fv(tn) + fv(tn+1)) ,

un+1 − un+1/2

τ
= −1

2
Kvn+1 +

1

2
fu(tn+1) .

This one-step method steps from (un, vn) to (un+1, vn+1) with step size τ . Here un

denotes the approximation to the exact solution u(tn), etc., and τ = tn+1 − tn. The
method is explicit in the wave terms and implicit in D (the trapezoidal rule). If D
is block-diagonal with a small bandwidth, as it is for discontinuous Galerkin finite
element and finite difference discretizations, this implicitness comes with small costs.
For n ≥ 1 the third-stage derivative computation can be copied to the first stage at
the next time step. Per time step this method thus is very economical, as it actually
requires a single right-hand side evaluation per time step (for zero D), while it is
second-order consistent (a consequence of symmetry). Method (7) is well known in
the literature on geometric integration (see, e.g., [6]), in particular for zero D. With
regard to time stepping it bears a close resemblance to the popular Yee scheme [14]
from electromagnetism and to Verlet’s method from molecular dynamics [11]. For the
Maxwell equations it has been studied, for example, in [9, 1, 12].

Our error analysis concerns temporal convergence towards the true solutions of
the underlying PDE problem restricted to the space grid. We denote these by uh(t)
and vh(t) and observe that these exact grid functions are solutions of the semidiscrete
system

(8)
u′
h(t) = −Kvh(t) + fu(t) + σu

h(t) ,

v′h(t) = KTuh(t)−Dvh(t) + fv(t) + σv
h(t) ,

where σu
h(t) and σv

h(t) represent local spatial errors. In [1, 12] the following theorem
has been proven.

Theorem 2.1. Let the source functions fu(t), fv(t) ∈ C2[0, T ] on a given finite
time interval [0, T ], and suppose a Lax–Richtmyer stable space-time grid refinement
τ ∼ h, h → 0. On the interval [0, T ] the approximations un, vn of method (7) then
converge with temporal order two to uh(t), vh(t).

This theorem thus says that the second-order method does not suffer from order
reduction. This second-order result is special in that the local error may suffer from
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reduction (cf. (14)), which cancels in the transition towards global error. Below we
will review the local errors for τ ∼ h, h → 0 since we will need these when the method
is used as a building block for the higher-order composition methods.2 For the full
proof of the theorem explaining the fortunate cancelation we refer the reader to [1, 12].
Details on stability properties and energy conservation can also be found in [1].

2.1. Local error properties. We review the local error properties of method
(7). To this end we first replace fv(tn)+ fv(tn+1) by a perturbed source contribution
f̃v(tn) + f̃v(tn+1) which will enable us to overcome the local order reduction. The
precise definition will be given shortly. Simultaneously we eliminate the intermediate
value un+1/2 from the second stage by substituting half of its expression obtained
from the first and third stages. This yields the equivalent formulation
(9)

un+1 − un

τ
= −1

2
K (vn + vn+1) +

1

2
(fu(tn) + fu(tn+1)) ,

vn+1 − vn
τ

=
1

2
KT (un + un+1)−

1

2
D(vn + vn+1) +

1

2

(
f̃v(tn) + f̃v(tn+1)

)

−1

4
τKT [−Kvn+1 + fu(tn+1)] +

1

4
τKT [−Kvn + fu(tn)] .

Substitution of uh(tn) for un, etc., results in the defects δun and δvn defined by
(10)
uh(tn+1)− uh(tn)

τ
= −1

2
K (vh(tn) + vh(tn+1)) +

1

2
(fu(tn) + fu(tn+1)) + δun ,

vh(tn+1)− vh(tn)

τ
=

1

2
KT (uh(tn) + uh(tn+1))−

1

2
D (vh(tn) + vh(tn+1))

+
1

2

(
f̃v(tn) + f̃v(tn+1)

)
− 1

4
τKT [−Kvh(tn+1) + fu(tn+1)]

+
1

4
τKT [−Kvh(tn) + fu(tn)] + δvn .

Using (8) we get
(11)

δun =
uh(tn+1)− uh(tn)

τ
− 1

2
(u′

h(tn) + u′
h(tn+1)) + sun ,

δvn =
vh(tn+1)− vh(tn)

τ
− 1

2
(v′h(tn) + v′h(tn+1)) +

1

4
τKT [u′

h(tn+1)− u′
h(tn)] + svn

+
1

2
(fv(tn) + fv(tn+1))−

1

2

(
f̃v(tn) + f̃v(tn+1)

)
,

where

(12)
sun =

1

2
(σu

h(tn) + σu
h(tn+1)) ,

svn =
1

2
(σv

h(tn) + σv
h(tn+1))−

1

4
τKT [σu

h(tn+1)− σu
h(tn)]

denote the local spatial error contributions.

2The notation τ ∼ h, h → 0 is used throughout the paper and means that we consider a
simultaneous space-time grid refinement, where the ratio between τ and h is determined by the
common demand of Lax–Richtmyer stability.
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Because our focus lies on temporal accuracy, we will now omit sun and svn; that is,
we simply put sun and svn to zero. This is not essential. Carrying the spatial errors along
in further derivations yields no more insight into temporal accuracy. It would merely
make our expressions more lengthy. We stress, however, that temporal accuracy will
remain to be considered with respect to uh(t) and vh(t) for τ ∼ h, h → 0. Henceforth
uh(t) and vh(t) are supposed to be continuously differentiable as many times as the
derivations require.

