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AN EFFECTIVE METHOD FOR PARAMETER ESTIMATION WITH
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Abstract. Often, parameter estimation problems of parameter-dependent PDEs involve multi-
ple right-hand sides. The computational cost and memory requirements of such problems increase
linearly with the number of right-hand sides. For many applications this is the main bottleneck
of the computation. In this paper we show that problems with multiple right-hand sides can be
reformulated as stochastic programming problems by combining the right-hand sides into a few “si-
multaneous” sources. This effectively reduces the cost of the forward problem and results in problems
that are much cheaper to solve. We discuss two solution methodologies: namely sample average ap-
proximation and stochastic approximation. To illustrate the effectiveness of our approach we present
two model problems, direct current resistivity and seismic tomography.
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1. Introduction.

1.1. Background. In this work we consider the solution of discretized parame-
ter estimation problems with PDEs as constraints. We start by restricting ourselves
to a particular form,

min
y1,...,yN ,u

J(y1, . . . , yN , u) =
1

2N

∑
j

‖Pyj − dj‖2 +R(u),(1.1a)

s.t.cj(yj , u):=A(u)yj − qj = 0, j = 1, . . . , N.(1.1b)

Here, u ∈ Rm is the discretized model (or control) and yj ∈ Rn, j = 1, . . . , N , are the
discretized fields (or states). Without loss of generality, we assume the underlying
PDE to be time invariant, but our method lends itself readily to be extended to the
time-varying case. The constraints cj(yj , u) are discretized linear PDEs. The matrix
A(u) is a discretization of the PDE (system matrix) that depends on the model u,
and y1, . . . , yN are the fields that correspond to the sources, q1, . . . , qN .

To keep the discussion succinct, we follow a discretize-then-optimize approach,
where A is assumed to be invertible for all relevant u. An analogous formulation in
the optimize-then-discretize framework is also possible but will not be discussed here.
The objective function J is composed of two terms. The first term represents the
data-misfit function, defined as the energy difference between the solution of the PDE
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740 ELDAD HABER, MATTHIAS CHUNG, AND FELIX HERRMANN

yj projected by the matrix P to the data vector dj associated with the jth source.
The second term, R(u), is a convex regularization functional. PDE-constrained op-
timization problems of this type arise in parameter recovery in impedance tomogra-
phy, DC resistivity, electromagnetic imaging, seismic inversion, hydrology, and more
[20, 26, 7, 14]. However, notice that the above formulation is a special case because
the acquisition geometry, i.e., the locations of the receivers encoded in the rows of P ,
remains invariant among the N different source experiments. In realistic settings such
as in marine acquisition, where sources and receivers both move, this simplification
forms a serious restriction that we address later in this paper.

In the last few years many algorithms have been developed for parameter esti-
mation with PDE constraints; see, for example, [5, 11, 17] and reference within. It is
straightforward to show that the necessary conditions for the solution of the problem
is obtained by solving the nonlinear systems of equations

A(u)yj − qj = 0, j = 1, . . . , N,(1.2a)

A(u)�λj +
1

N
P�(Pyj − dj) = 0, j = 1, . . . , N,(1.2b)

∇uR(u) +
1

N

∑
j

G(yj , u)
�λj = 0,(1.2c)

where

G(yj , u) = ∇u[A(u)yj ](1.3)

is the gradient and the variables λj , j = 1, . . . , N , are a set of Lagrange multipli-
ers. Since the problem is nonconvex, an appropriate strategy is needed to guarantee
convergence to a local minima (see [9] and [24, Ch. 18]).

Unfortunately, in many applications the size of the field yj and the number of
right-hand sides N are too large to use an “all at once” approach during which these
three equations are solved jointly. The storage requirement alone would be at least
2N × n +m, which for realistic three-dimensional problems is prohibitive given the
large grid size and the large number of required sources. By employing the so-called
reduced space method—which requires only 2n+m storage while being less sensitive
to the number of PDEs—we can address this storage issue.

However, this approach requires a parameter-to-field map yj = yj(u) = A(u)−1qj ,
which involves inversion of the discretized PDE. After elimination of the PDE con-
straint in (1.1), the resulting unconstrained optimization problem becomes

min
u

J(u) =
1

2N

∑
j

‖PA(u)−1qj − dj‖2 + R(u).(1.4)

It is straightforward to show [24, 13] that the solution of the problem satisfies the
following (reduced gradient) nonlinear equation:

∇uJ(u) =
1

N

∑
j

G(yj , u)
�A(u)−�P�(PA(u)−1qj − dj) + ∇uR(u) = 0.(1.5)

Note that in case of nonconvex problems one may need to consider globalization
methods for optimization [24].

