Lty

e
OO203-20/0 -8 (/SA

Tvers7

Nortk westerrn U

L ctrrsto 7, r/,

PP / '/L?//

S8 ooy

2

] \?t)t,

ZO0F Slhoricdois

Discussion Paper #1097
June, 1994

‘A Chaotic Exploration
of Aggregation Paradoxes”

Donald G. Saari
Northwestern University

www kelloga.nwu.edu/fresearch/math

CMS-EMS
The Center for
Mathematical Studies
iIn EConomics &

Management Sciency




A CHAOTIC EXPLORATION OF AGGREGATION PARADOXES

DoNALD G. SAARI

Department of Marhematies, Northwestern University

ABSTRACT. Paradoxes from statistics and decision sciences form amusing. yet in-
triguing mathematical puzzles. On deeper examnination. they constitute serious prob-
lems that could cause us. unintentionally. to adopt inferior alternatives. [t is indicated
here how ideas from “dynatical chaos™ and orbits of synunetry groups can be mod-
ified and combined to create a matlematical theory 1o understand, classify. and find
new properties of these puzzling phenomena.

Paradoxes are intriguing. By a paradox. I mean a mathemarically counterintu-
itive conclusion. To illustrate. the likelihood of *Heads™ with a flipped penny is
approximately % Presumably., the same answer holds for a penny spinning on edge.
but. instead. it is only about 0.30. This is a surprise, not a paradox because an
examination discloses that the slightly heavier “Head” tilts the axis of rotation. A
paradox requires a more subtle mathematical structure.

Suppose 15 friends decide 1o choose a common beverage [S7). Their preferences

e six have “milk = wine = beer.”

o five have “beer » wine » milk.” and

e four have "wine = beer > milk.”
define the plurality ranking “milk = beer » wine”™ with the vote 61 5: 4 If borrom-
ranked wine is not available. we expect nothing to change: milk should remain the
top-choice. However. 60% of this group prefers “beer = milk™ with the vore of 9: 6!
They even prefer “wine = milk” and “wine > beer™ with similarly decisive votes.
These pairwise comparisons. then. suggest that the plurality ranking completely
reverses what the voters really want! Instead of being the beverage of choiee. these
voters view milk as their inferior alternative. This is a paradox.

A probability exainple can be created by replacing the usual markings on three
fair dice with the numbers {(from a magic squarc)
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where each mumber appears twice. Facli person chooses and rolls a die where
Ligh score wins, For two dice. the sample space has nine pairs, so a die with the
larger value in ar least five of them is the better choice. As a count proves that
A= B. B> (. it is reasonable 1o anricipate that 4 > C: instead. €' > 4.

Among the many statistical paradoxes, suppose a new cold remedy 1s tested in
Evanston and in Recife where in both sites the data supports the new remedy. For
figures, suppose out of the 144 subjects from Evanston who opt for the experimental
approach. 54 regain heaith. From the 36 using the standard approach. ouly 12
regain health, As ﬁ% =2> 2= 1. the experimental drug is better. In Recife.
of the 36 who opted for the experimental approach. half regain health. Of the
144 in the control group. 66 regain health. As % > %”—1 the experimental drug
dominates again. In both locales, the experimental drug proved berter than the
standard approach. so. presumably, it should be chosen. In the aggregate with
180 subjects in cach group, however, only 72 from the experimental group regained
health compared to the 78 from the control group. This Simpson’s Paradox (e.g..
sce [B. GAILL HS]) demonstrates that the aggregated data can reverse the conclusion!

Paradoxes are amusing, but when recast in terms of an clection for the depart-
mental chair. the scleetion of the candidate for the sole tenure rrack position, a
Presidential Candidate. the choice of economic or political decisions, or comparing
medical tests it becomes evident that these mathemarical puzzles have meaningful
consequences that must be addressed. Indeed. with the vast numbers of daily de-
cisions made in various contexts. one must expect that many of the mathematical
paradoxes from the decision and statistical sciences have been manifested by groups
unknowingly scleeting inferior alternatives, This. in itself. underscores the critical
importance of undersranding these counterintuitive surprises.

These are well-studied issues, but progress has bheen severely lmited. The reason
is clear: a “paradox” is counterintuitive. so what does one look for? This is why.
even with the huge literature for each of these fields (e.g.. for voning. sce the 72 page
bibliography [I] or the surveys [Br. K2, Nu. O. Stj). only relatively few paradoxes
and properties of ranking systems have been found. The problem is further compli-
cated by the assertion ([BO. BTT]) that it can be NP-hard ro determine whether
an clection outcome can change when a non-winner drops out. In this article, I
outline a new approach based on “chaotic dynamics™ and symmerry groups that
overcomes these severe limitations by extracting all possible ranking paradoxes and
properties that can oceur.

2. A CHAOTIC STATE OF AFFAIRS

The chaotic examination of aggregation procedures is based on the mathematical
structures of “chaos™ as outlined next. It is important to stress that conclusions
such as period-doubling. homoclinic points, strange attractors, ete.. are not and
cannot occur in an analysis of paradoxes. These results intimately depend upon
particular structures of dynamical systems that are missing here. Instead. what
we borrow from dyvnamical systems is the change of perspective from a local to a
global emphasis along with the mathematical insight motivating the development
of “symbolic dynamics.” Once modified. these conceptual ideas define new ways to

analyze the paradoxes of aggregation procedures. Moreover. this “borrowing™ from
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dynamics identifies a rescarch program of parallel issues for discrete and “statie”
problens.

A way ro review basic ideas from dynamics is to consider Newton's method
(ST for finding a zero of a polynomial f(.x). (For a general introduction. see [D )
If the initial guess. &y, fails because f(zy) # 0. then f is replaced by its lincar
approximation. f(r) 4+ (x — ) f'(71): the zero of this approximation. 2. 1s the
next iterare. As such. Newron's method has the standard geometrie representation
of Fig. 1. Of course. the iteration procedure fails at a critical point of f because
the horizontal linear approximation has no zeros.

