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Abstract

In recent works several authors have proposed the use of precise bound-
ary conditions (BCs) for blurring models and they proved that the result-
ing choice (Neumann or reflective, anti-reflective) leads to fast algorithms
both for deblurring and for detecting the regularization parameters in
presence of noise. When considering a symmetric point spread function,
the crucial fact is that such BCs are related to fast trigonometric trans-
forms.

In this paper we combine the use of precise BCs with the Total Vari-
ation (TV) approach in order to preserve the jumps of the given signal
(edges of the given image) as much as possible. We consider a classic fixed
point method with a preconditioned Krylov method (usually the conju-
gate gradient method) for the inner iteration. Based on fast trigonometric
transforms, we propose some preconditioning strategies which are suitable
for reflective and anti-reflective BCs. A theoretical analysis motivates the
choice of our preconditioners and an extensive numerical experimenta-
tion is reported and critically discussed. The latter shows that the TV
regularization with anti-reflective BCs implies not only a reduced analyt-
ical error, but also a lower computational cost of the whole restoration
procedure over the other BCs.
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1 Introduction

We are concerned with specific linear algebra/matrix theory aspects of the vast
field of inverse problems [17, 16] which model the blurring of signals and images
(2D or dD with d ≥ 3). Here the goal is to reconstruct the real object from
its blurred and noisy version and this goal is a classical one in astronomical
imaging, medical imaging, geosciences, etc. [5].

The blurring model is assumed to be space-invariant, i.e., the point spread
function (PSF) is represented by a specific bivariate function h(x−y) (x, y ∈ Ω)
for some univariate function h(·) [18]. According to the linear models described
in the literature [16], the observed signal or image v and the original signal or
image u are described by the relation

v(x) = Hu(x) + η(x) :=

∫

Ω

h(x− s)u(s)ds+ η(x), x ∈ Ω, (1)

where the kernel h is the PSF and η denotes the noise. The problem (1)
is ill-posed since the operator H is compact [16]. Therefore, the approxima-
tion/discretization matrix of H is usually increasingly ill-conditioned when the
number n of pixels becomes large. In addition, the size of the subspace associ-
ated with small eigenvalues, which substantially intersects the high frequencies,
is large and proportional to the size of the matrix. Thus, we cannot directly
solve Hu = d, since the small perturbations, represented by the noise η with
important high frequency components due to its probabilistic nature, would be
amplified unacceptably.

To remedy to the latter essential ill-conditioning of problem (1), one may
employ regularization methods. The Total Variation (TV) regularization ap-
proach is a good choice for restoring edges of the original signals [22]. Rudin,
Osher, and Fatemi [22] gave the total variation functional in the form

JTV (u) :=

∫

Ω

|∇u| dx, (2)

where | · | denotes the Euclidean norm. We note that the Euclidean norm | · | is
not differentiable at zero. To avoid the non-differentiability, Acar and Vogel [2]
considered the following minimization

min
u

{

‖Hu− v‖L2(Ω) + α

∫

Ω

√

|∇u|2 + β2 dx

}

, (3)

where α, β are positive parameters. Notice that the penalty term
∫

Ω

√

|∇u|2 + β2 dx
converges to JTV (u) as β → 0. In other words, the latter is a differentiable reg-
ularized version of JTV (u). The corresponding Euler-Lagrange equation for (3)
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is given by

{

g(u) := H∗(Hu− v)− αLu(v) = 0, x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω,

(4)

where ∗ denotes the adjoint operator and Lu(y) := −∇·
(

1√
|∇u|2+β2

∇y
)

is the

differential operator appearing in (4) and comes from the regularized penalty
term. Vogel and Oman [29] proposed a lagged diffusivity fixed point (FP)
iteration for solving (4). More precisely, given the initial guess u0, the new
iterate uk+1 is obtained by uk thanks to the equation

Aukuk+1 ≡
(

H∗H + αL(uk)
)

uk+1 = H∗v, k = 0, 1, . . . , (5)

where H and L(uk)uk+1 denote the discretization/approximation matrix of H
and Luk(uk+1), respectively. We use the compound mid point rule and stan-
dard centered finite differences of precision order two for the finite dimensional
approximation of H and Lu(·), respectively. Therefore, at each FP iteration, we
may use the preconditioned conjugate gradient (PCG) method [15, Algorithm
10.3.1] for solving the linear system (5).

In [8] the authors proposed a cosine preconditioner when H is a Toeplitz
matrix, i.e., in the case of zero-Dirichlet boundary conditions (BCs). However,
the choice of such BCs induces remarkable pathologies in the quality of the
restored images, which should be avoided or at least minimized. In reality, using
classical BCs such as periodic or zero-Dirichlet may imply, when the background
is not uniformly black, disturbing Gibbs phenomena called ringing effects [20,
24, 18].

The novelty of this paper is represented by the choice of appropriate BCs, in
order to reduce the ringing effects, and in the related matrix/numerical analysis.
The latter will affect the algebraic expression of H , while for L(uk) the choice
of the BCs in the Euler-Lagrange equation for (4) seems to impose Neumann
BCs. In this context, the idea is to combine the application of anti-reflective
BCs, already studied for their precision with plain regularization methods like
Tikhonov and Landweber [24, 21, 26, 11, 4, 10], with the more sophisticate TV
regularization. In other words, the first aim consists in checking how to reduce
the ringing effects and the over-smoothing of the edges simultaneously. Next,
we want to study the use of preconditioners based on innovative fast trans-
forms in the setting of Krylov methods when the real problem is modeled by a
symmetric PSF. The final goal is to combine the precision of the reconstruction
with highly efficient numerical procedures. We study some preconditioning tech-
niques and give the theoretical explanations of different proposals. An effective
preconditioner for the reflective BCs is inspired by the work in [8], while, for the
anti-reflective BCs, we propose a new sine preconditioner for the linear system
(5) and explore the re-blurring approach introduced in [12]. Numerical results
confirm the effectiveness of the proposed preconditioners and the superiority of
the antireflective BCs with respect to the reflective BCs. Indeed, antireflective
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BCs not only provide better restorations as expected (see [24, 11]), but also
require a lower computational cost. The latter is a consequence of the fact that
a more precise model requires lesser regularization, i.e. a smaller α, and the
convergence of our approach is fast for small α.

The paper is organized into seven more sections. In Section 2 we consider
reflective and anti-reflective BCs. Sections 3 is devoted to define optimal precon-
ditioners for signal and image deblurring for the reflective BCs and anti-reflective
BCs. In Section 4 some spectral features of the proposed preconditioners are
discussed. Section 5 is concerned with the numerical tests for checking the real
efficiency of the considered preconditioners and the quality of the restorations.
Finally, in Section 6 we draw conclusions.

