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Covering a graph by forests

and a matching

Tomáš Kaiser1 Mickaël Montassier2 André Raspaud2

Abstract

We prove that for any positive integer k, the edges of any graph whose
fractional arboricity is at most k + 1/(3k + 2) can be decomposed into k
forests and a matching.

1 Introduction

The arboricity Υ(G) of a graph G is the least number k such that the edge set
of G can be covered by k forests. A classical result of Nash-Williams [11] states
that a trivial lower bound to arboricity actually gives the right value:

Theorem 1. For any graph G,

Υ(G) = max
H

⌈ |E(H)|

|V (H)| − 1

⌉

,

where the maximum is taken over all subgraphs H of G.

(Here and in the rest of the paper, we write V (H) and E(H) for the vertex
set and the edge set of a graph H , respectively, and the graphs may contain loops
and parallel edges. For any graph-theoretical notions not defined here, we refer
the reader to Diestel [6].)

Payan [14] defined the fractional arboricity Υf(G) of G by

Υf (G) = max
H⊆G

|E(H)|

|V (H)| − 1
.
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Thus, Υ(G) = ⌈Υf (G)⌉, and one may ask whether Υf(G) is a finer measure of
the properties of G than Υ(G). In particular, suppose that Υf (G) = k + ε for
some integer k and small ε > 0. By Theorem 1, E(G) can be covered by k + 1
forests, but it is natural to ask whether one of these forests can be restricted to
have, for instance, bounded maximum degree or bounded maximum component
size. The problem was studied by Montassier et al. [10] and in two cases, an
affirmative answer was obtained. These are summarized in the following theorem
which improves earlier results on decompositions of planar graphs [5, 8]:

Theorem 2. Let G be a graph.

(i) If Υf(G) ≤ 4
3
, then E(G) can be covered by a forest and a matching.

(ii) If Υf (G) ≤ 3
2
, then E(G) can be covered by two forests, one of which has

maximum degree at most 2.

In [10], a general conjecture was proposed which would include Theorem 2 as
a special case:

Conjecture 3. Let k and d be positive integers. If G is a graph with Υf(G) ≤
k + d

k+d+1
, then E(G) can be decomposed into k + 1 forests, one of which has

maximum degree at most d.

A. V. Kostochka and X. Zhu (personal communication) proved Conjecture 3
for k = 1 and 3 ≤ d ≤ 6. For k ≥ 2 or d ≥ 7, the conjecture is open.

Another partial result of [10] toward Conjecture 3 is the following:

Theorem 4. If G has fractional arboricity Υf(G) ≤ k+ ε, where k is an integer
and 0 ≤ ε < 1, then E(G) can be covered by k forests and a graph of maximum
degree at most d, where

d =
⌈(k + 1)(k − 1 + 2ε)

1− ε

⌉

.

Theorem 4 provides a value of d for any choice of ε, but it does not ensure
a suitable value of ε for an arbitrary d. In particular, for k ≥ 2 it leaves open
the question whether there is ε = ε(k) such that the edges of any graph with
fractional arboricity at most k + ε can be covered by k forests and a matching.
In the present paper, we answer this question in the affirmative:

Theorem 5. Let k ≥ 1 be an integer and G a graph with Υf (G) ≤ k + 1
3k+2

.
Then E(G) can be decomposed into k forests and a matching.

Our proof is based on an extension of the matroid intersection theorem [7] due
to Aharoni and Berger [1]. The structure of the paper is as follows. In Section 2,
we recall the necessary notions of matroid theory. Section 3 gives an overview of
the topological preliminaries. The pieces are assembled in Section 4, where we
prove Theorem 5.
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2 Matroids

The purpose of this section to introduce the relevant terminology and facts from
matroid theory. For more details, the reader may consult the book of Oxley [13]
or Part IV of Schrijver [15].

Amatroid is a pair (E, I), where E is a finite set and I is a nonempty collection
of subsets of E satisfying the following axioms:

(M1) if A ⊆ B ⊆ E and B ∈ I, then A ∈ I, and

(M2) if A,B ∈ I and |A| < |B|, then for some x ∈ B \A, A ∪ x ∈ I.

