
ar
X

iv
:1

01
2.

07
54

v2
  [

q-
fi

n.
PR

] 
 5

 J
ul

 2
01

1

Pricing and Hedging in Affine Models

with Possibility of Default∗

Patrick Cheridito†

Princeton University
Princeton, NJ 08544, USA

Alexander Wugalter‡

Princeton University
Princeton, NJ 08544, USA

First version: December 2010
Current version: July 2011

Abstract

We propose a general framework for the simultaneous modeling of equity, govern-

ment bonds, corporate bonds and derivatives. Uncertainty is generated by a general

affine Markov process. The setting allows for stochastic volatility, jumps, the possi-

bility of default and correlation between different assets. We show how to calculate

discounted complex moments by solving a coupled system of generalized Riccati equa-

tions. This yields an efficient method to compute prices of power payoffs. European

calls and puts as well as binaries and asset-or-nothing options can be priced with the

fast Fourier transform methods of Carr and Madan (1999) and Lee (2005). Other Eu-

ropean payoffs can be approximated with a linear combination of government bonds,

power payoffs and vanilla options. We show the results to be superior to using only

government bonds and power payoffs or government bonds and vanilla options. We

also give conditions for European continent claims in our framework to be replica-

ble if enough financial instruments are liquidly tradable and study dynamic hedging

strategies. As an example we discuss a Heston-type stochastic volatility model with

possibility of default and stochastic interest rates.

Key words Pricing, hedging, affine models, stochastic volatility, jumps, default.

1 Introduction

The goal of this paper is to provide a flexible class of models for the consistent pricing

and hedging of equity options, corporate bonds and government bonds. The noise in our

models is driven by an underlying Markov process that can generate stochastic volatility,

jumps and default. For the sake of tractability we assume it to be affine. Then discounted

complex moments of the underlying can be calculated by solving a coupled system of

generalized Riccati equations. This yields an efficient method to compute prices of power

payoffs and the discounted characteristic function of the log stock price. From there,
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fruitful discussions and helpful comments.
†Supported by NSF Grant DMS-0642361.
‡Supported by NSF Grant DMS-0642361.
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prices of vanilla options as well as binaries and asset-or-nothing options can be obtained

with fast Fourier transform methods à la Carr and Madan [2] and Lee [15]. We also give

conditions for European contingent claims in our models to be replicable if there exist

enough liquid securities that can be used as hedging instruments.

Our framework can be seen as an extension of the unified pricing and hedging model

of Carr and Schoutens [3], where market completeness is achieved through continuous

trading in the money market, stock shares, variance swaps and credit default swaps.

The authors suggest to approximate general payoffs with polynomials. In this paper we

propose an approximations with a linear combination of government bonds, non-integer

power payoffs and European calls.

Affine models have become popular in the finance literature because they offer a good

trade-off between generality and tractability. One-factor affine processes were first used

by Vasicek [22] and Cox–Ingersoll–Ross [4] for interest rates modeling. Popular affine

stochastic volatility models include the ones by Stein and Stein [21] and Heston [9]. For

affine models in credit risk we refer to Lando [13]. Here we work with general affine

processes in the sense of Duffie et al. [6].

The rest of the paper is organized as follows. In Section 2 we introduce the model. In

Section 3 we show how discounted complex moments can be calculated by solving gener-

alized Riccati equations. This yields an efficient way of calculating options with power

payoffs. As a corollary one obtains conditions for the discounted stock price to be a mar-

tingale under the pricing measure. The prices of vanilla options as well as binaries and

asset-or-nothing options can be computed with the fast Fourier transform methods of Carr

and Madan [2] and Lee [15]. For the pricing of European options with general payoffs we

propose an L2-approximation with a linear combination of government bonds, power pay-

offs and European calls. We illustrate this method by pricing a truncated log payoff, which

can be applied to the valuation of a variance swap in the case where the underlying can

default. Section 4 is devoted to the derivation of hedging rules. We show that in a model

with discrete jumps, or no jumps at all, every European option can perfectly be hedged

by trading in stock shares and a proper mix of European calls, government and corporate

bonds. A system of linear equations is derived to find the hedging strategies. As an exam-

ple we discuss in Section 5 a Heston-type stochastic volatility model with the possibility

of default and stochastic interest rates.

2 The model

Let (Xt,Px)t≥0, x∈D be a time-homogeneous Markov process with values in D := Rm
+ ×

Rn−m, m ∈ N, n ∈ N \ {0}. Let Ex be the expectation corresponding to Px and denote by

〈·, ·〉 the Euclidean (non-Hermitian) scalar product on Cn: 〈x, y〉 :=
∑n

i=1 xiyi, x, y ∈ Cn.

Furthermore, set I = {1, . . . ,m} and J = {m+ 1, . . . , n}. XI,t and XJ ,t denote the first m
and last n−m components of Xt, respectively.

We model the risk-neutral evolution of the price of a stock share by

St = exp(st +Rt + Λt)1{t<τ},

2



where

st = e+ 〈ε,Xt〉 for (e, ε) ∈ R× Rn

Rt =

∫ t

0
rudu for rt = d+ 〈δ,XI,t〉 , (d, δ) ∈ R+ × Rm

+

Λt =

∫ t

0
λudu for λt = c+ 〈γ,XI,t〉 , (c, γ) ∈ R+ × Rm

+

and

τ = inf{t ≥ 0 : Λt = E}

for a standard exponential random variable E independent of X.

The process rt models the instantaneous risk-free interest rate and λt the default rate.

Note that both of them are non-negative. τ is the default time (St = 0 for t ≥ τ ), and st
describes the excess log-return of St over rt + λt before default. Alternatively, one could

model the three processes s̃t = st+Rt+Λt, Rt and Λt. But modeling (st, Rt,Λt) is convenient

since it makes the discounted stock price equal to exp(st + Λt)1{t<τ} and will allow us to

give a simple condition for it to be a martingale under Px (see Corollary 3.5 below).

For the sake of tractability we always assume that (Xt,Px)t≥0, x∈D is stochastically

continuous and affine in the sense that

(H1) Xt → Xt0 in probability for t→ t0 with respect to all Px, x ∈ D, and

(H2) there exist functions φ : R+ × iRn → C and ψ : R+ × iRn → Cn such that

Ex[exp(〈u,Xt〉)] = exp (φ(t, u) + 〈ψ(t, u), x〉)

for all x ∈ D and (t, u) ∈ R+ × iRn.

