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Abstract

The time dependent Maxwell system is supplemented with the constitutive

relations of linear bianisotropc media and is treated as a neutral integro-

di�erential equation in a Hilbert space. By using the theory of abstract

Volterra equations and strongly continuous semigroups we obtain general well-

posedness results for the corresponding mathematical problem.

1 Introduction and motivation

Our aim is to apply the general functional�analytic methods of evolution equations
to prove well�posedness for Maxwell equations. The constitutive relations are con-
sidered to be the more general ones describing linear materials in electromagnetics,
namely those of linear bianisotropic media exhibiting memory. The results in the
present work constitute a generalization of those found in [10, 17, 30] and are strongly
motivated by [20] (a shorter version of which is [19]) and [28]. See also [23].

An optically active medium is an example of a linear bianisotropic medium. Such
a medium displays both electric and magnetic polarization phenomena by either elec-
tric or magnetic excitation. In the electromagnetic community there is a vast liter-
ature in the last twenty �ve years on composite media; see the books [22, 25, 29] and
their references lists. In the last �fteen years there has been active mathematical re-
search on di�erent aspects of the theory of electromagnetics of composite media. In
particular, the rigorous mathematical analysis of propagation and scattering prob-
lems for time�harmonic electromagnetic �elds in chiral media is fairly well devel-
oped. On the other hand, the study of related problems in the time domain is more
recent and not equally extensive; in this direction we refer to [3, 4, 6, 10, 17, 19, 30].

As it is well known [18], every electromagnetic phenomenon is speci�ed by four
vector quantities: the electric �eld E, the magnetic �eld H , the electric �ux density
D and the magnetic �ux density B. These quantities are considered as time�
dependent vector �elds on a domain Ω ⊂ R3, so they are functions of the spatial
variable r ∈ Ω and the time variable t ∈ R. The inter�dependence among these
quantities is given by the celebrated Maxwell system

∂D

∂t
= curlH − J

∂B

∂t
= − curlE

(1.1)

where J is the density of the electric current. The �rst equation in (1.1) is the
Ampère Law and the second one is the Faraday Law. Subject to (1.1) are the two
Gauss laws

divD = ρ

divB = 0
(1.2)

ρ being the density of the electric charge. If we di�erentiate (1.2) with respect to t
then, by using (1.1), we derive the equation of continuity

∂ρ

∂t
+ divJ = 0 (1.3)
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Conversely, let us suppose that (1.3) holds. Then, by di�erentiating (1.1) with
respect to t, we �nd

∂

∂t
(divD − ρ) = 0 ,

∂

∂t
divB = 0 (1.4)

which, in turn, implies

divD − ρ = f(r) , divB = g(r) (1.5)

Now, without loss of generality, we can assume that f , g are zero �elds. This is done
by using a standard argument: add appropriate time independent �elds to D and
B (having divergence equal to f and g, respectively). The new �elds will obey the
Gauss equations and their time derivatives will coincide with those of the original
�elds. Note that the operators curl, div are applied to vectors as functions of the
spatial variable r ∈ Ω.

The equations (1.1) and (1.2) form a di�erential system from which we wish to
calculate the quadruplet (B,D,E,H) assuming that the vector J and the scalar
ρ are known. The equation (1.3) can be considered then as a consistency condition
between the known quantities. Thus, one has to calculate twelve scalar functions
from a system of eight scalar equations. This means that the system is under�
determined. To overcome this de�ciency, constitutive relations are introduced

D = D(E,H)

B = B(E,H)
(1.6)

As a matter of fact, we assume both D and B to be functions (of a known form) of
E and H . This is a rather rational hypothesis which is experimentally established.
Roughly speaking, equations (1.6) provide a mathematical model of the material,
that occupies the domain Ω where the phenomenon takes place. Now, the system of
equations (1.1), (1.2) and (1.6) is over�determined, since there are more equations
than the unknowns. But, as we will see later, the Gauss laws are in some sense
redundant if we accept the equations of continuity as axioms during the modeling
(this seems plausible since they refer to the known quantities). This fact has lead to
the usual practice of considering as �the Maxwell system� the equations (1.1) plus
the constitutive relations of the form (1.6), that describe various materials.

For conducting media, the currents are not entirely freely chosen, but they obey
a generalized Ohm law instead

J = J(E,H)

More precisely it is assumed that the currents are expressed as the sum of one
�constitutive� part and one �forced� part [9, p. 15], [27]

J = F (E,H) + J f (1.7)

Such a consideration does not change the essence in the treatment of the problem
but inserts some extra complications in notation and in the study of energy. To
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avoid these complications, we will not assume a �constitutive� part in the current,
that is it will be completely �forced�. Moreover, J will serve as the �inhomogeneous
data� subject to the mathematical problem.

Additionally, one has to impose initial and boundary conditions. The former will
be of the form

E(0, r) = E0(r)

H(0, r) = H0(r)
, for r ∈ Ω (1.8)

and the latter can have a variety of types; for simplicity we consider in this work
the �perfect conductor� boundary condition

E(t, r)× n(r) = 0 , for r ∈ ∂Ω , t ∈ I (1.9)

where n(r) denotes the outward normal applied to r ∈ ∂Ω, which � throughout this
paper � will be assumed to be Lipschitzian. Under this assumption, the outward
normal is de�ned almost everywhere in ∂Ω (with respect to some surface measure).

