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FORBIDDEN INDUCED SUBGRAPHS OF DOUBLE-SPLIT GRAPHS

BORIS ALEXEEV, ALEXANDRA FRADKIN, AND ILHEE KIM

Abstract. In the course of proving the strong perfect graph theorem, Chudnovsky, Robertson, Seymour,

and Thomas showed that every perfect graph either belongs to one of five basic classes or admits one of

several decompositions. Four of the basic classes are closed under taking induced subgraphs (and have

known forbidden subgraph characterizations), while the fifth one, consisting of double-split graphs, is not.

A graph is doubled if it is an induced subgraph of a double-split graph. We find the forbidden induced

subgraph characterization of doubled graphs; it contains 44 graphs.

1. Introduction

A key ingredient in the proof of the strong perfect graph theorem by Chudnovsky, Robertson, Seymour,

and Thomas [CRST06] is a decomposition theorem for all perfect graphs. This decomposition theorem states

that all perfect graphs either belong to one of five basic classes or admit one of several decompositions. The

five basic classes are bipartite graphs, complements of bipartite graphs, line graphs of bipartite graphs,

complements of line graphs of bipartite graphs, and double-split graphs. The first four classes are closed

under taking induced subgraphs and have known characterizations in terms of minimal forbidden induced

subgraphs. Indeed, a forbidden induced subgraph characterization is known for the union of these four

classes [ZZ05]. However, double-split graphs are not closed under taking induced subgraphs, and hence do

not have such a characterization.

In this paper, we consider the downward closure of double-split graphs under induced subgraphs (that is,

double-split graphs and all of their induced subgraphs) and we characterize this class in terms of minimal

forbidden induced subgraphs. Unlike the lists for the other four basic classes, the one for this class of graphs

is finite.

All graphs considered in this paper are finite and have no loops or multiple edges. For a graph G we

denote its vertex set by V (G) and its edge set by E(G). The complement of G is denoted by G. A clique

in a graph G is a set of vertices all pairwise adjacent and a stable set is a clique in G. For A ⊆ V (G), we

denote the subgraph of G induced on A by G|A, sometimes further abbreviating G|{u, v, w} by G|uvw. The

notation G ∼= H means G is isomorphic to H . For v ∈ V (G), we denote the set of neighbors of v in G by

NG(v) and for X ⊆ V (G), we denote by NX(v) the set of neighbors of v in G|X .

Let X,Y ⊆ V (G) with X ∩ Y = ∅. We say that X and Y are complete to each other if every vertex of

X is adjacent to every vertex of Y , and we say that they are anticomplete if no vertex of X is adjacent to a

member of Y . For an integer i ≥ 0, let Pi, Ci denote the path and cycle with i edges, respectively.

For integers a, b ≥ 0, let Ma,b be the graph on 2a + b vertices consisting of the disjoint union of a edges

and b isolated vertices. We say that a graph G is semi-matched if it is isomorphic to Ma,b for some a, b ≥ 0

and we say that it is matched if in addition b = 0. Similarly, we say that G is semi-antimatched if it is

isomorphic to some Ma,b and antimatched if in addition b = 0.

Let A,B ⊆ V (G) such that A ∩ B = ∅, A is semi-matched, and B is semi-antimatched. We say that A

and B are aligned if the following holds:
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F1 = C5 F2 = K2,3 F3 = watch F4 = TV

F5 = flag F6 = fish F7 = P0 ∪ P1 ∪ P2 F8 = P1 ∪ P3

F9 F10 F11 F12

F13 = C7 F14 F15 F16

F17 = C6 ∪ P0 F18 F19 = W6 F20

F21 F22 F23 = L(K3,3)

Figure 1. The family F : these 23 graphs, and their complements, are the minimal for-
bidden induced subgraphs for double-split graphs. Only F1 = C5 and F23 = L(K3,3) are
self-complementary.
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• for all adjacent u, v ∈ A and all w ∈ B, w is adjacent to exactly one of u and v

• for all u ∈ A and non-adjacent x, y ∈ B, u is adjacent to exactly one of x and y.

A graph G is split if its vertex set V (G) can be partitioned into a clique and a stable set. A graph G is

double-split if its vertex set V (G) can be partitioned into two sets, A and B, such that the following holds:

• G|A is matched,

• G|B is antimatched, and

• A and B are aligned.

It is easy to see that every split graph is an induced subgraph of many double-split graphs. Also, every

induced subgraph of a split graph is also split. Split graphs have a well-known forbidden induced subgraphs

characterization:

1.1. [Foldes and Hammer [FH77]] A graph is split if and only if it does not contain C4, C4, or C5 as an

induced subgraph.

In this paper we consider a class of graphs that includes both split and double-split graphs. We say a

graph G is doubled if there exists a double-split graph H that contains G as an induced subgraph. Notice

that a graph G is double-split if and only if G is double-split, and hence a graph G is doubled if and only if

G is doubled. The main result of this paper is the following:

1.2. A graph is doubled if and only if it does not contain any graphs in F , the family of graphs illustrated

in Figure 1.

It follows that F is the list of minimal forbidden induced subgraphs for double-split graphs. The idea for

our proof of 1.2 is as follows. To prove the ”if” part of 1.2, we assume that G is not split, hence contains

one of C4, C4, and C5. Since C5 is in F and the class of doubled graphs is self complementary, we may

assume that G has C4 as an induced subgraph. However, since C4 is a doubled graph in two different ways

(all four vertices can appear on the anti-matched side or 2 vertices can appear on the matched side and

the other 2 vertices on the semi-antimatched side), there is no easy procedure to partition the remaining

vertices of the graph. To avoid this obstacle, we introduce another class of graphs that lies inbetween the

class of split graphs and the class of doubled graphs. In section 2, we find the forbidden induced subgraph

characterization for this class and we use this characterization to prove 1.2 in section 3.

2. Almost-split graphs

We say a graph G is almost-split if G is doubled and there exists v ∈ V (G) such that G|(V (G) \ {v})

is split. In other words, G is almost-split if there is at most one pair matched or antimatched. Note that

every split graph is almost-split and every almost-split graph is doubled. In this section we present the list

of forbidden induced subgraphs for the class of almost-split graphs.

2.1. A graph is almost-split if and only if it does not contain any graphs in the circus, the list of graphs

illustrated in Figure 2 along with their complements.