It has been shown by Keller-Ressel et al. [12] that under the hypotheses (H1) and (H2),

(Xt,Px)t≥0, x∈D automatically satisfies the regularity condition of Definition 2.5 in Duffie

et al. [6]. Therefore, according to Theorem 2.7 in Duffie et al. [6], it is a Feller process

whose infinitesimal generator A has C2
c (D) (the set of twice continuously differentiable

functions f : D → R with compact support) as a core and acts on f ∈ C2
c (D) like

Af(x) =
n
∑

k,l=1

(akl + 〈αI,kl, xI〉)
∂2f(x)

∂xk∂xl
+ 〈b+ βx,∇f(x)〉

+

∫

D\{0}
(f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉) ν(dξ) (2.1)

+
m
∑

i=1

∫

D\{0}

(

f(x+ ξ)− f(x)−
〈

∇J∪{i}f(x), χJ∪{i}(ξ)
〉)

xiµi(dξ),

where χ = (χ1, . . . , χn) for

χk(ξ) =

{

0 if ξk = 0

(1 ∧ |ξk|)
ξk
|ξk| , otherwise

and

(i) a ∈ Rn×n is symmetric and positive semi-definite with aII = 0
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(ii) α = (αi)i∈I , where for each i ∈ I, αi ∈ Rn×n is a positive semi-definite symmetric

matrix such that all entries in αi,II are zero except for αi,ii

(iii) b ∈ D

(iv) β ∈ Rn×n such that βIJ = 0 and βII has non-negative off-diagonal elements

(v) ν is a Borel measure on D\{0} with

∫

D\{0}

(

〈χI(ξ),1〉 + ||χJ (ξ)||
2
)

ν(dξ) <∞

(vi) µ = (µi)i∈I is a vector of Borel measures on D\{0} such that

∫

D\{0}

(〈

χI\{i}(ξ),1
〉

+ ||χJ∪{i}(ξ)||
2
)

µi(dξ) <∞.

In addition we require the jumps to satisfy the following exponential integrability condi-

tion: For all q ∈ Rn,

(vii)
∫

D

e〈q,ξ〉1{||ξ||≥1}ν(dξ) <∞ and

∫

D

e〈q,ξ〉1{||ξ||≥1}µi(dξ) <∞ for all i ∈ I.

It follows from Theorem 2.7 and Lemma 9.2 in Duffie et al. [6] that for every set of

parameters (a, α, b, β, ν, µ) satisfying (i)–(vii), (2.1) defines the infinitesimal generator of

a D-valued Feller process (Xt,Px)t≥0, x∈D satisfying conditions (H1) and (H2) for (φ,ψ)
equal to the unique solution of the following system of generalized Riccati equations











∂tφ(t, u) = F0(ψ(t, u)), φ(0, u) = 0

∂tψI(t, u) = F (ψ(t, u)), ψI(0, u) = uI
ψJ (t, u) = exp(βTJJ t)uJ

, (2.2)

where the functions F0 : C
n → C and F : Cn → Cm are given by

F0(u) = 〈au, u〉+ 〈b, u〉+

∫

D\{0}

(

e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉
)

ν(dξ)

Fi(u) = 〈αiu, u〉+
n
∑

k=1

βkiuk +

∫

D\{0}

(

e〈u,ξ〉 − 1−
〈

uJ∪{i}, χJ∪{i}(ξ)
〉

)

µi(dξ), i ∈ I.

In particular, (a, α, b, β, ν, µ) uniquely determine the transition probabilities of X and

therefore, its distribution under each Px, x ∈ D. Since every Feller process has a RCLL

version, we may assume (Xt, τ,Px)t≥0,x∈D to be defined on RD×R+, where RD is the space

of all RCLL functions ω : R+ → D, and (Xt, τ)(ω, y) = (ω(t), y).
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3 Pricing

We price derivatives on St by taking expectation under Px. For instance, we determine

the price of a European option with payoff function ϕ : R+ → R and maturity t > 0 by

Ex [exp (−Rt)ϕ(St)] .

Special cases include:

• Government bonds: ϕ ≡ 1

• Corporate bonds: ϕ(x) = 1{x>0}

• Call options: ϕ(x) = (x−K)+ for K > 0

• Power payoffs: ϕ(x) = xp1{x>0} for p ∈ R.

General power payoffs are not traded. But they can be priced efficiently and are helpful

in pricing other payoffs. Moreover, for p = 1, the price of the power payoff equals the stock

price and having a general formula for Ex [exp(−Rt)St] will allow us to obtain conditions

for the discounted stock price to be a martingale. The case p = 0 corresponds to a corporate

bond. We just consider zero coupon bonds and assume there is no recovery in the case of

default. A corporate bond with a fixed recovery can be seen as a linear combination of a

government and a corporate bond with no recovery. So all of the arguments that follow

can easily be extended to this case.

In Subsection 3.1 we show how discounted moments of St can be obtained by solving

coupled systems of generalized Riccati equations. In Subsection 3.2 we extend Fourier

pricing methods from Carr and Madan [2] and Lee [15] to our setup. In Subsection 3.3

we discuss the approximation of general European options with government bonds, power

payoffs and European calls.

3.1 Discounted moments and generalized Riccati equations

For t ≥ 0 and x ∈ D, define

Ut,x :=
{

z ∈ C : Ex

[

exp(−Rt)S
Re(z)
t 1{t<τ}

]

<∞
}

and the discounted moments function

ht,x(z) := Ex

[

exp(−Rt)S
z
t 1{t<τ}

]

, z ∈ Ut,x.

Note that Ut,x is equal to C, a half-plane or a vertical strip. Since Rt ≥ 0, it always

contains the imaginary axis iR. Clearly, ht,x is finite on Ut,x and analytic in the interior of

Ut,x. Indeed, ht,x(z) can be written as

ht,x(z) = Ex

[

exp (zst + (z − 1)Rt + zΛt) 1{t<τ}
]

.

So for z in the interior of Ut,x, one can differentiate inside of the expectation to obtain

h′t,x(z) = Ex

[

(st +Rt +Λt) exp (zst + (z − 1)Rt + zΛt) 1{t<τ}
]

.
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Let

A : R+ × Cn × C× C → C ∪ {∞} , B : R+ × Cn × C× C → (C ∪ {∞})n

be solutions to the system of generalized Riccati equations











∂tA(t, u, v, w) = G0(B(t, u, v, w), v, w), A(0, u, v, w) = 0,

∂tBI(t, u, v, w) = G(B(t, u, v, w), v, w), BI(0, u, v, w) = uI ,

BJ (t, u, v, w) = exp(βTJJ t)uJ

(3.1)

where the functions G0 : C
n × C× C → C and G : Cn × C× C → Cm are given by

G0(u, v, w) = 〈au, u〉 + 〈b, u〉+ dv + c(w − 1) +

∫

D\{0}

(

e〈u,ξ〉 − 1− 〈uJ , χJ (ξ)〉
)

ν(dξ)

Gi(u, v, w) = 〈αiu, u〉+
n
∑

k=1

βkiuk + δiv + γi(w − 1)

+

∫

D\{0}

(

e〈u,ξ〉 − 1−
〈

uJ∪{i}, χJ∪{i}(ξ)
〉

)

µi(dξ), i ∈ I.