Let us first examine δun (for zero sun), which is in fact the implicit trapezoidal rule
defect. Expanding at the center point tn+1/2 for τ → 0 yields the familiar expansion

(13) δun = − 1

12
τ2u(3)

h − 1

480
τ4u(5)

h + · · · ,

where the derivatives are evaluated at t = tn+1/2. The expansion contains only
constants and (odd) solution derivatives which when appropriately measured (with
the inner product norm) are bounded for h → 0. So, if uh is three times continuously
differentiable, from Taylor’s theorem with remainder we get δun = O(τ2) with the
order constant involved independent of τ and h.3

Next we expand δvn (for svn = 0) at tn+1/2, first without a source function pertur-

bation, that is, with f̃v(tn) + f̃v(tn+1) = fv(tn) + fv(tn+1). We get

(14) δvn = − 1

12
τ2v(3)h − 1

480
τ4v(5)h + · · · + τKT

[
1

4
τu(2)

h +
1

96
τ3u(4)

h + · · ·
]
.

Because of property (3) we have τKT = O(1) for τ ∼ h, h → 0. This means that in
general the second part of the expansion is only O(τ) and hence δvn = O(τ) instead
of O(τ2). If

(15) KTu(2)
h (t) = v(3)h (t) +Dv(2)h (t)− d2

dt2
fv(t)− d2

dt2
σ(v)
h (t) = O(1) , h → 0 ,

then δvn = O(τ2) for τ ∼ h, h → 0. This holds if

(16)
d2

dt2
fv(t) = O(1) , h → 0 ,

because the third derivative of vh(t) and the second derivatives of Dvh(t) and σ(v)
h (t)

are bounded. Condition (16) is true for physical sources fv(t) but generally not if
fv(t) contains Dirichlet boundary data, since then part of its components behaves as
O(h−1), h → 0 (cf. property (3)), and this generally also holds for the derivatives.

To overcome this possible cause of local order reduction4 we now define the per-
turbed source function contribution

(17) f̃v(tn) + f̃v(tn+1) = fv(tn) + fv(tn+1) +
1

2
τ
d

dt
(fv(tn)− fv(tn+1)) ,

where we emphasize that the perturbation is defined for the sum. With this definition
δvn becomes

(18)
δvn =

vh(tn+1)− vh(tn)

τ
− 1

2
(v′h(tn) + v′h(tn+1))

+
1

4
τ (v′′h(tn+1)− v′′h(tn)) +

1

4
τD (vh(tn+1)− vh(tn)) .

3Unless noted otherwise, the symbol O(·) will always be used with this meaning; that is, order
constants exist which are independent of τ and h for τ ∼ h → 0.

4As proved in [1, 12], this local order reduction does not affect the second-order convergence of
method (7) for τ ∼ h, h → 0.
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Expanding in the same way as for δun gives

(19) δvn = τ2
[
1

6
v(3)h +

1

4
Dv(1)h

]
+ τ4

[
1

120
v(5)h +

1

96
Dv(3)h

]
+ · · · .

Like for uh, if vh is three times continuously differentiable, from Taylor’s theorem
with remainder we get δvn = O(τ2) for τ ∼ h, h → 0 with the order constant involved
independent of τ and h.

2.2. The global error recursion. Let εun = uh(tn)− un and εvn = vh(tn)− vn
denote the global errors. From (9) and the local error discussion we deduce the
following global error recursion:

(20)

(
I 1

2τK

− 1
2τK

T I − 1
4 τ

2KTK + 1
2τD

)(
εun+1

εvn+1

)

=

(
I − 1

2τK

1
2τK

T I − 1
4τ

2KTK − 1
2τD

)(
εun

εvn

)
+ τ

(
δun

δvn

)
,

and putting εn = [(εun)
T , (εvn)

T ]T and δn = [(δun)
T , (δvn)

T ]T , we arrive at the compact
notation

(21) εn+1 = Rεn + τρn , R = R−1
L RR , ρn = R−1

L δn ,

with RL and RR the left and right block matrices, respectively. This recursion has the
standard form featuring in the convergence analysis of one-step integration methods;
see, e.g., [7]. Assuming Lax–Richtmyer stability, whereby we include RL inversely
bounded for τ ∼ h, h → 0, it transfers local errors to the global error by essentially
adding all local errors. It reveals second-order convergence for τ ∼ h, h → 0 if both
δun and δvn are O(τ2) for τ ∼ h, h → 0.

2.3. Reversed u, v sequence. The sequence u, v in (7) may be reversed. For
this second-order method this is not relevant. However, when used as a base method
for higher-order composition, significant accuracy differences may arise. This fully
depends on the source terms, i.e., whether they contain Dirichlet boundary data or
not. We will illustrate this in section 4. Taking into account the sequence and the
source function perturbation, this means that altogether four different second-order
methods are distinguished, namely (7), its version with the perturbation (17),

(22)

un+1/2 − un

τ
= −1

2
Kvn +

1

2
fu(tn) ,

vn+1 − vn
τ

= KTun+1/2 −
1

2
D(vn + vn+1) +

1

2
(f̃v(tn) + f̃v(tn+1)) ,

un+1 − un+1/2

τ
= −1

2
Kvn+1 +

1

2
fu(tn+1) ,

its version with reversed sequence,

(23)

vn+1/2 − vn
τ

=
1

2
KTun − 1

2
Dvn +

1

2
fv(tn) ,

un+1 − un

τ
= −Kvn+1/2 +

1

2
(fu(tn) + fu(tn+1)) ,

vn+1 − vn+1/2

τ
=

1

2
KTun+1 −

1

2
Dvn+1 +

1

2
fv(tn+1) ,
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and its version with reversed sequence and the perturbation (17) applied to fu,

(24)

vn+1/2 − vn
τ

=
1

2
KTun − 1

2
Dvn +

1

2
fv(tn) ,

un+1 − un

τ
= −Kvn+1/2 +

1

2
(f̃u(tn) + f̃u(tn+1)) ,

vn+1 − vn+1/2

τ
=

1

2
KTun+1 −

1

2
Dvn+1 +

1

2
fv(tn+1) .