Until now we have not referred to the time interval I ⊂ R, i.e., the connected set
where the variable t may take values. Actually this is a part of the problem; to �nd
the maximum interval of de�nition for all the above mentioned �elds. Of course,
the ideal case would be for the �elds to be de�ned in the whole line, that is I = R.
Then we would be aware of the whole history of the phenomenon. But this is not
the case, in general, here: the materials which are involved in the problem via the
constitutive relations are usually only causal ones. This means that the beginning of
the observation of the �elds E, H at the time instant t = 0 (the �present�) cannot
reveal the past of the �elds D, B. More precisely, the functional equation (1.6)
determines the values of D, B at the time instant t > 0, only when the values of E,
H are known in the interval [0, t]. Furthermore, it does not make sense to consider
the values for t < 0 and we assume that the �elds are identical to zero there. Thus,
in the rest of this work we will assume that I = R+ := [0,∞).

To summarize, for a rigorous mathematical treatment of a problem in Electro-
magnetics, one has to:

1. introduce a compact notation,

2. �nd (by experiment), prove (by reasoning), or just guess the constitutive re-
lations,

3. formulate the problem as an abstract problem, and

4. investigate the solvability.

This is the route that we will follow.

2 Formulation of the problem

In this section we will formulate the Maxwell system as an abstract evolution prob-
lem. This is necessary in order to apply the abstract methods of functional analysis.
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2.1 The six�vector notation

The vector nature of the Maxwell system forces us to work on product spaces and
follow a matrix�oriented treatment. This is exactly what one does by using the
so called six�vector notation [24], see for example [11]. As we have mentioned in
the previous section, we mainly deal with vector �elds in the three dimensional
space which are functions of the time variable t ∈ R+ and the spatial variable
r = (x, y, z) ∈ Ω. The image of this �eld is then realized as a time�dependent vector
applied at the point r. We shall denote such a generic �eld by F = (Fx, Fy, Fz)

T ,
where the superscript �T � denotes transposition; we consider F as a vector-valued
function t 7→ F (t, ·). The operator curl is de�ned formally as the (antisymmetric)
matrix operator

curl :=

 0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0


We furthermore de�ne

• the EM �ux density d := (D,B)T ,

• the EM �eld e := (E,H)T ,

• the current j := (−J ,0)T ,

• the initial state e0 := (E0,H0)T .

A linear operator acting on e is written as a 2×2 (block) matrix with linear operators
as its entries. Such an example is the Maxwell operator, which we employ in this
work

M :=

[
0 curl

− curl 0

]
The constitutive relations are now modeled in terms of an operator V and can be
understood as a functional equation

d = Ve

2.2 The general abstract problem

After that, the Maxwell system is written as the initial�value problem for an abstract
evolution equation {

(Ve)′(t) = Me(t) + j(t) , for t > 0

e(0) = e0

(2.1)

The prime stands for the time derivative. Actually, by using standard terminology
(e.g. see [7] or [13]), in (2.1) we have an inhomogeneous neutral functional di�erential
equation, where e is the unknown. Note that it is the derivative of the functional
argument, Ve, that appears in (2.1). This argument is very crucial and a�ects
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the problem in various senses. For example, a nonlinear operator V gives rise to
a nonlinear problem, while a very general V may result to an under�determined
problem: the initial value e0 may not be su�cient for the uniqueness of the solution
and one may need to know additional past values of the �eld e (it is like to have
�more equations than the unknowns�).

Thus it becomes clear that a careful study of the operator V is a very important
part of the treatment of the abstract problem (2.1). Especially in our case, the
properties of this operator re�ect the properties of the medium in question, hence
this study presents both physical and mathematical interest. This will be done in
detail in the sequel. Another crucial point in our investigation is to decide where
does the unknown e �live�, that is to specify the state space of the problem (2.1).
This choice will be again directed by physical properties.

2.3 Energy considerations

Following [21, Ch. 1.3] we de�ne the Poynting vector as S := E ×H . The vector
S models the power �ux density passing across the boundary ∂Ω. By using the
identity

divS = H · curlE −E · curlH

and the Maxwell system (1.1), we obtain the �Poynting Theorem�

divS + e · ∂d
∂t

= e · j (2.2)

(2.2) is essentially an equation of continuity and from this the conservation of EM
energy is deduced. Actually, the part e · ∂d

∂t
models the time rate change of the

stored EM energy, while the part e · j represents the power supplied by the current
j. Indeed, the integrated quantity of the former inner product

E(t) :=

∫ t

0

∫
Ω

e(τ ; r) · ∂d
∂t

(τ ; r) dr dτ (2.3)

is what usually measures the variation in EM energy for t > 0.

De�nition 2.1. A material is called lossless if E(t) = 0 for all �elds e.

By using (2.2) and the Gauss Divergence Theorem, we �nd that

E(t) = −
∫ t

0

∫
∂Ω

S(τ ; r) · n(r) dS(r) dτ +

∫ t

0

∫
Ω

e(τ ; r) · j(τ ; r) dr dτ (2.4)

Equations (2.3) and (2.4) suggest that we have to consider �elds

e(t; ·) , d(t; ·) , j(t; ·) ∈ L2(Ω; R3)× L2(Ω; R3) (2.5)

In (2.4) we see that the energy consists in two parts: one with negative sign,
expressing the energy �ux through the boundary ∂Ω, and one with positive sign,
expressing the energy supplied by the external force. The former expresses the part
of the energy produced inside the medium that occupies Ω and the latter the part
of the energy that is supplied by the external environment. In a lossless material
these two contributions are equal.
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Remark 1. Equation (2.4) is valid for boundary conditions more general than (1.9).
Actually, (1.9) implies that the energy �ux through the boundary vanishes and, in
the absence of currents, the medium is lossless.

