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Abstract

Strong stability preserving (SSP) integrators for initial value ODEs preserve temporal
monotonicity solution properties in arbitrary norms. All existing SSP methods, including
implicit methods, either require small step sizes or achieve only first order accuracy. It is
possible to achieve more relaxed step size restrictions in the discretization of hyperbolic PDEs
through the use of both upwind- and downwind-biased semi-discretizations. We investigate
bounds on the maximum SSP step size for methods that include negative coefficients and
downwind-biased semi-discretizations. We prove that the downwind SSP coefficient for lin-
ear multistep methods of order greater than one is at most equal to two, while the downwind
SSP coefficient for explicit Runge–Kutta methods is at most equal to the number of stages
of the method. In contrast, the maximal downwind SSP coefficient for second order Runge–
Kutta methods is shown to be unbounded. We present a class of such methods with arbitrarily
large SSP coefficient and demonstrate that they achieve second order accuracy for large CFL
number.

1 Introduction

1.1 Strong stability preservation

This work is concerned with numerical methods for the initial value problem

u′(t) = F(u) u(0) = u0, (1)

where u ∈ <n and F : <n → <n. Numerical methods for (1) compute a sequence of solutions
u1, u2, . . . approximating the true solution at times ∆t, 2∆t, . . . . We are interested in numerical
solutions that satisfy the monotonicity property

‖un‖ ≤ ‖un−1‖ (2)
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in the case of a one-step method, or more generally

‖un‖ ≤ max
{
‖un−1‖, ‖un−2‖, . . . , ‖un−k‖

}
(3)

for a k-step method.
A common approach is to assume that the initial value problem (1) is monotone under

forward Euler integration, subject to some step size restriction:

‖u + ∆tF(u)‖ ≤ ‖u‖ for all u, for 0 ≤ ∆t ≤ ∆tFE. (4)

The term strong stability preserving (SSP) is used to denote any method that gives a solution
satisfying the monotonicity condition (3) whenever applied to a initial value problem (1)
satisfying the forward Euler condition (4). This can be shown to hold under a step size
restriction of the form

∆t ≤ C∆tFE, (5)

where the factor C, referred to as the SSP coefficient, depends only on the numerical method.
For a recent review of SSP methods see [2].

The SSP coefficient is, for most known methods, not very large; for a broad class of explicit
general linear methods it is never greater than the number of stages of the method [6], and
for many classes of implicit methods it is known or conjectured to be no greater than twice
the number of stages [5, 1, 8]. No known methods have C > 2s and exhibit higher than first
order convergence for large CFL numbers.

1.2 Downwinding

The study of SSP methods has been motivated by the numerical solution of hyperbolic con-
servation laws; in one dimension these take the form

Ut + f (U)x = 0. (6)

Semi-discretization of the conservation law (6) leads to the initial value problem (1), where u
is a finite-dimensional approximation of U and F(u) is an approximation to − f (U)x.

The solution of the scalar conservation law (6) has the property that its total variation
does not increase in time. Hence it is desirable for a numerical discretization to satisfy (3)
with respect to the total variation semi-norm; such schemes are said to be total variation
diminishing (TVD). A common approach to development of TVD methods is to employ a
semi-discretization for which the TVD property holds under forward Euler integration in
time, up to some maximal time step size; this is just condition (4), where ‖ · ‖ is taken to be
the total variation semi-norm.

Such semi-discretizations generally are upwind-biased. By considering corresponding
downwind-biased semi-discretizations, one arrives at an operator F̃ that approximates f (U)x
and satisfies

‖u + ∆tF̃(u)‖ ≤ ‖u‖ for all ∆t ≤ ∆tFE. (7)
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For example, consider the advection equation

Ut + Ux = 0 (8)

discretized via the upwind and downwind discretizations:

u′i(t) = −
ui − ui−1

∆x
= Fi(u) u′i(t) = −

ui+1 − ui
∆x

= −F̃i(u). (9)

Here ui(t) is an approximation to U(i∆x, t). In this case the conditions (4), (7) hold with
∆tFE = ∆x, corresponding to the usual CFL condition.

