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EVOLUTION AND BREAKUP OF VISCOUS ROTATING DROPS∗

M. A. FONTELOS† , V. J. GARCÍA-GARRIDO† , AND U. KINDELÁN‡

Abstract. We study the evolution of a viscous fluid drop rotating about a fixed axis at constant
angular velocity Ω or constant angular momentum L surrounded by another viscous fluid. The
problem is considered in the limit of large Ekman number and small Reynolds number. The analysis
is carried out by combining asymptotic analysis and full numerical simulation by means of the
boundary element method. We pay special attention to the stability/instability of equilibrium shapes
and the possible formation of singularities representing a change in the topology of the fluid domain.
When the evolution is at constant Ω, depending on its value, drops can take the form of a flat film
whose thickness goes to zero in finite time or an elongated filament that extends indefinitely. When
evolution takes place at constant L and axial symmetry is imposed, thin films surrounded by a
toroidal rim can develop, but the film thickness does not vanish in finite time. When axial symmetry
is not imposed and L is sufficiently large, drops break axial symmetry and, depending on the value
of L, reach an equilibrium configuration with a 2-fold symmetry or break up into several drops with
a 2- or 3-fold symmetry. The mechanism of breakup is also described.
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1. Introduction. In many processes one has to deal with rotating masses of
fluid. This is the case for industrial applications such as polymer manufacturing [20]
and spinning drop tensiometry techniques used to measure surface and interfacial
tension [24]. At the atomic level, a model for nuclear fission as the breakup of a
charged rotating liquid drop, where nuclear forces play the role of surface tension,
was proposed by Bohr and Wheeler in 1939 [4]. On astronomical scales, the shapes
and stability of self-gravitating masses rotating freely in space were studied in detail
by Chandrasekhar [7].

Studies concerning the evolution of rotating drops date back to the original ex-
periments of Plateau [21]. In those experiments, an oil drop was immersed in a tank
containing a mixture of water and alcohol with almost the same density as oil. By
inserting a shaft through the drop and turning it, rotation on the drop was achieved.
Plateau then observed how the drop evolved through a sequence of different shapes as
the angular speed was increased. In recent years, experiments aimed in the same direc-
tion as the ones performed by Plateau in 1843 have been conducted under zero gravity
conditions during the flight of Spacelab 3 and at JPL (the Jet Propulsion Laboratory).
For a fully detailed description of these experiments, see, for instance, [28] and [29].

Computation of equilibrium shapes for this problem was initiated by Poincaré
in 1885 [22]. He showed that two families of solutions, one of which consists of
axisymmetric shapes and the other of asymmetric (2-fold shapes), could be obtained.
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After Poincaré, the determination of new equilibrium solutions has been the subject of
many studies. Brown and Scriven [6] determined branches of solutions where the axial
symmetry of the drop is broken and drops present a 2-fold, 3-fold, or in general n-fold
symmetry. The drops with 2-fold symmetry can be observed, for instance, when a
drop that is rolling over an inclined plane leaves the plane, undergoes free fall [1], and
then presents a so-called peanut shape. Remarkably, the branches of solutions with
n-fold symmetry also contain solutions such that each lobe consists of a chain of small
droplets connected by thin filaments, as demonstrated by Heine [14]. In addition to
equilibrium shapes with the topology of a sphere, there are also equilibrium shapes
with the form of a torus [13], [26].

Although there is a huge wealth of equilibrium shapes, one cannot expect that
all of them will be stable. Once a rotating drop in equilibrium destabilizes, there
are essentially two possibilities: the drop may undergo a transition towards another
equilibrium shape, or it may evolve in such a way that its surface becomes nonsmooth
at some time and a singularity, whether representing a surface cusp or a topological
change in the drop (via breakup into smaller drops, for instance), develops. The fact
that singularities may take place in free-surface hydrodynamic flows is well known and
has been the subject of intensive research in various contexts such as capillary drop
breakup or air entrainment. (See [11] for an updated general review on free-surface
flows, and [10] for a review on singularities in general.)

In order to compute the evolution of a viscous drop under rotation, one must
solve the Navier–Stokes equations both inside the drop and in the fluid surrounding
it, subject to suitable boundary conditions. If the Reynolds number is small, then
inertial terms can be neglected in comparison with both viscous forces and centrifugal
forces, and one arrives then at a Stokes system subject to centrifugal forces. This is
the approach adopted by Howell, Scheid, and Stone [15] for studying the evolution and
possible singularity formation of an axisymmetric drop rotating with constant angular
velocity. Under a thin film approximation, those authors show that, for sufficiently
large angular velocities, drops may become very flat and thin at the center with a
torus-like boundary (a pizza shape, in the notation of [15]). Moreover, they find that
the thickness of the center can become zero in finite time so that a hole develops.

When dealing with the evolution of a fluid at small Reynolds number the approx-
imation by a Stokes system is justified. In this case, the fluid dynamics equations
become linear, and one can write the problem in the form of the so-called boundary
integral formulation (cf. [23]). This is very suitable for numerical simulation since it
allows one to compute the velocity field at the boundary of the drop, and hence the
evolution of the drop’s shape, by evaluating integrals restricted to the boundary itself
(see [23] or [5], for instance). The boundary integral formulation is particularly inter-
esting when dealing with the possible formation of singularities, like those appearing
in the evolution of charged droplets [3], [12].