Proof. The “only if” part is clear, as it is easy to check that none of the graphs in the circus are almost-split.

For the “if” part, suppose that G does not contain any graphs in the circus. By 1.1, we may assume that G

contains C4 or C4 since split graphs are almost-split. Furthermore, since the statement is self-complementary,
3



F1 = C5 F2 = K2,3 F3 = watch F4 = TV

F5 = flag F6 = fish M2,1 P5

C6 domino tent1 tent2

Figure 2. The “circus”: these 12 graphs, and their complements, are the minimal forbidden
induced subgraphs for almost-split graphs.

we may assume that G contains C4. Let a, b, c, d ∈ V (G) be such that G|abcd ∼= C4 and a is adjacent to b

and d. Let S = {a, b, c, d}.

Since W4
∼= M2,1 is in the circus, it follows that for all v ∈ V (G), v is not complete to S. For 0 ≤ i ≤ 3,

let Ai ⊆ V (G) \ S denote the set of vertices that have i neighbors in S. Our goal is to show that there exist

adjacent x, y ∈ S such that:

• A0 ∪A1 ∪ A2 ∪ {x, y} contains only one edge (namely xy), and

• A3 ∪ (S \ {x, y}) is a clique, and

• every vertex of A3 ∪ (S \ {x, y}) is adjacent to exactly one of x and y.

(1) If A2 6= ∅, then there exist x, y ∈ S such that A2 is complete to {x, y}. Moreover, A2 is a stable set.

Let Aab ⊆ A2 be those vertices that are adjacent to a and b, and define Aac, Aad, Abc, Abd, Acd similarly.

First suppose that u ∈ Aac ∪Abd; then G|abcdu ∼= K2,3. Hence, both Aac and Abd are empty. Next suppose

there exists u ∈ Aab and v ∈ Abc. Then either G|abcduv ∼= tent2 or G|acduv ∼= C5, depending on the

adjacency between u and v. Therefore, at least one of Aab and Abc is empty, and from symmetry the same

is true for the pairs {Abc, Acd}, {Acd, Aad}, and {Aab, Aad}. We claim that at least one of Aab and Acd is

empty. For suppose u ∈ Aab and v ∈ Acd. Then G|abcduv ∼= C6 or G|abcduv ∼= domino, depending on the

adjacency between u and v. Similarly, at least one of Abc and Aad is empty. We conclude that at most

one of Aab, Aac, Aad, Abc, Abd, and Acd is non-empty. Finally suppose that u, v ∈ A2 are adjacent. Then

G|abcduv ∼= watch. Hence, A2 is a stable set. This proves (1).

(2) There exist adjacent x, y ∈ S such that NS(A1) ⊆ {x, y}. Moreover, if A2 6= ∅, then NS(A1) ⊆ NS(A2).
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Let Aa ⊆ A1 be those vertices that are adjacent to a, and define Ab, Ac and Ad similarly. We show that

at least one of Aa and Ac is empty. For suppose that u ∈ Aa and v ∈ Ac. Then either G|abcduv ∼= watch or

G|abcuv ∼= C5, depending on the adjacency between u and v. Similarly, at least one of Ab and Ad is empty.

This proves the first part of (2).

Next, let u ∈ A1 and v ∈ A2. Suppose that NS(A1) 6⊆ NS(A2). From symmetry, we may assume that

u ∈ Aa and v ∈ Abc. But then either G|abcduv ∼= tent1 or G|acduv ∼= C5, depending on the adjacency

between u and v. This proves (2).

(3) A0 ∪ A1 ∪ A2 is a stable set.

First, let u, v ∈ A0 and suppose that they are adjacent. Then G|abcduv ∼= TV. Hence, A0 is a stable

set. Next, suppose u, v ∈ A1 and suppose that they are adjacent. If u, v have a common neighbor in S

then G|abcduv ∼= fish. If u, v have different neighbors in S, then by (2) their neighbors are adjacent and so

G|abcduv ∼= domino. This proves that A1 is a stable set. Recall that A2 is a stable set by (1).

Now we show that A0, A1, and A2 are pairwise anticomplete to each other. Let u ∈ A0, v ∈ A1 and

suppose that u and v are adjacent. Then G|abcduv ∼= flag. Next, let u ∈ A0 and v ∈ A2 and again suppose

that u and v are adjacent. Then G|abcduv ∼= tent2. Finally, let u ∈ A1 and v ∈ A2 and suppose that they

are adjacent. Then G|abcduv ∼= tent1. Therefore, we have shown that A0 ∪ A1 ∪ A2 is stable. This proves

(3).

(4) There exist adjacent x, y ∈ S such that A3 is complete to x, y. Moreover, for all u ∈ A1∪A2 and v ∈ A3,

NS(u) ⊆ NS(v).

Let Aabc ⊆ A3 be the set of vertices that are adjacent to a, b and c, and define Aabd, Aacd and Abcd

similarly. We claim that at least one of Aabc and Aacd is empty. For suppose that u ∈ Aabc and v ∈ Aacd.

Then either G|(S ∪ {u, v}) ∼= TV or G|acduv ∼= W4, depending on the adjacency between u and v. This

proves the claim. By a similar argument, at least one of Aabd and Abcd is empty. Therefore, there exist (at

least) 2 adjacent vertices of S that are complete to A3.

Next, let u ∈ A1 ∪ A2 and v ∈ A3 and suppose that NS(u) 6⊆ NS(v). From symmetry, we may assume

that v ∈ Aabc. If u ∈ A1, then u ∈ Ad and so either G|abcduv ∼= fish or G|acduv ∼= K2,3. So we may assume

that u ∈ A2. Again from symmetry, we may assume that u ∈ Acd. But then either G|abcduv ∼= flag or P5,

depending on the adjacency between u and v. This proves (4).

(5) A3 is a clique.

Let u, v ∈ A3 and suppose that they are not adjacent. By (4), there exist adjacent x, y ∈ S such that A3

is complete to {x, y}, and from symmetry we may assume {x, y} = {a, b}. First suppose that u, v ∈ Aabc.

Then G|acduv ∼= K2,3. Therefore, Aabc is a clique, and similarly so is Aabd. Next suppose that u ∈ Aabc and

v ∈ Aabd. Then G|abcduv ∼= P5. Hence, A3 is a clique, and this proves (5).