We say a method is strong stability preserving with downwind SSP coefficient C̃ if the
method gives a solution satisfying (3) whenever applied to a system satisfying the forward
Euler conditions (4) and (7) under the time step restriction

∆t ≤ C̃∆tFE. (10)

The idea of using downwinding to achieve the TVD property under larger timesteps for
explicit time discretizations was originally introduced by Shu and Osher [13, 14]. These meth-
ods are frequently referred to as methods with downwind biased discretizations; in the present
work we will refer to them simply as downwind methods for brevity, with the understanding
that they incorporate both upwind- and downwind-biased discretizations. Optimal explicit
downwind Runge–Kutta methods of up to fifth order and ten stages were developed in [12].
Further optimal explicit Runge–Kutta and linear multistep schemes, along with an approach
to efficient implementation of upwind and downwind WENO discretizations, are given in [3].
A theory of necessary and sufficient conditions for Runge-Kutta methods with downwinding
to be SSP was developed in [4].

The principal reason for studying downwind methods is that the downwind SSP coeffi-
cient C̃ is not as restricted as the SSP coefficient C; for instance, explicit Runge-Kutta methods
can have order greater than four and C̃ > 0 [12]. In the present work, we consider also im-
plicit downwind methods. Generally speaking, implicit numerical methods are used in order
to allow the use of timesteps based solely on accuracy considerations and not on stability.
As discussed above, implicit SSP methods require step sizes not much larger than those al-
lowed by explicit methods. The principal aim of the present is to determine whether implicit
downwind SSP methods allow much larger step sizes.

1.3 Downwind Methods

Downwind Runge-Kutta methods take the form

yi = un−1 + ∆t
s

∑
j=1

aijF
(

tn−1 + cj∆t, yj

)
+ ∆t

s

∑
j=1

ãij F̃
(

tn−1 + cj∆t, yj

)
, 1 ≤ i ≤ s (11a)

un = un−1 + ∆t
s

∑
j=1

bjF
(

tn−1 + cj∆t, yj

)
+ ∆t

s

∑
j=1

b̃j F̃
(

tn−1 + cj∆t, yj

)
. (11b)

The method is explicit if each stage depends only on previous stages; i.e., if aij = 0, ãij = 0 for
j ≥ i.
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Downwind linear multistep methods take the form

un − ∆tβkF(un)− ∆tβ̃k F̃(un) =
k−1

∑
j=0

αjun−k+j + ∆tβ jF(un−k+j) + ∆tβ̃ j F̃(un−k+j). (12)

The method is explicit if βk = β̃k = 0.

2 Summary of main results

In this section we present the main results of the paper. The proofs are deferred to later
sections.

Our first result concerns explicit downwind Runge–Kutta methods. It is known that the
SSP coefficient C for a broad class of general linear methods (without downwinding) cannot
be greater than the number of stages [6]. It turns out that the same bound holds for explicit
downwind Runge–Kutta methods.

Theorem 2.1. The downwind SSP coefficient C̃ of any first order accurate explicit downwind Runge–
Kutta method is no greater than the number of stages of the method.

It is already known (see [6]) that the bound C̃ ≤ 1 holds for explicit linear multistep
methods. Together with the theorem above, this implies that not too much can be gained by
using downwinding in explicit methods, at least in an asymptotic sense. Hence we consider
implicit downwind methods. For implicit linear multistep methods of greater than first order
accuracy (without downwinding), it is known that the SSP coefficient cannot be greater than
two. It turns out that the same bound holds for implicit downwind linear multistep methods.

Theorem 2.2. The downwind SSP coefficient of any second order accurate linear multistep method is
at most two.

Given the negative nature of the two theorems above, one might expect that bounds on
the SSP coefficient hold for the downwind SSP coefficient for all classes of methods. It seems,
however, that this is not the case; for implicit Runge-Kutta methods it is conjectured that the
SSP coefficient can be no greater than 2s, where s is the number of stages. However, it turns
out that implicit downwind Runge-Kutta methods can have arbitrarily large SSP coefficient.

Theorem 2.3. For any positive finite r, there exists a two-stage, second-order downwind Runge-Kutta
method with downwind SSP coefficient equal to r.