2 Boundary Conditions

We start by introducing the one-dimensional deblurring problem. Consider the
original signal ũ = (. . . , u−m+1, . . . , u0, u1, . . . , un, un+1, . . . , un+m, . . .)

T and
the normalized blurring PSF given by

h = (. . . , 0, 0, h−m, h−m+1, . . . , h0, . . . , hm−1, hm, 0, 0, . . .)
T , (6)

with the usual normalization, i.e.,
∑m

j=−m hj = 1 which preserves the global
intensity and therefore represents an average. The blurred signal v is the con-
volution of h and ũ and consequently vi =

∑∞
j=−∞ hjui−j is such that

v =





















hm · · · h0 · · · h−m
hm h0 h−m 0

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
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. . .

0 hm h0 h−m
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u−m+2

...
u0
u

un+1

...
un+m−1

un+m

































.

(7)
The deblurring problem is to recover the vector u = (u1, . . . , un)

T given the blur-
ring function h and a blurred signal v = (v1, . . . , vn)

T of finite length, Thus the
blurred signal v is determined not only by u, but also by (u−m+1, . . . , u0)

T and
(un+1, . . . , un+m)T and the linear system (7) is underdetermined. To overcome
this, we make certain assumptions, that is the BCs on the unknown bound-
ary data u−m+1, . . . , u0 and un+1, . . . , un+m in such a way that the number of
unknowns equals the number of equations.

For the zero-Dirichlet BCs, we assume that the data outside u are zero,
i.e., we set u1−j = un+j = 0 for j = 1, . . . ,m. Then, (7) becomes Au = v,
where A is Toeplitz. For the periodic BCs, we assume that the signal u is
extended by periodicity. More precisely, we set u1−j = un−j+1 and un+j = uj
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for j = 1, . . . ,m. It follows that (7) becomes Au = v, where A is circulant
and hence it can be diagonalized by the Discrete Fourier Transform (DFT) (see
[18]).

For the Neumann or reflective BCs, we assume that the data outside u are
a reflection of the data inside u (refer to [20]). More precisely, we set u1−j = uj
and un+j = un+1−j for all j = 1, . . . ,m in (7). Thus (7) becomes Au = v, where
A is neither Toeplitz nor circulant but a special n-by-n Toeplitz plus Hankel
matrix which is diagonalized by the discrete cosine transform provided that the
blurring function h is symmetric, i.e., hj = h−j for all j in (6). It follows that
the above system can be solved by using three fast cosine transforms (FCTs) in
O(n logn) operations [20]. This approach is computationally interesting since
the FCT requires only real operations and is about twice as fast as the FFT
and this is true in two dimensions as well. We note that the reflection ensures
the continuity of the signal and the error is linear in the discretization step
(the latter can be easily seen by applying a Taylor expansion [20]). Therefore,
we usually observe a reduction of the boundary artifacts with respect to zero-
Dirichlet and periodic BCs.

For the anti-reflective BCs, we assume that the data outside u are an anti-
reflection of the data inside u. More precisely, if x is a point outside the domain
and x∗ is the closest boundary point, then we have x = x∗−δx and the quantity
u(x) is approximated by u(x∗)− (u(x∗ + δx)− u(x∗)). Consequently, we set

u1−j = u1 − (uj+1 − u1) = 2u1 − uj+1, for all j = 1, . . . ,m,
un+j = un − (un−j − un) = 2un − un−j, for all j = 1, . . . ,m

(8)

in (7). By a Taylor expansion, the anti-reflection (8) ensures a C1 continuity of
the signal and the error is quadratic in the discretization step [24]. Usually, the
boundary artifacts are reduced also with respect to reflective BCs.

Imposing the anti-reflection (8), the linear system (7) becomes Au = v,
where A is a Toeplitz plus Hankel plus a rank-2 correction matrix, where the
correction is placed at the first and the last column. Furthermore, in [4] the
authors proved that if h is symmetric then A = TnΛT

−1
n where

Tn =





1 0 0
p Sn−2 Jp
0 0 1



 , T−1
n =





1 0 0
−Sn−2p Sn−2 −Sn−2Jp

0 0 1



 ,

where J is the flip matrix, Sn−2 is the sine transform matrix of order n− 2, and
where pj = 1− j/(n− 1) so that the first column vector is exactly the sampling
of the function 1− x on the grid j/(n− 1) for j = 0, . . . , n− 1. Finally, Λ is a
diagonal matrix given by suitable samplings of the function

ĥ(y) =
∑

hjexp(ijy), (9)

which is the symbol generated by the PSF. That is,

Λ = diagy=1,...,n

(

ĥ(yj)
)

, Sm =

√

2

m+ 1

(

sin

(

jiπ

m+ 1

))m

i,j=1

, (10)
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where

yj =
(j − 1)π

n− 1
, for j = 1, . . . , n− 1, and yn = 0. (11)

As a consequence, a generic system Au = v can be solved within O(n log n)
real operations by resorting to the application of three fast sine transforms
(FSTs) (refer to [24]), where each FST is computationally as cheap as a generic
FCT. There is a suggestive functional interpretation of the transform Tn. The
transform associated with periodic BCs matrices is the Fourier transform: its j-
th column vector, up to a normalizing scalar factor, can be viewed as a sampling,
over a suitable uniform gridding of [0, 2π], of the frequency function exp(−ijy).
Analogously, when imposing reflective BCs with a strongly symmetric PSF, the
transform of the related reflective BCs matrices is the cosine transform: its j-th
column vector, up to a normalizing scalar factor, can be viewed as a sampling,
over a suitable uniform gridding of [0, π], of the frequency function cos(jy).
Here the imposition of the anti-reflective BCs, by operating a central symmetry
with respect to any point of frontier, can be functionally interpreted as a linear
combination of sine functions and of linear polynomials (whose use is exactly
required for imposing the C1 continuity at the borders). This intuition becomes
evident in the expression of Tn. Indeed

Tn =
(

1− y

π
, sin(y) , · · · , sin((n− 2)y) ,

y

π

)

· diag

(

1 ,

√

2

n− 1
In−2 , 1

)

,

(12)
where y is defined (11) and it is a suitable gridding of [0, π].

Now, we introduce the two-dimensional case. For the Neumann or reflective
BCs, the blurring matrix is a block Toeplitz-plus-Hankel matrix with Toeplitz-
plus-Hankel blocks and can be diagonalized by the two-dimensional FCTs (which
are tensor products of one-dimensional FCTs) inO(n2 logn) operations provided
that h is quadrantally symmetric, i.e., hi,j = h−i,j = hi,−j = h−i,−j (refer to
[20]).