From (1), (2), and (4), it follows that there exist adjacent x, y ∈ S such that A3 ∪ A2 is complete to

{x, y} and NS(A1) ⊆ {x, y}. From symmetry, we may assume that {x, y} = {a, b}. Hence, A0 ∪ A1 ∪ A2 is
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anticomplete to {c, d}. Therefore, by (3), A0 ∪ A1 ∪ A2 ∪ {c, d} contains exactly one edge (namely cd). By

(4) and (5), A3 ∪ {a, b} is a clique. Also, since every member of A3 is adjacent to exactly 3 members of S,

it follows that for all u ∈ A3 ∪ {a, b}, u is adjacent to exactly one of c, d. Hence, we have shown that G is

almost-split and this proves 2.1. �

3. Excluding 6 graphs

In the previous section, we have seen the 12 minimal forbidden induced subgraphs (up to taking comple-

ments) for almost-split graphs. Six of them are doubled and the other six are not. In this section, we prove

that if a graph contains one of these six doubled graphs but no graphs in F , then it is doubled.

3.1. A graph containing M2,1 but no graphs in F is doubled.

Proof. Let G be a graph containing M2,1 but no graphs in F . Let G|abcde ∼= M2,1, where bc and de are the

two edges; let S = {a, b, c, d, e}. For 0 ≤ i ≤ 4, let Ai ⊆ V (G) \ S denote the set of vertices that have i

neighbors in {b, c, d, e}. Our goal is to show the following:

• A1 = A3 = A4 = ∅, and

• G|(A0 ∪ S) is semi-matched, and

• G|A2 is semi-antimatched, and

• A0 ∪ S and A2 are aligned.

Together, these statements imply that G is doubled.

(1) A1 = A3 = A4 = ∅. Also, if v ∈ A2, then v is adjacent to exactly one of b and c, and to exactly one of

d and e.

If v ∈ A1, then G|abcdev ∼= F7 or F8, depending on the adjacency between v and a. Therefore A1 is

empty. If v ∈ A3, then G|abcdev ∼= F9 or F10, depending on the adjacency between v and a. Therefore A3

is empty. And if v ∈ A4, then G|abcdev ∼= F11 or G|abcdev ∼= F12, depending on the adjacency between v

and a. Therefore A4 is empty.

Next, let v ∈ A2. If v is adjacent to b and c, then G|bcdev ∼= K2,3. By symmetry, v is not adjacent to

both of d and e. Hence, v is adjacent to exactly one of b and c and to exactly one of d and e. This proves

(1).

(2) G|(A0 ∪ S) is semi-matched.

First, we claim that at most one vertex x ∈ A0 is adjacent to a, and if such a vertex x exists, then x is

not adjacent to any other vertices in A0. For suppose there are two vertices x, y ∈ A0, both adjacent to a.

If x and y are adjacent, then G|abcxy ∼= K2,3, and if they are not adjacent, G|abcdxy ∼= F7. So there is at

most one vertex in A0 adjacent to a. Moreover if there is a vertex x ∈ A0 adjacent to a, x is not adjacent

to any other vertex y ∈ A0 since otherwise G|abcdxy ∼= F7. This proves the claim.

To prove (2), it is enough to show that there do not exist vertices u, v, w ∈ A0 ∪ {a, b, c, d, e} such that

G|uvw ∼= C3 or G|uvw ∼= P2. If at least one of u, v, w is a member of S, then G|uvw cannot be isomorphic

to C3 nor P2 by the claim. So we may assume u, v, w ∈ A0. But now if G|uvw ∼= C3, then G|bcuvw ∼= K2,3

and if G|uvw ∼= P2, then G|bcduvw ∼= F7. This proves (2).
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(3) Let u, v ∈ A2 be non-adjacent. Then N{b,c,d,e}(u) is disjoint from N{b,c,d,e}(v). Moreover, exactly one of

u and v is adjacent to a.

From (1) and by symmetry, we may assume that u is adjacent to b and d. Suppose that v is also adjacent

to b and d. Then G|bcdeuv ∼= watch. Next, suppose that v is adjacent to b and e (or c and d). Then G|bdeuv

(or G|bcduv) is isomorphic to C5. Consequently, v is adjacent to c and e.

Moreover, if u and v are both adjacent to a, then G|abcuv ∼= C5 and if u and v are both non-adjacent to

a, then G|abcdeuv ∼= F17. Hence, exactly one of u and v is adjacent to a. This proves (3).

(4) G|A2 is semi-antimatched.

It follows easily from (3) that there is no stable set of size 3 in A2. Therefore, it is enough to show that

there do not exist vertices u, v, w ∈ A2 such that G|uvw contains exactly one edge (say uv). For contradic-

tion, suppose that such u, v, w exist. From (3) and by symmetry, we may assume that {u, v} is complete to

{b, d}, w is complete to {c, e}, and N{u,v,w}(a) is either {u, v} or {w}. In the first case, G|acuvw ∼= K2,3 and

in the second case, G|abuvw ∼= K2,3. Therefore, there do not exist u, v, w ∈ A2 such that G|uvw contains

exactly one edge, and this proves (4).

It remains to show that G|(A0 ∪ S) and G|A2 are aligned. In (3), we have shown that for all non-adjacent

u, v ∈ A2 and all w ∈ A0 ∪ S, w is adjacent to exactly one of u and v. Hence, it suffices to show that for

all u ∈ A2 and all adjacent v, w ∈ A0 ∪ S, u is adjacent to exactly one of v, w. So suppose that for some

u, v, w as above, u is adjacent to both of v, w. Let x, y ∈ A0 ∪ S be adjacent such that {x, y} is disjoint

from {v, w} (such x, y exist since A0 ∪ S contain at least two edges). Then G|uvwxy ∼= K2,3. Next, suppose

that for some u, v, w as above, u is non-adjacent to both of v, w. Note that by (1), {v, w} is disjoint from

{b, c, d, e}. By (1) and without loss of generality, we may assume that u is adjacent to b and d. But then

G|bceuvw ∼= F7. Therefore G is doubled and this proves 3.1. �

3.2. A graph containing P5 but no graphs in F is doubled.

Proof. Let G be a graph containing P5 but no graphs in F . Let G|abcdef ∼= P5 where ab, bc, cd, de, and ef

are the five edges. By 3.1, we may assume that G or G does not contain M2,1. Let S = {a, b, c, d, e, f}. For

0 ≤ i ≤ 4, let Ai ⊆ V (G) \ S denote the set of vertices that have i neighbors in {b, c, d, e}. Our goal is to

show the following:

• A0 = A2 = A4 = ∅, and

• G|(A1 ∪ {a, c, d, f}) is semi-matched, and

• G|(A3 ∪ {b, e}) is semi-antimatched, and

• G|(A1 ∪ {a, c, d, f}) and G|(A3 ∪ {b, e}) are aligned.