(For brevity, we write A ∪ x in place of A ∪ {x}, and A \ x instead of A \ {x}.)
Let M = (E, I) be a matroid. The sets in I are called independent sets of M

(the other subsets of E being dependent), and M is said to be a matroid on E.
It is easy to prove from (M2) that all inclusionwise maximal subsets of a set

X ⊆ E that are independent in M have the same cardinality. This cardinality is
called the rank of X in M and denoted by rankM(X). By definition, the rank of
M is rankM(E). Any independent set of size rankM(E) is a base of M.

The dual matroid M
∗ of M is a matroid on E whose independent sets are all

the subsets of E that are disjoint from some base of M. Thus, the bases of M∗

are precisely the conplements of the bases of M. The rank function of the dual
matroid is given by the following lemma (see [13, Proposition 2.1.9]):

Lemma 6. If M is a matroid on E and X is a subset of E, then the rank of X
in the dual matroid M

∗ is

rankM∗(X) = |X|+ rankM(E \X)− rankM(E).

Each graph G has an associated matroid, the cycle matroid of G. This is a
matroid on E(G) and its independent sets are the edge sets of forests in G. For
X ⊆ E(G), let G[X ] be the subgraph of G induced by the edge set X (that is,
its vertices are all the vertices incident with an edge of X , and its edge set is X).
The rank function of X is easily interpreted in terms of G[X ]:

Lemma 7. Let M be the cycle matroid of a graph G and X ⊆ E(G). If the
subgraph G[X ] has n(X) vertices and c(X) components, then

rankM(X) = n(X)− c(X).

Theorem 1 has a natural proof using matroid theory, based on the following
important result of Nash-Williams [12] (see also [13, Proposition 12.3.1]):

Theorem 8 (Matroid union theorem). Let M and N be matroids on E. Let I be
the collection of all sets I ∪ J , where I is an independent set of M and J is an
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independent set of N. Then (E, I) is a matroid and the rank of a set X ⊆ E in
this matroid equals

min
T⊆X

(

|X \ T |+ rankM(T ) + rankN(T )
)

.

The matroid from Theorem 8 is called the union of M and N and is denoted
by M ∨N.

Let M(k) be the union of k copies of M. The Matroid union theorem implies
that the rank function of this matroid is as follows:

Corollary 9. The rank of a set X ⊆ E in M
(k) is

rankM(k)(X) = min
T⊆X

(

|X \ T |+ k · rankM(T )
)

.

Closely related to Theorem 8 is the following result of Edmonds [7] (see
also [13, Theorem 12.3.15]):

Theorem 10 (Matroid intersection theorem). Let M and N be matroids on E.
The maximum size of a subset of E that is independent in both M and N equals

min
X⊆E

(

rankM(X) + rankN(E \X)
)

.

A circuit of M is any inclusionwise minimal dependent subset of E. A set
X ⊆ E is a flat of M if for every x ∈ E \ X , rankM(X ∪ x) = rankM(X) +
1. We will need the following lemma which relates circuit and flats (see [13,
Proposition 1.4.10] for a proof):

Lemma 11. If X is a flat of M and e ∈ E is contained in a circuit C such that
C ⊆ X ∪ e, then e ∈ X.

3 Complexes

In this section, we review the topological machinery needed in our proof. A
more complete account can be found in Section 2 of [1]. A standard reference on
topological methods in combinatorics is Björner [3].

A simplicial complex (or just complex ) on a finite set E is any nonempty
collection C of subsets of E such that if A ⊆ B ∈ C, then A ∈ C. The subsets
belonging to C are called the faces (or simplices) of C.