For the anti-reflective BCs, we assume that the data outside u are an anti-
reflection of the data inside u, i.e., a point outside the domain is anti-reflective to
the closest boundary point first in one direction and then in the other direction.
In particular, we set

u1−j,φ = 2u1,φ − uj+1,φ, un+j,φ = 2un,φ − un−j,φ, for 1 ≤ j ≤ m, 1 ≤ φ ≤ n,
uψ,1−j, = 2uψ,1 − uψ,j+1, uψ,n+j = 2uψ,n − uψ,n−j, for 1 ≤ j ≤ m, 1 ≤ ψ ≤ n.

When both indices lie outside the range {1, . . . , n} (this happens close to the 4
corners of the given image), we set

u1−i,1−j = 4u1,1 − 2u1,j+1 − 2ui+1,1 + ui+1,j+1,
u1−i,n+j = 4u1,n − 2u1,n−j − 2ui+1,n + ui+1,n−j ,
un+i,1−j = 4un,1 − 2un,j+1 − 2un−i,1 + un−i,j+1,
un+i,n+j = 4un,n − 2un,n−j − 2un−i,n + un−i,n−j ,

for 1 ≤ i, j ≤ m. If the blurring function (PSF) h is quadrantally symmetric,
then the blurring matrix is a block Toeplitz-plus-Hankel-plus-2-rank-correction
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matrix with Toeplitz-plus-Hankel-plus-2-rank-correction blocks and can be di-
agonalized by the two-dimensional anti-reflective transforms (which are tensor
products of one-dimensional anti-reflective transforms Tn) in O(n2 logn) real
operations (see for instance [4]). In the following we will assume a symmetric
(quadrantally symmetric in 2D) PSF since reflective and anti-reflective BCs can
be diagonalized by fast transforms only in such case. However, in the nonsym-
metric case, even if the blurring matrix can not be diagonalized by fast trans-
forms, the matrix-vector product can be done again in O(n2 logn) by FFTs.
Moreover, many practical blur have the symmetry like the celebrated Gaussian
blur widely used in several contexts.

3 Optimal Preconditioners with different Bound-

ary Conditions

The optimal preconditioner for a matrix A aims to find an approximation which
minimizes ‖B−A‖F over all B in a set of matrices for the matrix Frobenius norm
‖·‖F : the typical set of matrices is formed by considering an algebra of matrices
which are simultaneously diagonalized by a given unitary transform. The main
novelty in our context is represented by the fact that the anti-reflective matrices
with symmetric PSFs form a commutative algebra associated to a non-unitary
transform. The latter poses nontrivial difficulties that are treated in the sequel
of the paper. The optimal circulant preconditioner was originally given in [9].
The optimal sine transform preconditioner was presented in [7]. The optimal
cosine transform preconditioner was provided in [6]. In this section, we con-
struct the optimal reflective BCs preconditioner and the optimal anti-reflective
BCs preconditioner for (5) and the optimal reblurring preconditioner for the
reblurring equation (20) below instead of (5). Some of these preconditioning
techniques are inspired from the idea proposed in [6, 8] for zero-Dirichlet BCs.

3.1 One-dimensional Problems

For the one-dimensional problems, we assume a symmetric and normalized PSF.
Suppose that we impose the reflective BCs on H and the zero Neumann BCs
on L(uk). In this case, we propose the following reflective BCs preconditioners
for (5). Let Cn be the n dimensional discrete cosine transform with entries

[Cn]i,j =

√

2− δj1
n

cos

(

(2i− 1)(j − 1)π

2n

)

, i, j = 1, . . . , n,

where δij is the Kronecker delta. The matrix Cn is orthogonal, i.e., CnC
T
n = I.

Moreover, for any n-vector w, the matrix-vector product Cnw can be computed
within O(n log n) real operations by the FCT. Define

C = {CTnΛCn : Λ is a real n-by-n diagonal matrix}.
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For an n-by-n matrix A, the optimal cosine transform preconditioner is

c(A) = argmin
B∈C

‖B − A‖F .

The operator c(·) is linear, preserves positive definiteness, and compresses every
unitarily invariant norm. For the specific cosine algebra and a general conver-
gence theory based on the Korovkin theorems, we refer to [8, 23]. As in [8]
for Dirichlet BCs, the optimal cosine transform preconditioner (i.e., the optimal
reflective BCs preconditioner) for (5) can be defined as

R = H∗H + α c(L(uk)). (13)

We note that R = c(Auk) since H∗ = H ∈ C. Spectral properties of the
preconditioner will be discussed in Section 4. Here, we only note that c(L(uk))
is not an optimal preconditioner for L(uk) if the coefficient (|∇u|2+β2)−1/2 has
large variation. In such case a diagonal scaling is necessary to obtain an effective
preconditioner like diag(L(uk))1/2c(L(uk))diag(L(uk))1/2, where diag(L(uk)) is
the diagonal matrix whose diagonal entries are the same as that of L(uk) [25].
We note that the coefficient matrix in (5) is the sum of two operators. To avoid
the possibly large fluctuation in the coefficient of the operator in (5), we define

a reflective BCs preconditioner for (5) by DR = D
1

2RD
1

2 , where R is given in
(13) and

D ≡ I + α diag(L(uk)). (14)

A further possibility is to employ a diagonal scaling for (5). As in [8], we concern
the scaled equation

Ãuk ũk+1 ≡
(

H̃∗H̃ + α L̃(uk)
)

ũk+1 = H̃∗v, (15)

where H̃ = HD−1/2, L̃(uk) = D−1/2L(uk)D−1/2, and ũk = D1/2uk. Then,
we propose the following reflective BCs preconditioner for (15) RD = Ĥ∗Ĥ +
α c(L̃(uk)), where Ĥ = Hc(D−1/2). If ΛH , ΛD and ΛL̃ denote the eigenvalue

matrices of H , c(D−1/2) and c(L̃(uk)), respectively, then RD can be written as

RD = CTn (Λ
∗
HΛHΛ∗

DΛD + αΛL̃)Cn.