The quadratic and exponential terms inGi can cause the solution (A,B) of (3.1) to explode

in finite time. However, since in condition (vii) we assumed the jumps of the process X
to have all exponential moments, we obtain from Lemma 5.3 of Duffie et al. [6] that the

functions Gi, i = 0, . . . ,m, are analytic on Cn+2. In particular, they are locally Lipschitz-

continuous, and it follows from the Picard–Lindelöf Theorem that for every (u, v, w) ∈
Cn × C× C there exists t∗ > 0 such that equation (3.1) has a unique finite solution (A,B)
for t ∈ [0, t∗). We set A and all components of B equal to ∞ after the first explosion time.

Note that the components Bj(t, zε, z − 1, z), j ∈ J , are finite and analytic in z ∈ C for all

t ≥ 0, and if Bi(t, zε, z − 1, z) is finite/analytic in z for all i ∈ I, then so is A(t, zε, z − 1, z).
So for fixed t ≥ 0, we define

Vt := {z ∈ C : Bi(t, zε, z − 1, z) is finite for all i ∈ I}.

and

lt,x(z) := exp {ze+A(t, zε, z − 1, z) + 〈B(t, zε, z − 1, z), x〉} , z ∈ Vt. (3.2)

In a first step we show the following

Lemma 3.1. For every t ≥ 0, Vt contains iR and ht,x(z) = lt,x(z) for all x ∈ D and z ∈ iR.

Proof. Fix Px, xn+1, xn+2 ∈ R+ and denote x̂ = (x, xn+1, xn+2). Consider the process

Yt =

{

(Xt, x1 +Rt, x2 + Λt) for t < τ
∆ for t ≥ τ

,

where ∆ is a cemetery state outside of D̂ := Rm
+ × Rn−m × R2

+ to which Y jumps at time

τ . Y is a Markov process with values in D̂ ∪ {∆}. Since X has the properties (H1)–(H2),

Y fulfills the assumptions of Proposition III.2.4 of Revuz and Yor [19] and therefore is a

Feller process. Moreover, Rt =
∫ t

0 rudu and Λt =
∫ t

0 λudu are of finite variation and the
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random variable E is independent of X. So one deduces from (H1) that for all x̂ ∈ D̂ and

f ∈ C2
c (D̂),

1

t
Ex[f(Xt, xn+1 +Rt, xn+2 + Λt)1{t<τ} − f(x, xn+1, xn+2)]

=
1

t
Ex [f(Xt, xn+1, xn+2)− f(x, xn+1, xn+2)]

+
1

t
Ex

[

f(Xt, xn+1 +Rt, xn+2 + Λt)e
−Λt − f(Xt, xn+1, xn+2)

]

→ Âf(x̂) for t ↓ 0,

where

Âf(x̂) =

n
∑

k,l=1

(akl + 〈αI,kl, xI〉)
∂2f(x̂)

∂xk∂xl
+
〈

b̂+ β̂x̂,∇f(x̂)
〉

− (c+ 〈γ, xI〉)f(x̂)

+

∫

D\{0}
(f(x̂+ (ξ, 0, 0)) − f(x̂)− 〈∇J f(x̂), χJ (ξ)〉) ν(dξ)

+

m
∑

i=1

∫

D\{0}

(

f(x̂+ (ξ, 0, 0)) − f(x̂)−
〈

∇J∪{i}f(x̂), χJ∪{i}(ξ)
〉)

xiµi(dξ),

and

• b̂ = (b, d, c)

• β̂ =









βII 0 0 0
βJI βJJ 0 0
δ 0 0 0
γ 0 0 0









∈ R(n+2)×(n+2).

By Lemma 31.7 of Sato [20], the infinitesimal generator of Y is well-defined and equal to

Â on C2
c (D̂) (if f(∆) is understood to be 0 for f ∈ C2

c (D̂)). But since Â is the infinitesimal

generator of a regular affine process with values in D̂ ∪ {∆}, it follows from Theorem 2.7

of Duffie et al. [6] that

Ex

[

exp (〈u,Xt〉+ vRt +wΛt) 1{t<τ}
]

= exp (A(t, u, v, w) + 〈B(t, u, v, w), x〉) . (3.3)

for all (t, u, v, w) ∈ R+ × Cm
− × (iR)n × C2

−, where C− denotes the set of all z ∈ C with

Re(z) ≤ 0. In particular, for (t, u, v, w) ∈ R+ × Cm
− × (iR)n × C2

−, A(t, u, v, w) and all

components of B(t, u, v, w) are finite. In fact, according to Theorem 2.7 of Duffie et al.

[6], the function B should have n + 2 components and G should have m + 2. But due to

the special form of Â, components m + 1 and m + 2 of G vanish, and the corresponding

components of B stay equal to the initial values v and w for all times t ≥ 0. In addition,

R0 = Λ0 = 0, and one obtains (3.3), where the functions A and B solve (3.1).

Now notice that

ht,x(z) = exp(ze)Ex

[

exp (z 〈ε,Xt〉+ (z − 1)Rt + zΛt) 1{t<τ}
]

.

So, for all t ≥ 0, Vt contains iR and

ht,x(z) = exp {ze+A(t, zε, z − 1, z) + 〈B(t, zε, z − 1, z), x〉}

for all x ∈ D and z ∈ iR.
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Lemma 3.2. Fix t0 ≥ 0 and z0 ∈ Vt0 . Then there exists an open neighborhood W of (t0, z0)
in R+ × C such that

A(t, zε, z − 1, z) and B(t, zε, z − 1, z)

are finite for (t, z) ∈W as well as analytic in t and z. In particular, the set

{(t, z) ∈ R+ × C : z ∈ Vt}

is open and for all x ∈ D, lt,x(z) is analytic in t and z.

Proof. By Lemma 5.3 of Duffie et al. [6], the functions Gi, i = 0, . . . ,m, are analytic

on Cn+2. So, the lemma is a consequence of Theorem 1.1 in Ilyashenko and Yakovenko

[10].

In the following theorem we extend the identity ht,x(z) = lt,x(z) to z outside of the

imaginary axis iR. Similar results in different settings have been given by Filipovic and

Mayerhofer [8], Keller-Ressel [11], Spreij and Veerman [18].

Denote by It the largest interval around 0 contained in Vt ∩R and by V 0
t the connected

component of Vt containing 0. It follows from Lemma 3.2 that It is open in R, and it is

clear that It ⊂ V 0
t . Moreover, one has

Theorem 3.3. For all (t, x) ∈ R+ × D, Ut,x is an open subset of C containing the strip

{z ∈ C : Re(z) ∈ It} and ht,x(z) = lt,x(z) for each z ∈ Ut,x ∩ V
0
t .

Proof. For fixed t ≥ 0 and x ∈ D, one can write

ht,x(iy) = Ex

[

exp(−Rt)1{t<τ}
]

EQx [exp(iy[st +Rt + Λt])] , y ∈ R,

where Qx is the probability measure given by

dQx

dPx

=
exp(−Rt)1{t<τ}

Ex

[

exp(−Rt)1{t<τ}
] .