The rest of the paper proceeds as follows. The proof of Theorem 2.1 is presented in
section 3. The proof of Theorem 2.2 is presented in 4. In Section 5, we prove Theorem 2.3
by construction and analyze the resulting methods. Some final remarks on these results are
provided in Section 7.

3 Explicit Runge–Kutta methods

In this section, we prove Theorem 2.1, which bounds the downwind SSP coefficient for explicit
downwind Runge–Kutta methods. SSP methods are most conveniently analyzed by writing
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them in a certain Shu-Osher form; see [16, 7]. The corresponding form for for downwind
methods is introduced in the following Lemma, which is an easy corollary of Theorems 3.5
and 3.6 of [16].

Lemma 3.1. The SSP coefficient of the downwind Runge-Kutta method (11) is the largest r ≥ 0 such
that the method can be written in the form

yi = un−1 +
s

∑
j=1

pij

(
yj +

∆t
r

F(yj)

)
+

s

∑
j=1

p̃ij

(
yj +

∆t
r

F̃(yj)

)
(13a)

un = un−1 +
s

∑
j=1

ps+1,j

(
yj +

∆t
r

F(yj)

)
+

s

∑
j=1

p̃s+1,j

(
yj +

∆t
r

F̃(yj)

)
(13b)

with all coefficients non-negative:

pij, p̃ij ≥ 0. (14)

In the remainder of this section, we consider explicit methods of the form (13); i.e., those
for which

pij = p̃ij = 0 for all j ≥ i. (15)

Consider the application of a method satisfying (13)-(15) to a linear problem with

F(u) = Lu F̃(u) = L̃u, (16)

where L, L̃ are fixed matrices, and define z = ∆tL, z̃ = ∆tL̃. Then a straightforward calculation
shows that the solution can be written as un = ψ(z, z̃)un−1 where

ψ(z, z̃) =
s

∑
j=0

j

∑
l=0

γjl

(
1 +

z
r

)j−l
(

1 +
z̃
r

)l
with γjl ≥ 0 if 0 ≤ r ≤ C̃. (17)

Theorem 2.1 follows by considering the conditions for first-order accuracy of the method
and positivity of the coefficients in the form (17).

Proof of Theorem 2.1. For a given downwind Runge–Kutta method, consider (17) with r = C̃.
Since F̃(u) ≈ −F(u), the method approximates the true solution to order p if

ψ(z,−z) = exp(z) +O(zp+1).

In terms of the coefficients γjl , the conditions for consistency and first order accuracy are:

s

∑
j=0

j

∑
l=0

γjl = 1,

s

∑
j=0

j

∑
l=0

γjl (j− 2l) = C̃.
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Since the γ’s are positive, we have

C̃ =
s

∑
j=0

j

∑
l=0

γjl (j− 2l) ≤ max
j∈(0,s),l∈(0,j)

(j− 2l) = s.

Remark 1. It is possible to show in a similar way that the bound C̃ ≤ s holds even for the
broad class of general linear methods considered in [6].

Remark 2. In [7], tighter bounds on C̃ were computed for specific classes of downwind Runge–
Kutta methods. The same approach used there could be applied to find tighter bounds for
classes of general linear methods.

4 Implicit linear multistep methods

Lenferink [10] showed that the SSP coefficient C is no greater than two for implicit linear
multistep methods of order greater than one. This bound was shown to hold in an even more
general sense in [5]. In this section we consider the downwind SSP coefficient C̃ for implicit
downwind linear multistep methods (12). Our main result, presented already as Theorem
2.2, states that the same bound proved by Lenferink also holds for downwind methods. Even
though this is a more general result than those of [10, 5], we provide a simpler proof.

The method (12) is accurate to order p if

k−1

∑
j=0

αj ji +
k

∑
j=0

(β j − β̃ j)iji−1 = ki (0 ≤ i ≤ p) (18)

and has downwind SSP coefficient C̃ ≥ r if and only if

β j, β̃ j ≥ 0 (0 ≤ j ≤ k− 1) (19a)

αj − r(β j + β̃ j) ≥ 0 (0 ≤ j ≤ k− 1). (19b)

The following lemma, which appeared in [6], facilitates the proof of Theorem 2.2. We say
a method (12) of k steps and order p is optimal if there exists no other method of at most k
steps and order at least p with larger downwind SSP coefficient C̃.