Together, these statements imply that G is doubled.

(1) A0 = A2 = A4 = ∅.

First suppose v ∈ A0. If v is non-adjacent to a, then G|abdev ∼= M2,1. So we may assume that v is

adjacent to a and similarly v is adjacent to f ; but then G|abcdefv ∼= F13. Therefore A0 is empty.
7



Next, suppoose v ∈ A4. If v is not adjacent to both of a and f , then G|abcdefv ∼= F14. If v is adjacent to

exactly one of a and f , then G|abcdefv ∼= F15. So we may assume that v is adjacent to both a and f ; but

then G|abcdefv ∼= F16. Therefore A4 is empty.

Finally suppose v ∈ A2. Let Abc ⊆ A2 be those vertices that are adjacent to b and c, and define Abd,

Abe, Acd, Ace, Ade similarly. Suppose v ∈ Abc. If v is adjacent to f , then G|cdefv ∼= C5; otherwise,

G|bcefv ∼= K2,3. Therefore Abc is empty and by symmetry, Ade is empty. Next, suppose v ∈ Abd. If v is

not adjacent to a, then G|abcdev ∼= watch and if v is not adjacent to f , then G|bcdefv ∼= flag. So we may

assume that v is adjacent to both of a and f ; but then G|abdefv ∼= fish. Therefore Abd is empty and by

symmetry, Ace is empty. Next, suppose v ∈ Abe. Then G|bcdev ∼= C5. Therefore Abe is empty. So we may

assume that v ∈ Acd. If v is adjacent to both of a and f , then G|abcefv ∼= flag. If v is adjacent to a and not

to f , then G|abcefv ∼= TV, and if v is adjacent to f and not to a, then G|abdefv ∼= TV. So we may assume

that v is not adjacent to either a or f ; but then G|abefv ∼= M2,1. Therefore A2 = ∅ and this proves (1).

(2) If v ∈ A1, then v is adjacent to either b or e and is not adjacent to both a and f . Moreover, A1 is a

stable set.

Let Ab ⊆ A1 be those vertices that are adjacent to b, and define Ac, Ad, Ae similarly. Suppose v ∈ Ac.

If v is adjacent to a, then G|abcdev ∼= flag; otherwise, G|abdev ∼= M2,1. Therefore Ac is empty, and by

symmetry, Ad is empty. Suppose v ∈ Ab. If v is adjacent to a, then G|abdev ∼= K2,3 and if v is adjacent to f ,

then G|acdfv ∼= M2,1. Therefore v is anticomplete to {a, f}, and similarly, every vertex in Ae is anticomplete

to {a, f}.

Next, suppose that u, v ∈ Ab are adjacent. Then G|bdeuv ∼= K2,3. Therefore Ab is a stable set and

similarly, so is Ae. Finally, suppose that u ∈ Ab and v ∈ Ae are adjacent. Then G|acduv ∼= M2,1. Therefore

Ab ∪ Ae = A1 is a stable set, and this proves (2).

(3) If v ∈ A3, then N{b,c,d,e}(v) is either {b, c, e} or {b, d, e}. Moreover, if u, v ∈ A3 are not adjacent, then

N{u,v}(c) 6= N{u,v}(d) and |N{u,v}(a)| = |N{u,v}(f)| = 1.

Let Abcd ⊆ A3 be those vertices that are adjacent to b, c, and d, and define Abce, Abde, Acde similarly.

Suppose v ∈ Acde. If v is not adjacent to a, then G|abdev ∼= K2,3, and if v is adjacent to a and f , then

G|abcefv ∼= fish. So we may assume that v is adjacent to a but not to f ; but then G|abcefv ∼= flag. Therefore

Acde is empty and similarly, so is Abcd.

Now suppose u, v ∈ Abce are not adjacent; then G|cdeuv ∼= K2,3. ThereforeAbce is a clique and similarly, so

is Abde. Suppose u ∈ Abce and v ∈ Abde are not adjacent. If u, v are both adjacent to a, then G|abdeuv ∼= flag,

and if u, v are both non-adjacent to a, then G|abcdeuv ∼= F18. Therefore exactly one of u and v is adjacent

to a and similarly, exactly one of u and v is adjacent to f . This proves (3).

(4) G|(A3 ∪ {b, e}) is semi-antimatched.

It is enough to show that no set of three vertices {u, v, w} ⊆ A3∪{b, e} contains fewer than two edges. By

(3), it is obvious that there are no stable sets of size 3 in G|(A3 ∪ {b, e}). Suppose {u, v, w} contains exactly

one edge uv. From (3) and symmetry, we may assume u, v ∈ Abce and w ∈ Abde. But then G|cdeuvw ∼= flag.

8



This proves (4).

From (2) and (4), we have a candidate of a partition for G to be doubled. The subgraph G|(A1 ∪{a, c, d, f})

contains only one edge (namely cd) and G|(A3∪{b, e}) is semi-antimatched. Every v ∈ A3∪{b, e} has exactly

one neighbor in {c, d} and from (3), for every non adjacent pair u, v ∈ A3 ∪ {b, e}, N{u,v}(c) 6= N{u,v}(d).

Also by (3), if u, v ∈ A3∪{b, e} are nonadjacent, |N{u,v}(a)| = |N{u,v}(f)| = 1. Moreover, for w ∈ A1, either

G|abcdew ∼= P5 or G|bcdefw ∼= P5, and so |N{u,v}(w)| = 1 for every w ∈ A1, by an analogous argument

to the one above. Therefore, G|(A3 ∪ {b, e}) and G|(A1 ∪ {a, c, d, f}) are aligned and so G is doubled; this

proves 3.2. �

3.3. A graph containing C6 but no graphs in F is doubled.

Proof. Let G be a graph containing C6 but no graphs in F . Let G|abcdef ∼= C6 where {a, c, e} and {b, d, f}

are the two triangles and the remaining edges are ad, be, and cf . Let S = {a, b, c, d, e, f}. By 3.1, we may

assume G or G does not contain M2,1. For 0 ≤ i ≤ 6, let Ai ⊆ V (G) \ S denote the set of vertices that have

i neighbors in S. Our goal is to show that Ai = ∅ unless i = 2 and 4 vertices of S induce antimatching side

and the rest of vertices (two in S together with vertices in A2) induce matching side so that G is doubled.