Next, we construct the anti-reflective BCs preconditioners for (5) under the anti-
reflective BCs for H and the Neumann BCs or anti-reflective BCs for L(uk).
Let Sn be the n dimensional discrete sine transform of type I with entries as
in (10). Then, Sn is orthogonal and symmetric, i.e., STn = Sn and S2

n = I.
Moreover, for any n dimensional vector w, the matrix-vector product Snw can
be computed in O(n log n) real operations by the FST. Define τ = {SnΛSn :
Λ is a real diagonal matrix of order n}. Let σ(z) := (z2, . . . , zn, 0)

T with z =
(z1, . . . , zn)

T . Let T (z) be the n-by-n symmetric Toeplitz matrix whose first
column is z and H(z, Jz) be the n-by-n Hankel matrix whose first and last
column are z and Jz, respectively. It was shown that for any B ∈ τ , there
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exists z = (z1, . . . , zn)
T ∈ Rn such that [7] B = T (z) − H(σ2(z), Jσ2(z)). For

an n-by-n matrix A, the optimal sine preconditioner is

s(A) = argmin
B∈τ

‖B −A‖F . (16)

The construction of s(A) requires only O(n2) operation for a general matrix A
and O(n) operation for a banded matrix A. Furthermore, s(·) is linear, preserves
positive definiteness, and compresses any unitarily invariant norm (see [7, 23]).

Now, we define an optimal sine transform based preconditioner (i.e., the
so-called anti-reflective BCs preconditioner) for (5) by

M = ŝ(H)∗ŝ(H) + α ŝ(L(uk)) (17)

in the sense that, for any n-by-n matrix A, ŝ(A) is given by

ŝ(A) = argmin
B∈τ̂

‖B −A‖F , (18)

where τ̂ =
{

ŜnΛŜn : Λ is a real diagonal matrix of order n and Ŝn := diag(1, Sn−2, 1)
}

.

Proposition 1 Given an n-by-n matrix A, we have

ŝ(A) =





A(1, 1) 0 0
0 s(A(2 : n− 1, 2 : n− 1)) 0
0 0 A(n, n)



 .

where ŝ(·) and s(·) are defined in (18) and (16), respectively, and A(2 : n−1, 2 :
n− 1) is the submatrix of A corresponding to rows indexed from 2 to n− 1 and

columns from 2 to n− 1.

Proof: By unitary invariance of the Frobenius norm (Ŝn is unitary) we find
‖A − ŜnΛŜn‖F = ‖ŜnAŜn − Λ‖F , where Λ is a diagonal matrix. To conclude
the proof, it is enough to observe that

diag(ŜnAŜn) =





A(1, 1) 0 0
0 diag(Sn−2A(2 : n− 1, 2 : n− 1)Sn−2) 0
0 0 A(n, n)



 .

and that s(A) = Sndiag(SnASn)Sn.

To reduce the potential fluctuations in the coefficient of the elliptic operator
in (5), based on the diagonal scaling D in (14), we define a scaled anti-reflective

BCs preconditioner for (5) by DM = D
1

2MD
1

2 , where M is defined in (17).
Similarly, for the scaled equation in the form of (15), we give the anti-reflective
BCs preconditioner with diagonal scaling as follows MD = Ĥ∗Ĥ + α ŝ(L̃(uk)),
where Ĥ = ŝ(H)ŝ(D−1/2). If ΛH , ΛD and ΛL̃ denote the eigenvalue matrices

of ŝ(H), ŝ(D−1/2) and ŝ(L̃(uk)), respectively, then MD can be written as

MD = Ŝn(Λ
∗
HΛHΛ∗

DΛD + αΛL̃)Ŝn.
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Finally, we consider the reblurring method with some new reblurring precon-
ditioners under the anti-reflective BCs for H and the Neumann BCs for L(uk).
In Section 2, we have observed that anti-reflective BCs matrices can be diago-
nalized by the anti-reflective transform Tn. Hence, it is possible to define the
anti-reflective algebra

AR = {TnΛT−1
n : Λ is a real diagonal matrix of order n}. (19)

Unfortunately, H ∈ AR but H∗ 6∈ AR. However, in [11], it was proposed to
use a reblurring approach, i.e., to replace H∗ with H ′, where H ′ is the matrix
obtained by imposing anti-reflective BCs to the PSF rotated by 180 degrees.
Since the PSF is assumed to be symmetric, H ′ = H [12]. Therefore, instead of
(5), one may solve the following equation [11]

A′
uku

k+1 ≡
(

H ′H + αL(uk)
)

uk+1 = H ′v, k = 0, 1, . . . (20)

by the PBiCGstab method [28] since A′
uk is not symmetric. In this case, a

reblurring preconditioner for (20) is given by

P = H ′H + αAR(L(uk)).

Here, for any n-by-n matrix A, AR(A) is defined by

AR(A) :=



























z1 + 2
∑n−2
k=2 zk 0 · · · 0 0

z2 + 2
∑n−2
k=3 zk 0

... zn−2

zn−3 + 2zn−2 s(A(2 : n− 1, 2 : n− 1)) zn−3 + 2zn−2

zn−2

...

0 z2 + 2
∑n−2
k=3 zk

0 0 · · · 0 z1 + 2
∑n−2
k=2 zk



























,

where z = (z1, z2, . . . , zn−2)
T is such that s(A(2 : n − 1, 2 : n − 1)) = T (z) −

H(σ2(z), Jσ2(z)). We only need form s(A(2 : n − 1, 2 : n − 1)) for computing
AR(A).

We note that AR(A) belongs to the algebra AR defined in (19), where Λ
is defined as in (10). Therefore, a linear system Au = v can be solved within
O(n logn) real operations by using three FSTs.

Remark 2 In general, AR(A) 6= argminB∈AR ‖B−A‖F . Moreover, we can not

construct argminB∈AR ‖B−A‖F in only O(n2) operations by using the similar

technique for computing s(A) for a general matrix A in [6]. Notice that Tn in

(12) is Tn = Ŝn(I + U) and T−1
n = (I − U)Ŝn, where

U =





0 0 0
Sn−2p 0 Sn−2Jp

0 0 0



 .

As in [19], we can compute the eigenvalue of AR(A) by using the diagonal

entries of Ψ = ŜnAŜn, However, it requires O(n
2 logn) operations to calculate

the diagonal entries of Ψ.
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To reduce the potential fluctuations in the coefficient of the elliptic operator
in (20), we define a diagonally scaled reblurring preconditioner for (20) as follows
DP = D1/2PD1/2, where D is defined as the same form in (14). For the scaled
system

Ã′
uk ũ

k+1 ≡
(

H̃ ′H̃ + α L̃(uk)
)

ũk+1 = H̃ ′v, (21)

the reblurring preconditioned is given by

PD = AR(D−1/2)H ′H AR(D−1/2) + αAR(L̃(uk)).

If ΛH , ΛD, and ΛL̃ denote the eigenvalue matrices of H , AR(D−1/2), and

AR(L̃(uk)), respectively, then the preconditioner PD can be written as

PD = Tn(Λ
∗
HΛHΛ

∗
DΛD + αΛL)T

−1
n .