For the analysis it is sufficient to consider only methods (7) and (22).

3. Symmetric composition methods. Our aimed methods are based on sym-
metric compositions

(25) Ψ(4)
τ = Ψ(2)

γsτ ◦ · · · ◦ Ψ(2)
γ1τ

of composition order four (γ1 + · · · + γs = 1 and γ3
1 + · · · + γ3

s = 0), where Ψ(2)
γkτ

represents one of the four methods from section 2.3. Within this composition, the base
method steps from tn + (γ1 + · · · + γk−1)τ to tn + (γ1 + · · · + γk)τ for k = 1, . . . , s,
spanning the interval [tn, tn+1]. For composition order four, two compositions of
interest have s = 3 and s = 5, respectively,

(26) γ1 = γ3 =
1

2− 21/3
, γ2 = − 21/3

2− 21/3
,

and

(27) γ1 = γ2 = γ4 = γ5 =
1

4− 41/3
, γ3 = − 41/3

4− 41/3
.

We have taken these parameters from [6, formulas (II.4.4) and (II.4.5)], where for
s = 3 a reference is given to [2, 4, 10, 15] and for s = 5 to [10].

A convergence proof for method (25) is given in [6]. This proof, however, does
not take into account the Lipschitz constant of the ODE system, which essentially
means that for our case it is restricted to a fixed ODE system, whereas we wish to
investigate the order for τ ∼ h, h → 0. In section 3.2 we will present a proof for the
following counterpart of Theorem 2.1.

Theorem 3.1. Let D be zero, let fu(t), fv(t) ∈ Cp[0, T ], and suppose a Lax–
Richtmyer stable space-time grid refinement τ ∼ h, h → 0. On [0, T ] the approxima-
tions un, vn of method (25) based on (22) and parameters (26) or (27) then converge
to uh(t), vh(t) with

(i) at least order p = 3,

(ii) order p = 4 if in addition KTu(3)
h (t), Kv(3)h (t) = O(1) for h → 0 .

We have taken D = 0, as this simplifies the analysis. With respect to order
reduction this is not essential, as order reduction is not related to conduction.

Theorem 3.1 states that on the whole problem class (4) with fu(t), fv(t) ∈
C3[0, T ] order three is guaranteed. If both source functions are in C4[0, T ] and the
additional condition on the third derivatives is satisfied, the composition order four
will hold. From

(28)
Kv(3)h (t) = −u(4)

h (t) +
d3

dt3
fu(t) +

d3

dt3
σu
h(t) ,

KTu(3)
h (t) = v(4)h (t) +Dv(3)h (t)− d3

dt3
fv(t)− d3

dt3
σv
h(t) ,
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it follows that this is true if for h → 0 the source functions satisfy

(29)
d3

dt3
fu(t) = O(1),

d3

dt3
fv(t) = O(1) ,

because the fourth derivatives of uh(t), vh(t) and the third derivatives ofDvh(t),σu
h(t),

σv
h(t) are bounded for h → 0.

This boundedness condition applies to physical sources, but is violated by sources
containing Dirichlet boundary data, since for these there will exist components which
are O(h−1) for h → 0. Hence with only physical sources we are guaranteed that there
will be no order reduction. With Dirichlet boundary data we are guaranteed that we
have order three, and we expect that normally order three will show up. However,
for special solutions the order may lie between three and four, even if the (sufficient)
condition of assertion (ii) will be violated. In some cases, Dirichlet boundary data
can be transformed to homogeneous boundary data by a straightforward change of
variables. When such a transformation is available, order reduction can be avoided.

We owe the good convergence results of Theorem 3.1 to the perturbed source
function contribution (17). Generally, by using (17) the reduction is diminished with
one order. The following theorem, where the composition is based on the original
method (7), clarifies this.

Theorem 3.2. Let D be zero, let fu(t), fv(t) ∈ Cp[0, T ], and suppose a Lax–
Richtmyer stable space-time grid refinement τ ∼ h, h → 0. On [0, T ] the approxima-
tions un, vn of method (25) based on (7) and parameters (26) or (27) then converge
to uh(t), vh(t) with

(i) at least order p = 2,

(ii) at least order p = 3 if in addition KTu(2)
h (t) = O(1) for h → 0 ,

(iii) order four p = 4 if in addition KTu(3)
h (t), Kv(3)h (t), KKTu(2)

h (t) = O(1) for
h → 0 .

Similarly as above, from (8) it follows that KTu(2)
h (t) = O(1) if

(30)
d2

dt2
fv(t) = O(1) , h → 0 ,

while the additional conditions for order four are satisfied if (29) holds and if

(31) K
d2

dt2
fv(t) = O(1) , h → 0 .

In particular this latter condition is restrictive and implies that even with only physical
sources order four for τ ∼ h, h → 0 will rarely occur. However, as observed above, for
special solutions the order reduction may be less, even if the (sufficient) conditions of
assertions (ii) and (iii) will be violated.

When comparing Theorems 3.1 and 3.2, it is obvious that the perturbed source
function contribution (17) should be used as a default option. In section 4 we will
illustrate this, both for the base methods (7) and (22), assumed in these theorems,
as well as for their reversed versions (23) and (24). Finally, because the proof of
Theorem 3.2 is similar to that of Theorem 3.1, we refrain from presenting it here to
avoid duplication.