So, up to a constant, y 7→ ht,x(iy) is the characteristic function of st +Rt +Λt with respect

to Qx. From Lemmas 3.1 and 3.2 we know that ht,x(iy) = lt,x(iy) for all y ∈ R and V 0
t

is an open neighborhood of 0 in C on which lt,x is analytic. So it follows from Theorem

7.1.1 of Lukacs [16] that Ut,x contains the strip {z ∈ C : Re(z) ∈ It} and is open. Since

ht,x(iy) = lt,x(iy) for all y ∈ R, V 0
t is connected and both functions are analytic, one also

has ht,x(z) = lt,x(z) for z ∈ Ut,x ∩ V
0
t .

Remark 3.4. The price of a corporate zero coupon bond with no recovery in the case of

default is given by

Pt,x = Ex

[

e−Rt1{St>0}
]

= ht,x(0).

The price of a government bond is equal to the price of a corporate bond in a model where

(c, γ) = 0 (that is, the probability of default is zero).

Corollary 3.5. The condition

Gi(ε, 0, 1) = 0, i = 0, . . . ,m, and βJJ = 0, (3.4)

is sufficient for the discounted stock price exp(st+Λt)1{t<τ} to be a martingale with respect

to all Px, x ∈ D. If all components of εJ are different from 0, then (3.4) is also necessary.
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Proof. It follows from Lemma 3.2 that there exists a t0 > 0 such that p ∈ V 0
t for all

(t, p) ∈ [0, t0]× [0, 1]. So if (3.4) holds, one obtains from Theorem 3.3 and (3.1) that

ht,x(1) = exp(e+A(t, ε, 0, 1) + 〈B(t, ε, 0, 1), x〉) = h0,x(1) for all (t, x) ∈ [0, t0]×D.

Now the martingale property of exp(st +Λt)1{t<τ} with respect to all Px, x ∈ D, follows by

decomposing a given interval [0, t] into finitely many intervals of length smaller than t0
and taking iterative conditional expectations. If all components of εJ are different from 0
and condition (3.4) is violated, there exist t ≤ t0 and x ∈ D such that ht,x(1) 6= h0,x(1). So

the martingale property cannot hold under Px.

3.2 Pricing via Fourier transform

In this subsection we show how to extend Fourier pricing methods from Carr and Madan

[2] and Lee [15] to our setting. Since Px is used as pricing measure, one would typically

work with models in which the discounted stock price exp(st + Λt)1{t<τ} is a martingale

under Px. However, the following results just involve St for fixed t ≥ 0 and technically do

not need the discounted stock price to be a martingale.

Consider a call option with log strike k and price

ct,x(k) = Ex

[

e−Rt

(

St − ek
)+
]

.

Theorem 3.6. Let (t, x) ∈ R+ ×D and p > 0 such that p+ 1 ∈ Ut,x. Then

ct,x(k) =
e−pk

2π

∫

R

e−iykgc(y)dy =
e−pk

π

∫ ∞

0
Re
(

e−iykgc(y)
)

dy, (3.5)

where

gc(y) =
ht,x(p+ 1 + iy)

p2 + p− y2 + iy(2p + 1)
.

Proof. Since Ut,x is open, there exists η > 0 such that p+ 1 + η ∈ Ut,x, and it follows from

Corollary 2.2 in Lee [14] that

ct,x(k) = O(e−(p+η)k) for k → ∞.

In particular,
∫

R

(

epkct,x(k)
)2
dk <∞.

It follows that the Fourier transform

gc(y) =

∫

R

eiykepkct,x(k)dk

is square-integrable in y, and one can transform back to obtain

epkct,x(k) =
1

2π

∫

R

e−iykgc(y)dy.

9



This shows the first equality of (3.5). Since ct,x(k) is real-valued, one has gc(−y) = gc(y),
which implies the second inequality of (3.5). To conclude the proof, set z = p+ iy and note

that

gc(y) =

∫

R

ezkEx

[(

est+Λt − ek−Rt

)

1{st+Rt+Λt≥k, t<τ}
]

dk

= Ex

[∫ st+Rt+Λt

−∞

(

ezk+st+Λt − e(z+1)k−Rt

)

dk1{t<τ}

]

=
1

z(z + 1)
Ex

[

exp(−Rt + (z + 1) log St)1{t<τ}
]

=
1

z(z + 1)
ht,x(z + 1).

To calculate prices of options with short maturities or extreme out-of-the money strikes

Carr and Madan [2] suggest an alternative method which does not suffer from high oscil-

lations. To adapt it to our setup, define

dt,x(k) :=















Ex

[

e−Rt
(

ek − St
)+

1{t<τ}
]

if k < log S0

Ex

[

e−Rt
(

St − ek
)+
]

if k > log S0

.

Then the following holds:

Theorem 3.7. Let (t, x) ∈ R+ ×D and p > 0 such that 1− p, 1 + p ∈ Ut,x. Then

dt,x(k) =
1

sinh(pk)

1

2π

∫

R

e−iykgd(y)dy, (3.6)

where

gd(y) =
f(y − ip)− f(y + ip)

2

and

f(y) =
exp((1 + iy)s0)

1 + iy
ht,x(0)−

exp(iys0)

iy
ht,x(1) −

ht,x(1 + iy)

y2 − iy
.

Proof. Since Ut,x is open, there exists η > 0 such that 1− p− η and 1+ p+ η belong to Ut,x.

By Corollary 2.2 of Lee [14],

dt,x(k) = O(e−(p+η)|k|) for k → ±∞.

In particular, dt,x(k) and sinh(pk)dt,x(k) are both square-integrable in k. One easily checks

that
∫

R

eiykdt,x(k)dk = f(y).

So,

∫

R

eiyk sinh(pk)dt,x(k)dk =

∫

R

eiyk
epk − e−pk

2
dt,x(k)dk =

f(y − ip)− f(y + ip)

2
,
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and hence,

dt,x(k) =
1

sinh(pk)

1

2π

∫

R

e−iykgd(y)dy.

There exist several extensions of the Fourier pricing methods of Carr and Madan [2].

For example, Lee [15] shows that (3.5) can be adjusted in order to allow for p < 0 and de-

rives pricing formulas for other European derivatives, such as binary or asset-or-nothing

options. By adjusting the proof of Theorem 5.1 of [15] to our setup, one obtains the follow-

ing: Denote

at,x(k) = Ex

[

e−RtSt1{log St>k}
]

and bt,x(k) = Ex

[

e−Rt1{logSt>k}
]

.