In this article we implement a boundary element method to compute the evolution
of drops rotating around a fixed axis, determine the stability/instability of equilibrium
shapes, and study the formation of singularities that give rise to topological changes
in the drop. In section 2 we introduce the system of equations that we are going to
solve. In section 3, the details of the numerical method used are explained. Since
we aim to analyze singularities that develop at the drop’s surface, special attention
must be paid to local refinement and regularization of the mesh. In section 4 we
study the evolution of axisymmetric drops. Section 5 will be devoted to the study
of general three-dimensional drops at both constant angular velocity and constant
angular momentum. Finally, in section 6 we summarize the conclusions of our work.
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2. Equations. Consider two viscous incompressible fluids: one for the drop and
another for its surrounding media. The fluid drop has viscosity μ1 and density ρ1,
while the surrounding fluid has viscosity μ2 and density ρ2. We denote the velocity
and pressure of the fluid inside the drop by u(1) and p(1), respectively, and the velocity
and pressure of the outer fluid by u(2) and p(2), respectively. Both fluids are rotating
around a common axis with angular velocity ω. In this situation, one can take a
system of reference that is rotating with the fluids (noninertial frame) and therefore
introduce inertial forces into the Navier–Stokes equations so that

ρi
(
u
(i)
t + u(i) · ∇u(i)

)
= −∇p(i) + μiΔu(i) − 2ρiω × u(i) − ρiω × (ω × r) in Di (t) ,

(1)

∇ · u(i) = 0 in Di (t) ,(2)

where D1 (t) is the domain enclosed by the fluid drop and D2 (t) is the domain of the
surrounding fluid. The third and fourth terms on the right-hand side of (1) are called
the Coriolis and centrifugal forces, respectively. As boundary conditions, we impose
balance of stresses across the interface of both fluids:

(3)
(
T (2) − T (1)

)
n = 2γκn on ∂D (t) ,

where κ is the mean curvature of the interface, i.e., the average of principal curvatures;
γ is the surface tension; and T (k) is the stress tensor inside (k = 1) and outside (k = 2)
the drop, given by

(4) T
(k)
ij = −p(k)δij + μk

(
∂u

(k)
i

∂xj
+

∂u
(k)
j

∂xi

)
, k = 1, 2.

Equation (3) expresses the balance between viscous stresses and capillary forces at
the interface. The normal component of the velocity has to be continuous across the
boundary

u(1) · n = u(2) · n ≡ u · n,

where n is the unit normal to ∂D(t) pointing outward from the fluid drop. The
kinematic condition is

(5) vN = u · n on ∂D (t) ,

vN being the normal velocity of the free boundary ∂D(t).
If the axis of rotation is fixed, then

ω × (ω × r) = −ω2rer,

where ω = |ω| is the angular speed, r is the distance from the point located at r to
the axis of rotation, and er is the polar radial vector. Notice that the centrifugal force
−ρiω × (ω × r) is then directed in the outward radial direction. It is useful to write
the centrifugal force in the form

ρiω
2rer = ∇

(
1

2
ρiω

2r2
)
,

since the centrifugal force is conservative, and define

Π(i) = p(i) − 1

2
ρiω

2r2
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as the reduced pressure. Then, system (1)–(2) becomes

ρi
(
u
(i)
t + u(i) · ∇u(i)

)
= −∇Π(i) + μiΔu(i) − 2ρiω × u(i) in Di (t) ,(6)

∇ · u(i) = 0 in Di (t) ,(7)

and boundary condition (3) can be written as

(8)
(
T (2) − T (1)

)
n =

(
2γκ+

(ρ2 − ρ1)

2
ω2r2

)
n on ∂D (t) ,

where we take now the following definition for T (k):

T
(k)
ij = −Π(k)δij + μk

(
∂u

(k)
i

∂xj
+

∂u
(k)
j

∂xi

)
, k = 1, 2,

instead of (4). In order to nondimensionalize the system (6)–(7) we introduce a
characteristic length l (of the order of the radius of the drop), a typical velocity U
(ωl, for instance), and a characteristic time scale τ = l/U . We will also suppose
without loss of generality that the axis of rotation is the z axis. Taking μ and ρ to be
reference values for the viscosity and density of the fluids, respectively, (we can take
them as those of the drop) and defining the new variables

u (i) =
u(i)

U
, r =

r

l
, t =

t

τ
, Π

(i)
=

l

μU
Π(i), ω = ωẑ, μi =

μi

μ
, ρi =

ρi
ρ
,

we get, omitting overbars to simplify notation, the nondimensional problem

ρiRe
(
u
(i)
t + u(i) · ∇u(i)

)
= −∇Π(i) + μiΔu(i) − 2

Ek
ẑ× u(i) in Di (t) ,(9)

∇ · u(i) = 0 in Di (t) .

Two dimensionless parameters arise: Re is the Reynolds number (measuring the
relative importance between inertial and viscous forces), and Ek is the Ekman number
(characterizing the relation between Coriolis and viscous forces). They are defined as

Re =
ρUl

μ
, Ek =

μ

ρωl2
,

To complete the nondimensionalization process, one has to scale the boundary condi-
tion. If we define

κ = lκ, r =
r

l
, T

(k)
=

l

μU
T (k),

then (8) can be written as

(10)
(
T (2) − T (1)

)
n =

1

Ca

(
2κ− Bo

2
r2
)
n on ∂D (t) ,

where overbars are omitted as before. Two new dimensionless parameters come into
play, Ca and Bo, called the capillary number and rotational Bond number, respec-
tively:

Ca =
μU

γ
, Bo =

(ρ1 − ρ2)ω
2l3

γ
.
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The first measures the importance of viscous relative to capillary forces, and the
second the importance of centrifugal forces relative to capillary forces. We take as
a characteristic length scale of the problem, for instance, l = 3

√
V ol, with V ol being

the volume of the drop, and a dimensionless angular velocity defined as Ω =
√
Bo

to describe our results. Dealing with the limit in which Re � 1 and Ek � 1, so
that viscous forces dominate over inertial and Coriolis forces, we can approximate the
Navier–Stokes equations by the Stokes system

−∇Π(i) + μiΔu(i) = 0 in Di (t) ,(11)

∇ · u(i) = 0 in Di (t) ,(12)

which is numerically solved in the next section using the boundary element method.
Since (11)–(12) together with the boundary condition (10) form a linear system, one
can remove the dependence on Ca by simply rescaling again the unknowns u(i), Π(i).
Therefore, without loss of generality we will consider Ca = 1.