Figure 1. Newton's method.

Suppose we are to find the roots of the fifth-degree polynomial depicted in Fig,
2 where the critical points of f define the endpoints of the three labeled intervals,
We know that if x; is in an unbounded interval, the iteration converges to the zero
of that interval. The remaining challenge. then. is ro understand what happens
should all iterates of an initial point remain in ¢ U b U ¢. Some iterates converge to
a zero of fin this region. but what else can happen?

SN TN
NG A NG 4

Figure 2. Regions for a fifth degree polynomial.

One way to discover "nonconvergent™ properties of Newton's method is to exan-
ine the behavior of the orbit 2. 29, . .. &n.. .. by experimenting with the choice of
21. For instance. if 14, ends up near xy. it is reasonable to expect from continuity
considerations that 2y can be modified to force xy = rgy: this means we should
expect a period-sixty orbit to exist. This is a simplified. yet. not inaccurare de-
seription of how various properties were obtained. This approach. wirl its emphasis
on local properties. can be technically difficult. Yet. by being property-specific, it
doesn’t tell us what else might happen. For instance. we must anricipate certain
periodic orbits to exist: e.g.. period-two orbits are casy to construct. Are there any
other kinds? Can anything other than periodic orbits happen?

As an alternative way 1o address these issues, after {&). 22, 23, ... } is determined.,
replace cach iterate with a label identifving the interval i which it lives. For
example, if ©y € v.a2 € boay € coay € b, then the initial condition a and its
orbit defines the sequence gy(2y) = (a.b.¢.b,... ). As this listing of symbols is not
random (it is ordered by the dynamies), call it a word. So. if U* = {a. b,e}? is the
universal set consisting of all possible sequences where cach entry is one of the three
symbols. then Newton's methiod defines a mapping g5 :aUbUc — [* swhere each
initial irerate is identified with its word - an clement of U3, A word. then, specifies
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one kind of outeome. One way to measure the complexity of Newron's method is
to find all possible words: that is. to find all of the entries in the dictionary

(2.1) Dy = {gpla) € U} U

Clommon sense dictates that should Dy be a large subscer of U*. then Newton's
method admits a rich supply of complex. chaotic dynamics. On the other hand.
with a limited number of words. not much can happen. so if Dy is a small subset of
73 a reasonably benign dynamic must be anticipated. Thus the size of Dy serves as
a crude complexity measure of the process. A way to understand Newton's method.
then. is to characterize its dictionary Dj. Notice the change in cmphasis: instead
of detecting particular fearures of Newton's method. the ambitious new goal is 1o
completely catalogue all long term dynamical properties (1.c., all sequences it Dy ).
This change in emphasis favoring global over local properties is key for our analysis
and classification of aggregation paradoxes,

As developed in [SU). Newton's method is as complex and chaotic as possible
with this dictionary measure because

cEy § -3
(2.2) T’f =0,
Namely, choose any sequence generated by the letters a.b.e - an entry can even

be determined by rolling a die  and there is an initial iterate whereby the jth
iterate lands in the interval specified by the jth entry of the sequence. Therefore.

for the sequence s = (hoa.c.acebbo o) Eqo 2.2 asserts there exists ay € b so
that ro € ¢ .23 € c.ry € ¢.¥5 € C..... With only slight extra effort. it follows

that periodic orbits of any period following any pattern through the three intervals
exist! Morcover. there also are orbits that bounce forever among the intervals in
counterintuitive. non-periodic ways.

Particularly important for the analysis of paradoxes is that, because this tech-
nique characterizes all orbits. it answers the puzzling problem how to discover
counterintuitive properties, So. by extending this dictionary approach to aggrega-
tion procedures. it becomes realistic to search for “evervthing that can happen:”
namely. we can hope to discover all possible ranking paradoxes and properties.
With this objeetive in mind. we need to understand how to find the entries of Dy,

Tl /
/ N '(7) “\J‘/ N, ' (a) \J‘/

=

Figure 3. The iterated inverse image.

The method of proof (to establish that g5 is surjective) uses an “iterared inverse
image” approach that Tillustrate with the sequence s = (b.a,c.a.c.b.b.. .. .). The

goal is to keep refining the set of initial iterates that accomplishes cach portion of
the designated future. To see how to do this, if Ny is Newton's map restricred to
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[

interval k = a. b.c. then the set of irerates starting in b and ending in ¢ 1s ‘Yh_! (i)
where @ is the closure of the interval ¢, The key fact is that N maps an interval £
onto (—ac. oc ). To see why. notice that as @ moves closer to the left-hand endpoint
of interval k. the straight line approximation of f becomes horizontal forcing irs
zero (the next iterate Ng(2)) far ro the right. Similarly, for values of r € k ncar
thie right-hand endpoint. the line again approaches an horizontal position. but now
it crosses the r-axis far to the lefr, Because Ny o b — (—2c. o) is surjective, Ny(@)
is a noncmpty closed subsct of b, Geometrically, Ny(@) is ecasy to determine as
depicted in Fig. 3.

Nb_! (@) are the points in b that are mapped to @, We don’t care about reaching all
points in a: only those for which the next iterate is in . Using the same argninenr,
we only want to reach N7'(2) € «. Thus, we want to find the subsct of ‘\}J‘l(ﬁ)
where its next iterare is in the much smaller target region N7 1) (so that irerares
start in b, go to ¢ and then to ¢): clearly. this refincment is

b5 Ny (@) D NN ).