3.1. Step-by-step stability. Before proving the above convergence theorems
we recall the stability analysis, as this is based on material also needed for the proofs.
Consider the semidiscrete system (4). Assume u ∈ Rm, v ∈ Rn with n ! m (the
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reversed case can be treated likewise), and thus K ∈ Rm×n and D ∈ Rn×n. Let w ∈
Rn+m denote the solution vector composed by u, v. A natural norm for establishing
stability is the inner product norm ‖w‖2 = 〈u, u〉+ 〈v, v〉. As D is symmetric positive
semidefinite, and for zero D the matrix of the system is skew-symmetric, for the
homogeneous part of (4) it follows that

(32)
d

dt
‖w‖2 = −2〈Dv, v〉 " 0 ,

showing stability in the inner product norm.
For numerical stability analysis we suppose that the conduction matrix D is con-

stant diagonal, D = αI say. This holds if in (1) the conductivity coefficient σ and the
permittivity coefficient ε are constant scalars and allow the use of the singular value
decomposition K = UΛV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Λ
is a diagonal m× n matrix with nonnegative diagonal entries λ1, . . . , λm satisfying

(33) λ1 ! λ2 ! · · · ! λr > λr+1 = · · · = λm = 0 .

Here r < m (or r = m in the case λm > 0) is the (row) rank of K and the λi are the
singular values of K (the square roots of the eigenvalues of KKT ). The transformed
variables and source terms

(34) ū(t) = UTu(t) , v̄(t) = V T v(t) , f̄u(t) = UT fu(t) , f̄v(t) = V T fv(t)

satisfy the ODE system

(35)

(
ū′

v̄′

)
=

(
0 −Λ
ΛT −αI

)(
ū
v̄

)
+

(
f̄u(t)
f̄v(t)

)
.

Because the matrix transformation induced by (34) is a similarity transformation, the
matrices of systems (4) and (35) have the same eigenvalues. Further, ‖u‖22 + ‖v‖22 =
‖ū‖22 + ‖v̄‖22 due to the orthogonality of U and V . Thus, if D = αI applies, the
stability of any time integration method may be studied for the homogeneous part of
(35), provided that also the method is invariant under the transformations leading to
(35). This holds for the methods considered in this paper.

Since the matrix Λ is diagonal, system (35) decouples into r two-by-two systems

(36)

(
û′

v̂′

)
=

(
0 −λ
λ −α

)(
û
v̂

)
+

(
f̂u(t)
f̂v(t)

)
, λ = λk > 0 , k = 1, . . . , r ,

m − r scalar equations û′ = f̂u(t), and n − r scalar equations v̂′ = −αv̂ + f̂v(t).5

This is the canonical form for semidiscrete Maxwell equation systems with D = αI.
With regard to stability, consistency, and convergence analysis, numerical methods
which are invariant under the used transformation can be examined for this canonical
form. Herewith the m − r scalar equations û′ = f̂u(t) and n − r scalar equations
v̂′ = −αv̂ + f̂v(t) are trivial. What matters are the r two-by-two systems (36) of
which the homogeneous form provides a useful test model for stability.

5We have used the singular value decomposition also in [1, 13], and note that the description of
the decoupling given in [1] contains an error.
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When applied to the homogeneous form of (36), the composition method based
on (7) or (22) yields
(37)
(

ûn+1

v̂n+1

)
=

1∏

k=s

1

1 + 1
2γkzα

(
1 + 1

2γkzα − 1
2γ

2
kz

2
λ −γkzλ + 1

4γ
3
kz

3
λ

γkzλ 1− 1
2γkzα − 1

2γ
2
kz

2
λ

)(
ûn

v̂n

)
,

where zα = τα, zλ = τλ. We define stability through the common root condition:
at (zα, zλ) the two roots of the characteristic equation of the amplification matrix lie
on the unit disc and are different when both lie on the unit circle. We recall that for
method (7) and its three counterparts from section 2.3 it holds that for α = 0 the
root condition is satisfied if and only if zλ < 2, while for α > 0 the root condition
is satisfied if and only if zλ ≤ 2 [1]. Hence there is no step size restriction on the
conduction coefficient α.

For the composition methods defined by the parameter sets (26) and (27) we also
distinguish between α = 0 and α > 0. For α = 0 the stability interval is the largest
interval (0, zλ) along which the root condition holds. Along this interval both roots
lie on the unit circle. A numerical search has resulted in (0, 12π] for s = 3 and (0, e]
for s = 5, where 1

2π and e are accurate lower bounds. For α > 0 we have computed,
with a numerical search, the stability regions

(38) S = {(zα, zλ) : zα, zλ ≥ 0 and both roots have modulus < 1} ,

where we impose the slightly stricter condition < 1; see Figure 1. Both regions contain
a hole along the zα-axis due to the negative time step (see (26) and (27)) which
imposes a step size restriction determined by the conduction coefficient α. Further,
for s = 5 the region is larger due to smaller coefficients γk. Taking into account the
workload (five substeps or stages compared to three), the advantage of a larger S still
exists. This advantage is negligible for α = 0 (compare the scaled lengths e/5 ≈ 0.54
and 1

2π/3 ≈ 0.52). Finally, when stability is more important than accuracy and the
workload is taken into account, it is clear that the methods for s = 3 and s = 5 cannot
compete with the second-order methods. This holds in particular if conduction terms
limit the step size.

zα = τ α

z λ =
 τ

 λ

0 1 2 3 4
0

1

2

3

4

zα = τ α

z λ =
 τ

 λ

0 1 2 3 4
0

1

2

3

4

Fig. 1. The stability regions S of the two composition methods. On the left is for s = 3; on the
right is for s = 5.
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3.2. Proof of Theorem 3.1. We will give the proof for s = 3. From the
derivations and results gathered for s = 3 one can readily see that the case s = 5 is
proved in precisely the same way.