Concerning the stationary problem (where u(i) ≡ 0), equilibrium solutions can
be calculated by solving the following differential equation:

(13) 2κ = −Π+
Bo

2
r2 on ∂D,

where Π = Π2 − Π1 is the pressure difference sustained across the interface of both
fluids. It is interesting to point out that this differential equation for equilibrium
shapes can be obtained by invoking a variational argument (cf. [7], [6]). In this
variational approach, an energy functional defined by taking into account the surface
energy and the rotational kinetic energy of the drop is minimized subject to a volume
preservation constraint. The energy to be minimized is defined in two different ways
depending on the kind of problem considered. If we have a drop rotating with constant
angular speed Ω, then the energy of the system is

(14) E = A− 1

2
IΩ2,

where A is the area of the surface ∂D and I is the moment of inertia of the drop,
defined by the formula

(15) I =

∫
D
r2 dV,

with r being the distance from a point located at r ∈ D to the axis of rotation. On
the other hand, if the drop is mechanically isolated (angular momentum is constant),
the energy functional is given by

(16) E = A+
1

2
IΩ2 = A+

L2

2I
,

where L = IΩ is the angular momentum of the fluid drop. Finally, we remark that our
nondimensionalization is slightly different from that of [6], since we aimed to obtain
the expressions (14) and (16) that we believe are physically more intuitive. There is a
simple relation between our values of (Ω, L) and those of [6], denoted by (ΩBS , LBS):

(Ω, L) =
(
4
√

2π
3 ΩBS , 8

√
2 ( 3

4π )
7/6 LBS

)
.
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3. Numerical method. Our interest in the evolution of the drop’s surface sug-
gests the use of the boundary element method (BEM) to calculate the velocity at the
interface between the two fluids. The BEM we have implemented is based on the
boundary integral formulation of the Stokes system (11) with the boundary condition
(10) (see [23], [25] for a comprehensive explanation). According to this, the equation
for the velocity at ∂D(t) can be written as

uj(rp) = − 1

4π

1

μ1 + μ2

∫
∂D(t)

fi(r)Gij(r, rp)dS(r)

− 1

4π

μ1 − μ2

μ2 + μ1

∫
∂D(t)

ui(r)Tijk(r, rp)nk(r)dS(r), i, j, k = 1, 2, 3,(17)

where rp is the position vector of a point p of the surface, and

Gij(r, rp) =
δij

|r− rp|
+

(ri − rp,i)(rj − rp,j)

|r− rp|3
, i, j, k = 1, 2, 3,(18)

Tijk(r, rp) = −6
(ri − rp,i)(rj − rp,j)(rk − rp,k)

|r− rp|5
, i, j, k = 1, 2, 3,(19)

fi(r) =

[
2κ(r)− 1

2
Ω2r2

]
ni(r), i = 1, 2, 3.(20)

We remark that, by using (17), we are assuming that the velocity of the outer
fluid at infinity is zero in our frame of reference that is rotating with angular velocity
Ω. This would correspond, for instance, to the physical situation when both fluids are
inside a container that is rotating with angular velocity Ω. A different situation arises
if one considers that the ambient fluid is not rotating at infinity, which, in the frame
of reference rotating with Ω, is equivalent to saying that u(2) ∼ u∞(r) ≡ −(Ω × r)
as |r| → ∞. This would add a new term 2μ2u

∞
j (r)/(μ1 + μ2) on the right-hand side

of (17). When μ2/μ1 � 1, the outer fluid produces a negligible viscous traction on
the drop’s surface (this is the case of water surrounded by air or oil surrounded by
water, for instance) and this new term can be safely neglected. We then return to
(17), which is the equation that will be considered in this paper.

At any given time t > 0, we approximate the free boundary ∂D(t) with a tri-
angular mesh. The mesh is made up of N vertices and M (triangular) faces. On
each node, we approximate the various physical quantities that are defined on the
surface (centrifugal force, curvature, velocity) with elementwise constant functions
over a “virtual” element centered in each node with an area equal to one third of the
total area of the elements that share the node (see [30]). We also use the nodes of the
mesh as collocation points.

The general description of how we solve the integral equations is as follows: first
we calculate the curvature κ in each node of the mesh, and second we calculate
the velocity by obtaining the balance force term f from the centrifugal force and κ,
replacing it in (17), and solving the resulting integral equation. Given the velocity u,
we move the points of the surface using the explicit Euler scheme and regularize
the mesh. In the next subsections we will describe the BEM used to compute the
velocity field at the surface of the drop (including the regularization and refinement
of the mesh) and the two procedures we have implemented for computing the mean
curvature of the drop’s surface and the moment of inertia of the drop. We have used
two codes based on the general principles sketched above. In the simplest one, axial
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symmetry is assumed, and explicit integration of the boundary integral in the polar
coordinate θ is performed. The other code does not assume any kind of symmetry
and is the one we explain in more detail in this section; the axisymmetric code is a
simplified version of it, and so we briefly describe it at the end of the section.

3.1. Mean curvature. We calculate the mean curvature in each node p of the
mesh following a method proposed in [30]. The algorithm is based on the following
idea. If the z′ axis of the local Cartesian coordinates (rp, x

′, y′, z′) was directed along
the normal vector np, then z′ as a quadratic function of x′ and y′ would be a good
local representation of the surface ∂D. This quadratic function can be obtained by
finding a paraboloid which passes through p, has its axis parallel to z′, and fits best its
neighbors by the least-squares method. However, np is not known a priori, and so the
method is iterative. The formal description of this method appears in Algorithm 1.

Algorithm 1. Mean curvature computation.

1: Let np be an initial approximation to the outward unit normal to ∂D at p.
2: repeat

3: Choose local Cartesian coordinates (x′, y′, z′) with origin in rp and the z′ axis
along np. Find (x′

i, y
′
i, z

′
i) coordinates of the adjacent nodes to p.

4: Find the coefficients A, B, C, D, and E which minimize

F =

Np∑
i=1

(
Ax′

i +By′i + C(x′
i)

2 +Dx′
iy

′
i + E(y′i)

2 − z′i
)2

.

The summation is over all the neighbors of p.
5: Set (np)n = (−A,−B, 1)/(1 + A + B)1/2, in the coordinate system (x′, y′, z′),

as the unit normal to the paraboloid at p.

6: until |(np)n − np| < ε.

7: Mean curvature kp = (1+B2)C−ABD+(1+A2)E
(1+A2+B2)3/2

.

Note that, due to the use of the least-squares method, each node of the mesh must
have five or more neighbors. The convergence is very fast with only a few iterations
needed, even for ε ∼ 10−6–10−8. We also use this algorithm to calculate the normal
vector to the surface at each node of the mesh.