Then

ct,x(k) = at,x(k)− ekbt,x(k),

and one has

Theorem 3.8. Let (t, x) ∈ R+ ×D and p, q ∈ R such that p+ 1, q ∈ Ut,x. Then

at,x(k) = Ra(p) +
e−pk

π

∫ ∞

0
Re
(

e−iykga(y)
)

dy

bt,x(k) = Rb(q) +
e−qk

π

∫ ∞

0
Re
(

e−iykgb(y)
)

dy

ct,x(k) = Rc(p) +
e−pk

π

∫ ∞

0
Re
(

e−iykgc(y)
)

dy,

where

ga(y) = −
ht,x(p + 1 + iy)

p+ iy
, gb(y) =

ht,x(q + iy)

q + iy
, gc(y) =

ht,x(p + 1 + iy)

p2 + p− y2 + iy(2p + 1)

and

Ra(p) =











ht,x(1) if p < 0
ht,x(1)

2 if p = 0

0 if p > 0

, Rb(q) =











ht,x(0) if q < 0
ht,x(0)

2 if q = 0

0 if q > 0

Rc(p) =































ht,x(1) − ekht,x(0) if p < −1

ht,x(1) −
ekht,x(0)

2 if p = −1

ht,x(1) if − 1 < p < 0
ht,x(1)

2 if p = 0

0 if p > 0

.
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3.3 Approximation of general payoffs

3.3.1 Idea

The prices of European options with payoff functions in the set

Lt,x :=
{

ϕ : R+ → R Borel-measurable such that Ex

[

e−Rt |ϕ(St)|
]

<∞
}

can be approximated by portfolios consisting of securities that can either be priced directly

or with Fourier methods. For most purposes it is sufficient to use a mix of ϕ(0) government

bonds, power payoffs and call options. For instance, let p1 < · · · < pf be a set of powers

and K1 < · · · < Kg finitely many strike prices. Then fix s∗ > 0 and determine weights

v1, . . . , vf and w1, . . . , wg by weighted L2-regression:

argmin
v,w

∫ s∗

0

(

ϕ(s)− ϕ(0)−

f
∑

i=1

vis
pi1{s>0} −

g
∑

i=1

wi(s −Ki)
+

)2

ρ(s)ds, (3.7)

where ρ is a heuristic density approximation of St. The positive function ρ is meant to put

additional weight on regions where St is more likely to lie (usually in the vicinity of Ex [St]
and if default is possible, around 0). If one does not have a good idea of the distribution of

St, one can also use non-weighted regression (ρ ≡ 1).

If the integral is discretized, the optimization problem (3.7) becomes a finite-dimensional

L2-regression. To improve the numerical stability, one can first apply Gram–Schmidt or-

thogonalization to the basis functions ϕ(0), spi1{s>0} and (s−Ki)
+.

3.3.2 Example: Truncated log payoff

We illustrate this method by approximating the price of a truncated log payoff ϕ(s) =
log(s) ∨ k, k ∈ R. Note that since St = 0 with positive probability, the truncation from

below is crucial.

Assume S0 = 1 and k = −1. We consider three ways of approximating ϕ with linear

combinations of 101 instruments:

1. A government bond and power payoffs of powers 0.05, 0.1, . . . , 5

2. A government bond and call options with strikes 0.03, 0.06, . . . , 3

3. A government bond, power payoffs of powers 0.1, 0.2, . . . , 5 and call options with

strikes 0.06, . . . , 3

We let s∗ = 3. As heuristic density for St we use ρ given by

ρ(x) =











exp(−10x) x < 0.5

exp(−10|x− 1|) 0.5 ≤ x ≤ 1.5

exp(−5) x > 1.5

. (3.8)

This choice of ρ assigns more weight to 0 and points around 1. But it is just an example of

what one could choose. Depending on the model and the value of t one may want to use

different functions ρ.
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Figure 1: Comparison of different approximation methods. Note that the scales are dif-

ferent!

Figure 1 shows the errors of the three approximation methods. It can be seen that for

the truncated log payoff methods 2 and 3 give a much better approximation than method

1. The errors of methods 2 and 3 are similar. But since prices of power payoffs are easier

to calculate than those of call options, method 3 is significantly faster.

Log payoffs are useful in the pricing and hedging of variance swaps on futures. Let

Fu, 0 ≤ u ≤ t, be the price of a futures contract on St and consider a variance swap with

time-t cash-flow

Σt = max

(

1

t

I
∑

i=1

(

log
Fti

Fti−1

)2

−K,C

)

,

where 0 = t0 < · · · < tI = t are the discrete monitoring points (usually daily), K is the

strike and C is a cap on the payoff (typically C = 2.5K). If Fu is modeled as a positive

continuous martingale of the form dFu = σuFudWu, then the probability of hitting the cap

C is negligible and one can approximate the sum with an integral:

Σt ≈
1

t

∫ t

0
σ2udu−K.

It has been noticed by Dupire [5] and Neuberger [17] that

∫ t

0
σ2udu = 2

(∫ t

0

1

Fu

dFu − logSt + logF0

)

,
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and therefore,

Ex

[

1

t

∫ t

0
σ2udu

]

=
2

t
Ex [log F0 − log St] .

In a diffusion model with the possibility of default the cap is crucial since it is hit in

case of default. If one neglects the probability that the cap is hit before default or that

log St < k := log(F0)− t(C+K)/2 if there is no default, one can approximate Σt as follows:

Σt ≈ 1{τ>t}

(

1

t

∫ t

0
σ2udu−K

)

+ 1{τ≤t}C

≈
2

t

(∫ t∧τ

0

1

Fu−
dFu − (log(St) ∨ k) + logF0

)

−K − 1{τ≤t}
2

t

∫ τ

0

1

Fu−
dFu.

In the special case where the default intensity is constant, the expectation of the last

integral is zero, and one can price according to

Ex [Σt] ≈
2

t
Ex [log F0 − log(St ∨ k)]−K.

4 Hedging

In this section we consider a subclass of affine models in which European contingent

claims can perfectly be hedged by dynamically trading in sufficiently many liquid se-

curities. Assume that condition (3.4) is fulfilled. So that the discounted stock price

exp(st+Λt)1{t<τ} is a martingale under all Px, x ∈ D. It is well-known that it is impossible

to replicate contingents claims with finitely many hedging instruments in a model where

the underlying has jumps of infinitely many different sizes. Therefore, we here require

the jump measures ν and µi, i ∈ I, to be of the following form:

ν =
M
∑

q=1

vqδyq for vq > 0 and different points y1, . . . , yM in ∈ D\{0} (4.1)

µi =

Mi
∑

q=1

viqδyiq for viq > 0 and different points yi1, . . . , yiMi
in ∈ D\{0}, (4.2)

where δyq , δyiq are Dirac measures and for M = 0 or Mi = 0, ν or µi are understood to be

zero, respectively. The integrability condition (vii) is then trivially satisfied.