3.2.1. Preliminaries. Consider the global error recursion (20). Let Rk denote
the amplification operator R introduced in (21) with τ replaced by γkτ , and define
Rk,L as the counterpart of RL. With the material of sections 2.1 and 2.2 one then
readily derives for the composition method (25) based on (22) the global error recur-
sion

(39) εn+1 = R3R2R1εn +R3R2R
−1
1,Lδ

(1)
n +R3R

−1
2,Lδ

(2)
n +R−1

3,Lδ
(3)
n ,

where

(40) δ(k)n =




− 1

12γ
3
kτ

3u(3)
h (sk)− 1

480γ
5
kτ

5u(5)
h (sk) + · · ·

1
6γ

3
kτ

3v(3)h (sk) +
1

120γ
5
kτ

5v(5)h (sk) + · · ·



 ,

and sk = tn + (γ1 + · · ·+ γk−1 +
1
2γk)τ denotes the center point for the kth substep.

Note that here we have included the step size factor γkτ into the defect expressions.
For zero D we can express R−1

k,L and Rk as

(41)

R−1
k,L =

(
I − 1

4γ
2
kτ

2KKT − 1
2γkτK

1
2γkτK

T I

)
,

Rk =

(
I − 1

2γ
2
kτ

2KKT −γkτK + 1
4γ

3
kτ

3KKTK

γkτKT I − 1
2γ

2
kτ

2KTK

)
,

and since τK = O(1) for τ ∼ h, h → 0 due to (3), this also holds for these two
matrices and any combination thereof.

We write (39) as

(42) εn+1 = Rεn+ρn , R = R3R2R1, ρn = R3R2R
−1
1,Lδ

(1)
n +R3R

−1
2,Lδ

(2)
n +R−1

3,Lδ
(3)
n

and introduce the following ansatz [7, Lemma II.2.3]: ρn can be written as

(43) ρn = (I −R)ξn + ηn ,

with ξn and ηn local error quantities satisfying

(44) ξn = O(τp), ξn+1 − ξn = O(τp+1), and ηn = O(τp+1) .

If this holds, then ε̃n = εn − ξn satisfies the recurrence

(45) ε̃n+1 = Rε̃n − (ξn+1 − ξn) + ηn ,

with an O(τp+1) local error. Assuming Lax–Richtmyer stability then gives in the
standard way O(τp) for ε̃n and hence for εn. The importance of the ansatz is thus
that the global order can be proven to be equal to the order of ξn, which is a local
quantity. Consequently, the proof of Theorem 3.1 is complete if for τ ∼ h, h → 0 the
ansatz applies with p = 3 for assertion (i) and with p = 4 for assertion (ii).
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For examining (43) we use the singular value decomposition of section 3.1. This
means that within the expressions (41) one may read Λ for K and ΛT for KT and
then, following the decoupling into the r two-by-two systems (36), also decouple R−1

k,L

and Rk in r two-by-two matrices6

(46)

R̂−1
k,L =

(
1− 1

4γ
2
kz

2 − 1
2γkz

1
2γkz 1

)
, R̂k =

(
1− 1

2γ
2
kz

2 −γkz + 1
4γ

3
kz

3

γkz 1− 1
2γ

2
kz

2

)
, z = τλ .

Hence (43) is replaced by r two-by-two systems

(47) ρ̂n = (I − R̂)ξ̂n + η̂n ,

where ρ̂n is the transformed counterpart of ρn, etc. In accordance with the limit
transition τ ∼ h, h → 0 and τK = O(1) we will consider z uniformly in an interval
[0, zmax] with (0, zmax] ⊂ the stability interval of the numerical method as defined in
section 3.1. Note that this implies Lax–Richtmyer stability. The end point zmax will
be defined below.

3.2.2. Assertion (i). If fu, fv ∈ C3[0, T ], then uh, vh ∈ C4[0, T ]. For τ ∼
h, h → 0, Taylor’s theorem with remainder then allows us to replace (40) by

(48) δ(k)n = γ3
k




− 1

12τ
3u(3)

h +O(τ4)

1
6τ

3v(3)h +O(τ4)



 ,

where the third derivatives may be taken at any t ∈ [tn, tn+1] independent of k. Hence
we can express the local error ρn as
(49)

ρn = Lwn+O(τ4) , wn =




− 1

12τ
3u(3)

h

1
6τ

3v(3)h



 , L = γ3
1 R3R2R

−1
1,L+γ3

2 R3R
−1
2,L+γ3

3 R
−1
3,L .

The local error is of order three. For proving convergence order three in the
standard way we need a local error of order four. To circumvent this we now employ
the ansatz with p = 3. Trivially, for ηn we may choose the O(τ4) term in (49), and
there remains dealing with the relation Lwn = (I−R)ξn. For this purpose we proceed
with the transformed counterpart

(50) L̂ŵn = (I − R̂)ξ̂n .

Let us write

(51)

R̂−1
k,L = I + zÂk, Âk =

( − 1
4γ

2
kz − 1

2γk

1
2γk 0

)
,

R̂k = I + zB̂k, B̂k =

( − 1
2γ

2
kz −γk + 1

4γ
3
kz

2

γk − 1
2γ

2
kz

)

6The scalar equations associated with zero singular values play a trivial role. Note that instead
of zλ here we write z.
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and substitute into R̂ and L̂. Using the third-order condition γ3
1 + γ3

2 + γ3
3 = 0 we

then can extract one factor z from (50), that is, we can write

(52) L̂ = zĈ , I − R̂ = zD̂ ,

where the two-by-two matrix Ĉ collects the remaining O(1) terms. If D̂−1 exists and
is bounded uniformly in [0, zmax], then

(53) ξ̂n = D̂−1Ĉŵn = O(τ3) , ξ̂n+1 − ξ̂n = O(τ4) ,

and ξ̂n satisfies (50).
Consequently, we are done if D̂−1 exists and is bounded uniformly in [0, zmax].