2.4 State space

In view of (2.5) we de�ne the state space as

X := L2(Ω; R3)× L2(Ω; R3)

This is real a Hilbert space with the natural inner product〈(
E1

H1

)
,

(
E2

H2

)〉
X

:=

∫
Ω

E1 ·E2 dr +

∫
Ω

H1 ·H2 dr

Consequently, all the relevant �elds are considered as X-valued functions of the real
variable t. More precisely, as we have already stated and will clarify later, the
�elds are actually functions R → X vanishing for t < 0. For the purposes of our
analysis, and as we can see by a double application of Cauchy�Schwarz inequality,
it is su�cient to consider e, d and j as elements of the space L1

loc
(R+; X).

At this point we recall the de�nitions of some, appropriate for electromagnetics,
Sobolev spaces, [5, 8]:

H(curl ; Ω) :=
{
F ∈ L2(Ω; R3) : curlF ∈ L2(Ω; R3)

}
H0(curl ; Ω) := {F ∈ H(curl ; Ω) : n× F = 0 on ∂Ω }
H(div ; Ω) :=

{
F ∈ L2(Ω; R3) : divF ∈ L2(Ω)

}
H(div 0; Ω) := {F ∈ H(div ; Ω) : divF = 0 }

Now we assume that

e : R+ → H0(curl ; Ω)×H(curl ; Ω)

and
J : R+ → H(div ; Ω)

Then automatically (1.1) and (1.3) give

d : R+ → H(div ; Ω)×H(div ; Ω)

and
ρ : R+ → L2(Ω)

respectively.
As a further requirement of the modeling, one should take into account equations

(1.2). As far as they are concerned, equations (1.5) show that, given the continuity
(and only the weak di�erentiability) of �elds for t > 0 and (1.3), (1.2) hold at
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each time instant provided that they are satis�ed at one time instant only, and
particularly at t = 0. This reads as follows

divd(0) =

(
ρ(0)

0

)
Observe that the div operator acts formally as a scalar to a six-vector

div

(
D

B

)
=

(
divD

divB

)
That is to say, one has to be able to calculate the value (Ve)(0) in advance. So, in
our setting, it should be

(Ve)(0) = V∞(e0) (2.6)

The operator V∞ is de�ned in the space X and models the optical response of the
medium, i.e., the instantaneous reaction to an excitation.
De�ne the closed hyperplane in L2(Ω; R3)

H(div ρ(0); Ω) := {D ∈ H(div ; Ω) : divD = ρ(0) } = R+H(div 0; Ω)

where R ∈ L2(Ω; R3) is a �eld satisfying divR = ρ(0). De�ne also the subset of X

X0 := V −1
∞ [H(div ρ(0); Ω)×H(div 0; Ω)]

In view of the above analysis, we have the following remarkable consequence: assume
that the modeling of the EM propagation problem in a cavity takes as its starting
point

1. the Maxwell system (1.1), which refers mainly to the unknown quantities, and

2. the equation of continuity (1.3), which refers exclusively to the known quan-
tities.

Then the Gauss laws (1.2) hold true as far as the initial datum is chosen from X0.

2.5 The Maxwell operator

For the realization of the Maxwell operator in the Hilbert space X, we understand
the curl operator in its distributional version; it applies on six-vectors by following
the usual matrix rules. So

M

(
E

H

)
=

(
curlH

− curlE

)
The domain of de�nition is taken to be

D(M) := H0(curl ; Ω)×H(curl ; Ω)

Observe that the boundary condition (1.9) is absorbed in the �rst component of
the above cartesian product. M de�nes then a skew-adjoint operator in the Hilbert
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space X [8, p. 266, Th. 1]. Consequently, Stone's Theorem [12, Theorem 3.24] im-
plies that M is the generator of a strongly continuous group of isometries (U(t))t∈R.
Equivalently, this means that both M and −M are generators of strongly contin-
uous semigroups. More precisely, M generates (U(t))t>0 whereas −M generates
(U(t)∗)t>0. Observe, incidentally, that U(t)∗ = U(t)−1.

It is crucial to observe that −M appears actually in (2.1) after the change of
variable t 7→ −t, which corresponds to an inversion of time. Stated di�erently, this
gives an opportunity to calculate the past of e also. This is possible, for example, if
the operator V is autonomous, i.e., independent of time. A causal model, however,
as the one we propose, requires �elds that vanish for t < 0 and then (2.1) is trivially
satis�ed. Thereby, we focus on, and we only use the semigroup (U(t))t>0.

3 Assumptions on the medium and the constitutive

operator

In this section we state the axioms which govern the evolution of the electromagnetic
�eld. Since we have taken the Maxwell equations as granted, these axioms con-
cern the properties of the material inside the domain Ω. We follow essentially [11,
�2.2] and we give both physical and mathematical interpretations. The approach is
system�theoretic in the sense that we consider the EM �eld e as the the cause and
the EM �ux density d as the e�ect. Our goal is to specify the form of the operator
V which, as we have shown above, can be realized as an operator in the Fréchet
space L1

loc
(R+; X). A detailed mathematical study of the constitutive operator can

be found in [16].

Hypothesis 1 (Determinism). For every cause there exists exactly one e�ect.

This postulate is to ensure that V exists and is not the zero operator.

Hypothesis 2 (Linearity). The e�ect is produced linearly by its cause.

That is to say V is a linear operator. Actually, it can be realized in the matrix
form

V :=

[
ε ξ
ζ µ

]
(3.1)

where the entries ε, µ, ξ, ζ are all linear operators. We now can classify the media
in accordance with the generally accepted terminology. More precisely, we consider
the following cases.

• If ξ = ζ = 0 and

� both ε, µ are multiples of the identity operator, the medium is called
isotropic.

� at least one of ε, µ is not a multiple of the identity operator, the medium
is called anisotropic.
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• If all the ε, µ, ξ, ζ are multiples of the identity operator, the medium is called
biisotropic.