The idea now is obvious. To find all initial points satisfving the designared furure,
continue this iterated inverse image approach to obtain the nested sequence of
noncmpty. closed, bounded sets

]

(23) bo N, W@ D NN En o NN WY R D) ) D

A point in the interseetion of all sets serves as an initial iterate satisfying the
conditions of the scquence. As standard results from clementary analysis ensure
that this intersection is nonempty, such an initial iterate exists,

Intuitively. the source of certain assertions. such as “sensitivity ro initial condi-
tions” and ~Cantor set” constructions now become clear. Observe from Fig. 3 thar
the expanding nature of Ny requires ;\'h_l(ﬁ) to be a small set and _\'b_' (NN o
be mueh smaller. Yet, this small set ;\"fj"l(;\"ﬂ_l(?:)) contains all & points that pass
through ¢ and then are mapped onto ¢. As such, .f\."[:l(;\rgl(f)) contains a distinet
subset for cachi of the uncountable ways (&, a.c. ... ) can be conrinued. Consequently.
most points of ¥, (N, (7)) must be near regions with radically different orbits.
so a slightly varied initial point could change regions and embark on a dramatically
different future. This is the source of the sensitivity, Similarly. for each extension
of (b.a.e.... ). cach step of the iterated inverse image approach identifies all points
that cventually are mapped onto the next specified interval. Among these poinrs
is an open set ensuring convergence to the zero of thar inrerval. Thus. ro construct
the set of nonconvergent points. an open set is excised at each step  just as i the
construction of the standard middle-thirds Cantor set.

3. RETURKN TO THE PARADOXES

In voting theory and statistics, paradoxes and troublesome properries of pro-
cedures typically are discovered by finding specific examples of voters” preferences
or data. For instance, one of the better known voting paradoxes. designed by T
Fishburn [NR]. illustrates the interesting behavior where the voters™ sincere plural-
ity clection ranking of 4 » B = C > D is reversed 1o C > B = A when D. the
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Lot tom-ranked candidate. withdraws. Part of the difficulty of finding examples of
this type is to even suspect that they oceur. Then the method of proof finding
a supporting example of voters’ preferences  often leads to combinatorie difficul-
ties. Indeed. as argued in [BO. BTT'. the computational dificulty to recognize
that these difficultios ean occur can be NP-hard. (But. “recognizing” that we are
experiencing a difficulty and the likelihood it can oceur ave very different issues.
As shown in [ST]. paradoxes are surprisingly probable.)

Observe the close parallels between this traditional way to analyze voting and
analyvzing Newton's method guided by properties of particular initial irerates. Both
approaclics concentrate on local properties, so it is difficult. if not impossible. to
even suspeet what else could occur. {For instance, wirh the clection reversal ox-
ample. what could happen if € also decides to withdraw: or. if D returns but
now A withdraws?) Then. even with limired results, the supporting proofs can be
rechnieally difficult. To remove these obstacles. one might hope to mimic the dy-
namical svstems approach {applied above to Newton's method) to transform these
decision problems into a mathemarical framework cmphasizing global properties. 1
introchuce the 1deas with the beverage example.

In dynamics. the initial condition vy is the “starting point.” Voring. on the other
hand. begins with a listing of cach voter's preferences. a profile. This means that
the listing of voter's preferences in the beverage example defines a particular 13-
vorer profile. Thus. a profile becomes the “initial condition™ for voting: there are
no restrictions on the number of voters.

Key to dynamices is the ordering of outcomes as imposed by “time:” 1 the Newton
sequence this ordering is indicated by the subseript of the jtlirerm. 7, A natural
“rime” variable doesn't exist for voring: instead the goal is to compare election
ourcomes over different subsers of candidates, But, we can invent one, For instance,
with = 3 candidates {¢y.¢2. 3}, the four subsets with two or more candidates are
S, = {cr.en). So = {er.e3}. Sy = {23} §i = {er o ex}. In general with v 23
candidates. list the 27 — (n 4 1) subsets of two or more candidates {(in some fashion)
as 51.52..... Son_ins1) Replacing the ordering role of “time™ from dynanies. then,
is the inreger indicating which subset of candidates 1s being considered.

The Newton method example empliasized the three subintervals labeled with
the symbols ¢.b. ¢ where the precise value of the jth iterate. x;. is replaced with
the cruder information identifving the subinterval in which it lives. In voting, the
subscript j represents the subset of candidates S,. Corresponding ro the precise
value of an iterate is the precise election tally of the S; candidates: replace this
tally with the cruder information specifying the cleetion ranking. Thus. replacing
the symbols {a,b. ¢} for Newton’s method is R(S;)  the set of all possible clection
rankings of S;. For instance. Sy = {ca.ca} has the three symbols R(Sy) = {ey -
C3.0yp ~ ¢3,¢3 = €2} indicating that cither one candidate bears the other. or they
tic. Similarly, R(S4} has thirtcen entries: six correspond to the six ways candidates
can be ranked withont ties. six are where there is one tie. and one corresponds to
a complete tie.

In Newton's method, the Universal set consists of all possible sequences that can
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be constructed. Each entry is one of the three cholees. so

N
a ¢ a (1
U=1b] =<1 b x|b]x =15
Ié ¢ ¢ ¢

In voting. the jth entry is the symbol from R(S;) designating the rauking of the
candidates from §;. Therefore, the universal set 1s

UP = R(S)) x R(S2) x R(S3) x R(Sy).

In the general case of n candidates. where there are 2" — (1 + 1) subsets of two or
more candidates, the universal set is

ur= T[] RS

In Newton's method. an initial point determines a sequence gg(.rq). In voting.
a given profile p determines the clection ranking for cach subset of candidates.

Denote this listing. or word, by F(p). For instance. if ¢y = milk, ¢z = beer. ¢y =
wine and p is the profile of the beverage example, then p defines the word

F(p)=(cy = 1.0y > 1,03 = a0 = €3~ C3).

The complexity of Newton's method is analyzed by comparing the size of its
dictionary with thar of the universal set. Similarly. in voting, one way to understand
“everything that can occur™ is to characterize the dictionary of election ontcomes

(3.1) D" = {F(p) & U"|pisa profile. na restriction on the number of vorers}.

By introducing the dictionary, which consists of all possible words {listings of
sincere clection outcomes). the emphasis switches from local characteristies to a
search for global properties. In parricular, it now makes sense to search for every-
thing that possibly could happen: i.c.. to find all words in the dictionary, If this
could be done, the entries of the dictionary would specify all poscible relationships
and paradoxes of plurality election rankings.