3.2. Velocity. Once the curvature and the centrifugal force are known in each
node of the mesh we are able to evaluate the balance force term f and thus, replacing
f in (17), calculate u in each node of the mesh.

The first integral in (17) is known as the single layer potential, whereas the second
one is termed the double layer potential. Both integrals are singular in r = rp. We
will remove both singularities with a well-known technique proposed, for example,
in [23], which is based on the fact that

(21)

∫
∂D(t)

Gij(r, rp)ni(r)dS(r) = 0 and

∫
∂D(t)

Tijk(r, rp)nk(r)dS(r) = −4πδij .

Using (21), we get an equation equivalent to (17):

uj(rp) = −λS

∫
∂D(t)

(b(r)− b(rp))ni(r)Gij(r, rp)dS(r)

− λD

∫
∂D(t)

(ui(r)− ui(rp)) Tijk(r, rp)nk(r)dS(r) + 4λDπui(rp)δij ,(22)
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where λS = 1
4π

1
μ1+μ2

, λD = 1
4π

μ1−μ2

μ2+μ1
, and f(r) = b(r)n(r). The right-hand-side

integrals of (22) are approximated by a trapezoidal rule that requires the integrands

only at nodes of the mesh:
∫
∂D φ(x)ds(x) =

∑N
i=1 φ(xi)Si, where Si is the area of

the virtual element associated with node i. Applying this, we get the discretization
of (22):

(1− 4πλD)uj(rp) + λD

N∑
l=1
l �=p

(ui(rl)− ui(rp))Tijk(rl, rp)nk(rl)Sl

= −λS

N∑
l=1
l �=p

(b(rl)− b(rp))ni(rl)Gij(rl, rp)Sl.(23)

Equation (23) for all values of p ∈ {1, . . . , N} and j ∈ {1, 2, 3} forms a linear system
of 3N equations in the 3N unknown velocity components uj(rp) at the nodes. After
solving the system, we move the nodes of the surface with an Euler explicit scheme:

ri(tn+1) = ri(tn) + ui(tn)�t, i = 1, . . . , p.

This process is repeated until we reach a desired time tmax or some other condition is
met. In practice we have found that the time step Δt cannot be arbitrarily large [27].
Instead, Δt should be such that the displacement of any node during a single time step
is smaller than the length of any edge of the mesh that includes the node. In addition,
the time step should be of the same order with the characteristic time τ = Rμ

γ , where

R is the maximum (linear) dimension of the droplet, μ is the minimum of the two
viscosities μ1,2, and γ is the capillarity constant.

3.3. Moment of inertia. When dealing with the evolution of droplets at con-
stant angular momentum, one needs to compute the moment of inertia of a solid whose
boundary is a triangle mesh. A simple and efficient numerical algorithm, which is de-
scribed in detail in [16], is briefly introduced here for this purpose. The moment of
inertia about the z axis of a fluid drop with constant density ρ1 is given by the formula

Izz = ρ1

∫
D1(t)

(x2 + y2) dV,

where D1(t) is the region occupied by the drop. To calculate this integral consider
P(t) as the polyhedral solid approximation of D1(t) whose facets are triangles. Thus,
P(t) can be conceived as a signed sum of tetrahedra, CP(t), where its elements are
constructed from the origin to the vertices of each of the triangle facets. The sign of
the contribution for each tetrahedron T , ε(T ), is determined by the sign of the dot
product between the barycenter of the facet and the outward unit normal vector to
∂P(t) at that facet. This yields the following approximation:

Izz = ρ1

∫
D1(t)

(x2 + y2) dV ≈ ρ1
∑

T ∈CP(t)

∫
T
(x2 + y2) dV,

which can be precisely computed, as the integral of a homogeneous quadratic poly-
nomial f(x, y, z) (in our case f(x, y, z) = x2 + y2) over a tetrahedron T ∈ CP(t) with
vertices (V T

1 , V T
2 , V T

3 ) verifies:∫
T
f(x, y, z) dV =

ν(T )

20
(f(V T

1 ) + f(V T
2 ) + f(V T

3 ) + f(V T
1 + V T

2 + V T
3 )),
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where ν(T ) is the signed volume of the tetrahedron T :

ν(T ) = ε(T )

∣∣det (V T
1 , V T

2 , V T
3 )
∣∣

6
.

Note that with this method, one can also easily calculate the volume of solids by
applying

V ol(D1(t)) = ρ1

∫
D1(t)

dV ≈ ρ1
∑

T ∈CP(t)

ν(T ).

3.4. Regularization of the mesh. If one evolves the free boundary by apply-
ing the procedure described in the previous sections, one observes that the capability
of the mesh to approximate the free boundary might deteriorate rapidly in time,
especially in the cases where the geometry of the interface changes radically, for in-
stance in the formation of cones, jets, or necks. For this reason, in our code we apply
a number of mesh regularization techniques (based on previous works by Cristini,
Blawzdziewicz, and Loewenberg [9] and Vantzos [27]) that allow the mesh to adapt
to the evolving geometry of the interface. In more quantitative terms, we have used
the fact that a suitable measure of the “quality” of a mesh is the comparison between
the length of any edge with the local (minimal) radius of curvature [9].

The first regularization technique, called Delaunay remeshing, is based on the fact
that, given a set of nodes, which are assumed to lie on the free boundary, there are
many ways to connect them in order to form an approximating mesh. The objective
is to find the mesh that has a minimal number of “thin triangles,” e.g., triangles with
very small angles. This can be achieved by beginning with an initial mesh and then
performing a sequence of “edge flips” (see Figure 1).

Fig. 1. Mesh restructuring is performed via a sequence of edge-flips such as the one pictured
here. We exchange the diagonals of the (nonplanar) quadrilateral formed by two adjacent triangles
if a certain inequality holds. Note that ω1 and ω2 are the dihedral angles of the two configurations.

The second regularization technique addresses the phenomenon that nodes need
to be constantly reallocated on the surface in order to maintain a (locally) uniform
distribution. This can be achieved by treating the mesh as a system of masses (the
nodes), whose position is restricted on the surface and connected by springs (the
edges) with an extremely high damping constant [9]. Letting the nodes move under
the influence of these spring forces for a certain time interval is called “relaxing the
mesh.” Note that in order to have a measurable improvement of the quality of the
mesh, we need to set the natural (relaxed) length of every spring equal to the local
(minimal) radius of curvature.