There holds

(54) D̂ = −D̂0 − z
(
B̂3B̂2 + B̂3B̂1 + B̂2B̂1

)
− z2B̂3B̂2B̂1 ,

where, using γ1 + γ2 + γ3 = 1 and γ3
1 + γ3

2 + γ3
3 = 0,

(55) D̂0 =
3∑

k=1

B̂k =




− 1

2z
∑3

k=1 γ
2
k −1

1 − 1
2z
∑3

k=1 γ
2
k



 .

Hence D̂−1 exists in a neighborhood of z = 0 which proves the existence of a zmax > 0.
Obviously, we wish to maximize zmax. For z > 0 it follows that D̂−1 = z(I − R̂)−1

exists if both eigenvalues of R̂ are unequal to one. This is true inside the whole
stability interval, where the eigenvalues lie on the unit circle, but for z → the right
end point of the stability interval the eigenvalues coincide in one. Necessarily we thus
have zmax < than the right end point. With zmax = π/2 we can conclude that D̂−1

exists and is bounded uniformly in [0, zmax], because π/2 is smaller than the true end
point.7 This completes our proof of assertion (i).

3.2.3. Assertion (ii). If fu, fv ∈ C4[0, T ], then uh, vh ∈ C5[0, T ]. For τ ∼
h, h → 0, Taylor’s theorem with remainder then allows us to replace (40) by

(56) δ(k)n = γ3
k




− 1

12τ
3u(3)

h − 1
12 (sk − tn+1/2) τ

4u(4)
h +O(τ5)

1
6τ

3v(3)h + 1
6 (sk − tn+1/2) τ

4v(4)h +O(τ5)



 ,

where the derivatives are taken at tn+1/2 = sk − (γ1 + · · · + γk−1 +
1
2γk −

1
2 )τ . Note

that due to symmetry s2 = tn+1/2 and s3 − s2 = s2 − s1. As a consequence

(57) δ(1)n + δ(2)n + δ(3)n = O(τ5) .

Alternatively, the O(τ5) result can also be concluded from the quadrature order four,
since (57) is the local error for zero K for which the composition method reduces to
a fourth-order quadrature rule.

Proceeding with transformed variables we thus can express the local error as
ρ̂n = z β̂n +O(τ5),

(58)
β̂n = [B̂3 + B̂2 + Â1 + z

(
B̂3B̂2 + B̂3Â1 + B̂2Â1

)
+ z2B̂3B̂2Â1] δ̂

(1)
n

+ [B̂3 + Â2 + zB̂3Â2] δ̂
(2)
n + Â3 δ̂

(3)
n ,

7For z → zmax, ‖D̂−1‖2 monotonically increases but remains close to one (the value at z = 0)
on the greatest part of the interval. For example, at the values (0.50, 0.75, 0.90, 1.00) · π/2 the norm
equals, approximately, 1.08, 1.48, 3.09, 189.9.
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and our task is now to check the ansatz rule (47) for p = 4. Obviously we assign η̂n
to the O(τ5) term and we are done if in the interval [0, zmax] we can solve ξ̂n with
order p = 4 from

(59) (I − R̂)ξ̂n = z β̂n ,

or, equivalently, from D̂ξ̂n = β̂n; see (52) and the discussion thereafter on the existence
and uniform boundedness of D̂−1. Hence what remains to show is that β̂n = O(τ4).

From (56) it follows that

(60)

β̂n = γ3
1 [B̂3 + B̂2 + Â1 + z

(
B̂3B̂2 + B̂3Â1 + B̂2Â1

)
+ z2B̂3B̂2Â1] ŵn

+ γ3
2 [B̂3 + Â2 + zB̂3Â2] ŵn + γ3

3Â3 ŵn +O(τ4)

=
(
γ3
1 [B̂3 + B̂2 + Â1] + γ3

2 [B̂3 + Â2] + γ3
3Â3

)
ŵn + T̂ · z ŵn +O(τ4) ,

where T̂ collects the remaining O(1) terms and

(61) ŵn =




− 1

12τ
3 û(3)

h (tn+1/2)

1
6τ

3 v̂(3)h (tn+1/2)



 .

Recall that the Âk, B̂k and their combinations are O(1) since z ∈ [0, zmax] with zmax

finite.
At this stage we invoke the additional condition KTu(3)

h (t),Kv(3)h (t) = O(1), h →
0, made for assertion (ii). For the transformed variables this implies, for h → 0,

(62) λû(3)
h (t), λv̂(3)h (t) = O(1)

for any component pair ûh, v̂h and occurring singular value λ of K. This provides us
with an additional factor τ such that T̂ · z ŵn = O(τ4), and likewise we can simplify
expression (60) to

(63) β̂n =
(
γ3
1 [B̂3 + B̂2 + Â1] + γ3

2 [B̂3 + Â2] + γ3
3Â3

)
ŵn +O(τ4) .

Continuing this we find
(64)

β̂n =

(
0 −γ

γ 0

)
ŵn+O(τ4) , γ = γ3

1

(
γ3 + γ2 +

1

2
γ1

)
+γ3

2

(
γ3 +

1

2
γ2

)
+γ3

3 ·
1

2
γ3 ,

and since γ = 0 we have proved that β̂n = O(τ4), which completes the proof of
assertion (ii).