Examining this expression, one can observe that each source requires N PDE
solves for the forward and adjoint systems. This cost is a major impediment because
modern-day parametric inversions have to deal with surveys that have increasingly
large numbers of sources.
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PDE OPTIMIZATION WITH MULTIPLE RIGHT-HAND SIDES 741

1.2. Motivation. Solutions of equations of the type in (1.5) require an itera-
tive scheme that involves several steps. Algorithm 1 contains an example of such a
representative iterative scheme, where the solution to (1.5) is found by an iterative
descent algorithm with a large “for loop” (lines 4–6) that consists of three steps: the
solution of the forward (line 5), the adjoint (line 6) systems involving the solution of
2N PDEs, and the computation of the gradient update (line 7).

This for-loop can be trivially parallelized. Nonetheless, if N is very large, then
this loop is the main bottleneck of the computation. In fact, the overall complexity
of the algorithm can be roughly estimated by the number of PDE solves, which is
iter×2N , where iter is the number of iterations of the external optimization problem.
Indeed, even if the number of iterations, iter, is small, for large N the computational
burden is large. The question at hand is, how can we reduce the computational cost
of solving the optimization problem?

Algorithm 1. Computation of an iteration.

1: Initialize the solution u = u0

2: while not converge do
3: Initialize the gradient gk = ∇R(uk−1)
4: for j = 1, . . . , N do
5: Solve A(uk−1)ykj = qj
6: Solve the linear system A(uk−1)�λk

j = − 1
N P�(Pykj − dj)

7: Set gk ← gk +G(ykj , u
k−1)�λk

j

8: end for
9: set uk = uk−1 − γH−1

k gk where Hk is an approximation to the Hessian and γ
is chosen by a “soft” line search.

10: end while

1.3. Existing work. Three approaches have been proposed to tackle such prob-
lems. Here, we summarize them briefly:

• If the size of the linear system A(u) is not too large, then it is possible to
use direct factorization to deal with multiple right-hand sides. This was the
approach taken in [26], but it is restricted to problems where the filling of
the Cholesky factors is sufficiently small and computer memory is sufficiently
large.
• Iterative solutions to the linear systems have been used for large-scale prob-
lems. To avoid the overall cost, it has been suggested to recycle the Krylov
vectors [18]. This approach saves some computation but still requires a large
amount of time when the number of sources is large.
• A third approach, which originated in seismic data processing and is the most
economical approach, is referred to as simultaneous random sources. In this
method we combine right-hand sides and data [4, 28, 15, 22, 27]. Taking
linear combinations of sources one can obtain a “new” source

q̂ =
∑
j

wjqj

and a “new” data

d̂ =
∑
j

wjdj ,
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742 ELDAD HABER, MATTHIAS CHUNG, AND FELIX HERRMANN

where wj are weights to be chosen by some criteria. One then replaces the
optimization problem (1.4) with

min
u

J(u) =
1

2
‖PA(u)−1q̂ − d̂‖2 + R(u),(1.6)

which requires only a single solution of the PDE that can be done iteratively.
It seems rather surprising but in some cases this approach yields results that
are not far from using the complete data set. Nonetheless, while the approach
has been successful it is highly “add-hocish.” Choosing the weights, the
quality of the solution and the comparison of the solution with the solution
of the original problem are not fully understood. In some cases, the weights
are chosen based on arguments such as wave interference, source focusing, and
noise whitening. As we show here, these arguments can lead to suboptimal
performance.

In the following we propose a methodology that allows us to use a similar approach
to (1.6) of reducing the problem with multiple sources to a problem with a single
or a few sources. This allows us to reduce the computational cost of the problem
from 2 iter × N to roughly 2 iter × r with r � N . We show that the minimization
problem (1.6) is a particular (rather incomplete) instance of our approach. We also
give a firm theoretical justification to this formulation and show how it can be solved
efficiently.

Our approach shares many similarities to deterministic problems in machine learn-
ing, where large amounts of data are treated in a stochastic manor (see, e.g., [6] and
reference within) in order to reduce the computational cost. Similar ideas have been
proposed in the context of the solutions of least squares problems (see [2] and reference
within), where randomized algorithms are used to solve deterministic problems.

The following two examples are realistic model problems that we use to demon-
strate the concepts in the paper.