Although relaxation does improve the distribution of the nodes, it does not ad-
dress the fact that when the local curvature increases at a region of the free boundary,
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the density of the nodes must increase accordingly for the mesh to resolve the devel-
oping geometrical feature satisfyingly. This can be achieved by refining the mesh, i.e.,
subdividing the faces of the mesh that are “too large.” A face is considered too large,
and thus a candidate for subdivision, if its area is larger than a certain multiple of the
area of an equilateral triangle with side equal to the local radius of curvature. The
subdivision scheme that we use divides the triangular face into three new triangles by
adding a new node close to the center of mass of the triangle and connecting it to the
three existing vertices [27]. The new position of the new node is calculated using the
osculating paraboloids from section 3.1 as a local representation of the surface. The
refinement is always followed by remeshing and relaxation (see Figure 2).

Fig. 2. Example of mesh regularization. Starting with a given mesh (top left), we refine the
areas of high curvature (top right). After refining, we apply remeshing (bottom left) and relaxation
(bottom right).

3.5. The code for axially symmetric configurations. The implementation
of BEMs simplifies notably when one considers an axially symmetric configuration.
First, the computation of the mean curvature, when the interface is written in the form
z = h(r, t), has an explicit formula in terms of h(r, t) and its derivatives up to second
order that can be computed using simple finite differences. Second, the integrals in
the azimuthal angle θ that appear in (22) can be explicitly calculated as a previous
step to discretizing the profile. These integrals may involve more or less complicated
functions, such as elliptic integrals (cf. [23]), but are explicit in terms of them. The
profile (r, h(r, t)) is then discretized in the form {(ri, h(ri, t)), i = 1, . . . , N}, and
integrals are approximated in the same way as in the three-dimensional (3D) code,
also using a singularity removal procedure. Nodes are moved influenced by artificial
spring forces, as in the relaxation method explained above, so that they concentrate
in regions of high curvature. The reduction in the dimension of the problem allows for
a large number of mesh points and precise description of the “high curvature” regions
up to several (typically 3 or 4) orders of magnitude of the curvature.

4. Evolution of axisymmetric drops. In this section we study the evolu-
tion of axisymmetric drops, both at constant angular speed and at constant angular
momentum. First, we will present equilibrium solutions, already reported in the lit-
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erature [1], [2], [6], [13], [14], [26], and compare them with the equilibrium shapes
obtained for long time behavior of evolving drops computed with the axisymmetric
version of the boundary element algorithm. Later, we also present a stability anal-
ysis of equilibrium shapes and the possible formation of holes for drops evolving at
constant Ω or constant L.

4.1. Equilibrium shapes. The axisymmetric equilibrium shapes can be calcu-
lated in a closed form by integrating the differential equation

2κ = −Π+
Bo

2
r2,

where Π = Π(2) − Π(1) is a constant. We describe the geometry of the drop by the
function h(r), which gives the height of each point of the interface as a function of
the distance r to the axis of rotation. Under the assumption of axial symmetry,

2κ = −1

r

d

dr

(
rhr√
1 + h2

r

)
,

and therefore we need to solve the equation

(24)
1

r

d

dr

(
rhr√
1 + h2

r

)
= −Ω2

2
r2 +Π,

subject to appropriate boundary conditions. If we assume a domain without holes
and with a regular surface, then it is natural to impose hr(0) = 0, and (24) can be
integrated once to yield

(25)
hr√
1 + h2

r

= −Ω2

8
r3 +

Π

2
r,

which can be explicitly solved in terms of elliptic functions (see [19]). If the domain
presents a hole of radius a near the axis, then integration of (24) leads to

rhr√
1 + h2

r

− ahr(a)√
1 + (hr(a))

2
= −Ω2

8
r4 +

Π

2
r2 +

Ω2

8
a4 − Π

2
a2,

so that, by imposing hr(a) = +∞, one gets smooth toroidal solutions (that is, such

that h(r) ∼ C(r−a)
1
2 as r → a+) that we will call toroidal type I solutions, satisfying

hr√
1 + h2

r

=

(
a+ Ω2

8 a4 − Π
2 a

2
)

r
− Ω2

8
r3 +

Π

2
r.

There is also the possibility that h(r) = 0 for 0 ≤ r < a and h(a) = 0 with hr(a) = 0,
so that the surface is still smooth if one considers that a zero thickness film lies in the
region 0 ≤ r < a. These solutions have been thoroughly studied in [1]. We will call
these solutions toroidal type II, and they satisfy

hr√
1 + h2

r

=

(
Ω2

8 a4 − Π
2 a

2
)

r
− Ω2

8
r3 +

Π

2
r.
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Fig. 3. Bifurcation diagram of axisymmetric equilibrium shapes. Theoretical L-Ω curves (con-
tinuous line) together with asymptotic values, for t → ∞, of an initially spherical drop evolving at
constant Ω (asterisks) or at constant L (dots).

In Figure 3 we represent in the L-Ω plane the values of the angular momentum L
versus the angular velocity Ω for each of these solutions together with the asymptotic
values that result when the evolution of an initially spherical drop, which we com-
pute using the boundary element method described above, converges to one of these
equilibria. Notice that equilibrium toroidal type II shapes can occur only when the
evolution takes place at constant L, while the evolution at constant Ω can converge to
spheroidal type equilibrium shapes only if Ω is below some critical value Ω∗. We will
discuss below the evolution at constant Ω > Ω∗, and the mechanism of convergence to
toroidal shapes of type II at constant L (for L larger than some L∗) will be described
at the end of this section.