In the following theorem we are going to show that the process X has a realization as

the unique strong solution of an SDE of the from

dXt = b̃(Xt)dt+ σ(Xt)dWt +

∫

R+

k(Xt−, z)N(dt, dz), (4.3)

where W is an n-dimensional Brownian motion and N an independent Poisson random

measure on R2
+ with Lebesgue measure as intensity measure. σ : D → Rn×n has to be a

measurable function satisfying

σσT (x) = a+
∑

i∈I
xiαi for all x ∈ D, (4.4)
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and the functions b̃ : D → Rn and k : D × R+ → D are of the following form:

b̃(x) = b+ βx−

∫

D\{0}
χJ (ξ)ν(dξ) −

m
∑

i=1

xi

∫

D\{0}
χJ∪{i}(ξ)µi(dξ),

k(x, z) =







yq if Vq−1 ≤ z < Vq
yiq if VM +

∑i−1
j=1 xjVjMj

+ xiVi(q−1) ≤ z < VM +
∑i−1

j=1 xjVjMj
+ xiViq

0 if z ≥ VM +
∑m

j=1 xjVjMj

,

where Vq =
∑q

p=1 vp and Viq =
∑q

p=1 vip. Theorem 4.1 is an extension of Theorem 8.1 in

Filipovic and Mayerhofer [8]. Its proof is given in the appendix.

Theorem 4.1. If ν and µi, i ∈ I, are of the form (4.1)–(4.2), then there exists a measurable

function σ : D → Rn×n satisfying (4.4) such that the SDE (4.3) has for all initial conditions

x ∈ D a unique strong solution. It is Feller process satisfying (H1)–(H2) corresponding to

the parameters (a, α, b, β,m, µ).

In general, one needs L+ 1 := n +M +
∑m

i=1Mi + 2 instruments to hedge all sources

of risk. We assume the first one to be a money market account yielding an instantaneous

return of rt. In addition, one needs one instrument for each of the n components of the

Brownian motion W , one for each of the possible jumps of X and one for the jump to

default (without default, L instruments are generally enough). Of course, if the hedging

instruments are redundant, not all European contingent claims can be replicated; precise

conditions for a given option to be replicable are given in (4.5) below. The hedging in-

struments should also be liquidly traded. For instance, in addition to the money market

account, one could use a mix of instruments of the following types:

• Stock shares

• Government bonds

• Corporate bonds

• Vanilla options.

All of these can be viewed as European options with different payoff functions. Let us

denote the set of hedging instruments different from the money market account by

Φ = {(t1, ϕ1), . . . , (tL, ϕL)},

where t1, . . . , tL are the maturities and ϕl ∈ Ltl,x the payoff functions.

Now consider a European option with maturity t ≤ min {t1, . . . , tL} and payoff function

ϕ ∈ Lt,x. At time 0, its price is

π(t, x) := Ex [exp(−Rt)ϕ(St)] ,

and for u ∈ [0, t],

Cu =

{

π(t− u,Xu) if u < τ

Ex

[

e−(Rt−Ru) | Xu

]

ϕ(0) if u ≥ τ
.

After the default time τ , Cu behaves like a government bond and can be hedged accord-

ingly. To design the hedge before time τ , we introduce the following sensitivity parame-

ters:
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• Classical Greeks: for q = 1, . . . , n:

Hq
t,x =

∂

∂xq
π(t, x)

• Sensitivities to the jumps corresponding to ν: for all q = 1, . . . ,M :

Jq
t,x = π(t, x+ yq)− π(t, x)

• Sensitivities to the jumps corresponding to µ: for all i ∈ I and q = 1, . . . ,Mi:

J iq
t,x = π(t, x+ yiq)− π(t, x)

• Sensitivity to default:

Dt,x = Ex [exp(−Rt)ϕ(0)] − Ex [exp(−Rt)ϕ(St)] .

Example 4.2. Consider a power payoff ϕ(s) = sp for some p > 0 such that sp ∈ Lt,x. Then

the sensitivity parameters are given by

Hq
t,x =

∂

∂xq
ht,x(p) = Bq(t, pε, p − 1, p)ht,x(p)

Jq
t,x = ht,x+yq(p)− ht,x(p)

J iq
t,x = ht,x+yiq (p)− ht,x(p)

Dt,x = −ht,x(p).

Example 4.3. For a European call option with log strike k and maturity t, the classical

Greeks are

Hq
t,x =

∂

∂xq
ct,x(k) =

e−pk

π

∫ ∞

0
Re
(

e−iyk∂xqgc(y)
)

dy,

where

∂xqgc(y) = ∂xq

ht,x(p+ 1 + iy)

p2 + p− y2 + iy(2p + 1)

=
Bq(t, (p + 1 + iy)ε, p + iy, p + 1 + iy)ht,x(p+ 1 + iy)

p2 + p− y2 + iy(2p + 1)

for some p > 0 such that 1 + p ∈ Ut,x. The other sensitivities are

Jq
t,x = ct,x+yq(k)− ct,x(k)

J iq
t,x = ct,x+yiq(k)− ct,x(k)

Dt,x = −ct,x(k).
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As shown in Examples 4.2 and 4.3, the sensitivity parameters of power payoffs and

vanilla options can be given in closed or almost closed form. The payoff ϕ ∈ Lt,x can be

approximated with a linear combination of government bonds, power payoffs and Euro-

pean calls of maturity t as in Subsection 3.3. The sensitivities of ϕ are then approximated

by the the same linear combination of the sensitivities of the government bond, power

payoffs and European calls. If X is a solution of the SDE (4.3) and π is a C1,2-function on

(0, t] ×D, one obtains from Itô’s formula that for u ≤ t ∧ τ ,

dCu = “drift” du+
n
∑

q,q′=1

Hq
t−u,Xu−

σqq′(Xu−)dW
q′

u +Dt−u,Xu−
d1{τ≤u}

+

∫

R+

(π(t− u,Xu− + k(Xu−, z)) − π(t− u,Xu−))dN(du, dz),

which can be written as

dCu = “drift” du+

n
∑

q,q′=1

Hq
t−u,Xu−

σqq′(Xu−)dW
q′

u +Dt−u,Xu−
d1{τ≤u}

+

M
∑

q=1

Jq
t−u,Xu−

dN q
u +

m
∑

i=1

Mi
∑

q=1

J iq
t−u,Xu−

dN iq
u ,

where N q and N iq are Poisson processes with stochastic intensity depending on X but

independent of the payoff function ϕ. For all l = 1, . . . , L, define πl and C l analogously to π
and C, and assume the functions πl are all C1,2 on (0, t] ×D. To hedge before default, one

has to invest in the hedging instruments such that the resulting portfolio has the same

sensitivities. That is, one tries to find ϑ(u, x) ∈ RL such that for all 0 ≤ u < t ∧ τ ,























































































































H1
t−u,Xu

=
∑L

l=1 ϑ
l(u,Xu)H

l,1
tl−u,Xu

...

Hn
t−u,Xu

=
∑L

l=1 ϑ
l(u,Xu)H

l,n
tl−u,Xu

J1
t−u,Xu

=
∑L

l=1 ϑ
l(u,Xu)J

l,1
tl−u,Xu

...

