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DETERMINING ELECTRICAL AND HEAT TRANSFER

PARAMETERS USING COUPLED BOUNDARY

MEASUREMENTS

KATSIARYNA KRUPCHYK, MATTI LASSAS, AND SAMULI SILTANEN

Abstract. Let Ω ⊂ Rn, n ≥ 3, be a smooth bounded domain and consider a
coupled system in Ω consisting of a conductivity equation ∇ · γ(x)∇u(t, x) =
0 and an anisotropic heat equation κ−1(x)∂tψ(t, x) = ∇ · (A(x)∇ψ(t, x)) +
(γ∇u(t, x)) · ∇u(t, x), t ≥ 0. It is shown that the coefficients γ, κ and
A = (ajk) are uniquely determined from the knowledge of the boundary map
u|∂Ω 7→ ν ·A∇ψ|∂Ω, where ν is the unit outer normal to ∂Ω.

The coupled system models the following physical phenomenon. Given a
fixed voltage distribution, maintained on the boundary ∂Ω, an electric cur-
rent distribution appears inside Ω. The current in turn acts as a source of
heat inside Ω, and the heat flows out of the body through the boundary. The
boundary measurements above then correspond to the map taking a voltage
distribution on the boundary to the resulting heat flow through the bound-
ary. The presented mathematical results suggest a new hybrid diffuse imaging
modality combining electrical prospecting and heat transfer-based probing.

Keywords: electrical impedance tomography, heat transfer, inverse problem,
coupled systems

AMS subject classification: 35K20, 35J25, 35R30, 80A23

1. Introduction

Let us model a physical body by a bounded set Ω ⊂ Rn, n ≥ 3, with smooth
boundary ∂Ω, and the following spatially varying quantities: heat capacity c(x),
density ρ(x), electric conductivity γ(x), and (possibly anisotropic) thermal con-
ductivity A(x) = (ajk(x)), each defined for x ∈ Ω.

Consider applying a spatially and temporally variable electrical voltage distri-
bution f(t, x) at the boundary ∂Ω starting at time t = 0. Then, if there are no
sinks or sources of current inside Ω, the electric potential u(t, x) inside the body
satisfies the conductivity equation

∇ · γ∇u(t, x) = 0 for x ∈ Ω and t ≥ 0,

u(t, · )|∂Ω = f(t, · ).
(1.1)

Equation (1.1) is often used as a mathematical model for electrical impedance
tomography (EIT), where one measures the current through the boundary caused
by a family of static voltage distributions f(t, x) = φ(x) and recovers γ(x) from
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such voltage-to-current map Λγ : φ 7→ ν · ∇u|∂Ω. Here ν is the unit outer
normal to ∂Ω. We refer to [39] for an extensive survey of the mathematical
developments in EIT. See also [3, 4, 32, 36, 37] for results in the two-dimensional
case, and [13, 27, 28, 29, 31, 34, 38] for results in higher dimensional cases. For
counterexamples to uniqueness of time-harmonic inverse problems involving very
anisotropic and degenerate material parameters, leading to the phenomenon of
invisibility, see [10, 11, 12].

Our aim here is somewhat different as we wish to couple heat conduction to
the problem. Let us denote the electrical power density inside Ω by F :

F (t, x) = (γ∇u(t, x)) · ∇u(t, x). (1.2)

Now F acts as a source of heat inside Ω. Assuming that the body is at a constant
(zero) temperature at the time t = 0 when the voltage is first applied, and the
surface of the body is kept at that temperature at all times, the temperature
distribution ψ(t, x) inside Ω satisfies the following heat equation:

κ−1(x)∂tψ(t, x) = ∇ · (A(x)∇ψ(t, x)) + F (t, x) for x ∈ Ω and t ≥ 0,

ψ|
R+×∂Ω = 0, ψ|t=0 = 0,

(1.3)

where κ(x) = c(x)−1ρ(x)−1. The model (1.1), (1.2), (1.3) is based on the physical
assumption that the heat transfer is so slow that the quasistatic (DC) model for
the electric potential (1.1) is realistic.

Associated to the coupled system (1.1), (1.2), (1.3), we introduce the voltage-
to-heat flow map Σγ,κ,A defined by

Σγ,κ,A : f 7→ ν · A∇ψ|
R+×∂Ω. (1.4)

The idea is to measure the heat flow through the boundary caused by the heat
from the electric current resulting from the applied voltage distribution.

Our main result is Theorem 2.1 below, stating that under certain smooth-
ness assumptions, the coefficients γ, κ, and A are uniquely determined from the
knowledge of the voltage-to-heat flow map Σγ,κ,A.

The method of proof of Theorem 2.1 also outlines a constructive reconstruction
procedure for recovering conductivity γ from Σγ,κ,A. Namely, it turns out that
applying a temporally static voltage distribution f(t, x) = φ(x) and studying
Σγ,κ,Af at thermal equilibrium (t→ ∞) yields the knowledge of the Dirichlet-to-
Neumann map Λγφ related to the EIT problem. Then one can recover γ using
Nachman’s reconstruction result [31].

Notice that various hybrid imaging methods have been proposed and analyzed
recently. Examples include thermoacoustic and photoacoustic imaging [1, 5, 25],
combination of electrical and magnetic probing [26, 33], electrical and acoustic
imaging [15] and magnetic and acoustic imaging [30, 2]. Theorem 2.1 suggests
a new hybrid imaging method, utilizing two diffuse modes of propagation: elec-
trical prospecting and heat transfer-based probing. We emphasize that the pro-
posed method recovers complementary information about three different physical
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Ω ⊂ R3

γ(x)

A(x)

κ(x)

Electrode for applying voltage

Heat flow sensor

Figure 1. Schematic illustration of the practical measurement
setup motivating the proposed hybrid imaging method. The ideal
voltage-to-heat flow map Σγ,κ,A may be approximated in practice
by maintaining fixed voltages at the electrodes while measuring
heat flow using the interlaced sensors.

properties. We also note that in many applications where one wants to recon-
struct the heat transfer parameters κ(x) and A(x), the use of electric bound-
ary sources may be easier than controlling the temperature or the heat flux at
the boundary. Concerning inverse problems for the heat equation, we refer to
[6, 7, 19, 20, 21, 22, 23, 40].

We remark that in practice one might use a measurement setup shown in Figure
1. However, analysis of such discrete measurements is outside the scope of this
paper, and in the mathematical results below we work with the continuum models
(1.1), (1.2), (1.3), and (1.4).