4. COMPARING DICTIONARIES

Mimicking the approach used with Newton’s method. the first goal is ro derer-
mine whether D" is a large or small subset of 24", Clearly, D™ contains all of those
well-behaved words where the election ranking of cach subset behaves as expected
because they agree with one another: e.g.. (¢ = ¢o. ¢ > 3,00 = ¢3.¢1 > €2 = ¢3) €
D*. As all remaining words lack this orderly property, they identify “paradoxes.”
Consequently. a dictionary with only a few words represents an orderly situation.
Conversely. a large dictionary. with irs rich selection of words specifying different
ways clection outcomes can vary over the subscts of candidates. suggests a chaotic
state of affairs admitting many new clection paradoxes. So. is D7 is a large or small
subset of 447
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Theorem ([S1]). For the plurality woting system. where cach voter votes for has
or her top-ranked candidate. and for any n > 3. we hove that

(4.1} D =U".

This disturbing conclusion allows any sequence of rankings. one ranking chosen
for each subser of candidates. to be admissible election outcomes!  As such. it
asserts that there is a profile supporting the fiipping election outcomes ¢ > ¢z,
Gy = Cy O, €] 2 0 b €y 2 Cq. €3 €y O3 > 02 O where one kind of
ranking applies with an even number of candidates but the reverse holds with an
odd number. In fact, we can extend this example to require all subsers with an
oven number of candidates ro be ranked consistent with ¢ = o = -+ = ¢, and all
other subsets to be ranked in the opposite manner  or. in any other perverse way
we may wisl,

As another illustration. this theorem allows us to extend the beverage example
to the extreme setting where the group’s ranking is ¢y > ¢y > ¢3 = -+ = . yet
their ranking of all proper subsets of candidates is the exact reversall To lielp the
reader relate to this example. suppose this occurs when your department ranks »
candidates for a single tenure track position. The first vore suggests thar ¢ is the
favorite, but. 1s she? Should any candidate withdraw. the department’s sincere
ranking is completely reversed! Who should get the offer: ¢; or ¢,7 Even worse. as
we rarely hold another eleetion just because some candidates wirhdraw. we might
never discover that the reason we made a bad selection is due to this behavior.

Extension of the literature. Because the traditional literature rends to be highly
property- and example-specific. it is clear Lhow this theorem extends what was pre-
viously known. (For a review. I recommend the nice survey by Niemi and Riker
[NR and the books [Br. O. K2, Nu, St].) Namely. the rraditional emphasis on local
properties forces much of the literature to emphasize special cases and examples
of the Fishburn type. Recall, his reversal example proves there exists a profile
defining the contradictory plurality rankings A = B = € = D and O » B > 4.
Clearly. there is no way to guess what else can accompany this behavior: e.g.. it
does not address what might happen should C. or B. or A, rather than D, with-
draw from the comperition. The above theorem. however, provides the answer: it
asserts that the subsequent ranking can be whatever you want it to be! Just one
possibility has the ranking reversed whenever any candidate (not just the bottom-
ranked one) withdraws. Tn fact. the theorem allows you to extend this example in
any imaginable way by using all subsets of candidates mcluding the pairs. Simi-
larly, all other published examples demonstrating any perverse outcome caused by
candidates joining or withdrawing from the clection can be significantly extended
in previously unimaginable ways.

As another illustration. a troubling behavior known for two centuries and ex-
ploited in interesting. unexpected ways by contemporary aurhors including Ar-
row {A]. McKelevey [AIN and Kramer [Kr]. is where the sincere pairwise clections
define eycles such as ¢ = 2. 02 = €3, ... Cat > Cpy Cn = c1 (As shown in
[S7]. eyeles and their supporting profiles can be understood with the orbits of a
cyclic group of order n.) To the best of my knowledge. cyeles involving larger
subsets of candidates have not been discovered. and for good reasons  first. why
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should anyone even suspect that such perverse behavior exists, and, even with
suspicions. it is difficult to find supporting profiles. It follows trivially from the
theorent. however. that such phenomena exist (and are robust). The theorem re-
quires. for instance. that there exist voters’ preferences defining the plurality cycle
€] > €o > €4, Cy = €3 = €4.C3 = Cq > €. ¢4 = € > Co In facr. we can further
complicate this example by requiring these voters' eleetion ranking for the pairs to
cyele in the “other™ direction ez = 1. €1 > Caenn Again. all of this holds because
whatever rankings are specified for the different subsets, the theorem ensures that
the plurality method allows them to coexist!

Another theme receiving considerable attention (e.g.. see [NR. N and the refer-
ences they list) is to wnderstand procedures. such as runoft clections or tournaments.
where afrer dropping certain candidates another plurality vote is taken. Bur, 15 1t
possible for a candidate preferred by the voters to be dropped at the first step? How
about a candidate who always is favored when compared with any other candidarte:
could she lose with a runoff cleetion? Thanks to the theorem. we now can answer
all questions of this type abourt almost all procedures. To illustrate with elimination
methods. just rank the initial set of candidates so that e is dropped. Then. for
all other subsets containing ¢;. have her top-ranked. Such examples. where ¢ 1s
arguably the voters® favorite even though she s dropped art the first stage, exist
because the theorem admits anv listing of rankings for the subsets of candidates.
So. while the literature can answer certain specific issues. this theorem motivated
by dynamics provides a far more general. yet almost a trivial way to resolve a much
wider specrrue of questions.

A related theme is to determine whether the ¢hoice of a procedures can influence
the outcomes. (Again. see [Br, K. NR. Nu, O, St].) For instance. to choose who
to hire for the one departmental opening we could use the plurality ranking. or.
alternatively. we conld plurality rank the candidates in subsets of five and then
plurality rank the resulting set of winners. But. just by observing that these proce-
dures involve different subsets of candidates. it is immediate from the theorem that
their outcomes can be as different as desired. Proving this conclusion only involves
assigning appropriate rankings to specified subsets of candidates. Once done. we
still can obtain all sorts of other results just by recognizing that there are many
other subsets of eandidates where we haven't assigned a ranking. So. by choosing
appropriate rankings for these sets. it 1s casy to prove Liow sensitive the outcome
is to how the candidates are assigned to the five-candidate subsets. or to whether
three. or four. or six. ... candidate subscts are used. or whether we use procedures
involving pairwise votes, or whether a runoff clection is used. or ... What a chiaotic
state of affairs'! General results of this new type. of course. are impossible with the
traditional local analysis.