• In any other case, the medium is called bianisotropic.

Hypothesis 3 (Locality in space). For every r ∈ Ω, the value d(·, r) = (Ve)(·)(r)
is calculated by using only the value e(·, r).

The most important postulate for our theory is given now.

Hypothesis 4 (Causality1). The e�ect cannot precede its cause.

The following one is a technical assumption which simpli�es considerably the
mathematical treatment.

Hypothesis 5 (Non-aging medium). The properties of the medium remain invari-
ant in time.

This time�translation invariance has many equivalent formulations. E.g. one
can say that the time instant at which the observation starts does not play any
signi�cant role. Thereby, the �present� can be chosen arbitrarily. We then choose as
the beginning of observation the time instant t = 0. Consequently, the cause e(t) is
de�ned for t > 0 with e(0) = e0 and vanishes for t < 0.

As a consequence of these hypotheses, the constitutive operator is continuous
and should have the following convolutive form

d(t, r) = (Ve)(t)(r) = V∞(r)e(t, r) +

∫ t

0

Vd(t− τ, r)e(τ, r) dτ (3.2)

where

V∞ :=

[
ε∞ ξ∞
ζ∞ µ∞

]
, Vd(t) :=

[
εd(t) ξd(t)
ζd(t) µd(t)

]
This fact is intuitively correct, it has been already proposed in [19, 20], and it is
proved in detail in [16]. Due to linearity, the optical response operator V∞ becomes
a block matrix not depending on time. Let us note that, in an abstract distributional
setting, a necessary and su�cient condition has been established for a linear operator
to be a convolution operator ( [32, Theorem 5.8-2]).

The entries of the above matrices are 3×3 matrices whose elements are measur-
able, essentially bounded functions on Ω. A suggestive notation to express this fact
is to write V∞ ∈ M2[M3(L∞(Ω))], Vd : R+ → M2[M3(L∞(Ω))]), where by Mn(A)
we denote the linear space of n× n matrices with entries from the set A.

Note that each V∞, Vd(t) de�nes a bounded multiplication operator in X; the
formal de�nition follows.

1This notion of �primitive� causality is compatible with a notion of causality according to which

the e�ect depends on its cause and the cause produces its e�ect. Nevertheless, the philosophical

accounts of causation vary over a heterogeneous range of positions.
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De�nition 3.1. Let m : Ω → M2(M3(R)). The operator Tm with domain of
de�nition

D(Tm) := {u ∈ X : mu ∈ X }

and formula
Tmu := mu

is called the multiplication operator corresponding to m.

It turns out that

(i) Tm is characterized by m, i.e., Tm1 = Tm2 if and only if m1 = m2, thereby we
often identify the operator Tm with the function m.

(ii) Tm is always closed and densely de�ned.

(iii) Tm is bounded if and only if the entries of m are L∞(Ω) functions.

We have already stated that V∞ models the optical response of the medium whereas
Vd, called the susceptibility kernel, models the dispersion phenomena.

Concerning the �time regularity� of Vd, we make the following

Assumption 1. Vd ∈ L∞loc(R;M2[M3(L∞(Ω))])) and vanishes for t < 0.

Note that with Assumption 1, the convolution in (3.2) is well de�ned if we assume
continuous �elds.

4 The abstract problem

The analysis in the above sections leads us to the following abstract evolution initial
value problem: �nd e : R+ → X which satis�es

(
V∞e(t) +

∫ t
0
Vd(t− τ)e(τ) dτ

)′
= Me(t) + j(t) , t > 0

e(0) = e0

(4.1)

Technically speaking, (4.1) is a neutral integro-di�erntial equation of convolution
type. We consider �rst the homogeneous version of (4.1)

(
V∞e(t) +

∫ t
0
Vd(t− τ)e(τ) dτ

)′
= Me(t) , t > 0

e(0) = e0

(4.2)

De�nition 4.1. A function e : R+ → X is called a classical solution of (4.2) if

C1 e ∈ C1(R+; X).

C2 e(t) ∈ D(M) for t ∈ R+.

C3 e satis�es (4.2) pointwise in R+.
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Following the established theory for the Abstract Cauchy Problem [12, pp. 146-
147], we introduce a weaker notion of solution.

De�nition 4.2. A function e : R+ → X is called a mild solution of (4.2) if

M1 e ∈ C(R+; X).

M2
∫ t

0
e(τ) dτ ∈ D(M) for t ∈ R+.

M3 e satis�es pointwise in R+ the equation

V∞e(t) = V∞e0 + M

∫ t

0

e(τ) dτ −
∫ t

0

Vd(t− τ)e(τ) dτ (4.3)

Note that (4.3) is, in some sense, the integrated version of (4.2). Moreover, a
classical solution is de�ned only for e0 ∈ D(M) whereas a mild one can be de�ned
for every e0 ∈ X. Clearly, a classical solution is also a mild one. For the inverse
implication, we have the following result.

Proposition 1. Let e be a mild solution of (4.2) satisfying (C1). Then it is a
classical solution.

Proof. Put for convenience

g(t) = (Vd ∗ e)(t) =

∫ t

0

Vd(t− τ)e(τ) dτ

Since one of the �components� of the above convolution is continuously di�erentiable,
the same holds for the convolution itself. Equation (4.3) gives

V∞

(
e(t+ h)− e(t)

h

)
+
g(t+ h)− g(t)

h
= M

(
1

h

∫ t+h

t

e(τ) dτ

)
(4.4)

The left hand side has a limit as h→ 0 (as h→ 0+ if t = 0). Moreover,

lim
h→0

1

h

∫ t+h

t

e(τ) dτ = e(t)

The closedness of M and (4.4) imply (C2) and (C3) for e.