This paper is organized as follows. In Section 2 we state our assumptions and
results in a mathematically precise form. In Section 3 we give an auxiliary density
result for the conductivity equation. Section 4 is devoted to the reconstruction of
the conductivity γ. The proof of Theorem 2.1 is completed in Section 5, where we
show the identifiability of the heat parameters κ and A. Finally, Appendix A is
devoted to the recovery of the boundary values of the matrix A from interior–to–
boundary measurements, associated to a suitable elliptic boundary value problem.
This result may be of an independent interest.

2. Statement of results

Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with C∞ boundary. Let γ ∈ C∞(Ω)
be a strictly positive function on Ω. Then given f(t, x) ∈ C1(R+, H

s(∂Ω)), s ≥
1/2, on the boundary at time t ≥ 0, there exists a unique u ∈ C1(R+, H

s+1/2(Ω)),
which solves the boundary value problem

∇ · γ∇u(t, x) = 0 for x ∈ Ω and t ≥ 0,

u(t, · )|∂Ω = f(t, · ),
(2.1)
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see [16]. We have

F (t, x) = (γ∇u(t, x)) · ∇u(t, x) ∈ C1(R+, L
2(Ω)), (2.2)

provided that s is taken large enough, say s > (n + 1)/2. In what follows we
shall always choose the Sobolev index s in this way. Consider the anisotropic
heat equation

κ−1(x)∂tψ(t, x) = ∇ · (A(x)∇ψ(t, x)) + F (t, x) for x ∈ Ω and t ≥ 0,

ψ|
R+×∂Ω = 0, ψ|t=0 = 0.

(2.3)

Here A(x) = (ajk(x)) is a real symmetric n × n matrix with aj,k(x) ∈ C∞(Ω),
and there exists C0 > 0 such that

n∑

j,k=1

ajk(x)ξjξk ≥ C0|ξ|
2, for all (x, ξ) ∈ Ω× R

n. (2.4)

We shall assume that 0 < κ ∈ C∞(Ω). The operator

Pv = −κ(x)∇ · (A(x)∇v)

is formally self-adjoint in L2
κ = L2(Ω, κ−1dx) and we have

(Pv, v)L2
κ
≥ C0‖v‖

2
L2, v ∈ C∞

0 (Ω), C0 > 0.

We also let P denote the Friedrichs extension of the operator P on C∞
0 (Ω), so

that the domain of the positive self-adjoint operator P is (H1
0 ∩H

2)(Ω).
The solution of (2.3) is given by the Duhamel formula

ψ(t, x) =

∫ t

0

(e−(t−s)PκF )(s, x)ds ∈ C1(R+, L
2(Ω))∩C(R+, (H

1
0∩H

2)(Ω)), (2.5)

see [16].
Associated to the coupled system (2.1), (2.2), and (2.3), we consider the

voltage-to-heat flow map,

Σγ,κ,A : C1(R+, H
s(∂Ω)) → C(R+, H

1/2(∂Ω)),

f 7→ ν ·A∇ψ|
R+×∂Ω,

The main result of the paper is as follows.

Theorem 2.1. Assume that 0 < γj ∈ C∞(Ω), 0 < κj ∈ C∞(Ω), and Aj are real
symmetric n × n matrices with C∞(Ω) entries, satisfying (2.4), for j = 1, 2. If
Σγ1,κ1,A1 = Σγ2,κ2,A2, then γ1 = γ2, κ1 = κ2 and A1 = A2.

It turns out that in the course of the proof of Theorem 2.1, we establish a
result for the anisotropic heat equation, which may be of independent interest.
In order to state the result, consider the inhomogeneous initial boundary value
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problem (2.3) for the anisotropic heat equation with an arbitrary source F ∈
C1(R+, L

2(Ω)). Define the map,

Ξκ,A : C1(R+, L
2(Ω)) → C(R+, H

1/2(∂Ω)),

F 7→ ν · A∇ψF |
R+×∂Ω,

where ψF is the solution of (2.3).

Theorem 2.2. Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary.
Assume that 0 < κj ∈ C∞(Ω), and Aj are real symmetric n × n matrices with
C∞(Ω) entries, satisfying (2.4), for j = 1, 2. If Ξκ1,A1 = Ξκ2,A2, then κ1 = κ2
and A1 = A2.

3. An auxiliary density result

Let Ω ⊂ Rn, n ≥ 3, be a bounded domain with C∞ boundary and let γ ∈
C∞(Ω) be a strictly positive function on Ω. We shall need the following density
result, which is a quite straightforward consequence of [38].

Proposition 3.1. The set

span{γ∇w1 · ∇w2 : wj ∈ C∞(Ω),∇ · γ∇wj = 0, j = 1, 2}

is dense in L2(Ω).

Proof. Let f ∈ L2(Ω) be such that
∫

Ω

fγ∇w1 · ∇w2dx = 0, (3.1)

for any solution w1, w2 ∈ C∞(Ω) of the conductivity equation

∇ · γ∇w = 0. (3.2)

We have

γ∇w1 · ∇w2 =
1

2
∇ · (γ∇(w1w2)). (3.3)

It follows from [38], see also [5], that for any ρ ∈ Cn satisfying ρ · ρ = 0 and
|ρ| ≥ 1 large enough, the conductivity equation (3.2) has a solution

wρ(x) = eiρ·xγ−1/2(1 + rρ), (3.4)

where rρ ∈ C∞(Ω) satisfies

‖rρ‖Hm(Ω) ≤
Cm

|ρ|
, m ≥ 0. (3.5)

Here the constant Cm depends on Ω, n, and a finite number of derivatives of γ.
Given ξ ∈ Rn and R > 0, according to [38], there exist ρ1, ρ2 ∈ Cn such that

ρj · ρj = 0, ρ1 + ρ2 = ξ and |ρj| ≥ R, j = 1, 2.
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For the solutions wρ1 and wρ2 of the form (3.4), we get

∇ · (γ∇(wρ1wρ2)) = ∇ · (γ∇(γ−1eiξ·x(1 + rρ1 + rρ2 + rρ1rρ2)))

= (∇ · (γ∇γ−1) + γ(∇γ−1) · iξ − |ξ|2)eiξ·x(1 + rρ1 + rρ2 + rρ1rρ2)

+ (γ∇γ−1 + 2iξ)eiξ·x · (∇rρ1 +∇rρ2 +∇(rρ1rρ2))

+ eiξ·x(∆rρ1 +∆rρ2 +∆(rρ1rρ2)).