A further possibility is the use of anti-reflective BCs for L(uk). This implies
that the coefficient matrix in the linear equation (20) is closer to the precondi-
tioner. Consequently, a faster convergence and a lower global cost have to be
expected. The latter choice is in fact considered in the numerics.

We comment on the cost of constructing XD, X ∈ {R,M,P} and of each
PCG/ PBiCGstab iteration. We note that L(uk) is a banded matrix. There-
fore, computing c(L(uk)), ŝ(L(uk)), and AR(L(uk)) needs only O(n) operations
[6, 7]. At each PCG/ PBiCGstab iteration, we need to calculate the matrix-
vector product Ãukw and Ã′

ukw and solve the system XDy = b. The vector

multiplication D−1/2w can be computed in O(n) operations since D−1/2 is a
diagonal matrix. L(uk)w can be done in O(n) operations. For H ∈ C or
H ∈ AR, Hw, H∗Hw, and H ′Hw can be calculated in O(n logn) operations
by few FCTs or FSTs plus lower order of computations. The system XDy = b
can also be solved in O(n log n) operations. Therefore, the total cost of each
PCG/ PBiCGstab iteration is bounded by O(n log n).

3.2 Two-dimensional Problems

We can extend the results in Subsection 3.1 to two-dimensional image deblurring
problems with different BCs. In the two-dimensional case, we assume that the
PSF is quadrantally symmetric and normalized. When one imposes the reflective
BCs on H and the zero Neumann BCs on L(uk), the blurring matrix H is a
block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks, which can
be diagonalized by the two-dimensional FCTs in O(n2 logn) operations [20].
For an n2-by-n2 matrix A in the form of

A =











A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
. . .

. . .
...

An,1 An,2 · · · An,n











, (22)
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where Ai,j are n-by-n matrices, as defined in [8], the Level-1 cosine transform
preconditioner c1(A) is given by

c1(A) =











c(A1,1) c(A1,2) · · · c(A1,n)
c(A2,1) c(A2,2) · · · c(A2,n)

...
. . .

. . .
...

c(An,1) c(An,2) · · · c(An,n)











,

and then the Level-2 cosine transform preconditioner is c2(A) = Qc1(Q
T c1(A)Q)QT ,

where Q be the permutation matrix which satisfies [QTAQ]i,j;k,l = [A]k,l;i,j for
1 ≤ i, j ≤ n and 1 ≤ k, l ≤ n, i.e., the (i, j)th entry of the (k, l)th block of A is
permuted to the (k, l)th entry of the (i, j)th block.

For the two-dimensional linear equation (5), using c2(H) = H , we define the
optimal reflective BCs preconditioner for Auk in (5) by

R = H∗H + α c2(L(u
k)). (23)

For eliminating the possibility of large variations in the coefficient of the
elliptic operator in (5), we employ the same strategy as in Section 3.1 by the
diagonal scaling in (14). Therefore, the scaled reflective BCs preconditioner is
given by

DR = D
1

2RD
1

2 . (24)

where R is defined in (23). Similarly, for the scaled system in (15), the re-
flective BCs preconditioner is given by RD = Ĥ∗Ĥ + α c2(L̃(u

k)), where Ĥ =
Hc2(D

−1/2). Let ΛH , ΛD and ΛL̃ denote the eigenvalue matrices ofH , c2(D
−1/2)

and c2(L̃(u
k)), respectively. The preconditioner RD in (24) can be written as

RD = (Cn ⊗ Cn)
T (Λ∗

HΛHΛ
∗
DΛD + αΛL̃)(Cn ⊗ Cn),

and hence it is easily inverted by employing few FCTs in O(n2 logn) operations.
Next, we assume the anti-reflective BCs for H and the Neumann BCs or

anti-reflective BCs for L(uk). Then, we construct the anti-reflective BCs pre-
conditioners for (5). For an n2-by-n2 matrix A in (22), the Level-1 sine-based
transform preconditioner ŝ1(A) is given by

ŝ1(A) =











ŝ(A1,1) ŝ(A1,2) · · · ŝ(A1,n)
ŝ(A2,1) ŝ(A2,2) · · · ŝ(A2,n)

...
. . .

. . .
...

ŝ(An,1) ŝ(An,2) · · · ŝ(An,n)











.

By using the same proof technique of Theorem 3.3 in [20], we can easily show
that the Level-2 sine-based transform preconditioner ŝ2(A) is given by ŝ2(A) =
Qŝ1(Q

T ŝ1(A)Q)QT . Notice that the matrix H is the anti-reflective BCs matrix.
Then, we design the sine-based transform preconditioner for (5) by

M = ŝ2(H)∗ŝ2(H) + α ŝ2(L(u
k)).

12



By employing the diagonal scaling in (14), we define the scaled anti-reflective
BCs preconditioner DM = D1/2MD1/2 for (5) and the anti-reflective BCs pre-
conditioner MD = Ĥ∗Ĥ + α c2(L̃(u

k)), where Ĥ = ŝ2(H)ŝ2(D
−1/2), for the

two-dimensional system (15). Let ΛH , ΛD and ΛL̃ denote the eigenvalue matri-

ces of H , ŝ2(D
−1/2) and ŝ2(L̃(u

k)), respectively. Then, the preconditioner MD

takes the form

MD = (Ŝn ⊗ Ŝn)(Λ
∗
HΛHΛ∗

DΛD + αΛL̃)(Ŝn ⊗ Ŝn),

which is computationally attractive via FSTs since any matrix operation can be
done within O(n2 logn) operations.

Finally, we assume the anti-reflective BCs for H and the Neumann BCs
for L(uk). For an n2-by-n2 matrix A defined in (22), the Level-1 reblurring
preconditioner AR1(A) is given by

AR1(A) =











AR(A1,1) AR(A1,2) · · · AR(A1,n)
AR(A2,1) AR(A2,2) · · · AR(A2,n)

...
. . .

. . .
...

AR(An,1) AR(An,2) · · · AR(An,n)











.

Using the same proof as in [20, Theorem 3.3], we can easily show that the Level-2
reblurring preconditionerAR2(A) is given byAR2(A) = QAR1(Q

TAR1(A)Q)QT .
Now, we design the reblurring preconditioner AR2(A

′
uk) for the linear equation

(20). Since H is the anti-reflective BCs matrix, we define a reblurring precon-
ditioner for the linear equation (20) as P = H ′H + αAR2(L(u

k)). Also, the
reblurring preconditioner with diagonal scaling is given by DP = D1/2PD1/2

and the reblurring preconditioner for the two-dimensional scaled linear system
(21) is PD = Ĥ ′Ĥ + αAR2(L̃(u

k)), where Ĥ = H · AR2(D
−1/2). Let ΛH , ΛD,

and ΛL̃ denote the eigenvalue matrices of H , AR2(D
−1/2), and AR2(L̃(u

k)),
respectively. Then, the two-dimensional preconditioner PD can be written as

PD = (Tn ⊗ Tn)(Λ
∗
HΛHΛ∗

DΛD + αΛL̃)(Tn ⊗ Tn)
−1.