As a final troublesome corollary. note that we can choose the rankings for cach of
the 2" — (11 4+ 1) subsets in a completely random fashion. Even rhouglh these election
rankings need not have anything to do with one another. the theorem enswures there
is a profile where the sincere election outcome for cach subset of candidates s
the randomly selected one! This conclusion. which again demonsrrates the power
of this global perspective. doesn’t instill much confidence in our standard tool of
democracy.
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Other election methods. Why use the plurality vote? Instead of just voting
for our top-ranked candidates. maybe we should recognize voters™ lesser ranked
candidates. This approach was pioneered by the French mathematician J.C. Borda
in 1770. He argued that with k candidates, a voter's top-ranked candidate should
receive k—1 points, .. . . the jth ranked candidate should receive k—jpoits,. ...] =
1.2..... k. More generally. the Borda Count (BC) is where the difference between
points assigned to successive candidates is the same positive scalar. (So. for n =4
candidates. both (3.2.1.0) and {25.20.15.10) definc Borda Counts.)

Why this particular choice? Why not some other arrangement? After all, any
veetor w = (wy.wa. . ... g = 0) suffices as long as w; = wjp for7=1..... R—1.
and wy > 0. With such a voting vector. w, points are assigned to a voter’s jth ranked
candidate and a candidate’s election ranking is based on how many points she
receives. The responses of Borda. Laplace. and other mathematicians from the late
cighteenth century supporting the BC are more philosophical than mathematieal
so thev are unsatisfactory. Nevertheless. the BC was used for years in the French
Acadeny until changed by a new member Napoleon Bonaparte.

To investigate these questions. for cach subset of candidates S,. assign a voting
veetor w;. This defines a svstem voting vector

“FH = (VV!._WQ._‘ v .“rgn_(n+[)‘).

Thus. with an assigned systent voting vector and a profile. the ranking of the jth
subset of candidates S; is found by tallying the ballots with w. (Think of w; as
defining the “dynamic”™ on the S, portion of the product space.) Let F(p.-W") be
the resulting listing of these election rankings: F(p. W) is the W™ word defined
by p. By admitring all possible profiles, we obtain the W dictionary

DHW")= {F{p. W")|p is a profile}.

Again. to understand the consequences of different system voring vecrors. use the
dictionary measure. Because system voting vectors can be identified with points in
an appropriate dimensional Euclidean space, we use these mathematical struerures
to describe sets of systemn veetors. Let B™ be the system veetor where the BC is
uscd with cach subset of candidates.

Theorem ([S1,82]). Fer n > 3. with the ezceptron of a lower dimensional alge-
braie set o™, oll system voting vectors have the property that

D W™ =U".
If Wn £ B". then
(4.2) D'{B") S D(W™").
In general, then, the clection outcomes can be as chaotic as desired! Only those
system voting vecrors belonging to a particular algebraie set (which recently has

been characterized [$3.4) and used to define a partial ordering for system vectors)
cant avoid cerrain paradoxes. Also. because Eq. 4.2 identifies the BC as the unigue
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method to mimmize both the number and kinds of paradoxes that can occar (for
any n > 3). we finally have the sought after mathematical justification supporting
the optimal status of the BC. With the beverage paradox. for instance. the BC
ranking is the more reasonable “wine = beer = milk™ with the tally 19 7 14 ¢ 12.
Indeed, the BC is the onlv voting method where its outcomes must be related to
the pairwise rankings. For any other method. choose the rankings of the () pairs
and the set of all n candidates in any desired manner and there is a supporting
profile: only the BC imposes order upon these clectoral conclusions. ([S2.57)

Bur. does this difference in dictionaries matter? If the BC avoids only a couple of
paradoxes. then who cares? However. as dramatically illustrated with the inequality
10°°|D(B®) < |D( Plurality”)}. already with just 6 candidates the Borda Dictionary
allows shockingly fewer paradoxes than. say, the plurality method. Many other
arguments along this line. along with the characterization of the entries of D(B™)
([$2}). can be advanced to prove that the BC is. by far. the superior choice. (See.
for example. [$3. $7.) This includes the single transferable vote used by the AMNS.
Approval Voting by the MAA. and plurality voting by STAAL

Extending the literature. A natural mathematical theme is to discover mvari-
ants  here the invariants are relationships among clection rankings. Of the com-
paratively few that were previously known is one asserting that the top-ranked BC
candidare never could be beaten in all possible pairwise elections. (Most surely,
Borda knew this result: it definitely was understood by Nanson [N in the nine-
teenth cenrury and then rediscovered by several others (including me) i recent
vears starting with Smith's nice paper [Sml.} As alrcady indicated. this perverse
plicnomenon does occur with all other positional procedures!

An “eleetion relationship.” then. is the complement of the dictionary: it can be
thouglit of as specifying what “paradoxes™ cannot occeur. Therefore. these ranking
relationships are completely determined by the set U™\ D" (W), So. now that we
know ([S3. 4,1 how to find the entrics of all dictionaries D" (W™ ). we also know all
possible ranking relationships. (Again, just as in dynamics, this is a consequence
of changing front a local to a global perspective.) And. just by the number count
given above for n = 6 candidates. it is clear that this dictionary approach uncovers
an incredible number of new relationships previously not even suspected. One new
Borda relationship, for instance, is that if there is an integer k.2 <k < n. 5o thar
¢y is top-ranked in all k-candidate elections. then she is not bottom-ranked in the
full election. Other new kinds of Borda relationships impose restrictions on the
possible k-candidate rankings for cach & > 2, ete.. cte.