In view of (3.3), we may substitute the latter expression into (3.1) and let R → ∞.
Using (3.5), we obtain that

∫

Ω

(∇ · (γ∇γ−1) + γ(∇γ−1) · iξ − |ξ|2)eiξ·xfdx = 0 for all ξ ∈ R
n. (3.6)

Here we shall view γ as a strictly positive C∞ function on R
n, which is equal to

a positive constant near infinity. The identity (3.6) is equivalent to

Fx→ξ(∇ · (γ∇γ−1)χΩf −∇ · (γ∇(γ−1)χΩf) + ∆(χΩf)) = 0,

where Fx→ξ denotes the Fourier transformation and χΩ is the characteristic func-
tion of Ω. It follows that χΩf is a solution of a second order elliptic equation on
Rn with smooth coefficients. Since it is compactly supported, by unique contin-
uation we conclude that f ≡ 0 in Ω. This completes the proof. �

4. Recovering the conductivity γ from the voltage-to-heat flow

map

The purpose of this section is to make the first step in the proof of Theorem
2.1, by establishing the following result. Recall that here n ≥ 3.

Proposition 4.1. The voltage-to-heat flow map Σγ,κ,A determines the conduc-
tivity γ uniquely.

When proving Proposition 4.1, we let α ∈ C∞(R+; [0, 1]) be such that

α|t<1/2 = 0, α|t>1 = 1.

Then set f(t, x) = α(t)h(x) with h ∈ Hs(∂Ω), s large enough. Using the Duhamel
formula (2.5), we shall study the behavior of ψ(t, x) as t→ +∞. The solution u
of (2.1) satisfies

u(t, x) = α(t)w0(x),

where w0 solves
∇ · γ∇w0(x) = 0 in Ω,

w0|∂Ω = h(x).
(4.1)

Thus,

F (t, x) = γα2(t)∇w0 · ∇w0,
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and (2.5) gives

ψ(t, x) =

∫ t

0

α2(s)e−(t−s)Pγκ∇w0 · ∇w0ds. (4.2)

Lemma 4.2. We have

‖ψ(t, ·)− P−1(γκ∇w0 · ∇w0)‖D(P ) → 0, as t→ +∞.

Here D(P ) = (H2∩H1
0 )(Ω) is equipped with the graph norm ‖ψ‖D(P ) = ‖ψ‖L2(Ω)+

‖Pψ‖L2(Ω).

Proof. We shall first check that

‖ψ(t, ·)− P−1(γκ∇w0 · ∇w0)‖L2(Ω) → 0, as t→ +∞. (4.3)

It follows from (4.2) that for t > 1, we have

ψ(t, x) =

∫ 1

0

α2(s)e−(t−s)P γκ∇w0 · ∇w0ds+

∫ t−1

0

e−sPγκ∇w0 · ∇w0ds.

Using that ∫ +∞

0

e−tP dt = P−1,

in the sense of bounded operators on L2(Ω), see [16], we get with L2-convergence,
as t→ +∞,

∫ t−1

0

e−sPγκ∇w0 · ∇w0ds→ P−1(γκ∇w0 · ∇w0).

On the other hand,

‖

∫ 1

0

α2(s)e−(t−s)Pγκ∇w0 · ∇w0ds‖L2(Ω)

≤

∫ 1

0

α2(s)‖e−(t−s)Pγκ∇w0 · ∇w0‖L2(Ω)ds

≤

∫ 1

0

α2(s)‖e−(t−s)P‖L(L2(Ω),L2(Ω))‖γκ∇w0 · ∇w0‖L2(Ω)ds→ 0, as t→ +∞,

since an application of the spectral theorem shows that

‖e−(t−s)P ‖L(L2(Ω),L2(Ω)) ≤ sup
λ∈spec(P )

e−λ(t−s) → 0, as t→ +∞.

This establishes (4.3).
Next we shall show that

‖Pψ(t, ·)− γκ∇w0 · ∇w0‖L2(Ω) → 0, as t→ +∞. (4.4)

We have for t > 1,

Pψ(t, x) = P

∫ 1

0

α2(s)e−(t−s)Pγκ∇w0 · ∇w0ds+ P

∫ t−1

0

e−sPγκ∇w0 · ∇w0ds.
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The formula

P

∫ t

0

e−sP vds = −e−tP v + v,

see [16], implies that

P

∫ t−1

0

e−sPγκ∇w0 · ∇w0ds = −e−(t−1)P γκ∇w0 · ∇w0 + γκ∇w0 · ∇w0,

and

‖e−(t−1)P γκ∇w0 · ∇w0‖L2(Ω) → 0, as t→ +∞.

Finally,

‖P

∫ 1

0

α2(s)e−(t−s)P γκ∇w0 · ∇w0ds‖L2(Ω)

≤

∫ 1

0

α2(s)‖Pe−(t−s)P‖L(L2(Ω),L2(Ω))‖γκ∇w0 · ∇w0‖L2(Ω)ds→ 0, as t→ +∞,

since

‖Pe−(t−s)P‖L(L2(Ω),L2(Ω)) ≤ sup
λ∈spec(P )

(λe−(t−s)λ) → 0, as t→ +∞.

This proves (4.4) and completes the proof of the lemma. �

Lemma 4.2 implies that as t→ +∞,

ν ·A∇ψ|∂Ω → ν · A∇(P−1(γκ∇w0 · ∇w0))|∂Ω in H1/2(∂Ω).

Thus, as t → +∞, we have by a repeated application of the divergence theorem
together with the Cauchy-Schwarz inequality,
∫

∂Ω

Σγ,κ,A(α(t)h(x))dS =

∫

∂Ω

ν · A∇ψdS →

∫

∂Ω

ν ·A∇(P−1(γκ∇w0 · ∇w0))dS

=

∫

Ω

∇ · A∇(P−1(γκ∇w0 · ∇w0))dx = −

∫

Ω

γ∇w0 · ∇w0dx = −

∫

∂Ω

Λγ(h)hdS.