4. Numerical illustration. In this section we illustrate the results of Theo-
rems 3.1 and 3.2 for the parameter sets (26), (27).

4.1. The test model class. Let µ, ε,σ in (1) be scalar. Writing E = (Ex, Ey, Ez),
etc., in three dimensions we then have

(65)

µ
∂Hx

∂t
=

∂Ey

∂z
− ∂Ez

∂y
, ε

∂Ex

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− σEx − Jx

E ,

µ
∂Hy

∂t
=

∂Ez

∂x
− ∂Ex

∂z
, ε

∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
− σEy − Jy

E ,

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
, ε

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz − Jz

E .
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From this three-dimensional model we derive the two-dimensional (transversal mag-
netic) model with components Hx, Hz, Ey:

(66)

∂Hx

∂t
=

∂Ey

∂z
,

∂Hz

∂t
= −∂Ey

∂x
,

∂Ey

∂t
=

∂Hx

∂z
− ∂Hz

∂x
− Jy

E ,

where we have put µ = ε = 1 and σ = 0. As space domain we take the unit square
0 < x, z < 1. We suppose initial conditions for Ey, Hx, Hz and Dirichlet boundary
conditions for Ey only, which is natural since Ey satisfies the second-order wave
equation

(67)
∂2Ey

∂t2
=

∂2Ey

∂2x
+

∂2Ey

∂2z
− ∂Jy

E

∂t

and uniquely determines Hx, Hz.

4.2. Spatial discretization. For spatial discretization we use a uniform grid
with grid size h = 1/m, staggering, and second-order central-difference discretization.
Let xi = ih, xi+1/2 = (i + 1/2)h, etc. Then, Ey is approximated at (xi, zj) for
i, j = 1 (1)m− 1, Hx at (xi, zj+1/2) for i = 1 (1)m− 1 and j = 0 (1)m− 1, and Hz at
(xi+1/2, zj) for i = 0 (1)m− 1 and j = 1 (1)m− 1. This spatial discretization yields
a semidiscrete system that fits in format (4) with u of length 2m(m − 1) and v of
length (m−1)(m−1); see [12] for details. Note that the staggering accommodates our
boundary condition, because due to the staggeringHx and Hz are not required at the
domain boundary, with the benefit that always fv(t) = O(1), whereas either fu(t) =
O(h−1) or fu(t) = 0, depending on whether a time-dependent Dirichlet condition is
chosen for component Ey or not. Hence, with our staggering, starting with component
u is profitable because then always fv(t) = O(1). For illustration purposes, however,
we will use all four base methods mentioned in section 2.3, including the reversed
sequence methods.

For this spatial discretization, the maximum singular value λ1 from (33) equals
2
√
2/h. This leads for method (25) to the step size restrictions

(68) τ ≤ τc =






π

4
√
2
h ≈ 0.555 · h , s = 3 ,

e

2
√
2
h ≈ 0.961 · h , s = 5 .

In the tests we will use the critical step size values τc. However, to account for the
different numbers of stages in the convergence plots, accuracy will be plotted against
the total numbers of stages.

4.3. Two test solutions.

4.3.1. Test solution one. As a first test solution we impose the artificial func-
tions

(69)

Ey = et(x− a)(x − b)z(1− z) ,

Hx = et(x− a)(x− b)(1− 2z) ,

Hz = −et(2x− a− b)z(1− z) ,
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with (a, b) = (0, 1) or (a, b) = (0.5, 0.5). With (a, b) = (0, 1) we have Ey zero at
the boundary, and thus fu(t) = 0. For (a, b) = (0.5, 0.5) we have Ey nonzero at the
x = 0, 1 boundary, and thus fu(t) = O(h−1). For both choices the source function
fv(t) = O(1) and is nonzero as determined by Jy

E . In space the solution is quadratic,
and hence we have a zero spatial error. As integration interval we have used [0, 1].
Convergence plots are given in Figure 2, where, for a sequence of decreasing values of
h, the maximum norm global error of uN , vN for Nτ = 1 is plotted against the total
number of stages Ns. As step size the critical value τ = τc given in (68) is used.

10
3

10
−15

10
−10

10
−5

10
2

10
3

10
−15

10
−10

10
−5

Fig. 2. Convergence plots for test solution one. See section 4.3.1 for explanations.

In the left plot (the zero boundary case) the o- and ∗-markers refer to s = 3 and
s = 5, respectively. The solid lines refer to the base scheme (22) using the perturbation
for the source function fv(t). These solid lines confirm assertion (ii) of Theorem 3.1
on order four (the parallel lower dashed line has slope four). The dash-dotted lines
refer to the base scheme (7) not using the perturbation. These dash-dotted lines
confirm assertion (ii) of Theorem 3.2 on order three (the parallel upper dashed line
has slope three). Note that the composition scheme yields smaller errors for s = 5
than for s = 3. This was expected due to the smaller γk-parameters and the nearly
equal scaled critical step sizes τc/s.

In the right plot (the nonzero boundary case) we give results for s = 5 only.
Because we have a nonzero Dirichlet boundary condition, we expect to obtain maximal
convergence order three. The results confirm this. The three solid lines with the ∗-,
#-, and ♦-markers all represent a third-order convergence result (the parallel lower
dashed line has slope three). The ∗-marker corresponds with the base method (22)
using the perturbation, and the #-marker with the base method (7) without the
perturbation. The fact that both methods lead to order three is in line with assertion
(i) from Theorem 3.1 and assertion (ii) from Theorem 3.2. In other words, with
nonzero Dirichlet boundary values contained in fu(t) the perturbation has no effect
on the convergence order. However, this changes if the sequence in treating u, v is
reversed. The ♦-marker corresponds with method (24) where the reversed sequence
v, u is used, with in addition the perturbation applied to fu(t). This order-three
result is in line with assertion (i) of Theorem 3.1 and is clearly the most accurate
one. The +-marker along the dash-dotted line corresponds with method (23), that
is, also with reversed sequence but without the perturbation. In line with assertion
(i) of Theorem 3.2 this case reveals only order two (the dashed upper line has slope
two). So this case illustrates that we can lose two orders if we consider convergence
in the PDE sense compared to the order in the ODE sense.