JM
t−u,Xu

=
∑L

l=1 ϑ
l(u,Xu)J

l,M
tl−u,Xu

J11
t−u,Xu

=
∑L

l=1 ϑ
l(u,Xu)J

l,11
tl−u,Xu

...

JmMm
t−u,x =

∑L
l=1 ϑ

l(u,Xu)J
l,mMm

tl−u,Xu

Dt−u,Xu =
∑L

l=1 ϑ
l(u,Xu)D

l
tl−u,Xu

,

(4.5)

where on the left side are the sensitivities of ϕ(St) and on the right, indexed by l, the sensi-

tivities of the hedging instruments ϕl(Stl). ϑ
l(u,Xu) is the number of hedging instrument
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l in the hedging portfolio before default while the amount Cu −
∑L

l=1 ϑ
l(u,Xu)C

l
u is held

in the money market account. Since e−RuCu and e−RuC l
u, l = 1, . . . , L are all martingales

under Px, this is a self-financing strategy replicating C until time t∧ τ . If default happens

before time t, one simply holds ϕ(0) zero coupon government bonds from then until time

t.
(4.5) is a system of L linear equations with L unknowns. It may not have a solution if

it is degenerate. But if the family Φ of hedging instruments is such that (4.5) has full rank

for all 0 ≤ u ≤ t ∧ τ , then any European contingent claim can be replicated by dynamic

trading.

5 Heston model with stochastic interest rates and possibil-

ity of default

As an example we discuss a Heston-type stochastic volatility model with stochastic inter-

est rates and possibility of default. It extends the model of Carr and Schoutens [3] and

can easily be extended further to include more risk factors. Let (Xt)t≥0 be a process with

values in D = R2
+ × R moving according to

dX1
t = κ1

(

θ1 −X1
t

)

dt+ η1

√

X1
t dW

1
t (5.1)

dX2
t = κ2

(

θ2 −X2
t

)

dt+ η2

√

X2
t dW

2
t (5.2)

dX3
t = −

1

2
X1

t dt+
√

X1
t dW

3
t (5.3)

for a 3-dimensional Brownian motion W with correlation matrix




1 0 ρ
0 1 0
ρ 0 1





and non-negative constants κ1, κ2, θ1, θ2, η1, η2. Since X1 and X2 are autonomous square-

root processes, the system (5.1)–(5.3) has for all initial conditions x ∈ R2
+ × R a unique

strong solution, and it follows as in the proof of Theorem 4.1 that it is a Feller process

satisfying (H1)–(H2) with parameters

• a = 0, α1 = 1
2





η21 0 ρη1
0 0 0
ρη1 0 1



, α2 = 1
2





0 0 0
0 η22 0
0 0 0





• b = (κ1θ1, κ2θ2, 0), β =





−κ1 0 0
0 −κ2 0

−1/2 0 0



.

Note that one cannot have correlation between W 1 and W 2 or W 2 and W 3 without de-

stroying the affine structure of X. So we introduce dependence between s, the volatility

process X1, r and λ by setting

st = X3
t , rt = d+ δ1X

1
t + δ2X

2
t , λt = c+ γ1X

1
t + γ2X

2
t ,

Rt =

∫ t

0
rudu, Λt =

∫ t

0
λudu
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for non-negative constants c, γ1, γ2, d, δ1, δ2. Then

St = exp (st +Rt + Λt) 1{t<τ}

satisfies the SDE

dSt = St−

(

[

c+ d+ (γ1 + δ1)X
1
t + (γ2 + δ2)X

2
t

]

dt+
√

X1
t dW

3
t − d1{τ≤t}

)

.

5.1 Pricing equations and moment explosions

It follows from Corollary 3.5 that the discounted price exp (st + Λt) 1{t<τ} is a martingale.

The discounted moments function is of the form

ht,x(z) = exp(A(t, (0, 0, z), z − 1, z) + 〈B(t, (0, 0, z), z − 1, z), x〉)

= exp
(

Ã(t, z) + B̃1(t, z)x1 + B̃2(t, z)x2 + zx3

)

,

where


























∂tÃ(t, z) = κ1θ1B̃1(t, z) + κ2θ2B̃2(t, z) + (c+ d)(z − 1)

∂tB̃1(t, z) =
1
2η

2
1B̃

2
1(t, z) + (ρη1z − κ1)B̃1(t, z) + (12z + γ1 + δ1)(z − 1)

∂tB̃2(t, z) =
1
2η

2
2B̃

2
2(t, z)− κ2B̃2(t, z) + (γ2 + δ2)(z − 1)

Ã(0, x) = B̃1(0, z) = B̃2(0, z) = 0.

(5.4)

In this special case, B̃1 and B̃2 are both solutions of scalar Riccati ODEs that can be

obtained explicitly. The explosion times of the discounted moments

t∗(p) := sup
{

t ≥ 0 : E[exp(−Rt)S
p
t 1{t<τ}] <∞

}

can also be determined in closed form:

t∗(p) =















2√
−u

(

arctan −u
v

+ π1{v<0}
)

if u < 0

1√
u
log v+

√
u

v−√
u

if u ≥ 0, v > 0

∞ otherwise

, (5.5)

where

u = ρη1p− κ1,

v =

(

1

2
p+ γ1 + δ1

)

(p− 1).

The derivation of (5.5) is analogous to the derivation of the same formula for the Heston

model which can be found, for example, in Andersen and Piterbarg [1]. Figure 2 shows

the decay of t∗(p) for p → ±∞. A sample plot of the implied volatility surfaces for the

two cases of positive probability of default and no default is given in Figure 3. For the

calculation of implied volatilities we used the yield on a government bond as the interest

rate in the Black–Scholes formula. As one would expect, credit risk contributes towards a

higher implied volatility, especially at longer maturities or at extreme strikes. This effect

can help explain why implied volatilities usually exceed realized volatilities.
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Figure 2: Moment explosion times (κ1 = 0.06, κ2 = 0.04, η1 = 0.2, η2 = 0.1, θ1 = 1, θ2 = 0.3,

ρ = −0.6, γ0 + δ0 = 0.02, γ1 + δ1 = 0.2, γ2 + δ2 = 0.2).
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Figure 3: Implied volatility surfaces with positive probability of default (upper surface)

vs. no default (lower surface). Parameters: κ1 = 0.06, κ2 = 0.04, η1 = 0.2, η2 = 0.1, θ1 = 1,

θ2 = 0.3, ρ = −0.6, c = 0.02 (no default: c = 0), γ1 = 0.01 (no default: γ1 = 0), γ2 = 0.01 (no

default: γ2 = 0), d = 0.01, δ1 = 0.1, δ2 = 0.1, X1
0 = 0.05, X2

0 = 0.03, X3
0 = 0.
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5.2 Hedging

Denote by Ã0(t, z), B̃0
1(t, z) and B̃0

2(t, z) the solutions of the Riccati equations (5.4) for

c = γ1 = γ2 = 0 (no default). Then the price of a zero coupon government bond with

maturity t is given by

P 0
t,x = exp(Ã0(t, 0) + B̃0

1(t, 0)x1 + B̃0
2(t, 0)x2).