Any complex C has an associated geometric realization ‖C‖ called the poly-
hedron of C. This is a topological space obtained as follows. To each e ∈ E
contained in some face of C, assign a vector ve in R

|E| in such a way that all the
vectors ve are linearly independent. Every face A of C then has an associated
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geometric simplex σA, namely the convex hull of the set {ve : e ∈ A}. The poly-
hedron of C is obtained as the union of all the simplices σA, where A ranges over
C.

Next, we recall the notion of connectivity of complexes and topological spaces
in general. For d ≥ 0, a topological space X is d-connected if every continuous
mapping f from the d-dimensional sphere Sd to X can be extended to the (d+1)-
dimensional closed ball Bd+1 in a continuous way. Every nonempty space is
considered to be (−1)-connected. The connectivity of a nonempty space X is the
largest integer k such that X is d-connected for all d, where −1 ≤ d ≤ k. (If
X is d-connected for all integers d ≥ −1, then its connectivity is infinite.) The
property of being 0-connected is equivalent to the usual arcwise connectedness of
X . For higher d, d-connected spaces can be intuitively thought of as those which
have no ‘holes’ of dimension less than d.

The connectivity of a complex C is defined as the connectivity of its polyhedron
‖C‖. For technical reasons, it is useful to work with a slight modification of this
parameter, denoted by η(C) and defined as the connectivity of C plus 2.

Matroids can be viewed as complexes of a special type: if M is a matroid
on a set E, then the independent sets of M form a complex on E. While most
properties of matroids do not carry over to the more general world of complexes,
one important matroid-theoretical result that has a partial extension to complexes
is Theorem 10. This extension is due to Aharoni and Berger [1, Theorem 4.5]
and we will use it in the following formulation:

Theorem 12. Let N be a matroid on E and let C be a complex whose vertex set
is also E. If

η(C [X ]) ≥ rankN(E)− rankN(E \X) (1)

for every X ⊆ E which is the complement of a flat of N, then N has a base which
is a face of C.

It can be shown [4] that if C is the complex of independent sets of a matroid
M, then η(C) equals the rank of M (unless the dual of M contains a loop, in
which case η(C) is infinite). From this, one can easily derive that Theorem 12
implies the nontrivial direction of Theorem 10.

Another class of complexes that is relevant in this paper is that of indepen-
dence complexes. The independence complex I(H) of a graph H is a complex
on V (H) whose faces are the independent sets of H (that is, sets I such that
the induced subgraph of H on I has no edges). When H is the line graph of a
graph G, the independent sets of H are the matchings of G and this construction
produces the matching complex of G.

Since the connectivity of a complex is in general difficult to establish, it is very
useful that there are several results relating the connectivity of an independence
complex I(H) to the properties of the graph H . Typically, these properties
concern some variant of the notion of domination in H (a useful overview is
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given in [2, Section 2]). In our case, the bound involves the edge-domination
number which we recall next.

A set D of edges of the graph H is said to dominate H if for every vertex v
of H , v or at least one of its neighbors is incident with an edge of D. The least
cardinality of a set of edges dominating H is the edge-domination number γE(H)
of H . (If H contains an isolated vertex, then there is no dominating set of edges
and γE(H) is defined to be infinite.) The following result is implicitly proved in
several papers on independence complexes (for references, see [2]):

Theorem 13. If H is a graph, then

η(I(H)) ≥ γE(H).

If we specialize this result to line graphs (and matching complexes), we obtain
a notion previously used in [9]. A 2-path in a graph is a path of length 2. A set
P of 2-paths in G dominates a set F of edges if every edge of F is incident with
a 2-path in P . The 2-path domination number γv(G) is the minimum size of a
set of 2-paths dominating E(G) (or ∞ if G contains a component with exactly
one edge). Since γv(G) is equal to γE(L(G)), we have the following observation:

Observation 14. If G is a graph and C is its matching complex, then

η(C) ≥ γv(G).

We conclude this section with the definition of the induced subcomplex. If C
is a complex on E and X ⊆ E, then the induced subcomplex C [X ] of C on X is
the complex on X consisting of all the faces of C contained in X .