Again, these two-dimensional preconditioner shows interesting computational
features since the associated linear systems can be solved within O(n2 logn)
operations.

4 Asymptotic spectral analysis of the precondi-

tioned sequences

In order to study the effectiveness of the proposed preconditioners, we need
the clustering analysis of the spectrum. Also, localization of eigenvalues is of
interest when solving (15) via PCG or (21) by PBiCGstab [1]. Here is a useful
definition [25] for sequences of matrices {An} where An has size dn, n positive
integer, and dk > dq if k > q.
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Definition 3 A matrix sequence {An} is said to be distributed (in the sense of
the eigenvalues) as the pair (θ,G), or have the distribution function θ, if, for
any F ∈ C0(C), the following limit relation holds

lim
n→∞

1

n

n
∑

j=1

F (λj(An)) =
1

µ(G)

∫

G

F (θ(t)) dt, t = (t1, . . . , td), (25)

where {λj(An)}nj=1 denote the eigenvalues of An and µ(·) is the standard Lebesgue

measure. In that case we write {An} ∼λ (θ,G).

An interesting consequence of the equation (25) is that {An} ∼λ (θ,G)
implies that most of the eigenvalues are contained within any ǫ-neighborhood
of the essential range of θ. That is, the range of θ is a cluster for the spectrum
of the sequence {An}.

The main observation is that all the matrices considered so far are low-
rank perturbations of Toeplitz matrices or can be viewed as extracted from
Generalized Locally Toeplitz (GLT) sequences (see [25] and references therein
and the seminal work [27]). This observation is very important since every GLT
sequence has a symbol and this symbol is the spectral distribution function
in the sense of the latter definition. Furthermore, the class of GLT sequences
is an algebra of matrix-sequences. Hence, when making linear combinations,
products, or inverses (the latter operation only when the symbol does not vanish
on sets of positive measure), the result is a new GLT sequence whose symbol can
be obtained via the same operations on the original symbols, as those performed
on the matrices. Therefore, a particular case is that of the preconditioned
matrices can be seen again as extracted from a GLT sequence whose symbol is
the ratio of the symbols: here the numerator is the symbol of the original matrix
sequence and the denominator is the symbol of the preconditioning sequence.

In this section, according to Definition 3 and since we are interested in
asymptotic estimates, we are forced to indicate explicitly the parameter n which
uniquely defines the size of the associated matrix. First, we discuss in detail the
case of reflective BCs. When considering Bn = L(uk), it is well-known [25] that

{Bn} ∼λ (a(x)w(t), G) , G = Ω× [0, 2π]d,

a(x) = 1√
|∇x|2+β2

w(t) =
d
∑

i=1

(2− 2 cos(ti)).

On the other hand, c(Bn) ∼λ (aw(t), G), where a is a constant and in fact
it is the mean of the function a(x): a = 1

µ(Ω)

∫

Ω a(x) dx . The sequence

{c(Bn)−1Bn} is clustered at one only if the sequence {Bn − c(Bn)} is clus-
tered at zero. Since {Bn − c(Bn)} ∼λ ((a(x) − a)w(t), G), the optimal co-
sine preconditioner is effective only if the function a(x) has no large varia-
tion. To obtain a clustering preconditioner, a diagonal scaling has to be in-
troduced. Indeed, the preconditioner diag(Bn)

1/2c(Bn)diag(Bn)
1/2 is such that

{diag(Bn)1/2c(Bn)diag(Bn)1/2} ∼λ (a(x)w(t), G) due to the algebra stucture
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of GLT sequences, and hence the preconditioned sequence is clustered at one.
In our case, the coefficient matrix

An = H∗H + αL(uk)

is the sum of an integral approximate operator and an approximate elliptic
differential operator. We note that {An} ∼λ (|ĥ(t)|2 + αa(x)w(t), G), where

ĥ is the symbol of the PSF defined in (9) for the 1D case and similarly can
be defined for d > 1 (the entries of the PSF are the Fourier coefficients of

ĥ). An effective preconditioner has to consider both terms which consitute the
matrix An. This is the aim of the preconditioner Rn defined in (13) and (23)

for the 1D and 2D case, respectively. We have {Rn} ∼λ (|ĥ(t)|2 + αaw(t), G)
and so {An − Rn} ∼λ ((a(x) − a)αw(t), G). In this case, we can not apply
a diagonal scaling to c(L(uk)) because otherwise we loose the computational
efficiency, the matrix H∗H + αdiag(L(uk))1/2c(L(uk))diag(L(uk))1/2 can not
be diagonalized by discrete cosine transforms. Therefore, we have to apply to
Rn a diagonal scaling which should be act like diag(L(uk))1/2 on c(L(uk)), while
it should be no affect the term H∗H . Unfortunately, since we have a diagonal
scaling we can not apply the diagonal scaling only to a term of the sum. To
balance the contribution of the two terms, the diagonal scaling is defined by the
matrix D in (14) which leads to the preconditioner DR. We have {(DR)n} ∼λ
((1 + αa(x))(|ĥ(t)|2 + αw(t)), G) and hence the preconditioned sequence is not
clustered at one, even if for values of α used in the considered applications it
shows an optimal behaviour (see Figure 2). We recall that the clustering is a
useful property but it is not strictly necessary for the optimality of the related
preconditioned Krylov method: for instance in the Hermitian positive definite
case and when dealing with the PCG iterations, the spectral equivalence is
sufficient. Since D−1

R An is similar to R−1Ãn, with Ãn = D−1/2AnD
−1/2, the

use of the preconditioner DR to the linear system (5) is equivalent to apply the
preconditioner R to the scaled linear system (15). However, the scaling of the
linear suggest to use a cosine preconditioner different from R that is RD which
is more effective for large values of α (see numerical results in Section 5).

Remark 4 For small values of α, i.e., when few regularization is required, the

three preconditioners R, DR and RD have a similar behaviour. Moreover, when

α goes to zero the effectiveness of the proposed preconditioners increases because

the preconditioners and the original coefficient matrix An all tend to H∗H.