The above proposition suggests the following approach: to prove �rst mild well-
posedness for (4.2) and then search for which initial data the solution becomes
continuously di�erentiable and thus a classical one.
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5 On the solution method

We calculate the mild solutions of (4.2) by transforming (4.3) to a Volterra integral
equation. The relevant theory and the general machinery are given in the appendices.
The idea is to apply a variation-of-constants procedure in the equation (4.3). The
fundamental prerequisite for that is given in the following

Assumption 2. V −1
∞ exists as a bounded operator in X and Q := V −1

∞ M is the
generator of a strongly continuous semigroup (T (t))t>0.

Observe that Assumption 2 consists in two conditions:

S1 V∞ is boundedly invertible.

S2 Q remains a generator.

(S2) ensures that Q is closed and densely de�ned with D(Q) = D(M). Equipped
with the graph norm

‖u ‖q :=

√
‖u ‖2 + ‖Qu ‖2

D(Q) becomes a Hilbert space, denoted by [D(Q)]. Now (4.3) is written as

e(t) = e0 +Q
∫ t

0

e(τ) dτ +

∫ t

0

K(t− τ)e(τ) dτ (5.1)

where
K(t) := −V −1

∞ Vd(t)

Let now e be a solution of (5.1), i.e., a mild solution of (4.2). Fix a t > 0 and de�ne
the function

u(s) := T (t− s)
∫ s

0

e(τ) dτ , 0 6 s 6 t (5.2)

The function u is continuously di�erentiable and

u′(s) = −T (t− s)Q
∫ s

0

e(τ) dτ + T (t− s)e(s) (5.3)

By using (5.1), equation (5.3) is written as

u′(s) = T (t− s)e0 + T (t− s)
∫ s

0

K(s− τ)e(τ) dτ (5.4)

We integrate now (5.4) in [0, t] to obtain (the Fubini Theorem is used)∫ t

0

e(τ) dτ =

∫ t

0

T (τ)e0 dτ +

∫ t

0

(T ∗K)(t− τ)e(τ) dτ (5.5)

The algebra of bounded operators in X is denoted by B(X). When endowed with
the strong topology, we write Bs(X).
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Assumption 3. T ∗K ∈ W 1
loc

(R+;Bs(X)).

With this at hand, we can di�erentiate (5.5) and thus obtain the Volterra equa-
tion of convolution type

e(t) = (F ∗ e)(t) + T (t)e0 , t > 0, (5.6)

where

F (t) :=
d

dt
(T ∗K)(t) =

d

dt

∫ t

0

T (t− τ)K(τ) dτ

6 Mild solvability

The solvability of (5.6) is established by the standard theory presented in Appendix
B. Namely, for a �xed but arbitrarily large b > 0, we consider the Volterra operator

W : C([0, b]; X)→ C([0, b]; X)

given by
(Wg)(t) = (F ∗ g)(t)

The Banach space C([0, b]; X) is equipped with the supremum norm, and (5.6) can
be realized as an equation in C([0, b]; X)

e := We+ T (·)e0 (6.1)

which admits the unique solution

e = (I −W )−1(T (·)e0) (6.2)

Now, for n = 0, 1, ... and t > 0, de�ne the operators Sn(t) ∈ B(X) by the recursive
scheme

S0(t) := T (t) , Sn(t) := (F ∗ Sn)(t) =

∫ t

0

F (t− s)Sn(s) ds (6.3)

Then estimates (B.1) (Appendix B) give the following

Proposition 2. The (Volterra) series

S(t) :=
∞∑
n=0

Sn(t)

converges in norm and uniformly with respect to t on bounded intervals. Moreover,
letting

ωt := sup
06s6t

‖F (s) ‖ ,

the following estimate holds
‖S(t) ‖ 6 eωtt (6.4)

and we have for every x ∈ X,

S(·)x = (I −W )−1(T (·)x) (6.5)

Thereby, we obtain the main result.

Proposition 3. The problem (4.2) is mildly uniquely solvable for each e0 ∈ X and
the solution is given by e(t) = S(t)e0. More precisely, (4.2) is mildly well-posed.
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7 Classical solvability

We have to check for which initial data e0 ∈ X the mild solution e(t) = S(t)e0

is continuously di�erentiable. By employing induction over n one can prove the
following:

Lemma 7.1. Let e0 ∈ D(Q). Then, for each n = 0, 1, ..., the function Sn(·)e0 is
continuously di�erentiable. More precisely,{

(S0(t)e0)′ = QT (t)e0 = T (t)Qe0

(Sn+1(t)e0)′ = F (t)Sn(0)e0 + (F ∗ (Sn(·)e0)′)(t)
(7.1)

At this point, we make a further assumption of regularity. Actually, we slightly
strengthen Assumption 3.

Assumption 4. T ∗ K(·)e0 ∈ C1(R+; X), equivalently F (·)e0 ∈ C(R+; X), for
e0 ∈ D(A).

It is then easily seen that the sequence de�ned in (7.1) is summable and the
corresponding series converges to the unique solution of the Volterra equation

e′(t) = (F ∗ e′)(t) + (F (t) +QT (t))e0 (7.2)

Observe that e′ denotes just the unknown in (7.2). But this notation is justi�ed by
the fact that (7.2) is obtained by the formal di�erentiation of (5.6). This analysis
has as a result that, whenever e0 ∈ D(Q), the series

∑
Sn(t)e0 is continuously

di�erentiable and thus we have

Proposition 4. Let Assumption 4 hold and e0 ∈ D(A). Then e(t) := S(t)e0 is the
unique classical solution of (4.2).