(1) Ai = ∅ for i = 0, 1, 3, 4, 5, 6.

If v ∈ A0, then G|(S ∪ {v}) ∼= F19, so A0 is empty. Also, if v ∈ A6, then G|(S ∪ {v}) ∼= F17, and so A6 is

empty.

Next, suppose v ∈ A1. From symmetry, we may assume NS(v) = {a}. Then G|(S ∪ {v}) ∼= F18 and

therefore A1 is empty.

Next, suppose v ∈ A3. From symmetry, we may assume NS(v) is one of {a, b, c}, {a, b, d}, {a, c, e}. If

NS(v) = {a, b, c}, then G|abdev ∼= K2,3 and if NS(v) = {a, b, d}, then G|abcfv ∼= C5. So we may assume

that NS(v) = {a, c, e}; but then G|abcdev ∼= watch and so A3 is empty.

Next, suppose v ∈ A4. From symmetry, we may assume NS(v) is one of {a, b, c, d}, {a, b, c, e}, and

{a, b, d, e}. If NS(v) = {a, b, c, d}, then G|bcefv ∼= K2,3 and if NS(v) = {a, b, c, e}, then G|acdefv ∼= watch.

So we may assume that NS(v) = {a, b, d, e}; but then G|abcfv ∼= C5, and so A4 is empty.

Finally, suppose v ∈ A5. From symmetry, we may assume NS(v) = {b, c, d, e, f}. Then G|bcefv ∼= M2,1.

Therefore A5 is empty and this proves (1).

For u, v ∈ S, let Auv ⊆ A2 be those vertices that are adjacent to u and v.

(2) Aab = Abc = Acd = Ade = Aef = Afa = ∅.

Suppose v ∈ Aab. Then G|abcfv ∼= C5. Therefore Aab is empty and similarly, so are Abc, Acd, Ade, Aef

,and Afa.

(3) For every x, y ∈ S, Axy is a stable set.

9



Suppose u, v ∈ Aac are adjacent. Then G|acdfuv ∼= watch. Therefore Aac is a stable set and similarly so

are Aae, Ace, Abd, Abf , and Adf . Suppose u, v ∈ Aad are adjacent. Then G|acdfuv ∼= watch. Therefore Aad

is a stable set and similarly so are Abe and Acf . This proves (3).

(4) If Aac 6= ∅, then Aae = Ace = Abd = Abf = ∅.

Suppose u ∈ Aac, and v ∈ Aae. If u and v are adjacent, then G|aceuv ∼= M2,1, and otherwise G|bcduv ∼=

M2,1. Therefore if Aac is not empty, then Aae = ∅ and similarly, Ace = ∅.

Now suppose v ∈ Abd. If u and v are adjacent, then G|cdfuv ∼= C5, and otherwise G|bcefuv ∼= watch.

Therefore if Aac is not empty, then Abd = ∅ and similarly, Abf = ∅. This proves (4).

(5) If Aad 6= ∅, then Ace = Abf = ∅.

Suppose u ∈ Aad and v ∈ Ace. If u and v are adjacent, then G|cdfuv ∼= C5, and otherwise G|cdeuv ∼= K2,3.

Therefore if Aad is not empty, then Ace is empty and similarly, Abf is empty as well. This proves (5).

(6) If u ∈ Aad, then NG(u) \ S ⊆ Abe ∪ Acf .

Suppose u ∈ Aad. Then from (5), Ace = Abf = ∅, and from (3), u has no neighbors in Aad. Now suppose

v ∈ Aac is adjacent to u. Then G|cdfuv ∼= C5. Therefore u is anticomplete to Aac, and similarly, u is

anticomplete to Aae, Abd, and Adf as well. Therefore NG(u) \ S ⊆ Abe ∪ Acf , and this proves (6).

(7) If there are adjacent vertices u ∈ Aad and v ∈ Abe ∪ Acf , then V (G) = S ∪ {u, v} and G is doubled.

From symmetry, we may assume v ∈ Acf is adjacent to u ∈ Aad. We know that Aae∪Ace∪Abd∪Abf = ∅

by (5). Suppose w ∈ Aac ∪ Adf . Then from (6), {u, v} is anticomplete to w and so G|beuvw ∼= M2,1.

Therefore Aac ∪ Aae ∪ Ace ∪ Abd ∪ Abf ∪ Adf = ∅.

Next, suppose w(6= v) ∈ Acf . From (3), w is not adjacent to v. If w is adjacent to u, then G|abfuvw ∼=

watch, and otherwise G|beuvw ∼= M2,1. Therefore Acf = {v} and similarly, Aad = {u}.

Now suppose w ∈ Abe. If w is anticomplete to {u, v}, then G|beuvw ∼= K2,3. Therefore w is adjacent

to at least one of {u, v} and by the same logic as above, Abe = {w}. If w is adjacent to exactly one of u

and v (say u), then G|abcuvw ∼= flag. So we may assume that w is adjacent to both u and v; but then

G|(S ∪ {u, v, w}) ∼= F23. Therefore Abe = ∅. But then V (G) = S ∪ {u, v}. Since G|uvbe is matched, G|abcf

is antimatched, and the two subgraphs are aligned, it follows that G is doubled. This proves (7).

(8) If v ∈ Aac, then NG(v) \ S ⊆ Adf .

Suppose v ∈ Aac. From (3), v has no neighbors in Aac. From (4), Aae = Ace = Abd = Abf = ∅ and from

(5), Abe = ∅. Finally, from (6), v is anticomplete to Aad ∪Acf . Therefore NG(v) \ S ⊆ Adf , and this proves

(8).
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(9) If there are adjacent vertices u ∈ Aac and v ∈ Adf , then V (G) = S ∪ {u, v} and G is doubled.

From (4) and (5), Aae = Ace = Abd = Abf = Abe = ∅. If w ∈ Aad ∪Acf , then from (8), w is anticomplete

to {u, v} and so G|beuvw ∼= M2,1. Therefore Aad ∪ Acf is empty and V (G) \ S = Aac ∪ Adf .