Here

Λγ : Hs(∂Ω) → Hs−1(∂Ω),

h 7→ γ∂νw0|∂Ω,

is the Dirichlet-to-Neumann map, associated to the problem (4.1). Thus, the
knowledge of the voltage-to-heat flow map Σγ,κ,A determines the Dirichlet-to-
Neumann map Λγ. It follows from [38] that the isotropic conductivity γ ∈ C∞(Ω)
is uniquely determined by Σγ,κ,A. This completes the proof of Proposition 4.1.
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5. Recovering the heat parameters A and κ

The purpose of this section is to prove the following result.

Proposition 5.1. If Σγ,κ1,A1 = Σγ,κ2,A2, then κ1 = κ2 and A1 = A2.

When determining the conductivity γ in the previous section, we were con-
cerned with the power densities F which are supported in the region t ≥ 1/2 and
independent of t near +∞. Here we shall instead concentrate the density F in a
small neighborhood of t = 0.

Let χ ∈ C∞(R+) be such that 0 ≤ χ ≤ 1, supp (χ) ⊂ [0, 1] and∫
χ2(t)dt = 1.

For ε > 0, we define
χε(t) = ε−1/2χ(t/ε), (5.1)

so that χ2
ε(t) → δ(t), the Dirac measure at t = 0, as ε → 0. Let h ∈ Hs(∂Ω), for

s large enough. Then the solution u = uε,h of the problem

∇ · γ∇u(t, x) = 0 in Ω,

u|∂Ω = χε(t)h(x),

satisfies uε,h(t, x) = χε(t)w
h(x), where wh(x) solves

∇ · γ∇wh(x) = 0 in Ω,

wh|∂Ω = h(x).
(5.2)

Let h, h̃ ∈ Hs(∂Ω) and

F ε,h±h̃ = γ∇(uε,h ± uε,h̃) · ∇(uε,h ± uε,h̃) = γχ2
ε(t)∇(wh ± wh̃) · ∇(wh ± wh̃).

Denote by ψε,h±h̃,j the solution of (2.3) with F = F ε,h±h̃, κ = κj and A = Aj ,
j = 1, 2. Set

α(j)(t, x) = αε,h,h̃,j(t, x) =
1

4
(ψε,h+h̃,j(t, x)− ψε,h−h̃,j(t, x)).

Thus, α(j) is a solution of the following inhomogeneous initial boundary value
problem,

(∂t + Pj)α
(j) =

1

4
κj(x)χ

2
ε(t)γ

(
∇(wh + wh̃) · ∇(wh + wh̃)−∇(wh − wh̃) · ∇(wh − wh̃)

)

= κj(x)χ
2
ε(t)γ∇w

h · ∇wh̃, in R+ × Ω,

α(j)|
R+×∂Ω = 0, α(j)|t=0 = 0.

(5.3)

Since
Pj = −κj∇ · Aj∇
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is a self-adjoint positive operator in L2
κj
(Ω) with the domain D(Pj) = (H1

0 ∩

H2)(Ω), the spectrum of Pj is discrete, accumulating at +∞, consisting of eigen-

values of finite multiplicity, 0 < λ
(j)
1 ≤ λ

(j)
2 ≤ · · · → ∞. Associated to the

eigenvalues λ
(j)
k we have the eigenfunctions ϕ

(j)
k ∈ D(Pj), which form an or-

thonormal basis in L2
κj
(Ω). In what follows we shall assume, as we may, that the

eigenfunctions ϕ
(j)
k are real-valued. Hence,

α(j)(t, x) =

∞∑

k=1

c
(j)
k,ε(t)ϕ

(j)
k (x), c

(j)
k,ε = (α(j), ϕ

(j)
k )L2

κj
,

with convergence in C(R+,D(Pj)). Therefore,

ν · Aj∇α
(j)|∂Ω =

∞∑

k=1

c
(j)
k,ε(t)(ν · Aj∇ϕ

(j)
k )|∂Ω

with convergence in H1/2(∂Ω), for each fixed t ≥ 1.
Next we notice that

ν · Aj∇α
(j)|∂Ω×R+

=
1

4
Σγ,κj ,Aj

(χε(t)(h + h̃))−
1

4
Σγ,κj ,Aj

(χε(t)(h− h̃)).

Thus, since Σγ,κ1,A1 = Σγ,κ2,A2, it follows that for all t ≥ 1,

∞∑

k=1

c
(1)
k,ε(t)(ν · A1∇ϕ

(1)
k )|∂Ω =

∞∑

k=1

c
(2)
k,ε(t)(ν · A2∇ϕ

(2)
k )|∂Ω. (5.4)

Here we would like to let ε → 0. In order to do so, it will be convenient to

obtain an explicit representation of the Fourier coefficients c
(j)
k,ε(t).

Set d
(j)
k = (γ∇wh · ∇wh̃, ϕ

(j)
k )L2 , where the scalar product is taken in the space

L2(Ω, dx). It follows from (5.3) that

∂tc
(j)
k,ε(t) + λ

(j)
k c

(j)
k,ε(t) = χ2

ε(t)d
(j)
k ,

c
(j)
k,ε(0) = 0.

Hence,

c
(j)
k,ε(t) = e−λktd

(j)
k

∫ t

0

eλ
(j)
k

sχ2
ε(s)ds, t ≥ 0,

and c
(j)
k,ε(t) is uniformly bounded in k, ε. For t ≥ 1 and k = 1, 2, . . . , fixed, we get

c
(j)
k,ε(t) = e−λ

(j)
k

tdk

∫ 1

0

χ2(s)eλ
(j)
k

sεds→ e−λ
(j)
k

td
(j)
k , as ε→ 0. (5.5)

Using (5.5), we may let ε→ 0 in (5.4), and conclude that
∞∑

k=1

e−λ
(1)
k

td
(1)
k (ν · A1∇ϕ

(1)
k )|∂Ω =

∞∑

k=1

e−λ
(2)
k

td
(2)
k (ν ·A2∇ϕ

(2)
k )|∂Ω, t ≥ 1. (5.6)
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In what follows we shall have to distinguish the eigenvalues of the operator

Pj, j = 1, 2. In order to do that let us continue to denote by λ
(j)
k the sequence

of distinct eigenvalues of Pj and let m
(j)
k denote the multiplicity of λ

(j)
k . Let

ϕ
(j)
k,1, . . . , ϕ

(j)

k,m
(j)
k

be an orthonormal basis of the eigenfunctions, corresponding to

the eigenvalue λ
(j)
k . By the uniqueness of the Dirichlet series, see [9], and (5.6),

we obtain the following result.