8 The inhomogeneous problem

We turn now our attention to the general problem (4.1) and we are going to apply
again a variation-of-constants procedure in the spirit of Section 6, see also [2] and
[33]. We �rst de�ne the analogous notions of solution for the inhomogeneous case.

De�nition 8.1. Let j ∈ C(R+; X). A function e : R+ → X is called a classical
solution of (4.1) if

iC1 e ∈ C1(R+; X).

iC2 e(t) ∈ D(M) for t ∈ R+.

iC3 e satis�es (4.2) pointwise in R+.

De�nition 8.2. Let j ∈ L1
loc

(R+; X). A function e : R+ → X is called a mild
solution of (4.1) if
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iM1 e ∈ C(R+; X).

iM2
∫ t

0
e(τ) dτ ∈ D(M) for t ∈ R+.

iM3 e satis�es pointwise in R+ the equation

V∞e(t) = V∞e0 + M

∫ t

0

e(τ) dτ −
∫ t

0

Vd(t− τ)e(τ) dτ +

∫ t

0

j(τ) dτ

We also have a result analogous to Proposition 1.

Proposition 5. Let j ∈ C(R+; X) and e be a mild solution of (4.1) satisfying (iC1).
Then it is a classical solution.

With our notation, if e is a mild solution of (4.1), then it satis�es

e(t) = e0 +Q
∫ t

0

e(τ) dτ +

∫ t

0

K(t− τ)e(τ) dτ +

∫ t

0

f(τ) dτ (8.1)

where f := V −1
∞ j. Fix now a t > 0. De�ne again the function

u(s) := T (t− s)
∫ s

0

e(τ) dτ , 0 6 s 6 t

and repeat the calculations made in section 6; one sees immediately that e satis�es
the Volterra equation

e = F ∗ e+ (T (·)e0 + T ∗ f) (8.2)

By Lemma B.1 (Appendix B) we obtain a representation formula for the solution
of (4.1).

Corollary 8.1 (Variation-of-constants formula). Let j ∈ L1
loc

(R+; X). The unique
mild solution of (4.1) is given by

e(t) = S(t)e0 +

∫ t

0

S(t− τ)f(τ) dτ (8.3)

More precisely, the problem (4.1) is mildly well posed.

We also give a criterion for classical solvability.

Corollary 8.2. Let e0 ∈ D(Q) and j ∈ C(R+; X). Then (8.3) is the classical
solution of (4.1) if (and only if) S ∗ f ∈ C1(R+; X).

We see that we face again a problem of di�erentiating the convolution.

9 Checking Assumption 2

We have already stated that the validity of Assumption 2 boils down to the inves-
tigation of two sub-problems. We check each one separately. The results presented
in this section are treated in detail in Sections 3 and 4 of [15].
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9.1 (S1) Bounded invertibility for V∞

We have to check whether V −1
∞ de�nes a bounded multiplication operator on X. First

of all, note that the inverse operator is de�ned, again as a multiplication operator,
when V∞(r)−1 is de�ned for almost all r ∈ Ω. Moreover, we have the following
pointwise characterization.

Proposition 6. The following are equivalent:
a) V∞ is boundedly invertible.
b) V∞(r) is almost uniforlmy bounded below, i.e., there exists a positive constant c
such that

|V∞(r)y | > c | y |

for almost all r ∈ Ω and y ∈ R3 × R3.

9.2 (S2) Generation property for Q
The general philosophy of our treatment, at least in its mathematical part, is to
consider the dispersive material (Vd 6= 0) as a perturbation of the non-dispersive
material (Vd = 0). The latter is described by the constitutive relation

d(t, r) = V∞(r)e(t, r) (9.1)

The following ensures that the relevant unperturbed problem is well posed.

Assumption 5. The bilinear form

〈u,υ 〉V := 〈V∞u,υ 〉X

de�nes an inner product in X.

After this, and as a direct corollary of Stone's theorem, we have the following

Proposition 7. Let Assumption 5 hold and assume that (X, 〈 ·, · 〉V ) is a Hilbert
space. Then Q generates a C0-group of isometries with respect to the new norm
‖ · ‖V .

Following our notation, let T (t) be the aforementioned group. According to (2.3),
the variation of EM energy is given by

E(t) =

∫ t

0

〈V∞e′(t), e(t) 〉X dt (9.2)

Then by performing a typical calculation in (9.2), we con�rm that the considered
material is indeed lossless:

E(t) =

∫ t

0

〈 e′(t), e(t) 〉V dτ =
1

2

(
‖T (t)e0 ‖2

V − ‖ e0 ‖2
V

)
= 0
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9.3 The main result

Taking into account the above, we can formulate su�cient conditions which cover
both (S1) and (S2) and thus imply Assumption 2. We would like to underline the
pointwise character of the result, with reference to the optical response matrix V∞.

Proposition 8. Let V∞ be
a) almost uniforlmy bounded below,
b) almost everywhere a symmetric matrix, i.e.,

V∞(r) = V∞(r)T

for almost all r ∈ Ω, and
c) almost everywhere a positive de�nite matrix, i.e.,

V∞(r)y · y > 0

for almost all r ∈ Ω and all non-zero y ∈ R3 × R3.
Then Assumption 2 holds.

Remark 2. Let us note that the assumptions (a) and (b) of Proposition 8 are
equivalent to the fact that V∞ is almost uniformly coercive, i.e., there is a positive
constant a such that

V∞(r)y · y > a | y |2 (9.3)

for almost all r ∈ Ω and all y ∈ R3 × R3. This compels 〈 ·, · 〉∞ to de�ne an inner
product equivalent to 〈 ·, · 〉X and turns X into a Hilbert space.