Further insight into how this theorem extends the literature exploirs the assertion
that. in gencral. “anything can happen.” Consequently the carlier comments about
runioffs, comparing procedures, ete. immediately extend from rhe plurality vote to
almost all other positional voting methods.  Again. most resulrs (i.e. all that T
know about) using the traditional local emphasis are able to comparce only limited
classes of procedures while addressing highly restricted questions. Wirh this global
approachi (as true for dynamical systems), these conclusions can be extended in
almost all ways with minimal cfforr.

To further illustrate the advantages of this global approach. I point to the at-
tention focussed on the BC. (See almost any article listed in [K] with the word
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“Borda™ in the title.) In part. this is because the BC is well known and casy to use.
Usually BC faults are identified by discovering specific profiles. {This means they
have discovered portions of particular words from D" (B™) .} The obvious flaw with
this approach is that we don't know whether the conclusion is specific to the BC. or
whether the identical fault holds for other procedures. Equation 4.2, however. gives
the answer. Anv BC fault illustrating undesirable changes in how the candidates
are sincerely ranked over different subsets must be shared by all other procedures.
Namely. a BC flaw is universal: it must be suffered by all procedures. On the other
hand. the strict containment of Eq. 4.2 means that all other procedures admit
faults that are impossible with the BC.

The choice of a procedure matters. Before examining topics other than voting,
one might wonder whether the choice of a voting method matters. For a given
profile, won't all procedures give essentially the same outcome? As the beverage
example already proves (the BC reverses the plurality ourcome). the answer is no.
(In fact, this profile admits seven different rankings as the weights change [S7].)
The first general result in this direction seems to be where Fishburn [F1] proved
that two different rallying methods can admir opposite outcomes. Bur now. by use
of this more general perspective, we can find all possible rankings that occur by
changing the procedure {[S4. ST}). As a dramatic example showing how this exrends
the literature. we now know [S4] that instead of just two reversed outcomes. 1t is
possible for a ten-candidate profile to admit over 84 million different rankings of
the 10 candidates!  Remember, the voters” preferences remain fixed as marked
on the ballots. so these millions upon millions of outcomes are due to changes in
the tallying method. In fact. each of the ten candidates can be top-ranked when
some procedures are used and then bottom-ranked with others! So. whichi of these
highly contradictory but “sincere” rankings is the correct one? No wonder we need
a mathematical theory to understand voting procedures!

Statistics. To illustrate this dictionary theme by generalizing Simpson's paradox
from statistics, start with 27 pairs of wrns marked I}. T}, Place red and blue balls
in each urn: the choice determines whether P(R|I} ). the probability of choosing
red when selecting at random from urn I,L., is larger, smaller, or cqual to P(RIII,}. ).
Thus. associated with each pair are the three symbols {>. =, <}. In the empry urn
[}. combine the conrents of I, with L, similarly, let I7{ Told the conrents of

IL, and I k=1..... 2771 Again. for each pair of urns. one of the rhree
svmbols applies.
Continue this aggregation process where, at the sth stage. the conrents of I3,

and I;, arc combined to create IJ‘:_’H. while the contents of I3, and IIj arc

combined to create II,‘:H. s=1..... jok=1.....2/"% For cach of the 217! — 1 =
I oi : . .
_ 2 pairs of urns, one of the symbols {>.=. <} applies. Therefore, the universal

sct for the aggregation of urns, H({gg. consists of 327 ! listings of symbols. An
initial condition, p. is the initial allocation of red and blue balls in the first layer
of urns. and the listing of inequalities for the different urns defined by p is a word.
The dictionary for the aggregation of urns, 'D{;g_q consists of all words. Again. the
complexity of the ageregation process 1s measured by the following.
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Theorem. For all j = 2 with the aggregation of urns,

Digy = Uigq-

Again. anything can happen. For instance, start with 270 2 1,125 x 10" wus.
and keep combining the contents in the above manner until only one pair 1s left,
The initial contents can be chosen so that P(R[I}) > P(R|II{) holds for eacls
pair during the first 49 levels, but there is a reversal at the last stage. Figure 4
(designed by A, Konchan as a homework exercise) illustrates a j = 2 example where
the inequalities flip at cach level.
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Figure 4. A three level Simpson paradox

Another illustration of the power of this dictionary approach comes from the
widely used Kruskal-Wallis test of nonparametric statistics. This natural method
replaces data with rankings. For instance, in comparing firms producing light bulbs
according to the hundreds of hours a bulb lasted. the outeome

Firm 1 Firm 2 Firm 3
6.01 2.90 .80
6.10 6.05 6.15

defines the WW martrix of ranks

Firm 1 Firm 2 Firm 3
3 2 1

e
-1 <

3
Total S 6

and the KW ranking of Firm 1 > Firm 3 > Firm 2.

If bottom-ranked Firm 2 goes out of business. we want to compare Firmns 1 and
3. The dara remains fixed. but rhe relative ranking does not: now the KW ranking
is Firm 1 ~ Firm 3. While this is a reasonably innocuous change, we might wonder
whether more radical outcomes can occur. This question was answered by Deanna
Haunsperger in her thesis [H1] (part of which is in [H2]).

With n > 3 firms, there are 2® — (n + 1) subsets of two or more firms. Thus, the
subsets and the symbols are the same as those for the voting problem. In place of
voters” preferences. the initial data represents the initial condition. and the list of
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rankings for each subsct of alternatives defines the KW word. The KW dictionary.

2y, consists of all possible words admitted by the KW test. In characrerizing

-« Haunsperger proved that the Kruskal-Wallis test admits far more paradoxes
and difficultics than previously imagined, For instance. for any » > 3. examples
of data can be found so that even though the KW rankings of pairs is Firm 1 »
Firm j iff 7 < j. the KW ranking comes perilously close to reversing this conclusion
asitis Firmn —1 = Firmn — 2 = ... > Firm 1 > Firm n. (The arguanent in
[S7] discussing pairwise voting rankings extends to this statistical setting ro show
that we should place trust in the full KW ranking - the real difficulty is caused by
deficiencies in the pairwise rankings.