Proposition 5.2. Assume that Σγ,κ1,A1 = Σγ,κ2,A2. Then for all k = 1, 2, . . . , we
have

λ
(1)
k = λ

(2)
k ,

and

m
(1)
k∑

i=1

d
(1)
k,i(ν · A1∇ϕ

(1)
k,i)|∂Ω =

m
(2)
k∑

i=1

d
(2)
k,i(ν ·A2∇ϕ

(2)
k,i)|∂Ω. (5.7)

Here d
(j)
k,i = (γ∇wh · ∇wh̃, ϕ

(j)
k,i)L2 and h, h̃ ∈ Hs(∂Ω) are arbitrary functions.

Let us introduce the following linear continuous operators

R
(j)
k : L2(Ω) → L2(∂Ω),

R
(j)
k (F ) =

m
(j)
k∑

i=1

(F, ϕ
(j)
k,i)L2(ν ·Aj∇ϕ

(j)
k,i)|∂Ω, j = 1, 2, k = 1, 2, . . . .

Proposition 3.1 together with (5.7) implies that R
(1)
k = R

(2)
k on a dense subset of

L2(Ω), and hence, everywhere. On the level of the distribution kernels, we obtain
that for all k = 1, 2, . . . ,

m
(1)
k∑

i=1

ϕ
(1)
k,i(x)(ν ·A1∇ϕ

(1)
k,i)(y) =

m
(2)
k∑

i=1

ϕ
(2)
k,i(x)(ν · A2∇ϕ

(2)
k,i )(y), x ∈ Ω, y ∈ ∂Ω. (5.8)

We shall next need the following result, see [7]. Since the argument is short,
for the convenience of the reader, we give it here.

Lemma 5.3. The functions (ν ·Aj∇ϕ
(j)
k,1)|∂Ω, . . . , (ν ·Aj∇ϕ

(j)

k,m
(j)
k

)|∂Ω are linearly

independent, j = 1, 2.

Proof. Assume that there are c1, . . . , cm(j)
k

∈ R such that

m
(j)
k∑

i=1

ci(ν · Aj∇ϕ
(j)
k,i)|∂Ω = 0.
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Then ϕ =
∑m

(j)
k

i=1 ciϕ
(j)
k,i satisfies

Pjϕ = λ
(j)
k ϕ in Ω,

ϕ|∂Ω = 0, ν · Aj∇ϕ|∂Ω = 0.

By the unique continuation principle, we get ϕ = 0 in Ω. Thus, ci = 0 for

1 ≤ i ≤ m
(j)
k . This proves the lemma.

�

Our next goal is to analyze the consequences of (5.8), and the key step here is
the following algebraic result which is similar to [7, Lemma 2.3].

Lemma 5.4. Let fi : Ω → R, f̃i : ∂Ω → R, i = 1, . . . , m(1), and gl : Ω → R,
g̃l : ∂Ω → R, l = 1, . . . , m(2), be such that

m(1)∑

i=1

fi(x)f̃i(y) =
m(2)∑

l=1

gl(x)g̃l(y) for all x ∈ Ω, y ∈ ∂Ω. (5.9)

Moreover, assume that the systems {f1, . . . , fm(1)}, {f̃1, . . . , f̃m(1)}, {g1, . . . , gm(2)}
and {g̃1, . . . , g̃m(2)} are all linearly independent. Then m(1) = m(2) and there exists
an m(1) ×m(1) invertible matrix T with real entries such that

F (x) = TG(x), F̃ (y) = (T t)−1G̃(y) for all x ∈ Ω, y ∈ ∂Ω.

Here we use the notation

F (x) =




f1(x)
...

fm(1)(x)


 , F̃ (y) =




f̃1(y)
...

f̃m(1)(y)


 ,

G(x) =




g1(x)
...

gm(2)(x)


 , G̃(y) =




g̃1(y)
...

g̃m(2)(y)


 .

Proof. As f̃1 is not identically zero in ∂Ω, there exists y1 ∈ ∂Ω such that f̃1(y1) 6=
0. Assuming that

det

(
f̃1(y1) f̃2(y1)

f̃1(y) f̃2(y)

)
= 0 for all y ∈ ∂Ω,

we get that f̃1, f̃2 are linearly dependent which contradicts the assumptions of
the proposition. Thus, there exists y2 ∈ ∂Ω such that

det

(
f̃1(y1) f̃2(y1)

f̃1(y2) f̃2(y2)

)
6= 0.
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Continuing in the same way, we find points y1, y2, . . . , ym(1) ∈ ∂Ω such that the
matrix

Qf̃ =




f̃1(y1) f̃2(y1) . . . f̃m(1)(y1)

f̃1(y2) f̃2(y2) . . . f̃m(1)(y2)
...

...
...

...

f̃1(ym(1)) f̃2(ym(1)) . . . f̃m(1)(ym(1))




is invertible. It follows from (5.9) that Qf̃F (x) = Qg̃G(x) for any x ∈ Ω, where

Qg̃ =




g̃1(y1) . . . g̃m(2)(y1)
...

...
...

g̃1(ym(1)) . . . g̃m(2)(ym(1))


 .

Thus, F (x) = TG(x) for any x ∈ Ω, where T = Q−1

f̃
Qg̃, and therefore, m(1) ≤

m(2). Similarly, using the fact that {g̃1, . . . , g̃m(2)} is linearly independent, we
have G(x) = T1F (x) for any x ∈ Ω, and m(2) ≤ m(1). Hence, m(1) = m(2).
Furthermore,

F (x) = TT1F (x) for all x ∈ Ω. (5.10)

Since the system {f1, . . . , fm(1)} is linearly independent, in the same way as
above, we see that there are points x1, . . . , xm(1) ∈ Ω such that the vectors

F (x1), . . . , F (xm(1)) form a basis in Cm(1)
. Thus, (5.10) implies that TT1 = I

and therefore, T is invertible. Similarly, one can see that F̃ (y) = T̃ G̃(y) for all

y ∈ ∂Ω with an invertible matrix T̃ .

It follows from (5.9) that F (x) · F̃ (y) = G(x) · G̃(y) and therefore,

(T̃ tT − I)G(x) · G̃(y) = 0 for all x ∈ Ω, y ∈ ∂Ω.