10 Checking Assumption 3

This is to �nd conditions such that the convolution T ∗K is a weakly di�erentiable
function in the strong topology of B(X). These conditions are essentially smoothness
conditions for X-valued functions K(·)x, x ∈ X. Such a (minimal) condition is:

Assumption 6. K(·)x is continuous, that is K ∈ C(R+;Bs(X)).

We should note here that any particular condition of smoothness on K implies
a �corresponding� condition of smoothness on Vd.

Remark 3. The assumption of smoothness of the susceptibility kernel is not physi-
cally controversial.

Travis [31] has given a necessary and su�cient condition on T for the continuous
di�erentiability of the convolution T ∗f for every f ∈ C(R+; X). The Lemma 3.5 of
that reference provides us with the following negative result: Assumption 3 cannot
be expected to hold for an arbitrary choice of K. Thereby, we have to impose further
restrictions on K. We consider two such cases in the sequel.
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10.1 Time Regularity: K ∈ C1(R+;Bs(X))

Then (4.2) becomes an initial value problem for a usual integro-di�erential equation
of Volterra type{

e′(t) = [Q+K(0)]e(t) +
∫ t

0
K ′(t− τ)e(τ) dτ , t > 0

e(0) = e0

(10.1)

whereK ′ denotes the strong derivative ofK. The problem (10.1) has been considered
by Marti [26] already in the 1960s. Note that, since K(0) ∈ B(X), the operator

Mp := M +K(0),

with domain of de�nition D(Mp) = D(M) is the generator of a C0-semigroup
(Tp(t))t>0 which satis�es again a Volterra integral equation [12, Corollary III.1.7]

Tp(t)x = T (t)x+

∫ t

0

T (t− τ)K(0)Tp(τ)x dτ (10.2)

for every t > 0 and x ∈ X. Equation (5.6) now reads

e = W1e+W2e+ T (·)e0 (10.3)

where
W1g := T (·)K(0) ∗ g , W2g := (T ∗K ′) ∗ g

We now rewrite (10.3) as

e = (I −W1)−1W2e+ (I −W1)−1(T (·)e0) (10.4)

Using Lemma B.1 (Appendix B) and (10.2), (10.4) becomes again a Volterra equa-
tion

e = (Tp ∗K ′)e+ Tp(·)e0, (10.5)

and the solution of (10.3), which is equivalent to (10.1), agrees with Marti's solution.

Remark 4. Time regularity involves only the susceptibility kernel Vd.

10.2 Space Regularity: K(t)[X] ⊂ D(Q) for every t > 0

In this case, and due to the fact that T (·)x ∈ C1(R+; X) for every x ∈ D(Q) with
(T (t)x)′ = QT (t)x = T (t)Qx, we have

F (t) = K(t) + (QT (·) ∗K)(t) = K(t) + (T ∗ QK(·))(t) (10.6)

Let K(t) := QK(t). It is easy to see that K ∈ C(R+;Bs(X)). The integral equation
(5.6) now reads

e = K ∗ e+ (T ∗ K) ∗ e+ T (·)e (10.7)
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Another way to attack (4.2) in this case is to make the change of variable

u(t) := e(t)− (K ∗ e)(t) (10.8)

in view of which the problem is written as{
u′(t) = Qu(t) + (K ∗ e)(t) , t > 0

e(0) = e0

(10.9)

Equation (10.9) is an inhomogeneous abstract Cauchy problem for the operator Q,
having as inhomogeneous data K ∗ e. The solution of (10.9) is given by

u(t) = T (t)e0 + ((T ∗ K) ∗ e)(t) (10.10)

By substituting (10.8) in the left hand side of (10.10), we obtain again (10.7).

Remark 5. Space regularity involves both the optical response V∞ and the suscep-
tibility kernel Vd.

11 A comment on the Laplace Transform method

Another method to obtain mild solutions of (4.2) is to apply the Laplace Transform.
The relevant theory, notation and the general �arsenal� of the Laplace Transform is
presented in detail in [1]. Here we deal only with the formal considerations of the
matter. Namely, we apply formally the Laplace Transform on both sides of (4.3) to
obtain

ê(λ) =
1

λ
e0 +

1

λ
Qê(λ) + K̂(λ)ê(λ) (11.1)

We now de�ne the resolvent operator of Q, R(λ) := (λI − Q)−1. It is known that
R(λ) = T̂ (λ), so (11.1) becomes

ê(λ) = T̂ (λ)e0 + λT̂ (λ)K̂(λ)ê(λ) (11.2)

Observe that (11.2) is exactly the Laplace Transform of (5.6). In addition, by
assuming that the operator I − λT̂ (λ)K̂(λ) is invertible, we obtain

ê(λ) = [I − λT̂ (λ)K̂(λ)]−1T̂ (λ)e0 (11.3)

Thereby, one has to prove that the (operator-valued) function

Φ(λ) := [I − λT̂ (λ)K̂(λ)]−1T̂ (λ)

is a Laplace Transform, i.e., there is a function S : R+ → B(X) such that Φ(λ) =

Ŝ(λ). Then by inverting the Laplace transform in (11.3) we obtain again the mild
solution as e(t) = S(t)e0.
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Appendix A The integral for vector and operator

valued functions

Let X a real separable Hilbert space where the inner product is denoted by 〈 ·, · 〉
and the norm by | · |. We �x an orthonormal basis (en). We consider the real line
R with the Lebesgue measure. Let A ⊂ RN be measurable and consider a function
f : A→ X.

De�nition A.1. f is said to be measurable if every real function 〈 f(·), en 〉 is mea-
surable.