Now suppose w(6= v) ∈ Adf . From (3), w is not adjacent to v. If w is adjacent to u, then G|cdeuvw ∼= flag,

and otherwise G|beuvw ∼= M2,1. Therefore Adf = {v} and similarly, Aac = {u}. Hence, V (G) = S ∪ {u, v}.

Since G|uvbe is matched, G|abcf is antimatched, and the two subgraphs are aligned, it follows that G is

doubled. This proves (9).

(10) If G|(V (G) \ S) is a stable set, then G is doubled.

Suppose G|(V (G) \ S) is a stable set. First, suppose Aac ∪ Ace ∪ Aae ∪ Abd ∪ Abf ∪ Adf 6= ∅. From

symmetry, we may assume Aac 6= ∅. Then from (4), Aae = Ace = Abd = Abf = ∅ and from (5), Abe = ∅.

Therefore every vertex in V (G) \ S has exactly one neighbor in {a, f} and exactly one neighbor in {c, d}.

Now it is easy to see that G is doubled with G|acdf as the antimatched part.

Therefore we may assume Aac∪Ace∪Aae∪Abd∪Abf ∪Adf = ∅. Suppose all three of the sets Aad, Abe, and

Acf are not empty. Then for u ∈ Aad, v ∈ Abe, and w ∈ Acf , G|afuvw ∼= M2,1. Therefore from symmetry,

we may assume Abe is empty. Now again, every vertex in V (G) \ S has exactly one neighbor in {a, f} and

exactly one neighbor in {c, d}, so G is doubled with G|acdf as the antimatched part. This proves (10).

By (10), we may assume that G|V (G) \ S contains an edge uv. From symmetry, we may assume u ∈ Aad or

u ∈ Aac. If u ∈ Aad, then by (6) and (7), v ∈ Abe ∪Acf and G is doubled. So we may assume that u ∈ Aac;

but then by (8) and (9), v ∈ Adf and G is doubled. This proves 3.3. �

3.4. A graph containing domino but no graphs in F is doubled.

Proof. Let G be a graph containing domino but no graphs in F . By 3.1, 3.2, and 3.3, we may assume that G

does not contain M2,1, P5, C6, or their complements as induced subgraphs. Let G|abcdef ∼= domino, where

ab, bc, ca, bd, ce, de, df , and ef are the edges; let S = {a, b, c, d, e, f}. For 0 ≤ i ≤ 4, let Ai ⊆ V (G) \ S

denote the set of vertices that have i neighbors in {b, c, d, e}. Our goal is to show the following:

• A0 = A1 = A3 = A4 = ∅, and

• G|(A2 ∪ {a, f}) is a stable set, and

• G|bcde is antimatched, and

• A2 ∪ {a, f} and {b, c, d, e} are aligned.

Together, these statements imply that G is doubled.

(1) A0 = A1 = A3 = A4 = ∅.

Suppose v ∈ A0. If v is complete to {a, f}, then G|abdfv ∼= C5, and if v is anticomplete to {a, f},

then G|acdfv ∼= M2,1. So we may assume that v is adjacent to exactly one of a and f , say a; but then

G|adefv ∼= K2,3. Therefore A0 = ∅.

Next, suppose v ∈ A1. From symmetry, we may assume N{b,c,d,e}(v) = {b}. If v is complete to {a, f},

then G|acefv ∼= C5, and if v is anticomplete to {a, f}, then G|acdfv ∼= M2,1. Furthermore, if v is adjacent
11



to a but not to f , then G|abefv ∼= K2,3. So we may assume that v is adjacent to f but not to a; but then

G|bcefv ∼= C5. Therefore A1 = ∅.

Next, suppose v ∈ A3. From symmetry, we may assume N{b,c,d,e}(v) = {b, c, e}. If v is not adjacent to f ,

then G|bcdefv ∼= flag, and if v is complete to {a, f}, then G|abcdfv ∼= watch. So we may assume that v is

adjacent to f but not to a; but then G|abdefv ∼= fish. Therefore A3 = ∅.

Finally, suppose v ∈ A4. Then G|bcdev ∼= M2,1. Therefore A4 = ∅. This proves (1).

For u, v ∈ {b, c, d, e}, let Auv ⊆ A2 be those vertices that are adjacent to u and v.

(2) Abe = Acd = ∅. Moreover, A2 ∪ {a, f} is a stable set.

Suppose v ∈ Abe ∪ Acd; then G|bcdev ∼= K2,3. Therefore Abe = Acd = ∅. Next, suppose v ∈ Abc. If v

is adjacent to a, then G|abcdev ∼= watch and if v is adjacent to f , then G|bcdefv ∼= C6. Therefore Abc is

anticomplete to {a, f}, and from symmetry, so is Ade.

Now suppose v ∈ Abd. If v is adjacent to a, thenG|acdev ∼= C5 and if v is adjacent to f , thenG|cdefv ∼= C5.

Therefore Abd is anticomplete to {a, f}, and from symmetry, so is Ace. It follows that A2 is anticomplete

to {a, f}. Note that for v ∈ Abc ∪ Ade, either G|abcdev ∼= domino or G|bcdefv ∼= domino, and so by an

argument analogous to the one above, we conclude that Abc ∪ Ade is anticomplete to Abd ∪ Ace and that

Abc ∪ Ade is a stable set; hence Abc ∪Ade ∪ {a, f} is a stable set.

It remains to show that Abd ∪ Ace is a stable set. For suppose u, v ∈ Abd are adjacent; then G|bcdeuv ∼=

watch. Therefore Abd is a stable set and from symmetry, so is Ace. Next, suppose u ∈ Abd and v ∈ Ace are

adjacent; then G|bcdeuv ∼= C6. Therefore A2 ∪ {a, f} is a stable set and this proves (2).