Since there exist points x1, . . . , xm(1) ∈ Ω and y1, . . . , ym(1) ∈ ∂Ω such that the

vectors G(x1), . . . G(xm(1)) (respectively, G̃(y1), . . . G̃(ym(1))) form a basis in Cm(1)
,

we get T̃ tT = I. This proves the claim. �

If follows from Lemma 5.4 together with (5.8) and Lemma 5.3 that m
(1)
k =

m
(2)
k =: mk, and there exists an mk ×mk invertible matrix T such that



ϕ
(1)
k,1(x)
...

ϕ
(1)
k,mk

(x)


 = T



ϕ
(2)
k,1(x)
...

ϕ
(2)
k,mk

(x)


 , x ∈ Ω, (5.11)

and


ν · A1(y)∇ϕ

(1)
k,1(y)

...

ν ·A1(y)∇ϕ
(1)
k,mk

(y)


 = (T t)−1



ν ·A2(y)∇ϕ

(2)
k,1(y)

...

ν · A2(y)∇ϕ
(2)
k,mk

(y)


 , y ∈ ∂Ω. (5.12)
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Using (5.11) and (5.12), we have

T tT



ν · A1(y)∇ϕ

(2)
k,1(y)

...

ν ·A1(y)∇ϕ
(2)
k,mk

(y)


 =



ν ·A2(y)∇ϕ

(2)
k,1(y)

...

ν · A2(y)∇ϕ
(2)
k,mk

(y)


 , y ∈ ∂Ω. (5.13)

The next step is to show that the matrix T is in fact orthogonal. This will
follow once we establish the following result.

Proposition 5.5. If Σγ,κ1,A1 = Σγ,κ2,A2 then A1|∂Ω = A2|∂Ω.

Proof. Consider the following elliptic boundary value problem,

Pju = κjγ∇w
h · ∇wh̃ in Ω,

u|∂Ω = 0,
(5.14)

where wh (respectively, wh̃) is the solution to the problem (5.2) with the boundary

source h ∈ Hs(∂Ω) (respectively, h̃ ∈ Hs(∂Ω)), s ≥ 1/2 large enough. We shall

now return to the original notation, where each eigenvalue λ
(j)
k of the operator

Pj is repeated according its multiplicity. Since 0 6∈ spec(Pj), the problem (5.14)
has the unique solution

u(j) =

∞∑

k=1

d
(j)
k

λ
(j)
k

ϕ
(j)
k , d

(j)
k = (γ∇wh · ∇wh̃, ϕ

(j)
k )L2 ,

with convergence in H2(Ω). Thus,

ν · Aj∇u
(j)|∂Ω =

∞∑

k=1

d
(j)
k

λ
(j)
k

ν · Aj∇ϕ
(j)
k |∂Ω,

and therefore, it follows from Proposition 5.2 that if Σγ,κ1,A1 = Σγ,κ2,A2 , then

ν · A1∇u
(1)|∂Ω = ν ·A2∇u

(2)|∂Ω. (5.15)

Define the continuous map

Ψ(j) : L2(Ω) → L2(∂Ω), F 7→ ν · Aj∇u
(F,j)|∂Ω,

u(F,j) is a solution to the problem

−∇ · (Aj∇u
(F,j)) = F in Ω,

u(F,j)|∂Ω = 0.

It follows from (5.15) together with Proposition 3.1 that Ψ(1) = Ψ(2) on a dense
subset of L2(Ω), and thus, everywhere. Hence, Proposition A.1 in Appendix A
implies that A1|∂Ω = A2|∂Ω.

�

Now going back to equation (5.13), using Lemma 5.3 we obtain that T is an
orthogonal matrix. Proposition 5.2 together with (5.11) gives the following result.
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Proposition 5.6. Assume that Σγ,κ1,A1 = Σγ,κ2,A2. Let ϕ
(1)
k be an orthonormal

basis in L2(Ω, κ−1
1 dx) of the Dirichlet eigenfunctions of the operator P1. Then

the Dirichlet eigenvalues λ
(1)
k (respectively, λ

(2)
k ) of the operator P1 (respectively,

P2), counted with multiplicities, satisfy λ
(1)
k = λ

(2)
k for all k and there exists

an orthonormal basis in L2(Ω, κ−1
2 dx) of the Dirichlet eigenfunctions ϕ

(2)
k of the

operator P2 such that ϕ
(1)
k = ϕ

(2)
k for all k.

We shall next show that Proposition 5.6 yields that κ1 = κ2. Indeed, let us
write

κ1 =

∞∑

k=1

ckϕ
(1)
k =

∞∑

k=1

ckϕ
(2)
k , κ2 =

∞∑

k=1

dkϕ
(2)
k ,

where the Fourier coefficients ck are given by

ck =

∫

Ω

κ1ϕ
(1)
k κ−1

1 dx =

∫

Ω

ϕ
(2)
k dx =

∫

Ω

κ2ϕ
(2)
k κ−1

2 dx = dk.

Thus, κ1 = κ2. It follows that P1u = P2u, for any u ∈ C∞
0 (Ω), and we get

A1 = A2. The proof of Theorem 2.1 is complete.
Theorem 2.2 can be proven by exactly the same arguments presented in this

section applied to the problem (2.3) with the right hand sides of the form

F (t, x) = χ2
ε(t)H(x), H ∈ L2(Ω),

where χε is given by (5.1).

Appendix A. Boundary reconstruction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with C∞ boundary, and A(x) =
(ajk(x)), 1 ≤ j, k ≤ n, be a real symmetric n × n matrix with aj,k(x) ∈ C∞(Ω).
Assume that there exists C0 > 0 such that

n∑

j,k=1

ajk(x)ξjξk ≥ C0|ξ|
2 for all (x, ξ) ∈ Ω× R

n.

Consider the following elliptic boundary value problem,

−∇ · (A∇u) = F in Ω,

u|∂Ω = 0.
(A.1)

For any F ∈ L2(Ω), the problem (A.1) has a unique solution u = uF ∈ H2(Ω) ∩
H1

0 (Ω) and one can define the map,

Ψ : L2(Ω) → L2(∂Ω), Ψ(F ) = ν · A∇uF |∂Ω, (A.2)

where ν is the unit outer normal to the boundary ∂Ω. We note that the map
Ψ is sometimes used to model boundary measurements for optical tomography
with diffusion approximation, [17, 18, 35].
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We have the following proposition, which is closely related to the earlier bound-
ary reconstruction results of a Riemannian metric from the Dirichlet–to–Neumann
map [24, 29].