Evidently, f is measurable if and only if 〈 f(·), y 〉 is measurable for every y ∈ X.
There is a norming sequence (wn) ⊂ X, |wn | 6 1, i.e.,

|x | = sup
n
| 〈x,wn 〉 |

Thereby, | f(·) | is also measurable.

Lemma A.1. Let f be measurable. The following are equivalent:
a) 〈 f(·), y 〉 ∈ L1(A) for every y ∈ X.
b) | f(·) | ∈ L1(A).

De�nition A.2. Let f be measurable. We say that f is integrable if it satis�es one
of the equivalent conditions of Lemma A.1.

Let f be integrable. Consider the mapping

If : X ∈ y 7→
∫
A

〈 f(t), y 〉 dt ∈ R

Then If ∈ X∗ and, by the Riesz Representation Theorem, there is a unique xf ∈ X
such that If (y) = 〈xf , y 〉.

De�nition A.3. xf is the integral of f on A and is denoted by
∫
A
f(t) dt.

Note that the sequence of Fourier coe�cients of
∫
A
f(t) dt is

(∫
A
〈 f(t), en 〉 dt

)
.

For 1 6 p 6∞ we de�ne the space Lp(A;X); it contains all the measurable functions
f : A→ X for which | f(·) |p ∈ L1(A). With the usual norm

‖ f ‖Lp :=

(∫
A

| f(t) |p dt
)1/p
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Lp(A;X) becomes a Banach space (a Hilbert space for the special case p = 2).
Observe that L1(A;X) is exactly the space of integrable functions. The space
Lp

loc
(A;X) is de�ned to contain all the measurable functions f : A→ X for which

| f(·) |p ∈ L1(K) for all K ⊂⊂ A. This space is endowed with the natural Fréchet
topology.

We now consider functions F : A→ B(X).

De�nition A.4. We say that F is measurable (integrable) if the X-valued function
F (·)x is measurable (integrable) for every x ∈ X. The space of integrable B(X)-
valued functions is written as L1(A;Bs(X)).

If F ∈ L1(A;Bs(X)), the integral of F is the bounded operator given by the
formula (∫

A

F (t) dt

)
x =

∫
A

F (t)x dt

Next we need a notion of weak derivative. Let f : [α, β] → X be a measurable
function.

De�nition A.5. f is said to be weakly di�erentiable if there is a function g ∈
L1([α, β];X) such that, for α 6 t 6 β,

f(t)− f(α) =

∫ t

α

g(τ) dτ

g is then called the weak derivative of f and is denoted by f ′.

It is evident that the weak derivative generalizes the classical one and that each
weak di�erentiable function is continuous. It is also directly seen from the de�nition
that f is weakly di�erentiable if and only if each scalar function 〈 f(·), y 〉, y ∈ X is
weakly di�erentiable. For 1 6 p 6∞ we consider the space

W 1,p([α, β];X) := { f ∈ Lp([α, β];X) : f ′ ∈ Lp([α, β];X) }

Endowed with the norm ‖ f ‖W 1,p := (‖ f ‖pLp + ‖ f ′ ‖pLp)
1/p it becomes a Banach

space (a Hilbert space for p = 2).

Lemma A.2. Let I ⊂ R, F : I → X be strongly continuously di�erentiable in D (a
subspace of X) with (F (t)x)′ = G(t)x and f : I → X a continuously di�erentiable
function taking values in D. Then F (t)f(t) is continuously di�erentiable and

(F (t)f(t))′ = G(t)f(t) + F (t)f ′(t)

Appendix B Convolution

Let now F , G ∈ L1
loc

(R+;Bs(X)), f ∈ L1
loc

(R+;X). We then can de�ne the convolu-
tions F ∗ f ∈ C(R+;X), F ∗G ∈ C(R+;Bs(X)) as

(F ∗ f)(t) :=

∫ t

0

F (t− τ)f(τ) dτ and (F ∗G)(t) :=

∫ t

0

F (t− τ)G(τ) dτ
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The Fubini Theorem implies that convolution is an associative operation. Fur-
thermore, the formal convolution operator WFf := F ∗ f is linear. When F ∈
L∞

loc
(R+;X) and f ∈ C(R+;X), we have the estimates

| (W n
F f)(t) | 6 (ωtt)

n

n!
sup

06s6t
| f(s) | (B.1)

where ωt is de�ned to be the (essential) supremum of ‖F (·) ‖ in [0, t]. Estimates
(B.1) imply especially two well known facts:

1. WF de�nes a bounded operator on C([0, b];X) for arbitrary large but �xed
b > 0.

2. (I −WF )−1 exists as a bounded operator on C([0, b];X) and

(I −WF )−1 =
∞∑
n=0

W n
F = I +WR (B.2)

that is the inverse is written as the identity plus a convolution operator.

Lemma B.1. Let F , G ∈ C(R+;Bs(X)) and consider the corresponding convolution
operators WF , WG in C([0, b];X). Then

(I −WF )−1WGf = WHf = H ∗ f

where H ∈ C(R+;Bs(X)) is de�ned by

H(·)x := (I −WF )−1(G(·)x)

The proof follows directly from the relation

(I −WF )−1WG = WG +WRWG = WG +WR∗G = WG+R∗G

The di�erentiability of the convolution is a crucial problem for our study. When
one of the components is di�erentiable, this is essentially a problem of di�erentiation
under the integral sign. From the Leibnitz rule we have

Lemma B.2. Let either F ∈ W 1
loc

(R+;Bs(X), or f ∈ W 1
loc

(R+;X), Then the con-
volution F ∗ f is di�erentiable and either

(F ∗ f)′(t) = F (0)f(t) + (F ′ ∗ f)(t)

or
(F ∗ f)′(t) = F (t)f(0) + (F ∗ f ′)(t)

respectively.
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