Example 1 (the DC resistivity problem [25]). Consider the case where the matrix
A results from the discretization of the problem

∇ · exp(u)∇yj = qj , ∇yj · �n = 0,

∫
Ω

yj = 0 j = 1, . . . , N.

In this case the goal is to recover the log conductivity u given measurements of the
potential fields yj which results from the sources qj . Modern acquisition systems can
have hundreds and thousands of sources spread over a physical grid and in boreholes.
Upon a finite volume or a finite element discretization of the differential equation one
obtains the PDE (1.1b).

Example 2 (the full-waveform inversion problem [1]). Consider the case where
the matrix A results from the discretization of the problem(

Δ+ k2(u)
)
yj = qj in Ω ⊂ R2, yj = 0 on Γ = ∂Ω, j = 1, . . . , N,

where k2(u) = 2πfu is the wave number with f the temporal frequency, and u = c−2

with c the acoustic wave-speed. In this case the goal is to recover the velocity c = u−1

given measurements of the wave-field fields yj for each source experiment.

1.4. This paper. Our aim is to put empirical findings on fast parameter esti-
mation [19] on a more rigorous footing using the theory of stochastic programming
[31, 23]. This allows us to obtain better algorithms for the problem as well as to
extend the algorithm to problems where previous techniques do not succeed.
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The paper is structured as follows. In section 2 we present the bulk of the paper
and introduce the basic concept of our reformulation. We show that the problem
can be reformulated as a stochastic programming problem. We then discuss two
commonly used techniques to solve this type of problem. In section 3 we discuss the
quality of the approximation compared to the original problem. In section 4 we extend
the method to problems where sources may have different receivers. In section 5 we
explore different algorithms, and finally, in section 6 we summarize the paper and
make some concluding remarks.

2. A stochastic perspective of the optimization problem. In this section,
we recast (1.1) as a stochastic programming problem involving estimation of the trace.
We also introduce two different stochastic approximation techniques that we will use
to receive a solution to the optimization problem (1.1).

2.1. A stochastic programming interpretation. In order to derive a fast
algorithm for the optimization problem we require a different point of view that allows
us to explore new algorithmic horizons. We do that by considering the problem as a
stochastic programming problem. For simplicity we consider only the unconstrained
formulation and rewrite it first as

min
u

J(u) =
1

2
‖PA(u)−1Q−D‖2F + R(u),(2.1)

where Q = (q1, . . . , qN ), D = (d1, . . . , dN ), and ‖ · ‖F denotes the Frobenius norm.
The difficulty, of course, is to evaluate the residual term S(u) = PA(u)−1Q−D and
its norm. We therefore turn now to a stochastic interpretation of the trace. Recall
that for a random vector w with 0 mean and identity covariance matrix I we have
that

Ew

(
w�S(u)�S(u)w

)
= trace

(
S(u)�S(u)

)
= ‖S(u)‖2F ,(2.2)

where Ew is the expected value with respect to w that belongs to a probability space
W : Ω → Rn. Using this identity we replace the deterministic problem (2.1) with a
stochastic programming problem

min
u

J(u) := Ew (JW (u,w)) ,(2.3)

where JW (u,w) =
1

2

(‖(PA(u)−1Q−D)w‖2)+ R(u).

By virtue of the identity (2.2), the problem (2.3) is identical to problem (2.1). Be-
cause the latter has the form of a stochastic programming problem we gain access
to stochastic programming methods. As long as the evaluation of the expectation
in (2.3) can be done efficiently and with sufficient accuracy, we gain in efficiency. Re-
member that in the stochastic formulation, each realization wj of w involves a single
solve for the discrete PDE and

(PA(u)−1Q−D)wj = PA(u)−1 (Qwj)−Dwj

implies that for a given wj only a single PDE is solved in order to evaluate the
stochastic misfit function. This is in contrast to the N PDEs to be solved when
evaluating (2.1). This observation is used to obtain very efficient algorithms.

In particular, two end members of stochastic programming algorithms can be
considered.
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• In the sample average approximation (SAA) technique one approximates the
expected value by a Monte Carlo approximation using the sum

Ew (JW (u,w)) ≈ 1

K

K∑
j=1

JW (u,wj),

where wj are samples chosen from an appropriate probability density function
(see the discussion in the next subsection). The idea is to useK � N different
realizations to approximate the expected value.
• A second class of algorithms for the solution of stochastic programming prob-
lems is referred to as stochastic approximation (SA) techniques. In these tech-
niques one uses a single realization and computes the gradient∇uJ(u,wj). A
step in the negative direction of the gradient is then taken, averaged with the
previous steps, and the process repeats. The point here is that for each step
of the SA method only a single realization is needed. For our problem this
implies that we require a single PDE and adjoint to be solved at each iteration
(rather than 2N in the original problem and 2K in the SAA approach).