For concluding this section, we note that in the case of anti-reflective BCs
similar considerations can be done. The main difference is when we consider the
reblurring strategy. However, using the results in [14], the nonsymmetric case
can be considered as well since the antisymmetric part has trace norm (sum of
all singular values) bounded by a pure constant independent of n. Therefore
the spectral distribution is governed by the symmetric part which is dominant
as discussed in Section 3.3 of [3].
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Figure 1: True and observed signals

5 Numerical Tests

We will solve the problem (4) by the fixed point method (5) with the operator
H approximated by using different BCs and with the matrix L imposed by zero
Neumann BCs or anti-reflective BCs. The algorithm was implemented in MATLAB

7.10 and run on a PC Intel Pentium IV of 3.00 GHZ CPU. We shall show the
effectiveness of the proposed preconditioners for the signal/image deblurring
and also give a comparison of the quality of the restored signals/images with
different BCs.

In our test, for simplicity, we choose initial guess u0 = v for the FP algorithm.
We shall solve (5) by the PCG method when the Neumann BCs imposed on
L(uk) and solve (5) by the PBiCGstab method when the anti-reflective BCs
imposed on L(uk). Also, we solve (20) by the PBiCGstab method. The initial
guess for the PCG and PBiCGstab methods in kth FP iteration is chosen to
be the (k − 1)th FP iterate. The PCG and PBiCGstab iterations are stopped
when the residual vector rk of the linear systems (5) and (20) at the kth iteration
satisfies ‖rk‖2/‖r0‖2 < tol, where tol is set to 10−6 and 10−5 in the 1D and 2D
case, respectively.

5.1 1D case: Signal Deblurring

In our experiments, we suppose the true signal u is given as in Figure 1(a). The
two vertical lines shown in Figure 1(a) denote the field of view (i.e., [0.1, 0.9])
of our signal and the signal outside the two vertical lines can be approximated
by different BCs. The true signal is blurred by the symmetric out of focus PSF:

hi =

{

c if |i| < m(n),
0 otherewise,

(26)

where c is the normalization constant such that
∑

i hi = 1 and m(n) is the
center of the PSF which depends on n so that the restored signal lies in the
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PCG R AR+Sine+ZN L
α N I D R DR RD N I D M DM MD

10−1 30 269 163 73 49 45 28 221 155 60 51 36
10−2 37 172 107 84 37 32 24 149 94 67 33 25
10−3 32 99 71 63 42 36 24 80 59 56 37 31
10−4 19 57 56 38 36 35 19 60 58 31 30 29
10−5 20 74 71 23 25 24 17 47 45 20 20 19
10−6 11 122 122 7 7 8 8 85 86 14 14 14

PBiCGstab AR+Reblur+ZN L AR+Reblur+AR L
α N I D P DP PD N I D P DP PD
10−1 27 178 105 57 53 51 24 179 109 41 46 35
10−2 24 105 59 59 25 21 23 107 60 39 23 20
10−3 23 60 44 43 27 23 22 54 37 34 22 20
10−4 20 33 31 20 18 18 20 32 30 18 16 17
10−5 25 31 33 10 9 10 20 31 32 10 10 10
10−6 9 78 68 4 4 4 11 56 62 4 4 4

Table 1: Average number of PCG/PBiCGstab iterations per FP step varying
α, with n = 203 and β = 0.1.

interval [0.1, 0.9]. A Gaussian noise η with noise-to-signal ratio ‖η‖2/‖Hu‖2 is
added to the blurred signal. We consider the true signal is blurred by the out
of focus PSF and then added the Gaussian noise with the noise levels 1%, i.e.,
‖η‖2/‖Hu‖2 = 0.01. Figure 1(b) show the observed signal.

We now show that the proposed preconditioners are effective for solving (5)
and (20) with different BCs. In our numerical experiment, the FP iteration
is stopped when ‖uk − uk−1‖2/‖uk‖2 < 10−3. We will concentrate on the
performance of different choices of preconditioners for various of parameters α,
β, and n.

In Tables 1 and 2, we report the average number of iterations per FP it-
eration, where N , I and D denote the number of FP steps, no preconditioner
and the diagonal scaling preconditioner, respectively. According to Remark 4,
the effectiveness of the proposed preconditioners increases when α decreases.
Moreover, decreasing α all the proposed preconditioners become equivalents,
explicitly the PCG/PBiCGstat converges in about the same number of itera-
tions.

We note that anti-reflective BCs usually require lesser steps and lesser PCG/
BiCGstab iterations per FP step when compared with reflective BCs. This
shows that the improvement in the model also leads to an improvement in the
global computational complexity of the numerical methods. This is more evi-
dent for the optimal restoration since antireflective BCs require a regularization
parameter α smaller than the reflective BCs (Figures 4–5).

Figure 2 describes the average PCG/PBiCGstab iterations per FP step vary-
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PCG R AR+Sine+ZN L
β N I D R DR RD N I D M DM MD

10−3 31 434 245 305 298 125 24 349 200 297 226 85
10−2 31 218 139 149 98 67 24 175 112 139 72 46
10−1 32 99 71 63 42 36 24 80 59 56 37 31
100 28 39 36 21 18 20 21 35 32 19 16 15

PBiCGstab AR+Reblur+ZN L AR+Reblur+AR L
β N I D P DP PD N I D P DP PD
10−3 23 403 254 361 346 59 22 323 207 288 285 57
10−2 23 157 87 130 58 43 22 134 77 102 43 28
10−1 23 60 44 43 27 23 22 54 37 34 22 20
100 20 21 20 12 11 11 20 19 18 10 9 9

Table 2: Average number of PCG/PBiCGstab iterations per FP step varying
β, with n = 203 and α = 0.001.

ing n. We note that the preconditioners with a diagonal scaling show an optimal
behavior.

In Figure 3, we present the restored signals for varying β, e.g., by solving
system (5) when anti-reflective BCs have been imposed. As expected, the re-
covered signals become shaper when the value of β is smaller, the value β = 0.1
gives a restoration sufficiently good anyway.

We can easily observe from Tables 1-2 and Figure 2 that the proposed pre-
conditioners with a diagonal scaling are the most effective preconditioner when
varying parameters α, β, and n. Finally, we remark that in all our tests, the pro-
posed algorithm needs the same number of FP steps for the no-preconditioner
and preconditioned cases and ‖g(uk)‖2 tends to O(10−5) or O(10−6) at the final
FP iterate.

To check the quality of restored signals by using different BCs, in Figure
4 we show the relative restoration error (RRE), ‖uα − u‖2/‖u‖2, where uα is
the total variation regularized solution of the true signal u, versus the regular-
ization parameter α. Figure 5 gives the restored signals with optimal value of
the parameter α, where αopt, Re., Fp., and It. denote the optimal value of
the parameter α, the minimal RRE, the number of FP steps, and the average
number of PCG/BiCGstab iterations per FP step, respectively.