Lemma 4.1. Any optimal downwind linear multistep method (12) has the property that β j β̃ j = 0 for
each j.

Proof of Lemma 4.1. Note that the order conditions (18) depend only on the difference β j − β̃ j,
while the inequality constraint (19a) can be written as (setting r = C̃)

C̃ ≤ αj/(β j + β̃ j).

Suppose that an optimal method has β j > β̃ j > 0 for j ∈ J1 ⊂ (0, 1, . . . , k− 1) and β̃ j > β j > 0
for j ∈ J2 ⊂ (0, 1, . . . , k− 1). Then for j ∈ J1 define β∗j = β j − β̃ j and β̃∗j = 0; for j ∈ J2 define
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β̃∗j = β̃ j − β j and β∗j = 0. Then the coefficients obtained by replacing β, β̃ with β∗, β̃∗ satisfy
(19) and (18) with a larger value of C̃, which is a contradiction.

We now prove our main result on linear multistep methods. Similar to the proof of The-
orem 2.1, this result follows from combining the order conditions and the positivity of the
coefficients.

Proof of Theorem 2.2. It is sufficient to prove that C̃ ≤ 2 for any optimal method. Hence we
consider an optimal method that is at least second order accurate. Applying Lemma 4.1,
we define β∗j = β j + β̃ j and σj = sgn(β j − β̃ j) so that β j − β̃ j = σjβ

∗
j . Additionally define

δj = αj − rβ∗j . Then the order conditions for order two can be written (taking r = C̃)

k−1

∑
j=0

δj + C̃β∗j = 1 (20a)

k−1

∑
j=0

jδj + (C̃ j + σj)β∗j = k− σkβ∗k (20b)

k−1

∑
j=0

j2δj + (C̃ j2 + 2jσj)β∗j = k(k− 2σkβ∗k). (20c)

Taking −k2×(20a)+2k×(20b)−(20c) gives

k−1

∑
j=0
−(k− j)2δj +

(
−C̃(k− j)2 + 2σj(k− j)

)
β∗j = 0. (21)

Since all coefficients δj, β∗j are non-negative, at least one of the terms multiplying them must
be non-negative, for some value of j (else the sum would be negative). Since the terms multi-
plying δj are all negative, this implies that

−C̃(k− j)2 + 2σj(k− j) ≥ 0

for some j; i.e.

C̃ ≤ max
j∈[0,k−1]

2σj(k− j)
(k− j)2 ≤ 2.

Remark 3. Using the order conditions and the SSP conditions, it is straightforward to deter-
mine (for any particular k, p) the methods with largest C̃. This was done in [6].

5 Implicit Runge–Kutta methods

It is well known (see, e.g. [15, 9, 2]) that (implicit) Runge-Kutta methods of order higher than
one cannot have C = ∞. Furthermore, it is conjectured that they cannot have C > 2s, where s
is the number of stages [1, 8].
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In [4], the following question was posed: do there exist high order implicit downwind
Runge-Kutta methods with C̃ = ∞? Although we have not answered this question directly,
we have found downwind methods with arbitrarily large C̃. One class of such methods is the
two-stage, second-order family

y1 =
2

r(r− 2)
un−1 +

2
r

(
y1 +

∆t
r

F(y1)

)
+

r2 − 4r + 2
r(r− 2)

(
y2 +

∆t
r

F̃(y2)

)
(22a)

y2 = y1 +
∆t
r

F(y1) (22b)

un = y2 +
∆t
r

F(y2). (22c)

Here we have written the method in the form (13) so that the downwind SSP coefficient is
apparent: C̃ = r, for any r > 2 +

√
2. It can be shown that the method (22) is A-stable (i.e.,

unconditionally stable when F(u) = −F̃(u) = λu with <(λ) ≤ 0).
Numerical searches indicate that other two-stage, second-order methods with large C̃ exist.

An obvious drawback of method (22) is that it is fully implicit. However, a search for two-
stage, second-order diagonally implicit methods yielded no results.