Both approaches can lead to increased performance because each approximation
may require fewer PDE solves. Before we can discuss the performance of these ap-
proximations, let us first formulate these two approximations in further detail for our
parameter estimation problem.

2.2. Solution through the SAA. Maybe the simplest way to solve the stochas-
tic problem is by using the SAA [31]. Here we replace the expectation in the mini-
mization problem (2.3) by the approximation

Ew(JW (u,w)) ≈ ĴK(u;w1, . . . , wK) :=
1

2K

K∑
j=1

‖PA(u)−1Qwj −Dwj‖2 +R(u).(2.4)

Note that unless K � N we are no better off than solving the original problem, as
the number of PDE solves is 2K per iteration. An interesting observation was made
in [3], where different methods were experimented with to approximate the trace of
matrices. It has been observed that in many cases, even for K = 1 the evaluation of
the trace was sufficiently accurate. For instance, in [10] a single evaluation was used
to minimize the general cross validation function with satisfactory results.

In order to choose the vectors wj we turn to stochastic trace estimators [16]. We
have seen that if w has 0 mean and identity covariance matrix I, then Ew(w

�S�Sw) =
trace(S�S). It is interesting to observe that the expected value is identical for all w’s
drawn from any distribution which is 0 mean and covariance I. However, since we are
heading for approximation, our goal is to obtain this mean with the smallest variance
possible; this can help in generating the smallest amount of right-hand sides in the
PDE. It has been shown in [16] that this can be obtained when w is a random vector
with independently distributed components each taking values 1 or −1 with equal
probability 1/2, also known as a Rademacher distribution. We therefore choose w
from this distribution. Note that although other choices of w are possible, they are
suboptimal, in the sense that their variance is higher.

The advantage of the SAA technique is that it separates the questions of ap-
proximating the expectation and the optimization algorithm to be used. In order to
solve the optimization problem any robust algorithm can be used. Here for simplicity
and for comparison reasons we have used the LBFGS method applied to the uncon-
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strained problem [24, 13]. Other (and in our opinion better) choices can be made for
the solution of the problem. We comment on this choice later in this work.

2.3. Solution through SA algorithms. We now discuss a family of algorithms
that enable us to obtain fast solutions for optimization problem (2.3). The general
structure of an SA algorithm is as summarized in Algorithm 2. The algorithm is a
simple modification of a steepest descent algorithm with constant step size. Theory
for other (less primitive) methods such as Gauss–Newton and limited memory BFGS
do not exist (as far as we know). However, applying these methods successfully have
been reported in machine learning applications [30]. We have experimented with both
theoretically sound techniques and techniques that do not have convergence proofs
but seem to give good results in practice.

Algorithm 2. SA for inverse problem.

1: Initialize the solution u = u0

2: while not converge do
3: choose a realization wk

4: set s = −∇ JW (uk, wk)
5: set ûk+1 = uk + γs

6: average uk+1 = 1
k+1

(∑
j uj + ûk+1

)
7: end while

When implementing the algorithm, there are two questions at hand: how to
pick an appropriate realization wk and how to choose the step size γ in step 5 of the
algorithm. We have already seen that an optimal choice of w is obtained by choosing w
to be a realization from a Rademacher distribution. The choice of the step size is more
delicate. Although there is a well established theory for its selection we have found
that it can be difficult to practically choose a step size that works well. Some robust
versions exist [23] but they require convexity as well as a bounded domain, which
are not natural for our problems. Establishing a convergence theory for stochastic
programming methods for the nonconvex PDE constraint optimization problem of this
kind is rather difficult. However, many investigations of these nonconvex problems
on various applications show promising results and the method used despite the lack
of a sound convergence theory [32, 4, 28, 15, 22, 27]. We are aware of the fact that
an appropriate convergence theory is desirable.

3. The quality of the approximation. The quality of our approximation
heavily depends on the stochastic approximation of (2.2). For statistical problems,
convergence is guarantied as the number of samples go to infinity. Since we use Monte
Carlo methods, convergence is typically related to the square root of the number of
samples. The error is therefore associated with the fact that the problem is approxi-
mated using a finite number of sampling points and thus the variance of the solution
is the relevant quantity to look at.