On the other hand, even though the KW test adinits previously unknown difficul-
ties. Haunsperger also proved that of all possible nonparametric ranking methods.
thie WKW test is by far the best choice. She did this by showing that the dicrionary
for most nonparametric methods agrees with the universal set. Then she proved
that the KW dictionary is a proper subset of the dictionary for any orher method.
In addition. she proved that in certain settings. the KW dictionary agrees with the
Borda dictionary: the “symmetry” reasons for this are suggested helow,

Probability. The cyclic dice example can be generalized to all levels as follows,
(Sce [FS. Hol.) For j = 2, srart with 3/ triplets of dice. < AL BLCL > Thereds a
constructive approach to mark these dice so that 4} = Bi. By » Cl.and € » A}
for all k. Now. treat cach triplet as a set of dice: e.g.. denote by A7 the three dice
in the triplet 3k — 2 (so A} =< AL, ,. B}, ,.Cy,_, >). B{ is the tripler 3k — 1
and C3 is the twiplet 3k, b = 1..... 377! Tnstead of “high score wins.” with the
new rriplets, the larger sum of the set of dice wins. Again, a cycle oceurs. Indeed.
continue the aggregation process: at cach aggregation level the dice define the cyele

A= Bi.Bl =~ CF. and CleAs=1....:k=1.., RE A

Each pair of dice admits the three possible symbols »-.~. < . Thus, a triplet
J

dice "
of listings of these symbols for cach of the 3771 — 1 triplets. The initial condition

admits 3% possible symbols. The universal space for the dice, U 1s the space

corresponds to how the dice are narked. Each choice of markings defines a sequence
J

dice’
dice games. which significantly extends our earlier construction. follows.

of symbols  a word in the dictionary D A measurce of the complexity of these

Theorem. For the dice problem

I g
Ddir:r! - u(fic(:'
Again. anything can happen! Indeed. to show how wild the process can be.
Funkenbuseh cereated an example [Hol showing how the final stack of dice can be
split in many different ways allowing for all sorts of eyclic outcomes.

Complexity of aggregation. The point is made. Clearly, when this dictionary
construction is applied to other aggregation and classification procedures, examples
emerge demonstrating a similar complexity while exposing many new paradoxes.
In fact. related assertions have been found even for processes involving function
spaces and vector fields (rather than finite discrete objects): assertions which raise
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doubts about such commonly accepted themes as the “supply and demand” story
and other technigues from economics [S5]. What these examples illustrare is that
aggregation processes, the basis of statisties. probability. and nich of the social
sciences. are far more complex than previously expected.

To provide an overview of the rest of the story. T briefly outline how other strue-
rures from dynamical chaos can be identified with standard concerns from aggrega-
tion processes. For instance. it is natural to worry about the cffects of small data
crrors for statistics and small numbers of vorers trying to manipulate thie ontcome.
While T haven't defined “manipulation.” vou know what T mean - 1t is what you
did the last time vou cleverly marked your ballot to try to get a better outcome.

Typically (at least for voting). these issues are studied by using computer sini-
ulations. (Sece. for instance. [C].) In our formulation, as they involve comparing
changes in outcomes due to small changes in a profile. these concerns are identified
with the “sensitivity with respeet to initial conditions.” This motivares the devel-
opment of analytic techniques to analyze these issues. For mstance. it is natural
to try to determine which procedures are least susceptible to these "small change.”
negative offeets, From this analytic approach we learn that the voring system least
susceptible to small manipulation problems is the BC [ST: for nouparametric sys-
tems. the answer is the KW test,

Another natural concern is to determine the likelihood of paradoxes. {While most
of this analysis involves computer simulations. (G, GF! have some analytic voting
results for n = 3.) The parallel theme from dynamies is where the “dictionary™
and “topological” approaches of chaos have been refined by using measure theory
and topological entropy to indicate the likelihood of various behaviors. (See. for in-
stance, [ALM. R].) Again, using the approach motivated by dynamics. work by Van
Newenhizen [VN] and [$7° significantly extend these carlier efforts and again prove
that the BC is the least likely to admir different paradoxes. One must anticipate a
similar conclusion for the KW sratistical test.

As a final illustration. there is an enormous literature (e.g.. sce the exposirory
books [N, St]) identifying perverse behavior such as where a candidate can be
hurt by receiving more electoral support. In our formulation. this turns out to be
identified with the Cantor set struerure from dynamics. While Cantor sers don't
ocenr for these aggregation procedures (because finite. not infinite intersecrions are
involved), the geometry of data generated by the iterated inverse images can be
complicated. In fact. most (i.c.. all that T know of ) of the identified difficulties
plus many new ones can be explained when convexiry. connectiveness. and other
geometric properties are jost by this iterative process. In this way it becomes
casy to discover and explain exammples such as where a department splits into two
subcommittees to seleet one of three candidates for Chair. With the standard
runoff {where the top two candidates from a plurality election have a runoff) it
could be that each subcommittee chooses ¢; only to have ¢ lose when the full
department uses the same procedure. (For an example and a geometric explanation
showing that this is a convexity issue. sce [ST].) A similar result holds for other
aggregation methods from statistics and clsewhere that involve the rankings from
different subsets of the alternatives.
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5. SYMMETRY

We can think of these theorems in terms of the iterated inverse image approach
outlined for Newton's example. (This is how the results in [S6] are proved.) How-
ever. the associated analysis quickly becomes overly complicated. Again. help to
develop alternative approaches comes from modifying ideas developed in dynamical
SYSTeIns.

Tn dynamical systems. the iterated inverse image approach rarely is used. In-
stead. other evidence {e.g.. “horseshoes™ or “period-three orbits™) is employed to
indicate whether inverse images are empty or not. (See, for example. [D, LY. For
instance. one way to develop techniques and understand where bifurcations oceur 1s
to determine whether the hboundary points of the inverse image of a region are from
turning points {critical points of the mapping} or boundary points of the region. In
a conceptually similar manner. singularity theory is used to identify what occurs
with aggregation problems. Replacing boundary points are the regions involving a
“tic vote.” “Turning poiuts™ correspond to certain singularity structures from the
orbirs of symumetry groups.