4.2. Evolution at constant Ω. When Ω is sufficiently small, starting from a
spherical drop, the evolution leads to an equilibrium shape in the family described in
Figure 3 (some of those shapes are represented in Figure 4(left)). The condition that
the drop’s volume is one leads, from (24), to the implicit equation

1 = Vol = 4π

∫ rmax

0

h(r)rdr = −2π

∫ rmax

0

hr(r)r
2dr

=
π

4

∫ rmax

0

Ω2r5 − 4Πr3√
1−

(
Ω2

8 r3 − Π
2 r
)2 dr ≡ f(Ω,Π),

where rmax is such that Ω2

8 r3max − Π
2 rmax = 1. The equation f(Ω,Π) = 1 defines Ω as

a function of Π. The angular momentum can then be computed as

L = ΩI = 4πΩ

∫ rmax

0

h(r)r3dr = −πΩ

∫ rmax

0

hr(r)r
4dr

=
πΩ

8

∫ rmax

0

Ω2r7 − 4Πr5√
1−

(
Ω2

8 r3 − Π
2 r
)2 dr,
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Fig. 4. Left: Equilibrium shapes for (Ω, L) = (0, 0), (3.14, 0, 61), (4.09, 1.05), (4.36, 1.57),
(4.29, 1.91), (4.09, 2.38) (in order of higher eccentricity). Notice the existence of two different profiles
for Ω = 4.09. Right: Total energy as a function of Ω.

leading also to L as a function of Π. With (Ω(Π), L(Π)) one can represent the branch
of spheroids in Figure 3. There exists a value of Ω, denoted by Ω∗ = 4.3648..., such
that axisymmetric equilibrium shapes do not exist for Ω > Ω∗. (This value has
been computed numerically.) Notice that for Ω < Ω∗ there is the possibility of two
equilibrium solutions with the same Ω but different L. We can easily compute the
energy

E = A− 1

2
IΩ2,

with

A = 4π

∫ rmax

0

r
√

1 + h2
r(r)dr = 4π

∫ rmax

0

r√
1−

(
Ω2

8 r3 − Π
2 r
)2 dr,

and deduce (see Figure 4(right)) that those shapes with smaller values of L possess
less energy and hence should be more stable. In fact, our numerical simulations verify
this. When Ω > Ω∗, the drop’s surface becomes concave during the evolution. From
this moment, mass is continuously evacuated from the neighborhood of the axis until
a hole develops.

Once an equilibrium shape becomes unstable it undergoes evolution towards the
formation of a singularity, as discussed in [15]. The singularity is such that the drop
evolves into a toroidal rim of fluid with a thin film inside (see Figure 5). According

to [15], the radius of the toroidal rim grows as rmax = O((t0 − t)−
1
2 ), i.e., blows up

in finite time. Also the minimum thickness hmin(t) of the inner film vanishes at t0,
and the behavior of hmin(t) is characterized by a second kind self-similar solution
hmin(t) ∼ O((t0 − t)p(Ω)) with p = 4.1236 in the limit Ω → ∞ (or equivalently when
surface tension is neglected and Bo → ∞). In fact, the fact that rmax diverges follows
from the following argument in [15]. Assume that the shape consists of a disc of radius
β(t) and r-dependent thickness h(r, t), surrounded by a toroidal rim of radius of the
tube R(t); then, the evolution can be described by the following thin film equations
(see [15]):
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Fig. 5. Evolution of a drop at constant Ω = 10 for times t = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and μ1 = 1,
μ2 = 0.1.
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Fig. 6. Evolution of the equatorial radius of the drop at constant Ω = 10. Inset: log(rmax) vs.
log(t0 − t) with t0 � 0.51.

∂h

∂t
+

1

r

∂

∂r
(rhv) = 0,(26)

4

h

∂

∂r

(
h

r

∂

∂r
(rv)

)
− 2

v

hr

∂h

∂r
= −Ω2r +

2

R(t)
δ (r − β(t)) ,(27)

where v(r, t) is the radial velocity and δ is the Dirac delta function. The last term on
the right-hand side of (27) models the force that the toroidal rim exerts on the film.
If we search for self-similar solutions to (26), (27), from dimensional arguments one
finds that they must have the form

(28) h(r, t) = (t0 − t)pf
(
r(t0 − t)

1
2

)
, v(r, t) = (t0 − t)−

3
2 g
(
r(t0 − t)

1
2

)
,

where p is a free parameter (depending on Ω). The solution (28) implies that the

radius of the disc β(t) blows up at a rate (t0 − t)−
1
2 . Our numerical results for the

growth of the drop’s size rmax, blowing up at the same rate as β(t), support the result
of [15] for the lubrication system (26), (27) (see Figure 6) up to the maximum drop
extension reachable with our method.
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Fig. 7. Evolution of a drop at constant L = 2.54558 for times t = 0, 1, . . . , 6 and μ1 = 1, μ2 = 0.1.

It is worth noting that these solutions representing a torus escaping to infinity
in finite time cannot be a valid approximation to the real situation at all times,
because the velocity blows up at finite time and therefore inertial terms neglected
under Stokes approximation will necessarily become dominant at some time. Then,
the fluid particles will at most move with a centrifugal acceleration, so that their
distance r(t) to the axis will verify

d2r(t)

dt2
� Ω2r(t),

so that r(t) ≤ CeΩt. Once a hole appears in the inner film, it will quickly retract, and
the resulting torus is subject to Plateau–Rayleigh instabilities, leading to breakup
into smaller droplets. The breakup of the rotating torus will be discussed later.

4.3. Evolution at constant L. When the evolution of the drop takes place at
constant angular momentum, as is the case when the drop is mechanically isolated,
and axial symmetry is imposed, we always converge to an equilibrium shape. Hence,
all equilibrium solutions appear to be stable. There exists a subfamily of equilibrium
solutions that we denote as toroidal type II (see Figure 3) consisting of a zero thickness
film connecting a toroidal rim. These solutions appear for L > L∗ with L∗ = 2.3755...
(see Figure 7). This value for the angular momentum was determined numerically,
taking into account that its angular velocity pairing in the L-Ω bifurcation diagram
is analytically known [26]. A natural question is then whether the zero thickness film
(that is, the formation of a hole) develops in finite or infinite time for L > L∗ and, if
the hole develops in finite time, how the transition to the toroidal type I equilibrium
solution with the same angular momentum takes place. Our numerical evidence is
that convergence to the solutions with zero thickness film occurs at infinite time. This
indicates that transition to toroidal type I solutions cannot take place. It is interesting
to note that the thickness of the film follows an asymptotic law,

hmin(t) = h(0, t) ∼ C√
t
,
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and the profiles of the interface near the point where the film and toroidal rim meet
present a very clear similarity law of the form

(29)
h(r, t)

hmin(t)
= f

(
r − r0(t)√
hmin(t)

)
,

where f(ξ) is a similarity profile such that f(ξ) → 1 as ξ → −∞ and f(ξ) ∼ Aξ2 as
ξ → +∞. The radius r0(t) is such that r0(t) → a as t → ∞, where a is the radius of
the film.