It is important to note that the slow rate of convergence in the number of samples
implies that recasting deterministic problems as stochastic programming problems is
appropriate only for problems where the required accuracy is relatively low. Inverse
problems are such a typical example, as the objective function depends on unknown
parameters (such as regularization parameter), and therefore, as we see next, the
solution obtained by the reformulation is adequate.
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1 vector 10 vectors

25 vectors 50 vectors

Fig. 1. Approximation to the misfit in one direction using a single vector (top left), 10 vectors
(top right), 25 vectors (bottom left), and 50 vectors (bottom right). For each approximation we have
used 5 different realizations.

3.1. An illustrative example. To motivate and illustrate a discussion we use
Example 1, namely, the DC resistivity example presented in the introduction. As we
have seen, the goal is to approximate the misfit

misfit(u) = ‖PA(u)−1Q −D‖2F
using SA. To have a feel for the approximation we set u to be constant, e.g., 10−2,
compute the gradient of the misfit, s = ∇umisfit(u), and then define a one-dimensional
function

f(α) := misfit(u+ αs) = ‖PA(u+ αs)−1Q−D‖2F .

We then use an approximation

f̂K(α) = m̂isfit(u+ αs;w1, . . . , wK) =
1

K

K∑
j=1

‖(PA(u+ αs)−1Q−D)wj‖2.

For our experiments we have 500 sources and we discretize the PDE using 323 cells,
where y and u are discretized on cell-centers [12]. Thus Q : R500 → R323 and to com-
pute the misfit in the original formulation A(u) has to be inverted 500 times. We then
use random realizations [w1, . . . , wK ], where we experiment with K = 1, 10, 25, 50.
Evaluating the misfit in this way is roughly a factor of 500K−1 cheaper compared to

the original evaluation. In Figure 1 we plot the estimated misfit m̂isfit as a function of
α. Since each approximation depends on a particular choice of w, that is, random, we
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use five different realizations of w for each approximation. We see that even though
the functions are not identical, using a single vector to evaluate the misfit, the min-
imum with respect to α is not far from the minimum obtained by exact evaluation
of the misfit. This shows why methods that reduce the data to data that is collected
from a single source work well in practice.

3.2. A quantitative evaluation. The above discussion motivates the use of
very few samples in the SAA. However, it is often observed in practice that the
bounds for the number of samples needed for the approximation is rather pessimistic
[31]. Better results can be obtained by direct evaluation of the quality of the solution.
Here, we review and adapt a simple methodology discussed in [31] for the estimation
of the quality of the solution obtained by the SAA method.

We will use the following notation. By w[1,K] we mean a sample of K vectors

[w1, . . . , wK ]. By w�
[1,K] we mean the �th sample ofK vectors. Let u� be the minimizer

of the approximate objective function. Thus, for a given w[1,K] we have that

u� = argmin
u

ĴK(u;w[1,K]) =
1

K

∑
j

J(u;wj).

Let u† be the minimum of the exact objective function;

u† = argmin
u

J(u) = Ew(JW (u,w)),

hence

J(u†) ≤ J(u�).

The quality of the approximation can be measured by the gap

gap = J(u�)− J(u†).(3.1)

Obviously, this gap cannot be computed exactly. However, it can be estimated sta-
tistically.

First, we would like to estimate J(u�). We thus resample w[1,K] and compute

the value of ĴK(u�;w[1,K]) for different realizations of w[1,K]. If we sample w[1,K] L
times, then we can estimate the mean and variance obtaining

J(u�) ≈ 1

L

∑
�

ĴK(u�;w�
[1,K]) = J�

L.

Notice that in order to compute this estimate we do not require solving an optimization
problem. At this step we fix u = u� and change the samples w[1,K]. Given the

realizations we can also estimate the variance of ĴK(u�;w[1,K])

(σ�)2 =
1

L(L− 1)

∑
�

(ĴK(u�;w�
[1,K])− J�

L)
2.

The combination of the mean and the variance gives us a lower and an upper estimate
on J(u�). In particular, the 68% confidence interval is given by

J�
L − σ� ≤ J(u�) ≤ J�

L + σ�.(3.2)
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Evaluating J(u†) requires more elaborate computational work. Consider as before
independent and identically distributed samples w�

[1,K], � = 1, . . . , T , and solve T
optimization problems

u�
� = argmin

u
ĴK(u;w�

[1,K]), � = 1, . . . , T.