Now {b, c, d, e} is anti-matched by definition and A2 ∪ {a, f} is a stable set by (2). It remains to show

that A2 ∪ {a, f} and {b, c, d, e} are aligned. Since A2 ∪ {a, f} is a stable set, it suffices to show that for all

v ∈ A2 ∪ {a, f}, v is adjacent to exactly one of b, e and exactly one of c, d. For v ∈ {a, f} this is true by

definition, and for v ∈ A2 this follows from (2). Therefore G is doubled and this proves 3.4. �

3.5. A graph containing tent1 but no graphs in F is doubled.

Proof. Let G be a graph containing tent1 but no graphs in F . By 3.1, 3.2, 3.3, and 3.4, we may assume that

G does not contain M2,1, P5, C6, domino or their complements as induced subgraphs. Let G|abcdef ∼= tent1,

where ab, bc, cd, de, fa, fb, fc, and fe are the edges; let S = {a, b, c, d, e, f}. For 0 ≤ i ≤ 4, let Ai ⊆ V (G)\S

denote the set of vertices that have i neighbors in {b, c, d, e}. Our goal is to show the following:

• A0 = A2 = A4 = ∅, and

• G|(A1 ∪ {a, c, d}) is semi-matched, and

• G|(A3 ∪ {b, e, f}) is semi-antimatched, and

• A1 ∪ {a, c, d} and A3 ∪ {b, e, f} are aligned.

Together, these statements imply that G is doubled.

(1) A0 = A2 = A4 = ∅.

Suppose v ∈ A0. If v is adjacent to a, then G|abcdev ∼= P5, and if v is not adjacent to a, then G|abdev ∼=

M2,1. Therefore A0 = ∅.
12



Next, suppose v ∈ A4. If v is adjacent to f , then G|cdefv ∼= M2,1, and if v is not adjacent to f , then

G|bcdefv ∼= P5. Therefore A4 = ∅.

Next, we show that A2 = ∅. For u, v ∈ {b, c, d, e}, let Auv ⊆ A2 be those vertices that are adjacent to u

and v. If v ∈ Abe, then G|bcdev ∼= C5, and so Abe = ∅. Now suppose v ∈ Abc. If v is adjacent to a, then

G|abdev ∼= K2,3 and if v is adjacent to f , then G|bcdefv ∼= watch. So we may assume that v is not adjacent

to either a or f ; but then G|S ∪ {v} ∼= F20. Therefore Abc = ∅.

Next, suppose v ∈ Abd. If v is not adjacent to f , then G|bdefv ∼= C5, and if v is not adjacent to a, then

G|abcdev ∼= watch. Hence, we may assume that v is adjacent to both a and f ; but then G|abdefv ∼= watch.

Therefore Abd = ∅.

Next, suppose v ∈ Acd. If v is adjacent to both a and f , then G|abcfv ∼= M2,1. Next, if v is adjacent to a

but not to f , then G|abcdfv ∼= flag, and if v is adjacent to f but not to a, then G|abdefv ∼= fish. So we may

assume that v is not adjacent to a or f ; but then G|abdfv ∼= K2,3. Therefore Acd = ∅.

Next, suppose v ∈ Ace. Then G|abcdev ∼= domino or flag depending on the adjacency between v and a.

Therefore Ace = ∅.

So we may assume that v ∈ Ade. If v is adjacent to a, then G|abcdv ∼= C5, and if v is not adjacent to a,

then G|abdev ∼= K2,3. Therefore A2 = ∅ and this proves (1).

(2) A1 is complete to b.

For u ∈ {b, c, d, e}, let Au ⊆ A1 be those vertices that are adjacent to u. We will show that Ac = Ad =

Ae = ∅.

Suppose v ∈ Ac. If v is adjacent to a, then G|abcdev ∼= flag, and if v is not adjacent to a, then

G|abdev ∼= M2,1. Therefore Ac = ∅.

Next, suppose v ∈ Ae. Then G|abcdev ∼= P5 or C6 depending on the adjacency between v and a. Therefore

Ae = ∅.

Next, suppose v ∈ Ad. If v is adjacent to a, then G|abcdv ∼= C5, and if v is adjacent to f but not to a,

then G|abdefv ∼= fish. So we may assume that v is not adjacent to either a or f ; but then G|acdefv ∼= watch.

Therefore Ad = ∅. This completes that proof of (2).

(3) A1 ∪ {a} is a stable set.

Suppose v ∈ A1 and a are adjacent; then G|abdev ∼= K2,3. Therefore A1 is anticomplete to a. Next,

suppose u, v ∈ A1 are adjacent. Then G|bdeuv ∼= K2,3. Therefore A1 ∪ {a} is a stable set and this proves

(3).

(4) If v ∈ A3, then v ∈ Abce ∪ Abde.

For u, v, w ∈ {b, c, d, e}, let Auvw ⊆ A3 be those vertices that are adjacent to u, v and w.

Suppose v ∈ Abcd. If v is not adjacent to f , then G|bdefv ∼= C5, and if v is adjacent to f but not to a,

then G|S ∪ {v} ∼= F21. So we may assume that v is adjacent to both a and f ; but then G|abdefv ∼= watch.

Therefore Abcd = ∅.
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Next, suppose v ∈ Acde. If v is adjacent to f , then G|cdefv ∼= M2,1, and if v is not adjacent to f , then

G|bcdefv ∼= flag. Therefore Acde = ∅. This proves (4).

(5) A3 ∪ {f} is a clique.

Suppose v ∈ Abde and v is not adjacent to f . Then G|bcdefv ∼= C6. Next, suppose v ∈ Abce not adjacent

to f . Then G|cdefv ∼= K2,3. Therefore A3 is complete to f .

Next, suppose u, v ∈ Abde ∪ Abce are not adjacent. If u, v ∈ Abde, then G|bcduv ∼= K2,3 and if u, v ∈ Abce

then G|cdeuv ∼= K2,3. So we may assume that u ∈ Abde and v ∈ Abce; but then G|bcdeuv ∼= C6. Therefore

A3 ∪ {f} is a clique and this proves (5).

From (2) and (3), it follows that A1 ∪ {a, c, d} is semi-matched with one edge (namely, cd). From (4)

and (5), A3 ∪ {b, e, f} is semi-antimatched with one nonedge (namely, be). Furthermore, it follows by def-

inition and from (2) that for all u ∈ A1 ∪ {a, c, d}, u is adjacent to exactly one of b and e. It also follows

by definition and from (4) that for all v ∈ A3 ∪ {b, e, f}, v is adjacent to exactly one of c and d. Therefore

A1 ∪ {a, c, d} and A3 ∪ {b, e, f} are aligned and this proves 3.5. �

3.6. A graph containing tent2 but no graphs in F is doubled.

Proof. Let G be a graph containing tent2 but no graphs in F . By 3.1, 3.2, 3.3, 3.4, and 3.5, we may assume

that G does not contain M2,1, P5, C6, domino, tent1 or their complements as induced subgraphs. Let

G|abcdef ∼= tent2, where ab, bc, cd, de, fa, fb, fd, and fe are the edges; let S = {a, b, c, d, e, f}. First, we

show that if v ∈ V (G) \ S, then NS(v) is equal to {b, f}, {d, f}, or {a, b, d, e, f}.