Assume there exists a t > 0 such that

∂x1
cu,x(k)B̃

0
2(u, 0) − ∂x2

cu,x(k)B̃
0
1(u, 0) 6= (5.6)

[B̃0
1(u, 0)B̃2(u, 0) − B̃0

2(u, 0)B̃1(u, 0)][∂x3
cu,x(k) − cu,x(k)]

for all 0 ≤ u ≤ t and x ∈ D. Then every European contingent claim can be hedged if the

following four instruments can liquidly be traded: the stock, a zero coupon government

bond, a zero coupon corporate bond and a call option with log strike k, the latter three all

with maturity t.
Indeed, by Remarks 4.2 and 4.3, the hedging parameters are as follows:

• Stock: HS,1
u,x = HS,2

u,x = 0, HS,3
u,x = ex3 , DS

u,x = −ex3 .

• Government bond: HG,1
u,x = B̃0

1(u, 0)P
0
u,x, HG,2

u,x = B̃0
2(u, 0)P

0
u,x, HG,3

u,x = 0, DG
u,x = 0.

• Corporate bond: HB,1
u,x = B̃1(u, 0)Pu,x, HB,2

u,x = B̃2(u, 0)Pu,x, HB,3
u,x = 0, DB

u,x = −Pu,x.

• Call option: HC,q
u,x = ∂xqcu,x(k), q = 1, 2, 3, DC

u,x = −cu,x(k),

and (5.6) is equivalent to

ex3P 0
u,xPu,x{−∂x1

cu,x(k)B̃
0
2(u, 0) + ∂x2

cu,x(k)B̃
0
1(u, 0)

+[B̃0
1(u, 0)B̃2(u, 0) − B̃0

2(u, 0)B̃1(u, 0)][∂x3
cu,x(k)− cu,x(k)]} 6= 0.

So the matrix








0 B̃0
1(u, 0)P

0
u,x B̃1(u, 0)Pu,x ∂x1

cu,x(k)

0 B̃0
2(u, 0)P

0
u,x B̃2(u, 0)Pu,x ∂x2

cu,x(k)

ex3 0 0 ∂x3
cu,x(k)

−ex3 0 −Pu,x −cu,x(k)









.

has full rank, and the system (4.5) always has a solution.

A Proof of Theorem 4.1

It is shown in Theorem 8.1 of Filipovic and Mayerhofer [8] that there exists a measurable

function σ : D → Rn×n satisfying (4.4) such that the SDE

dXt = b̃(Xt)dt+ σ(Xt)dWt (A.1)
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has for each initial condition x ∈ D a unique strong solution X(0). Now set τ0 := 0 and

define iteratively

τq := inf

{

t > τq−1 :

∫ t

0

∫

R+

k(X
(q−1)
u− , z)N(du, dz) 6= 0

}

(A.2)

X
(q)
t := 1{0≤t<τq}X

(q−1)
t + 1{τq≤t<∞}Y

(q)
t ,

where Y (q) is the solution of the SDE (A.1) on [τq,∞) with initial condition

Y (q)
τq

= X(q−1)
τq

+ k(X
(q−1)
τq− , z)N(τq, dz).

Since X(q−1) is RCLL and the intensity measure of N is Lebesgue measure, it can be seen

from (A.2) that τq > τq−1 a.s. So the process

X
(∞)
t :=

∑

q≥1

1{τq−1≤t<τq}X
(q−1)
t

is the unique strong solution of (4.3) on [0, τ∞), where τ∞ := limq→∞ τq. It remains to

show that τ∞ = ∞ and X(∞) is a Feller process satisfying (H1)–(H2) with parameters

(a, α, b, β,m, µ). To do that we introduce the counting process

Zt :=
∑

q≥1

1{t≥τq}.

By Itô’s formula,

f(X
(∞)
t∧τq , Zt∧τq )−

∫ t∧τq

0
Ãf(X(∞)

u , Zu)du

is for all f ∈ C2
c (D × R+) and q ≥ 1, a martingale, where

Ãf(x, z) =

n
∑

k,l=1

(akl + 〈αI,kl, xI〉)
∂2f(x, z)

∂xk∂xl
+

n
∑

k=1

(

bk +

n
∑

l=1

βklxl

)

∂f(x, z)

∂xk

+

∫

D\{0}
(f(x+ ξ, z + 1)− f(x, z)− 〈∇J f(x, z), χJ (ξ)〉) ν(dξ)

+

m
∑

i=1

∫

D\{0}

(

f(x+ ξ, z + 1)− f(x, z)−
〈

∇J∪{i}f(x, z), χJ∪{i}(ξ)
〉)

xiµi(dξ).

But Ã is the infinitesimal generator of a regular affine process X̃ with values inD×R+. So

by Theorem 2.7 of Duffie et al. [6], C2
c (D×R+) is a core of Ã, and it follows from Theorem

4.4.1 of Ethier and Kurtz [7] that the martingale problem for Ã |C2
c (D×R+) is well-posed.

Moreover, the stopping times τq are exit times:

τq = inf {t ≥ 0 : Zt /∈ [0, q − 1/2)} .

Therefore, one obtains from Theorem 4.6.1 of Ethier and Kurtz [7] that the stopped mar-

tingale problem corresponding to Ã |C2
c (D×R+) and D × [0, q − 1/2) is well-posed for all

q. Hence, (X
(∞)
t∧τq , Zt∧τq )t≥0 has the same distribution as (X̃t∧τ̃q )t≥0, where τ̃q is the q-th
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jump time of X̃ . Since X̃ is RCLL and VM +
∑m

i=1 ViMi
X

(∞)
i,t is the jump intensity of Z,

we conclude that almost surely, the process X
(∞)
t∧τ∞ jumps at most finitely many times on

compact time intervals. In particular, τ∞ = ∞, and Theorem 4.1 follows from Theorem

2.7 of Duffie et al. [6] since the first n components of X̃ form a regular affine processes

with infinitesimal generator A acting on f ∈ C2
c (D) like

Af(x) =

n
∑

k,l=1

(akl + 〈αI,kl, xI〉)
∂2f(x)

∂xk∂xl
+ 〈b+ βx,∇f(x)〉

+

∫

D\{0}
(f(x+ ξ)− f(x)− 〈∇J f(x), χJ (ξ)〉) ν(dξ)

+

m
∑

i=1

∫

D\{0}

(

f(x+ ξ)− f(x)−
〈

∇J∪{i}f(x), χJ∪{i}(ξ)
〉)

xiµi(dξ).
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