Symmetry is the key. The natural symmetry action in voting is the permuration
group S, specifying the n! “voter types” (Le., the ways voters can rank the candi-
dares). So.if A" = ¢ = €9 = +++ = ¢, then any other voter type is obtained with
an appropriate permutation o{A4"). 0 € 5,,.

Agsume w? is assigned to tally the ballots for the n candidates. Because w™
and Aw™. A > 0. always define the same election ranking. assume that w” has
unit length. Next, if the jth component of a vector from R" is identified with
the tally for ¢;: then w? represents the vector tally or ballot for a voter with the
preference A”. The vector ballot for a voter with type o(A") is a permuration of

w™ represented by wi

7 In this manner. the &, orbit of w” defines all possible
vector ballots.  The rational points in the convex hull of {w)l,es, identify all
possible election outcomes. This is because a point in the hull has a representation
Zaes,, tew! where t, 2 0. Zaes,, t, = 1. So. rational values of 1, can be identified
with the fraction of all vorers with the voter type o(4™).

The appropriate structure to compare clection outcomes over all 2" — (n + 1)
subsets of two or more candidates is the orbit of the systemn veetor W7, Here.
for a voter with preferences A", each component of W' identifies the combined
vector ballot over the subsets of candidates {(in the obvious product space). For a
voter of type o(A"). designate the veetor ballot by W2, As above. the convex hull
(W ,es, identifies all possible election outcomes. Therefore, all of the clection
properties of W7 including those described in terms of the dictionaries as well
as many others, must be consequences of the orbit {W2}. In particular. as the
dimension of this hull increases, so do the kinds of admissible clection outcomes.

To understand {W?2}. the first step is to recognize that rather than being the
orbit of S,. {W!} is the orbit of a more complicated group action. To see why with
n = 3. observe that when ¢ = (1.2) 1s applied to the subset {co.¢3}. the outcome
can vary. If ¢ acts on ¢ = ¢y = c¢3. then ¢ has no impact upon the ranking of
the subset. But when o is applied to ¢ > ¢3 = ¢2. ¢ reverses the ranking of the
subset. Thus the effect of a permutation from &, depends not only on the chioice of a
permutation, but also on the clement of the orbit to which it is applied. This defines



A CHAOTIC EXPLORATION OF AGGREGATION PARADOXES 17

a rich group structure known as the wreath product {of the permutation groups for
cachi subset of candidates.) Related wreath produet structures are needed for the
different examples from statistics, probability, ete. given above,

Following the lead of dynamics and group theory. the natural question is ro de-
termine the singularities of this group action: namely. is there a W™ where (the
convex hull) of its orbit has the smallest dimension? This occurs when the BC
is assigned to cach subset of candidares. What causes the singularity is the syvii-
metry requirement thar the difference between successive weights agreer a similar
symmetry argument applies for the KW waghts.

From this obscrvation. several results are forthcoming. First. since the “di-
mension” of the hull defined by an orbit corresponds to the number and kinds of
paradoxes that can occur, we can (correctly) expect the BC to minimize what “can
go wrong.  ([S1-1. T1) Morcover, just as when latitude lines on the sphere (the
SO2) orbits) decrease in size as they approach the singular orbit defined by the
North Pole. as W7 approaches the BC with its singular orbit, the likelihood of
these electoral difficulties also decreases, (For n = 3. some of these properties have
been extracted and developed in [$7] with elementary geometric arguments. } Thus.
for instance. we must (accurately expect it to be less likely for paradoxes to occur
with (2. %.()) than with (1.0.0). or with (3.2.0.0) than with (1.0,0.0). In both
cases. when normalized., the first vector is closer than the sccond to the BC vector.

Singularity theory tells us that the singular orbits form a strarified structure.
This stratification corresponds to an algebraic set of procedures (e.g.. system vot-
ing vectors. statistical ranking methods, ete.) which admir increasing levels of
consistency in outcomes. Morcover. the stratification relates the ontcomes admit-
ted by procedures from different stratified levels, so it defines a partial ordering
among the system voting vectors: part of this ordering is given in Eq. 4.1 showing
that the Borda Dictionary is a proper subsct of all other dictionaries. More gener-
ally. this structure allows a characterization of all possible (ranking) properties of
cacli procedure. (See [S3. 4. 7..)

To suggest other properties disclosed by the symmetry. notice that by being
lower dimensional. a singular orbit satisfies other symmetry relationships. Thus.
the BC should satisfy properties denied to other procedures. For instance. the
S, svinmetry of positional voting methods, called "neurrality.” means thar if all
voters interchange the names of the candidates in a manner defined by a specified
o € Sy,. then the outcome also changes in this manner. Similarly should all voters
completely reverse their ranking of the candidates: the election ranking also should
be completely reversed. But. this is false! For n = 3 candidates, only the BC
respects this reversal symmetry. Instead, all other positional methods even permir
the reversed profile to return the same normalized clection tally! (See [S71.) This
identifies a new class of paradoxes suffered by methods other than the BC.

What happens is that the n! ways to rank the candidates define two permutation
groups S, and &yt A name change of the candidates ¢ € 8y, defines a permutation,
or € Su, on the profile space. Neuatrality requires f(op(p)) = a{fip)): e 1t
requires f to commure with the neutrality subgsroup N, = {o7}ses, . However.
the permutation from S, defined by reversing each voter’s ranking is not in A5,
The BC. with its singular orbit, does preserve this reversal property: i.c., the BC
commutes with a larger subgroup BC, of &, Sumilar statements hold for other



18

DONALD . SAARI

aggregation procedures showing that the strength and desired properties of the

BC. KW. and other sviumetric aggregation procedures derive from the singularity

structure of their orbits.
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