We obtain T different solutions [u�
1, . . . , u

�
T ]. Again, rather than obtaining the exact

value of the function J(u†) we evaluate its variance. Using the solutions [u�
1, . . . , u

�
T ]

we can estimate the mean and variance of J†. Let

J†
T =

1

T

∑
j

ĴK(u�
j ;w

j
[1,K])

be the mean of the function value at the different solutions and let

(σ†)2 =
1

T (T − 1)

∑
j

(ĴK(u�
j ;w

j
[1,K])− J†

T )
2

be the variance of the function of the different solutions. We then obtain that the
estimated 68% confidence interval (that is, 68% of the solutions lie in this interval) is
given by

J†
T − σ† ≤ J(u†) ≤ J†

T + σ†.(3.3)

Combining the upper bound from (3.2) and the lower bound from (3.3) we can
obtain an estimate on the quality of the solution. Although the lower bound is bi-
ased (since it involves solving an optimization problem), the bias is downward and
therefore the estimate is useful. Note that unlike evaluating J(u�), where only func-
tion evaluation are required, the evaluation of J(u†) requires the solution of a few
optimization problems. However, two points should be stressed here. First, in most
cases, very few optimization problems need to be solved (say, 5 to 10; see a more
elaborate discussion in [31] and [21]), and second, from a computational point of view
solving these optimization problems can be done quickly if we start from the solution
u� of the first optimization problem. Furthermore, in the case that one has a parallel
system at hand, these optimization problems are independent and can be solved in
parallel.

4. An extension to the case of different observation operators. The
algorithms developed so far heavily depend on the fact that different experiments
represented by qj have the same observation matrix P . Although many problems
share this property, this is not always the case and we therefore want to extend the
technique to a more general class of problems. To do that we rewrite the misfit as

misfit(u) = ‖C � (PA(u)−1Q−D)‖2F = ‖C � S(u)‖2F ,(4.1)

where as before

S(u) = PA(u)−1Q−D

is the residual matrix. Here � is the pointwise Hadamard product. The matrix C
is, in general, a dense matrix. To see that this is indeed a desired generalization we
consider a few cases:
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PDE OPTIMIZATION WITH MULTIPLE RIGHT-HAND SIDES 749

• If C = 1, that is, the matrix C is populated by 1’s, then we are back to the
previous case where all sources share all receivers.
• Consider the case that C is dense and populated by different positive numbers.
This case typically arises where each datum has a different standard deviation
and Cij is the inverse of the squared standard deviation of each datum.
• If C is sparse, then we choose only a subset of source-receiver configuration.
• In the extreme case C is diagonal, which implies that each source has a single
receiver. This configuration is common in many applied geophysical surveys
where the source and receiver move simultaneously.

Just as in the previous sections we could represent the misfit by the expectation

misfit(u) = ‖C � S(u)‖2F
= Ew

(‖(C � S(u))w‖2) = Ew

(‖ (C � (PA(u)−1Q−D)
)
w‖2) .(4.2)

To understand the difficulty in the evaluation of the above expression recall that in
the case where C = 1 we have

(1� S(u))w = S(u)w = PA(u)−1(Qw)−Dw.

However, for C �= 1 one cannot simply follow the same methodology. The difficulty
is that the Hadamard product does not associate with the matrix-vector product and
therefore one cannot compute the product S(u)w first and only then compute the
Hadamard product. This is the main challenge in extending the method discussed in
the previous sections.

There are a number of different ways to obtain a stochastic approximation to the
trace in this case. Here, we explore two such approximations. The one we have found
most useful is based on direct estimation of the product C�S(u). It is straightforward
to observe that if w is a random variable with 0 mean and identity covariance, then

C � S(u) = Ew (diag (S(u)w)C diag (w))(4.3)

and therefore one arrives at the stochastic representation of the misfit

misfit(u) = ‖C � S(u)‖2F = ‖Ew (diag (S(u)w)C diag (w)) ‖2F(4.4)

and its approximation

m̂isfit(u) =

∥∥∥∥∥∥
1

K

K∑
j=1

diag (S(u)wj)C diag (wj)

∥∥∥∥∥∥
2

F

.(4.5)

There is a fundamental difference between the approximation (4.5) and the ones
we have discussed in the previous sections. In this case the expected value is inside
the norm; hence we first require evaluating the expectation (approximated by the
sum) inside and only then evaluate the norm. Notice that once again, only matrix
vector product S(u)wj is needed in order to evaluate the misfit. Thus the number of
PDEs to be solved is equivalent to the number of stochastic realizations.