From Figure 5 we argue that anti-reflective BCs lead to the most accurate
restored signals with less significant ringing effects at the edges and less PCG
iterations per FP step, when compared with reflective BCs. Moreover, thanks
to the improvement in the model of the problem, antireflective BCs require
lesser regularization than reflective BCs. This implies a smaller αopt and hence
a small number of PCG/BiCGstab iterations per FP step, while the number of
FP iterations remains about the same.

18



100 200 300 400 500
0

50

100

150

200

250

300

n

no
. o

f C
G

 it
er

at
io

ns
 p

er
 F

P
 s

te
p

o = I, x = D, + = R, . = D
R

, * = R
D

(a)

100 200 300 400 500
0

50

100

150

200

250

n

no
. o

f C
G

 it
er

at
io

ns
 p

er
 F

P
 s

te
p

o = I, x = D, + = M, . = D
R

, * = M
D

(b)

100 200 300 400 500
0

20

40

60

80

100

120

140

n

no
. o

f C
G

 it
er

at
io

ns
 p

er
 F

P
 s

te
p

o = I, x = D, + = P, . = D
R

, * = P
D

(c)

100 200 300 400 500
0

20

40

60

80

100

120

140

n

no
. o

f C
G

 it
er

at
io

ns
 p

er
 F

P
 s

te
p

o = I, x = D, + = P, . = D
R

, * = P
D

(d)

Figure 2: Average number of PCG/PBiCGstab iterations per FP step for various
n, with α = 10−3 and β = 0.1. (a) Reflective BCs. (b) Anti-Reflective BCs
with sine preconditioner. (c) Anti-Reflective BCs with reblurring by imposing
zero Neumann BCs on L. (d) Anti-Reflective BCs with reblurring by imposing
Anti-Reflective BCs on L.
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Figure 3: Restorations for Anti-Reflective BCs based (5) with n = 203, α = 10−3

varying β.
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Figure 4: The RRE versus the regularization parameter α for different BCs.

5.2 2D case: Image Deblurring

In this section, we apply the proposed preconditioners to image restoration with
different BCs. Suppose the true images are blurred by the Gaussian blur and
then suppose that a white Gaussian noise η with the noise levels 0.1% is added.
Figure 6 shows the true and observed images.

In our numerical tests, the FP iteration is stopped when ‖uk−uk−1‖2/‖uk‖2
< 10−4 and the maximal number of FP steps is set to be 100. We fix β = 0.01
and only focus on the performance of different choices of preconditioners for
varying α.

In Table 3 the number of iterations is displayed for solving (5) and (20) with
different BCs and various values of α, where N and I mean the number of FP
iterations and no preconditioner, respectively. Here, we only give the average
number of CG/BiCGstab iterations per FP step. Table 3 suggests that the
preconditioners XD, with X ∈ {R,M,P}, are very effective matrix approxi-
mations for all values of α, while the preconditioners DX do not work well for
large values of α especially for antireflective BCs. However, for antireflective
BCs a good choice for α is in the interval [10−3, 10−2] and in this case both
choices XD and DX have a similar behaviour. We note that the number of FP
iterations decrease with α, so if we have a good model that requires a lower
regularization we obtain a gain also in terms of the computational cost of the
whole restoration procedure. In all our tests, it is shown that ‖g(uk)‖2 tends to
O(10−3) or O(10−4) at the final FP iterate.

Next, we shall check the quality of restored images by using different BCs.
Figure 7 describes the relative restoration error (RRE) ‖uα − u‖2/‖u‖2 versus
the regularization parameter α. Figure 8 presents the restored images with
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Figure 5: Restored signals with different BCs. Here n = 203 and β = 0.1

True image Observed image

Figure 6: True and observed images
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PCG R AR+Sine+ZN L
α N I N DR N RD N I N DM N MD

100 60 244 60 48 60 23 60 229 60 210 61 23
10−1 41 129 46 29 33 22 40 114 40 117 28 38
10−2 13 70 13 44 11 39 12 58 9 49 8 41
10−3 3 124 2 42 2 42 2 147 2 36 2 37
10−4 2 164 1 23 1 23 1 354 1 23 1 23

PBiCGstab AR+Reblur+ZN L AR+Reblur+AR L
α N I N DP N PD N I N DP N PD
100 58 52 ∗ ∗ 59 13 60 52 59 50 60 7
10−1 27 27 33 16 31 7 26 28 31 9 30 5
10−2 10 9 10 7 10 6 10 10 12 5 10 5
10−3 2 16 2 5 2 5 3 11 2 4 2 5
10−4 1 33 1 3 2 1 1 34 1 3 2 1

Table 3: Average number of CG/BiCGstab iterations per FP step for varying
α. Here, β = 0.01 (∗ means that the method does not converge).
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Figure 7: The RRE versus the regularization parameter α for different BCs.
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Figure 8: Restored images with different BCs.
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optimal value of the parameter α. Like in the 1D case, Figure 8 shows that the
anti-reflective BCs lead to better restored images and shaper edges with a lower
computational cost than the reflective BCs (note the high reduction in the FP
iterations being αopt smaller).

6 Conclusions

In this paper, we have considered the effect of reflective and anti-reflective BCs,
when regularizing blurred and noisy images via the total variation approach.
In particular, we have studied some preconditioning strategies for the linear
systems arising from the FP iteration given in [29]. In the case of anti-reflective
BCs we have also considered a comparison with the reblurring idea proposed in
[12]. We recall that the latter has been shown effective when combined with the
Tikhonov regularization and here one of the issues was to verify that reblurring
and total variation can be combined satisfactorily. Furthermore, the optimal
behavior of our preconditioners has been validated numerically.

Beside the computational features of the preconditioning techniques, we
stress the improvement obtained via anti-reflective BCs both in terms of re-
construction quality and reduction of the computational cost. In fact, the pre-
cision of such BCs was already known in the relevant literature (see [11, 10, 21]
and references there reported). However, this is the first time that the anti-
reflective BCs have been combined with a sophisticated regularization method,
where the use of fast transforms is very welcome for saving computational cost.
The precision of the antireflective BCs implies also a further reduction of the
computational cost over the other BCs (see numerical results in Section 5) be-
cause they require a smaller regularization parameter α and the effectiveness of
the proposed preconditioners increases reducing α.

Potential lines of interest for future investigations could include the use of
anti-reflective BCs in the promising split Bregman method recently proposed in
[13] and a more precise clustering analysis of the preconditioning sequences, in
the spirit of Section 4.
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