4 Proof of Theorem 5

We now prove Theorem 5. Let k be a positive integer and G be a graph with
Υf(G) ≤ k + ε, where

ε =
1

3k + 2
.

Throughout this section, we write E for E(G), M for the cycle matroid of G and
C for the matching complex of G. We also let N denote the matroid (M(k))∗. Our
aim is to use Theorem 12 to decompose E into k forests and a matching in G.
The following easy lemma provides the link:

Lemma 15. The set E can be covered by k forests and a matching if and only if
there exists a base of N which is a matching of G (i.e., a face of C).

Proof. We prove necessity first. Let a matching M of G be a base of N. Then
E \M is a base of N∗ = M

(k). In particular, E \M is the union of k forests in G.
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To prove sufficiency, let E = F ∪M ′, where F is (the edge set of) a union of k
forests and M ′ is a matching. Since F is independent in M

(k), there is a base B
of M(k) containing F . Its complement E \B is a base of N that is disjoint from
F and hence contained in M ′. As a subset of a matching, E \ B is a matching
itself. This proves the lemma.

We first characterize the independent sets of N. Let us say that a set of edges
B ⊆ E is basic if the subgraph induced by B can be covered by k forests and
has the maximum possible number of edges among the subgraphs of G with this
property. This is just another way of saying that B is a base of M(k). From the
definition of the dual matroid, we get the following observation:

Observation 16. A set X ⊆ E is independent in N if and only if it is disjoint
from some basic set B ⊆ E.

In Theorem 12, the restriction to sets that are complements of flats will be
crucial for us. The reason is given by the following lemma and Lemma 18 below:

Lemma 17. If X ⊆ E is a flat in N, then the subgraph G[E \X ] of G has
minimum degree at least k + 1.

Proof. Suppose that G[E \X ] contains a vertex v of degree d(v) ≤ k; let E(v)
denote the set of edges of G incident with v. Let I be an inclusionwise maxi-
mal independent set of N contained in X ∩ E(v). (Such a set exists since ∅ is
independent.)

Since v has nonzero degree in G[E \X], we may choose an edge e of E(v)\X .
We claim that I ∪ e is dependent in N. Suppose that this is not the case. By
Lemma 16, some basic set B ⊆ E is disjoint from I∪e. Let us choose edge-disjoint
forests F1, . . . , Fk such that B = E(F1 ∪ · · · ∪ Fk).

Since |E(v) \X| ≤ k − 1, one of the forests (say, F1) does not contain any
edge of E(v) \X . Let F ′

1 be obtained by adding e to F1. By the maximality of
B, F ′

1 is not a forest. Thus, F ′
1 contains a unique cycle C and e ∈ E(C). Let f

be the other edge of C incident with v. We know that f ∈ X and f /∈ I. Since
the set I ∪ f is disjoint from the set B ∪ e \ f which is clearly basic, I ∪ f is an
independent set of N. This contradiction with the choice of I proves that I ∪ e
is dependent as claimed.

Let I ′ be an inclusionwise minimal subset of I such that I ′ ∪ e is dependent.
Then I ′ ∪ e is a circuit of N contained in X ∪ e, contradicting Lemma 11. This
finishes the proof.

We will now see that Lemma 17 makes it possible to lower bound the connec-
tivity of the matching complexes of the subgraphs that appear in our application
of Theorem 12 in terms of their order. Without a minimum degree condition,
such a bound would not be possible, as is seen by considering the star K1,n, whose
matching complex has η = 0 for every n ≥ 2. The proof of the following lemma
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is based on an idea due to Ondřej Rucký which improves our original argument
and yields a better bound.

Lemma 18. Let H be a graph with Υf(H) ≤ k + ε (where ε = 1/(3k + 2) as
defined at the beginning of this section) and with minimum degree at least k + 1.
Let K be the matching complex of H. Then

η(K) ≥ ε · |V (H)| .

Proof. Let m and n be the number of edges and vertices of H , respectively. Let δ
be the minimum degree of H . Suppose that D is a dominating set of 2-paths and
let H∗ be the subgraph of H obtained as the union of all the 2-paths in D. Let
the number of vertices and edges of H∗ be denoted by n∗ and m∗, respectively.