To obtain the derivative of the approximation to the misfit we rewrite

vec (diag (S(u)wj)C diag (wj)) = CwjS(u)wj ,

where vec refers to reordering the matrix as a long vector (column after column) and
the matrix Cwj is defined by

Cwj = [blockdiag((Cdiag (wj))1→, (Cdiag (wj))2→, . . . , (Cdiag (wj))K→)]
�
,
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where � → implies the �th row of the matrix. Using this notation the approximated
misfit can be rewritten as

m̂isfit(u) =

∥∥∥∥∥∥
1

K

K∑
j=1

CwjS(u)wj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
1

K

K∑
j=1

Cwj (PA(u)−1Qwj −Dwj)

∥∥∥∥∥∥
2

.

This representation allows for simple differentiation of the approximated misfit

∇um̂isfit(u) = −
⎛
⎝ 1

K

K∑
j=1

G�
j A(u)

−�P�C�
wj

⎞
⎠

⎛
⎝ 1

K

K∑
j=1

CwjS(u)wj)

⎞
⎠ ,

where the matrix Gj = G(Qwj , u) is defined by (1.3). This formulation of the problem
requires K solves of the adjoint problem.

Other stochastic approximations to the trace can be obtained. Starting from (4.2)
we first use the identity

(C � S(u))w = diag (C diag (w)S(u)�)

and therefore

misfit(u) = ‖C � S(u)‖2F = Ew

(‖diag (C diag (w)S(u)�)‖2) .(4.6)

The identity (4.6) still does not solve the problem of computing either A(u)−1Q or
A(u)−�P . The point here is that evaluating the diagonal of the matrix product

C diag (w)S(u)� = C diag (w) (PA(u)−1Q−D)�

is needed without computing the matrix itself. We thus turn to yet another stochastic
process. It can be shown [29] that if x is a vector with zero mean and covariance
matrix Cov(x) = I, then

diag (C diag (w)S(u)�) = Ex

(
x� (C diag (w)S(u)�)x

)
.(4.7)

Thus we replace the misfit with a double stochastic process

misfit(u) = ‖C � S(u)‖2F = Ew

(‖Ex|w
(
x� (C diag (w)S(u)�)x

) ‖2) .(4.8)

Once again, we can obtain an approximation using Monte Carlo

m̂isfit(u) =
1

K1K2

K1∑
i=1

∥∥∥∥∥∥
K2∑
j=1

(
xj � (C diag (wi)S(u)

�xj

)∥∥∥∥∥∥
2

,(4.9)

which requires the computation of S(u)�x, which implies the solution of the adjoint
problem. In our numerical experiments we have found that in general, the approxima-
tion (4.9) requires more realizations than the approximation (4.5) in order to achieve
similar accuracy of the misfit (compare section 5).

Using the stochastic misfit approximation m̂isfit(u) given by (4.5) or (4.9) we
can now use the SAA method to solve the (stochastic) optimization problem and
approximately recover the model. It is important to note that for this case, since the
expected value is inside the norm, using SA methods in not justified.
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Fig. 2. A sketch of the DC resistivity experiment. Sources in red are located in the boreholes,
while the receivers (green) are on the surface. The red ellipsoid has a conductivity of 10 S/m and
the blue has a conductivity of 0.1 S/m. Color is available only in the online version.

5. Numerical experiments. In this section we perform numerical experiments
to test our approximations and experiment with different methods and parameters.
We use both the DC resistivity and the seismic tomography test problems. Our goals
are to test the effectiveness of different methods for the solution of the same problem.

5.1. Experiments with the DC resistivity experiment. For the DC re-
sistivity, the code for the forward problem and Jacobians is based on the software
package [25] that can be obtained online.

Our goal here is to compare deterministic and stochastic methods. Since the de-
terministic method requires a large computer memory, we have chosen to use LBFGS
for all methods such that the comparison is done on equal footing.

In our first set of experiments we use a mesh of 323 cells for the experiments and
we assume we have sources and receivers located on the surface and in boreholes. A
sketch of the experiment is presented in Figure 2. Our “true” solution consists of an
ellipsoid conductor with conductivity of 10 S/m and a resistor with conductivity of
0.1 S/m. For simplicity we use smooth recovery and choose a regularizer of the form

R(u) =
ρ

2
u�∇�

h∇hu,

where ∇h is a discretization of the gradient operator and ρ is chosen such that we
obtain a fit to the data based on the discrepancy principle [33].