For reference, we include here also the coefficients of the method when written in form
(11):

r−2
r

r2−2r−2
2r 0 0 r2−4r+2

2r
r−1

r
r−2

2 0 0 r2−4r+2
2r

r−2
2

1
r 0 r2−4r+2

2r

. (23)

The left part of (23) corresponds to the usual Butcher coefficients, and the rightmost part
displays the additional coefficients ãij, b̃j. In the case F = −F̃, the method reduces to an
ordinary Runge-Kutta method; we refer to this method as the underlying method:

r−2
r

r2−2r−2
2r − r2−4r+2

2r
r−1

r
r−2

2 − r2−4r+2
2r

r−2
2

4−r
2

. (24)

Although the downwind method (23) will in general behave differently from the underlying
method (24), analysis of the latter may still give useful insight. Straightforward calculation
shows that the stability function of method (24) is

ψ(z) =
1 + 2

r z + 1
r2 z2

1− r−2
r z + r2−4r+2

2r2 z2
. (25)

Further calculation reveals that the method is A-stable since |ψ(z)| ≤ 1 for all z with non-
positive real part. It is clearly not L-stable, but it is nearly so for large r since

lim
|z|→∞

ψ(z) =
2

r2 − 4r + 2

is quite small for large r.
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Figure 1: Square wave advection with the downwind Runge-Kutta method (22), compared to
two standard methods.

6 Numerical tests

In this section we conduct a few numerical tests to study the accuracy of the family of meth-
ods introduced in the last section. We compare the backward Euler method, the implicit
trapezoidal Runge-Kutta method, and the downwind Runge-Kutta method (22). In all tests
we take r = 8.

In the first test we will see that the temporal error for the downwind method includes
a term related to the spatial discretizations. Consequently, some care must be taken when
choosing the spatial discretizations. The second and third tests demonstrate that the method
performs well when appropriate spatial discretizations are chosen.

6.1 First-order upwind advection

As a first test we solve the advection equation (8) using the upwind and downwind differences
(9) with ∆x = 1/128. We consider the domain 0 ≤ x ≤ 1 with periodic boundary conditions
and initial condition u(x, 0) = 1−H(x− 1/2) where H(x) is the Heaviside function. In Figure
1 we plot the solutions at t = 1.

Figure 1(a) shows results obtained with ∆t = 0.9∆x. As expected, backward Euler is more
dissipative than the second order trapezoidal method. Surprisingly, the (second order accu-
rate) downwind Runge–Kutta method is more dissipative than even the first-order backward
Euler method. Figure 1(b) shows results obtained with ∆t = 8.0∆x, the SSP limit for the
downwind method. In this case, the trapezoidal method, which has SSP coefficient C = 2,
generates overshoots. The backward Euler method is much more dissipative for this large
CFL number. The downwind method is more accurate than backward Euler and maintains
maximum norm monotonicity, but the high level of dissipation exhibited is still disappointing.

The behavior of the downwind method can be understood through the following analysis.
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Write the upwind and downwind discretizations as F(u) = Lu, F̃(u) = −L̃u, where L, L̃ are
the matrices

L =
1

∆x


−1 1
1 −1

. . . . . .
1 −1

 L̃ =
1

∆x


1 −1

1 −1
. . . . . .

−1 1

 (26)

Any downwind Runge–Kutta method applied to this problem results in a recurrence of the
form (see section 3 above)

un = ψ(∆tL, ∆tL̃)un−1. (27)

For the method (22), we find

ψ(∆tL, ∆tL̃) =
(

1 +
z
r

)2
(

1 +
r2 − 4r + 2

2r
∆tL̃− r2 − 2r− 2

2r
∆tL− r2 − 4r + 1

2r2 ∆t2LL̃
)−1

= 1 + ∆tL +
r2 − 4r + 2

2r
∆t
(
L− L̃

)
+O(∆t2).

Since Lu ≈ −ux, the first two terms ensure that the method is at least first order accurate.
However, the term involving

(
L− L̃

)
is problematic, since

L− L̃ =
1

∆x


−2 1 1
1 −2 1

. . . . . . . . .
1 1 −2

 ≈ ∆x uxx. (28)

Thus, if F, F̃ are spatial discretizations with order of accuracy q, then the one-step error for
the downwind Runge–Kutta method (22) will contain a diffusive term of O(r∆xq∆t). In order
to avoid loss of accuracy, the spatial discretization should ensure that r∆xq / ∆t, so that this
term is no larger than the O(∆t2) term.