Proposition A.1. The knowledge of the map Ψ given by (A.2) determines the
values of A on the boundary ∂Ω.

Proof. We shall recover the values of A on the boundary by analyzing the dis-
tribution kernel of the map Ψ, obtained by constructing a right parametrix for
the boundary value problem (A.1). Let us denote A = −∇ · (A∇). Since A(x)
is a positive definite matrix, smoothly depending on x, we can view Ω as a Rie-
mannian manifold with boundary, equipped with the metric G = A−1, G = (gij),
1 ≤ i, j ≤ n. To construct a parametrix for (A.1), we shall work locally near a
boundary point. Let x0 ∈ ∂Ω and introduce the boundary normal coordinates
y = (y′, yn) ∈ U , y′ = (y1, . . . , yn−1), centered at x0. Here U stands for some
open neighborhood of 0 in Rn. In terms of the boundary normal coordinates,
locally near x0, the boundary ∂Ω is defined by yn = 0, and yn > 0 if and only
if x ∈ Ω. In what follows, we shall write again (x′, xn) for the boundary normal
coordinates.

In the boundary normal coordinates, the metric G has the form

G =
n−1∑

α,β=1

gαβ(x)dxαdxβ + (dxn)
2,

see [29], and the principal symbol of the operator A is given by

a0(x, ξ) = ξ2n +

n−1∑

α,β=1

gαβ(x)ξαξβ.

Therefore, the equation a0(x, ξ
′, ξn) = 0, ξ′ = (ξ1, . . . , ξn−1), has the solutions,

ξn = λ±(x, ξ
′), λ±(x, ξ

′) = ±i

√√√√
n−1∑

α,β=1

gαβ(x)ξαξβ. (A.3)

We can view A as a linear continuous map in the space D′(U). In the boundary
normal coordinates, the problem (A.1) has the following form,

Au = F in R
n
+ = {x ∈ R

n : xn > 0},

u|xn=0 = 0.
(A.4)

Let

r0(x, ξ) = a0(x, ξ)
−1(1− χ(ξ)), x ∈ U, ξ ∈ R

n,

where χ(ξ) ∈ C∞
0 (Rn), χ(ξ) = 0 for |ξ| ≥ 1 and χ = 1 near 0. The operator

Op(r0) is a rough parametrix for the operator A, which will be sufficient for our
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purposes. Here we are using the classical quantization of a symbol a ∈ Sk(U×Rn),
which is given by

Op(a)u(x) =
1

(2π)n

∫

Rn

∫

Rn

ei(x−y)·ξa(x, ξ)u(y)dydξ.

As usual, we say that a ∈ Sk(U × Rn) if locally uniformly in x ∈ U , we have

|∂αx∂
β
ξ a(x, ξ)| ≤ Cαβ〈ξ〉

k−|β|, 〈ξ〉 =
√

1 + |ξ|2.

Let r+ be the operation of restriction from Rn to Rn
+ and let e+ be the operation

of extension by zero from Rn
+ to Rn.

We shall construct a right parametrix for the boundary value problem (A.4) in
the following form

R(F ) = r+Op(r0)(e+F ) +Rb(ψ).

Here
ψ(x′) = −τ0r+Op(r0)(e+F ), τ0 : u 7→ u|xn=0,

and Rb will be constructed as a right parametrix for the boundary value problem

Au = 0 in R
n
+,

u|xn=0 = ψ(x′).
(A.5)

In what follows we shall suppress the operator r+ from the notation, as this will
cause no confusion.

When constructing the operator Rb, we shall follow the standard approach in
the theory of elliptic boundary value problems, see [8]. To this end, let χ̃ ∈
C∞

0 (Rn−1) be such that χ̃ = 1 for |ξ′| ≤ 1. Notice that

(1− χ̃(ξ′))χ(ξ) = 0.

Let σ = σ(x, ξ′) be a simple closed C1 smooth curve in the upper half-plane
Im ξn > 0, which encircles the root λ+(x, ξ

′) in the positive sense. In what
follows we may and will choose σ so that it is independent of x ∈ U , depending
on ξ′ only, i.e. σ = σ(ξ′). When ϕ ∈ C∞

0 (U ∩ Rn−1), we define the operator

(Πϕ)(x) =
1

i(2π)n

∫

Rn−1

eix
′·ξ′ϕ̂(ξ′)(1− χ̃(ξ′))

(∫

ξn∈σ

eixnξn

a0(x, ξ)
dξn

)
dξ′, xn ≥ 0,

(A.6)
where

ϕ̂(ξ′) =

∫

Rn−1

e−iy′·ξ′ϕ(y′)dy′

is the Fourier transform of ϕ. By a contour deformation argument in the complex
ξn–plane, we have

Πϕ =
1

i
Op((1− χ̃)a−1

0 )(ϕ⊗ δxn=0), xn > 0.

We get therefore,

AΠϕ = Op(b)(ϕ⊗ δxn=0), b ∈ S−1(U × R
n), xn > 0,
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since the operator A is local.
We shall take Rb(ψ) = Πϕ, for some function ϕ, defined locally near 0 ∈ Rn−1,

to be found from the boundary condition, i.e.

τ0Πϕ = ψ. (A.7)

To this end, we shall now prove that τ0Π is an elliptic pseudodifferential operator
on the boundary and compute its principal symbol. By the residue calculus,
using (A.6), we get

τ0Π = Op(d0), d0(x
′, ξ′) = (1− χ̃(ξ′))

1

2πi

∫

ξn∈σ

1

a0(x′, 0, ξ)
dξn

= (1− χ̃(ξ′))
1

∂ξna0(x
′, 0, ξ′, λ+)

= (1− χ̃(ξ′))
1

2i|ξ′|A
∈ S−1((U ∩ R

n−1)× R
n−1),

where

|ξ′|A =

√√√√
n−1∑

α,β=1

gαβ(x′, 0)ξαξβ.

We introduce next a rough parametrix of τ0Π, given by Op(d̃0), where d̃0 ∈
S1((U ∩ Rn−1)× Rn−1) is such that

d̃0 = 2i|ξ′|A, for |ξ′| large.

To satisfy (A.7), we choose

ϕ = Op(d̃0)ψ = −Op(d̃0)(τ0Op(r0)(e+F )).