The evolution of the inner film can be easily described by means of an explicit
solution of the Stokes system that we compute next. For the sake of simplicity we
restrict ourselves to the situation where no outer fluid is present. If one seeks solutions
to the Stokes system in polar coordinates (cf. [17]) of the form

uz = αzr2 + βz3,(30)

ur = γrz2 + δr3,(31)

then it is simple to compute, from the condition ∇ · u = 0, the relations

2γ + 3β = 0,

4δ + α = 0,

so that

pr = (2γ − 2α)r,

pz = (4α− 4γ)z,

and therefore

(32) p = (γ − α)
(
r2 − 2z2

)
.

The boundary conditions for the balance between stress and capillary-centrifugal
forces are, in the case of a planar interface z = h(r, t) = hmin(t),

−p+ 2μ1

∂uz

∂z
= −Ω2

2
r2,

∂uz

∂r
+

∂ur

∂z
= 0,

so that, plugging in (30)–(32), we obtain

−(γ − α)
(
r2 − 2h2

)
+ 2(αr2 − 2γh2) = −Ω2

2
r2,

2αzr + 2γrz = 0,

resulting in

α = −γ = −Ω2

8
.

Since the center of the drop, at r = 0, moves in the vertical direction, it will follow

dhmin

dt
= uz(r = 0, hmin) = βh3

min = −2

3

Ω2

8
h3
min,
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and we get

(33) hmin(t) ∼
√
6

Ω
t−

1
2

for t � 1.
Figure 8 represents the evolution of h−2

min(t) and shows a comparison with a linear
law for the last stages, confirming the asymptotic law (33). Figure 9 presents numer-
ical profiles for t � 1 and the same profiles rescaled according to (29) in order to
verify their convergence towards the similarity function f(ξ).

Fig. 8. Evolution of the inverse square of the film thickness at constant L = 2.54558 and
comparison with straight line for t � 1.

5. Evolution of drops in three dimensions. In the previous section we have
discussed the evolution of axisymmetric rotating droplets with constant Ω and L.
We paid special attention to the development of instabilities and the possibility of
topological changes. Of course, a natural question arises concerning the stability of
all these results under perturbations that break the axial symmetry. This requires
analysis and numerical computations of the evolution in generic 3D situations.

5.1. Evolution at constant Ω. In the preceding section we showed that axi-
symmetric drops rotating at constant Ω for Ω > Ω∗ evolve into the so-called (in the
notation introduced by Howell, Scheid, and Stone [15]) pizza shape. In the evolution,
the film at the center tends to zero in finite time, as shown in [15]. Whether or not
these axisymmetric shapes are stable or, on the contrary, evolve towards a different
configuration was mentioned as an open problem. With our boundary elements code,
we found that indeed the expanded pizza only keeps the axial symmetry when the
angular velocity is sufficiently large, while for Ω < Ω2 ∈ (3.28, 3.31)1 drops tend to
axisymmetric equilibrium spheroids. For Ω > Ω2 and Ω < Ωap ∈ (4.55, 4.59) an ini-
tially spherical drop evolves into an unstable peanut that elongates infinitely in finite
time. The drops become approximately axisymmetric about the r axis, and one can
develop very easily a thin jet model of the type described in [11], consisting of the
following equations (in the simplified situation where we have only one fluid, although

1The value of Ω2 from [6] corresponds, in our units, to Ω2 = 3.24.
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(a) Profiles without rescaling.

(b) Rescaled profiles.

Fig. 9. Profiles near the region where the thin film and the rim meet for t � 1. In (a) profiles
are depicted without scaling, and in (b) the same profiles are represented after rescaling with the
similarity law. Note that self-similarity behavior for constant L > L∗ shows convergence to toroidal
type II solutions.

this can be easily generalized):

3μ

h2

∂

∂r

(
h2 ∂v

∂r

)
=

∂Π

∂r
,

∂h

∂t
+

h

2

∂v

∂r
+ v

∂h

∂r
= 0,

where

Π(r, t) = κ(r, t)− Ω2

2
r2 � −Ω2

2
r2

and v(r, t) is the ur(r, z, t) component of the velocity field, which is, at leading order,
independent of z and dominant with respect to the uz component. Similarity solutions

h(r, t) = (t0 − t)
α
f((t0 − t)

β
r), v(r, t) = (t0 − t)

γ
g((t0 − t)

β
r)

to this system such that volume is preserved require α = 1
4 , β = 1

2 , γ = − 3
2 . Notice

that surface tension forces become negligible with respect to centrifugal forces for
these similarity solutions. The equations for f(ξ) and g(ξ) are

Ω2ξ +
3μ

f2

d

dξ

(
f2 dg

dξ

)
= 0,

f2 + ξ
d

dξ
(f2)− 2

d

dξ
(f2g) = 0,
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and one straightforwardly computes the solutions to be of the form

g(ξ) =
ξ

2
, f(ξ) = Ce

− Ω√
3µ

ξ
.

The constant C must be chosen so that the drop has a volume V , yielding

C =

√
V Ω√
3μπ3

.

Capillary forces enter into play only at the tips of the peanut and result in the for-
mation of a small droplet whose size decreases in time. As in the axisymmetric case,
one cannot expect infinite growth of the drop in finite time, since inertial terms in
Navier–Stokes equations necessarily will be dominant before the drop spreads out to
infinity. The result will be growth up to some sufficiently large length and the ap-
pearance of Rayleigh–Plateau instabilities, resulting in breakup of the elongated drop
into smaller droplets.