6.2 WENO advection

To demonstrate that proper accuracy is acheived when the foregoing condition is satisfied,
we use a fifth-order WENO interpolation to determine the fluxes. Table 1 shows convergence
results in the maximum norm for advection of a sine wave (u(x, 0) = sin(2πx) using a CFL
number of 8. Notice that the downwind method achieves its design order of 2, and gives accu-
racy similar to the trapezoidal Runge–Kutta method. It should be noted that the downwind
method is more expensive computationally, since it is not diagonally implicit and requires
both upwind and downwind operator evaluations. However, the purpose of this test is only
to confirm the theoretically predicted accuracy.
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N Backward Euler 2nd order RK Downwind RK
32 0.728 0.730 0.436
64 0.603 0.215 0.168
128 0.452 0.054 0.043
256 0.292 0.013 0.011

Table 1: Max-norm errors for advection of a sine wave using fifth-order WENO discretization
and a CFL number of 8.

6.3 Burgers equation

In order to provide an initial assessment of the suitability of these methods for application to
nonlinear hyperbolic conservation laws, consider Burgers equation:

Ut +

(
1
2

U2
)

x
= 0

on the unit interval with initial condition U(x, 0) = sin(2πx) and periodic boundary condi-
tions. Fifth-order WENO interpolation is again used to determine the fluxes. We consider the
solution at time t = 0.16, just after a shock has formed. Figure 2 shows a closeup around the
shock for the exact solution (obtained using characteristics) along with solutions computed
by each of the methods compared above, using CFL number 6.5 in each case. A grid with
∆x = 1/512 points is used. As expected, the backward Euler method is much more dissipa-
tive than the second order methods. Interestingly, the trapezoidal method solution does not
show oscillations per se, but clearly has an unphysical bump behind the shock. The downwind
method is by far the most accurate. Again, it should be noted that the downwind method is
more expensive, since it involves an implicit solve of twice as many equations.

Figure 3 shows a comparison of two solutions obtained with the downwind RK method 22
using two different CFL numbers. The solutions are almost indistinguishable, suggesting that
the spatial error is dominant, as one might expect. Close inspection reveals that the solution
using the larger CFL number is more accurate. Importantly, it seems that the method does
not become more dissipative at large CFL numbers.

We note in passing that solution of the nonlinear system of equations for implicit WENO
schemes is a significant challenge, especially for large CFL number and in the presence of
shocks. The CFL number 6.5 used here allowed the use of an easily accessible nonlinear solver,
namely the newton_krylov and fsolve functions of the SciPy package. Efficient solution of
the nonlinear system for larger CFL numbers is an area for future research.

7 Discussion

The new bounds on the downwind SSP coefficient proven here for explicit Runge–Kutta meth-
ods and implicit linear multistep methods are disappointing, since they indicate that nothing
can be gained – in an asymptotic sense – by including downwind-biased discretizations for
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Figure 2: Closeup view of shock in solution of Burgers equation with various methods using a
CFL number of 6.5.
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Figure 3: Closeup view of shock in solution of Burgers equation obtained with the downwind
RK method (22) with r = 8 and using two different CFL numbers.
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integrators in these classes. Previous attempts to find methods that have large SSP coefficients
have been similarly disappointing [11, 8].

The family of second order implicit downwind Runge–Kutta methods we report here is
therefore quite remarkable. These are the first methods known to have large SSP coefficient
and to provide higher than first order accuracy in practice for CFL numbers larger than unity.
They may be useful for problems with hyperbolic components requiring large time steps and
the avoidance of spurious oscillations.

In light of this discovery, the following questions are naturally of interest:

• Do higher (than 2nd) order downwind Runge–Kutta methods exist with large down-
wind SSP coefficient?

• Do diagonally implicit downwind Runge–Kutta methods exist with large SSP coeffi-
cient?

• Can these methods be implemented efficiently in combination with high order space
discretizations and large time steps, for problems with shocks?

Preliminary investigation of the first question indicates the answer is affirmative. Work on all
three questions is ongoing and will be presented elsewhere.
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