To sum up, albeit contrived, the current test solution confirms the order reduction
predicted by Theorems 3.1 and 3.2. On the other hand, when using the source term
perturbation as in methods (22) and (24), the obtained accuracies are high. In this
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regard we expect that in general the smaller s = 5-parameters will be competitive
with the s = 3-parameters.

4.3.2. Test solution two. The second test solution is the eigenmode

(70)

Hx =
kz√

k2x + k2z
sin(kxπx+ sxπ/2) cos(kzπz) sin

(√
k2x + k2z πt

)
,

Hz =
−kx√
k2x + k2z

cos(kxπx+ sxπ/2) sin(kzπz) sin
(√

k2x + k2z πt
)
,

Ey = sin(kxπx+ sxπ/2) sin(kzπz) cos
(√

k2x + k2z πt
)
,

where we fix kx = kz = 2 and take as an option sx = 0 or sx = 1 in order to impose,
respectively, a zero and a nonzero Dirichlet boundary condition for component Ey. So
for sx = 0 we have fu(t) = 0, whereas for sx = 1 the source function fu(t) = O(h−1).
Further, both options result in fv(t) = 0 as Jy

E = 0.
While we discuss temporal order p up to four, the chosen spatial discretization

yields only second-order convergence for the spatial error; see, e.g., [8]. In the tests
we have therefore applied standard Richardson extrapolation in space to the Ey-
approximations to lift the spatial order to four for error measuring at the output
time. Let vN ;2h denote the vn obtained at the output time T = Nτ = 1 with grid
size 2h. Similarly, let vN ;h→2h denote the vn obtained with grid size h and restricted
to the 2h-grid. Then, at the output time we measure the PDE error for Ey at the
2h-grid by8

(71) v2h(T )−
(
4

3
vN ;h→2h − 1

3
vN ;2h

)
= O(τp) +O(h4) .

Convergence plots are given in Figure 3, where, for a sequence of decreasing values
of h, the maximum norm of this PDE error for Nτ = 1 is plotted against the total
number of stages Ns. As step size again the critical value τ = τc given in (68) is used.

10
2

10
3

10
−5

10
2

10
3

10
−5

Fig. 3. Convergence plots for test solution two. See section 4.3.2 for explanations.

In the left plot the o- and ∗-markers refer to s = 3 and s = 5, respectively. The
solid and dash-dotted lines refer, respectively, to the zero- and nonzero boundary

8Because we extrapolate only at the output time, the integration methods are not changed. This
would be the case with extrapolation after every step. Extrapolation at the output time serves only
our purpose of testing here. We do not advocate it over long time intervals for wave equations
without damping. See also [1, 5] for comments on this issue regarding extrapolation in time. Higher
spatial orders are better achieved with spatial discretization techniques, such as those based on the
discontinuous Galerkin method; see, e.g., [3] and the references therein.
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cases. For the zero case, where we have no source terms, we see a straight order
four (the parallel dashed line has slope four) with again more accurate results for
s = 5. According to Theorem 3.1, we expected to see order three for the nonzero case
because then fu(t) = O(h−1). However, while the errors zigzag slightly as shown by
the two dash-dotted lines lying between the two solid ones, overall we see order four.
We probably owe this to fortunate error cancelation emanating from the oscillatory
nature of the solution.

In the right plot the o- and ∗-markers again refer to s = 3 and s = 5, respectively.
Here we treat only the nonzero boundary case and reverse the u, v sequence. The solid
lines refer to (24) with the source term perturbation (17) now applied to fu(t). The
dash-dotted lines refer to (23), which does not employ this perturbation. Without the
perturbation we find order two (the upper dashed line has slope two) in accordance
with assertion (i) of Theorem 3.2, while again the s = 5 method is notably more
accurate. With the perturbation we expected to see order three in accordance with
assertion (i) of Theorem 3.1. The order turns out to lie between three and four
(the lower dashed line has slope three). Like in the left plot, we probably owe this
to fortunate error cancelation emanating from the oscillatory nature of the solution.
Note that with the perturbation, s = 3 and s = 5 now yield the same accuracy (the
two solid lines nearly coincide).

On the other hand, similarly as for test solution one, we can conclude that the
idea of perturbing the source function works out very well. We therefore anticipate
that for many Maxwell applications the composition method (25) based on method
(22) or method (24) provides an efficient integration method when high accuracy is
in demand. In particular the parameter set (27) for s = 5 due to [10] is then most
attractive.

Editorial note. Jan Verwer passed away unexpectedly on February 16, 2011.
During his 39-year career at CWI (formerly, Mathematisch Centrum), Verwer made
many contributions on the subject of numerical integration of evolution problems,
including the stability theory of Runge–Kutta methods and the method-of-lines ap-
proach. He co-authored Stability of Runge–Kutta Methods for Stiff Nonlinear Differ-
ential Equations with K. Dekker andNumerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations with W. Hundsdorfer. He was adjunct professor of nu-
merical analysis at the University of Amsterdam. On January 19, 2011, just four
weeks before his death, Verwer had celebrated his retirement from CWI in the com-
pany of many close colleagues and friends. At this event The Netherlands bestowed
Jan Verwer with the honor of knighthood.
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