This choice of ϕ completes the construction of a rough parametrix for the bound-
ary value problem (A.5), given by

Rb(ψ) = −ΠOp(d̃0)(τ0Op(r0)(e+F )).

Hence, the parametrix for the problem (A.4) has the form

R(F ) = Op(r0)(e+F )−ΠOp(d̃0)(τ0Op(r0)(e+F )).

In the boundary normal coordinates, the operator Ψ is given by

Ψ(F ) = τ0∂xn
u,

and therefore, to obtain the claim of the proposition it suffices to analyze the
distribution kernel K(x′, y) of the operator τ0∂xn

R given by

(τ0∂xn
R(F ))(x′) =

∫

Rn

K(x′, y)F (y)dy, x′ ∈ R
n−1, y ∈ R

n.

Let us first consider the Schwartz kernel of the operator

τ0∂xn
Op(r0)(e+F ) =

1

(2π)n
τ0∂xn

∫

Rn

eix·ξr0(x, ξ)ê+F (ξ)dξ,
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which is given by

K(1)(x′, y) =
1

(2π)n

∫

Rn

ei(x
′−y′)·ξ′e−iynξn(iξnr0(x

′, 0, ξ) + ∂xn
r0(x

′, 0, ξ))dξ.

Recall that here yn > 0. Restricting the attention to the region |ξ′| ≥ 1, by a
contour deformation argument to the lower half plane, we find that∫

R

e−iynξniξnr0(x
′, 0, ξ)dξn = 2πie−iynλ−

iλ−
∂ξna0(x

′, 0, ξ′, λ−)
= πe−yn|ξ′|A,

and therefore,

K(1)(x′, y) =
1

(2π)n−1

∫

Rn−1

ei(x
′−y′)·ξ′t(x′, yn, ξ

′)dξ′,

where

t(x′, yn, ξ
′) =

e−yn|ξ′|A

2
+ e−yn|ξ′|AO

(
1

|ξ′|A

)
, |ξ′| ≥ 1.

Next, the operator τ0∂xn
Π is a pseudodifferential operator on Rn−1, given by

(τ0∂xn
Π)v(x′) =

1

(2π)n−1

∫

ξ′∈Rn−1

(1− χ̃(ξ′))eix
′·ξ′ v̂(ξ′)

1

2πi

∫

ξn∈σ

(
iξn

a0(x′, 0, ξ)
+ ∂xn

(
1

a0(x′, 0, ξ)

))
dξ′dξn.

The principal symbol of the operator τ0∂xn
Π is therefore

1

2πi

∫

ξn∈σ

iξn
a0(x′, 0, ξ)

dξn = i
λ+

∂ξna0(x
′, 0, ξ′, λ+)

=
i

2
, |ξ′| large enough.

The operator Op(d̃0) is also a pseudodifferential operator on Rn−1 and its princi-
pal symbol is given by 2λ+ ∈ S1((U∩Rn−1)×Rn−1), |ξ′| large enough. Hence, the

principal symbol of the operator τ0∂xn
ΠOp(d̃0) is iλ+ ∈ S1((U ∩ Rn−1)× Rn−1),

and therefore, its kernel is given by

K
(2)
1 (x′, z′) =

1

(2π)n−1

∫

Rn−1

ei(x
′−z′)·ξ′d1(x

′, ξ′)dξ′,

d1(x
′, ξ′) = iλ+(x

′, 0, ξ′) + p0(x
′, ξ′), |ξ′| large enough,

where p0 ∈ S0((U ∩ Rn−1)× Rn−1).
Finally, the kernel of the operator τ0Op(r0) is given by

K
(2)
2 (z′, y) =

1

(2π)n

∫

Rn

ei(z
′−y′)·η′e−iynηnr0(z

′, 0, η)dη

=
1

(2π)n−1

∫

Rn−1

ei(z
′−y′)·η′d2(z

′, yn, η
′)dη′,

d2(z
′, yn, η

′) =
1

2

e−yn|η′|A

|η′|A
, |η′| large enough.
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Here as usual we use the residue calculus, where only the pole in the lower half
plane contributes.

Hence, the kernel of the composition τ0∂xn
ΠOp(d̃0)τ0Op(r0)(e+F ) is given by

K(2)(x′, y) =

∫
K

(2)
1 (x′, z′)K

(2)
2 (z′, y)dz′

=
1

(2π)2(n−1)

∫∫∫
ei(x

′−z′)·ξ′ei(z
′−y′)·η′d1(x

′, ξ′)d2(z
′, yn, η

′)dξ′dη′dz′

=
1

(2π)n−1

∫
ei(x

′−y′)·η′c(x′, yn, η
′)dη′,

where

c(x′, yn, η
′) =

1

(2π)n−1

∫∫
ei(x

′−z′)·(ξ′−η′)d1(x
′, ξ′)d2(z

′, yn, η
′)dξ′dz′.

Here yn ≥ 0 occurs as a parameter. Now d1(x
′, ξ′) ∈ S1((U ∩ Rn−1)× Rn−1) for

large |ξ′| and d2(z
′, yn, η

′) satisfies

|∂αz′∂
β
η′∂

γ
ynd2(z

′, yn, η
′)| ≤ Cα,β,γe

−yn〈η′〉〈η′〉−1−|β|+|γ|,

where 〈η′〉 =
√
1 + |η′|2A is large enough. Hence, c(x′, yn, η

′), depending on the
parameter yn, is the symbol of the composition of two pseudodifferential opera-
tors in the tangential directions. By the standard results on pseudodifferential
operators, see [14], it has the following asymptotic expansion,

c(x′, yn, η
′) ∼

∑

|α|≥0

1

α!
∂αη′d1(x

′, η′)Dα
x′d2(x

′, yn, η
′),

with the leading term d1(x
′, η′)d2(x

′, yn, η
′). The knowledge of the operator Ψ

implies the knowledge of the kernel K(1)(x′, y)−K(2)(x′, y) for any x′ ∈ U ∩Rn−1

and y ∈ U ∩ Rn
+. This implies the knowledge of

e−yn|ξ′|A

2
+ e−yn|ξ′|AO

(
1

|ξ′|A

)
− c(x′, yn, ξ

′), for any |ξ′| large enough.

The leading term of the latter expression is given by

e−yn|ξ′|A

2
+
e−yn|ξ′|A

2
= e−yn|ξ′|A.

Varying ξ′, we recover A(x′, 0). The proof is complete.
�
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