Let Abf be those vertices whose neighbor set in S is {b, f} and define Adf and Aabdef similarly. We also

prove that at least one of Abf , Adf and Aabdef is empty. Then our goal is to show the following:

If Aabdef = ∅, then

• G|(A2 ∪ {a, e}) is semi-matched, and

• G|{b, c, d, f} is antimatched, and

• A2 ∪ {a, e} and {b, c, d, f} are aligned.

If Adf = ∅, then

• G|(A2 ∪ {a, c, d}) is semi-matched, and

• G|(A5 ∪ {b, e, f}) is semi-antimatched, and

• A2 ∪ {a, c, d} and A5 ∪ {b, e, f} are aligned.

If Abf = ∅, then

• G|(A2 ∪ {b, c, e}) is semi-matched, and

• G|(A5 ∪ {a, d, f}) is semi-antimatched, and

• A2 ∪ {b, c, e} and A5 ∪ {a, d, f} are aligned.

Together, these statements imply that G is doubled.

(1) For v ∈ V (G) \ S, NS(v) is equal to {b, f}, {d, f}, or {a, b, d, e, f}.

We show that N{b,c,d}(v) is equal to {b}, {d}, or {b, d} and for each case, NS(v) is equal to {b, f}, {d, f},

or {a, b, d, e, f}, respectively.
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First, suppose N{b,c,d}(v) = ∅. If v is complete to {a, e}, then G|abcdev ∼= C6, and if v is adjacent to

exactly one of a and e, then G|abcdev ∼= P5. So we may assume that v is anticomplete to {a, e}; but then

G|abdev ∼= M2,1. Therefore N{b,c,d}(v) cannot be empty.

Next, suppose N{b,c,d}(v) = {b}. If v is adjacent to e, then G|bcdev ∼= C5, and if v is adjacent to a, then

G|abdev ∼= K2,3. If v is not adjacent to f , then G|bcdefv ∼= tent1. Therefore NS(v) = {b, f}. Similarly if

N{b,c,d}(v) = {d}, then NS(v) = {d, f}.

Next, suppose N{b,c,d}(v) = {c}. If v is complete to {a, e}, then G|abcdev ∼= domino, and if v is adjacent

to exactly one of a and e, then G|abcdev ∼= flag. So we may assume that v is anticomplete to {a, e}; but

then G|abdev ∼= M2,1. Therefore N{b,c,d}(v) cannot be equal to {c}.

Next, suppose N{b,c,d}(v) = {b, c}. If v is complete to {e, f}, then G|bcdefv ∼= P5. If v is adjacent to e

but not to f , then G|bcdefv ∼= C6, and if v is adjacent to f but not to e, then G|bcdefv ∼= flag. So we may

assume that v is anticomplete to {e, f}; but then G|bcdefv ∼= domino. Therefore N{b,c,d}(v) cannot be {b, c}

and from symmetry, N{b,c,d}(v) cannot be {c, d}.

Next, suppose N{b,c,d}(v) = {b, d}. If v is not adjacent to f , then G|bcdfv ∼= K2,3. If v is anticomplete

to {a, e}, then G|abcdev ∼= watch. If v is adjacent to one of a and e, then G|abcdev ∼= tent1. Therefore

NS(v) = {a, b, d, e, f}.

Finally, suppose N{b,c,d}(v) = {b, c, d}. If v is adjacent to f , then G|bcdfv ∼= M2,1. If v is not adjacent to

a, then G|abcdfv ∼= flag, while if v is adjacent to a, then G|abcdfv ∼= P5. Therefore v cannot be complete to

{b, c, d}.

Together, these statements prove (1).

(2) Abf ∪ Adf is a stable set, and Aabdef is a clique complete to Abf ∪Adf .

Suppose u, v ∈ Abf are adjacent; then G|bcdfuv ∼= watch. Therefore Abf is a stable set and similarly, so

is Adf . Now suppose u ∈ Abf and v ∈ Adf are adjacent. Then G|bcduv ∼= C5. Therefore Abf ∪Adf is a stable

set.

Next, suppose u, v ∈ Aabdef are not adjacent; then G|bcduv ∼= K2,3. Therefore Aabdef is a clique.

Finally, suppose u ∈ Abf and v ∈ Aabdef are not adjacent. Then G|abcdev ∼= tent2 and u has only one

neighbor in {a, b, c, d, e, v}, which is impossible by (1). Therefore Aabdef is complete to Abf and similarly to

Adf , and this proves (2).

(3) At least one of Abf , Adf , and Aabdef is empty.

Suppose u ∈ Abf , v ∈ Adf , and w ∈ Aabdef . From (2), w is complete to {u, v} and u is not adjacent to v. It

follows that G|abcdefuvw ∼= F22. Therefore at least one of Abf , Adf , and Aabdef is empty and this proves (3).

If Aabdef = ∅, then it follows from (2) that G|(Abf ∪ Adf ∪ {a, e}) is a stable set. Also, G|bcdf is anti-

matched by assumption and Abf ∪ Adf ∪ {a, e} and {b, c, d, f} are aligned by assumption and definition.

Hence, G is doubled.

So we may assume that Aabdef 6= ∅. Then by (3), one of Abf and Adf is empty and from symmetry, we may

assume Adf is empty. Then G|(Abf ∪ {a, c, d}) is semi-matched with an edge cd, and G|(Aabdef ∪ {b, e, f})
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is semi-antimatched with a non-edge be. It also follows from assumption and definition that for all u ∈

Abf ∪ {a, c, d}, u is adjacent to exactly one of b and e and for all v ∈ Aabdef ∪ {b, e, f}, v is adjacent to

exactly one of c and d. Hence, G is doubled. This proves 3.6. �

We are now ready to prove the main result.

Proof of 1.2. The “only if” part is obvious since none of the graphs in F are doubled. For the “if” part, we

may assume G is not almost-split and hence G or G contains one of M2,1, P5, C6, domino, tent1, and tent2

as an induced subgraph. But then we are done by 3.1, 3.2, 3.3, 3.4, 3.5, or 3.6 applied to G or G, keeping

in mind that the complement of a doubled graph is doubled. �
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