Let v be a vertex not contained in H∗. None of the (at least δ) edges incident
with v is contained in H∗; on the other hand, the other endvertex of any such edge
must be contained in H∗, since D is dominating. This means that the number of
edges not in H∗, which is m−m∗, can be bounded as

m−m∗ ≥ δ(n− n∗).

Together with the minimum degree assumption, this implies

(k + 1)n−m ≤ (k + 1)n∗ −m∗. (2)

We aim to eliminate m and n∗ from this inequality using suitable bounds in terms
of the other parameters.

An easy argument (by induction on the number of paths in D) yields an upper
bound on n∗ in terms of m∗, namely

n∗ ≤
3

2
·m∗. (3)

On the other hand, a bound on m is implied by the assumption about Υf (H).
Since

k + ε ≥ Υf(H) ≥
m

n− 1
>

m

n
,

we obtain
m < n · (k + ε). (4)

Combining (3) and (4) with (2), we find

m∗ > n ·
1− ε

3
2
(k + 1)− 1

= n ·
2− 2ε

3k + 1
= n ·

2

3k + 2
= 2εn.

Since |D| ≥ m∗/2, the size of D (an arbitrary dominating set of 2-paths) is at
least εn. Observation 14 therefore implies that η(K) ≥ εn as claimed.
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We will need one more auxiliary result, an observation on the definition of
fractional arboricity:

Lemma 19. If G is a graph and H ⊆ G, then

|E(H)| ≤ Υf(G) · (|V (H)| − c(H)),

where c(H) denotes the number of components of H.

Proof. The lemma holds for a connected subgraph H . If H has components
H1, . . . , Hℓ, then for each i = 1, . . . , ℓ, we know that

|E(Hi)| ≤ Υf(G) · (|V (Hi)| − 1)

and the claim follows by summing these inequalities.

Let us finish the proof of Theorem 5. By Lemma 15, we will be done if we can
find a base of N which is a face of C (recall that C is the matching complex of G).
In view of Theorem 12, we consider an arbitrary set X which is the complement
of a flat of N, and aim to verify condition (1).

Using Lemma 6 and then Corollary 9 (for the equality on the last line), the
right hand side of (1) can be rewritten as

rankN(E)− rankN(E \X) =
(

|E|+ rankM(k)(∅)− rankM(k)(E)
)

−
(

|E \X|+ rankM(k)(X)− rankM(k)(E)
)

= |X| − rankM(k)(X)

= |X| − min
T⊆X

(

|X \ T |+ k · rankM(T )
)

.

Consequently, to be able to apply Theorem 12, it suffices to verify that

η(C [X ]) ≥ |T | − k · rankM(T ) (5)

for every T ⊆ X .
Consider a fixed T ⊆ X . Let n(T ) and n(X) denote the number of vertices of

G[T ] and G[X ], respectively, and let c(T ) be the number of components of G[T ].
By Lemma 7, rankM(T ) = n(T )− c(T ).

As for the left hand side of (5), observe that C [X ] is just the matching complex
of G[X ]. Since X is the complement of a flat of N, G[X ] has minimum degree at
least k + 1 (Lemma 17). By Lemma 18, η(C [X ]) ≥ εn(X).

With the aim of establishing (5) (for the given X and T ) in mind, we write

|T | ≤ (k + ε) · (n(T )− c(T ))

≤ k · (n(T )− c(T )) + εn(X)

≤ k · rankM(T ) + η(C [X ]),
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where we use the fractional arboricity assumption and Lemma 19 for the first
inequality, the inclusion T ⊆ X for the second one, and the above interpretation
of rankM(T ) together with Lemma 18 for the last one. The resulting upper bound
for |T | is equivalent to (5). Thus, we have verified (5) for any set X which is the
complement of a flat of N and any T ⊆ X , and a final invocation of Theorem 12
completes the proof.
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