If Ω > Ωap and Ω < Ωsp ∈ (4.69, 4.73), the initial spheroid configuration evolves
towards a nonaxisymmetric pizza-like shape (a torus with a thin film in the middle)
that is also unstable. Finally, for Ω > Ωsp the drop degenerates into an axisymmetric
pizza that evolves as described in the previous section. We have depicted the four
cases in Figure 10.

Fig. 10. Shapes resulting from the evolution of the rotating drop at constant Ω: Ω < Ω2 (top
left), Ω2 < Ω < Ωap (top right), Ωap < Ω < Ωsp (bottom left), and Ω > Ωsp (bottom right). They
are not at the same scale. The values of Ω2, Ωap, and Ωsp are obtained numerically.

5.2. Evolution at constant L. It is well known, since the works of Brown and
Scriven [6], that bifurcations breaking axial symmetry may take place at various val-
ues of L. For L = L2 ∈ (0.65, 0.66), axially symmetric shapes become unstable, and
evolution may lead to equilibrium shapes with a 2-fold symmetry about the axis. We
found that this is actually the case, and for L > L2 but smaller than L∗

2 ∈ (1.06, 1.10)
evolution leads to the so-called peanut shapes. For L > L∗

2, interesting phenomena
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(a) Ω versus time for L = 1.41.

(b) t = 2.36. (c) t = 8.11.

(d) t = 12.36. (e) t = 14.16.

Fig. 11. Evolution of the rotating drop at constant L for L = 1.41, μ1 = 1, and μ2 = 0.01.

take place (see Figure 11). First, an initially spherical drop deforms into an axisym-
metric shape. Nevertheless, these shapes are also unstable under nonaxisymmetric
perturbations and after some time destabilize and evolve very quickly towards the
peanut shape that is also unstable (since L > L∗

2 and there are not peanut-type equi-
librium solutions), and breakup of the drop in several pieces takes place. It is worth
noting that centrifugal forces near the breakup point are subdominant with respect
to viscous and capillary forces, so that breakup occurs as theoretically described in
[18] and [8]. With our code we were able to follow the evolution very close to the
breakup point, and we could even see the formation of two generations of necks (see
Figure 12).

There is another value of the angular momentum, L∗
3, that we estimated nu-

merically as L∗
3 ∈ (1.74, 1.78), so that for L > L∗

3 the dominant mode driving the
symmetry-breaking instability is 3-fold, and therefore evolution leads to the forma-
tion of three necks emerging from the center of the drop, ending with smaller drops
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Fig. 12. Top: Shape of the rotating drop at constant L near the breakup point (t = 14.55)
for L = 1.41, μ1 = 1, and μ2 = 0.01. The original drop has transformed into two big drops with
a cascade of necks between them. Bottom: Detail of the necks. Observe the formation of small
droplets in the smaller neck at the left.

Table 1

Axisymmetric evolution.

Constant Ω Constant L

Ω < Ω∗ Axisymmetric equilibrium L < L∗ Axisymmetric equilibrium
Ω > Ω∗ Expanding pizza shape L > L∗ Toroidal type II

and breaking up at a finite distance from the center (see Figure 13). We could not
find solutions developing into an n-fold symmetry with n > 3.

If we start with a torus as initial data, then for L < L∗
2 there is a clear tendency to

close the hole so that the drop tends to an equilibrium shape with the same topology
as the sphere. On the contrary, for L > L∗

2 the toroidal rim develops Rayleigh
instabilities that lead to a breakup into a sequence of drops (see Figure 14).

6. Conclusions. In this article we have studied the evolution of rotating vis-
cous drops. We have developed a numerical algorithm based on the boundary integral
formulation of the Stokes system. The numerical algorithm is adaptive and automat-
ically introduces local refinement in the critical regions such as necks, where the drop
is going to break up. Based on the numerical results and the analysis of the equations,
we have described the evolution both at constant angular velocity Ω and constant an-
gular momentum L. The different regimes found are summarized in Tables 1 and 2.

The values for Ω∗ and L∗ have been determined numerically, Ω∗ = 4.3648...,
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Fig. 13. Shape of the rotating drop at constant L near the breakup point for L = 3.54 and
μ1 = μ2 = 0.5. Observe that for L > L∗

3 the dominant mode driving the symmetry-breaking
instability is 3-fold.

(a) Toroidal initial configuration. (b) Equilibrium shape for L = 0.85.

(c) Near the breakup point for L = 1.7. (d) Near the breakup point for L = 2.83.

Fig. 14. Different equilibrium or breakup configurations starting from a torus as initial data.
In all cases μ1 = μ2 = 0.5.

L∗ = 2.3755.... Other critical values for Ω and L (Ω2, Ωap, Ωsp, L2, L3, L
∗
2, and L∗

3)
have been numerically computed for the particular case of a drop surrounded by a fluid
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Table 2

3D evolution.

Constant Ω Constant L

Ω < Ω2 Axisymmetric equilibrium L < L2 Axisymmetric equilibrium
Ω2 < Ω < Ωap Elongating filament L2 < L < L∗

2 Stable peanut shape
Ωap < Ω < Ωsp Asymmetric expanding pizza shape L∗

2 < L < L∗
3 Breakup (2-fold)

Ω > Ωsp Axisymmetric expanding pizza shape L > L∗
3 Breakup (3-fold)

with the same viscosity as the drop. We have verified that, for other viscosity ratios
up to 0.01, when the outer fluid viscosity is much smaller than the drop’s viscosity,
the qualitative picture does not change, although the critical values can be slightly
different.

The approach, at constant L > L∗, to the toroidal type II solutions occurs at an
O(t−1/2) rate, and the profiles for the interface present similarity features that we have
described in detail. The elongating filaments at constant Ω reach an infinite length
in finite time t0, the length blows up at an O((t0 − t)−1/2) rate, and the interface
profile approaches an explicit self-similar solution. Breakup at constant L is via an
axisymmetric similarity profile of the type described by Lister and Stone [18] and
Cohen et al. [8]. Finally, the axisymmetric expanding pizza shapes have a radius that
grows at an O((t0 − t)−1/2) rate, as shown by Howell, Scheid, and Stone [15].

A natural question that arises is whether the evolution for finite values of Ekman
and Reynolds numbers presents different features from those of the limits considered
in the present paper. This will be discussed in future publications.
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