5.1.1. Recovery when all sources share the same receivers. In the first
experiment we assume we have 250 sources and 250 receivers and that all sources
share the same receivers. This leads to the stochastic problem (2.3). To avoid the
“inverse crime,” we generate data for the true model using a fine grid of 643. We
then use three methods to solve the inverse problem. In the first method we use
the deterministic LBFGS method (for details see [24, 25]). This is a deterministic
optimization problem which yields the exact solution of the stochastic programming
problem. In a second experiment we chose five vectors w and use the SAA method to
obtain a solution, and finally, we use the SA method, using a single realization at each
step and replacing realizations as we progress. We plot the different models obtained
by the experiment in Figure 3. As can be clearly observed, the results obtained by the
stochastic methods are almost identical to the result of the deterministic optimization.

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

752 ELDAD HABER, MATTHIAS CHUNG, AND FELIX HERRMANN

True solution Deterministic recovery

SA SAA

Fig. 3. Comparison of the true model (top left), LBFGS recovery (top right), SA recovery
(bottom left), and SAA recovery (bottom right). The three-dimensional models are sliced vertically
and pieced together.

In fact, the relative difference in the recovered models by the different techniques was
well below 3%. In this example, we can compute the true value of the misfit and
its stochastic approximation. The relative difference between the misfit obtained by
the deterministic optimization method and the misfit obtained by the SAA method
was 0.11%, and the difference between the misfit obtained by the SA method and
the misfit obtain by the deterministic optimization was 0.13%. Thus, we were able
to obtain excellent recovery of the model with very similar misfits using all three
methods.

Here we add a few comments about the implementation of the different methods:
• For the deterministic and SAA optimization we stop when the norm of the
gradient is 10−3 of its initial value.
• For the SA we use LBFGS and stop when the change in the solution is smaller
than 10−3.
• For the SAA we use only five vectors to obtain the solution. We then use the
estimates developed in section 3 as a stopping criteria. When evaluating the
gap (3.1) we solve the problem for five different samples starting from the so-
lution obtained by the first sample. For all problems the solution for different
samples converges in a single iteration, which indicates that we started very
close to the solution and that the variability between solutions is small.
The question of how many realizations of w’s to use is answered by experimen-
tation. For our starting point we experiment with the variability of the misfit.
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Table 1

Number of iterations and PDE solves required by each of the methods. The difference between
the solutions and the deterministic solution are recorded in the rightmost column.

Method Iterations PDE solves Difference
Deterministic 51 51002 0%

SAA 43 860 2.1%
SA 325 650 1.2%

We have found that for a small set of w’s (for example, using a single vector)
we still get a reasonable approximation to the misfit (and a reasonable recov-
ery of u), but repeating the experiment we found nonnegligible variance (of
about 7%) between the solutions obtained from different realizations. When
using five realizations we have found that the results did not change in a sig-
nificant way (less than 3%) between different realizations. Determining the
number of realizations a priori is an important question and will be studied
elsewhere.

While the models recovered by each of the methods proposed are very similar in
their quality, the computational complexity of obtaining these results varies widely.
We estimate the computational cost by recording the number of PDE solves for each
of the methods. The results are presented in Table 1. As table 1 shows, a factor of
approximately 60 can be observed between the stochastic and deterministic methods.
This is a remarkable factor that enables us to tackle larger problems in a fraction of
the computational effort needed to solve the original problem.

5.1.2. Recovery when all sources do not share the same receivers. In
the second set of experiments we compare the stochastic approximations given on
(4.5) and (4.9) to solve the problem where the matrix C �= 1. Three different cases
are tested:

• The matrix C is dense and contains the standard deviation of each datum.
We have assumed 1% noise and thus each entry in C is roughly 1% of the
value of the corresponding datum.
• The matrix C is sparse, made of 0’s and 1’s, and contains only 10% nonzero
entries. The entries are chosen at random.
• There are equal numbers of sources and receivers and the matrix C is diagonal,
C = I, that is, each source has a single receiver. This case is common in some
geophysical experiments when sources and receivers move simultaneously.

Three different optimization problems are solved for each case:
• We use a deterministic LBFGS to solve the problem.
• SAA with the stochastic approximation (4.5) is used (referred to as SAA1).
• SAA with the stochastic approximation (4.9) is used (referred to as SAA2).

For this experiment we use 500 sources and 500 receivers in the same configuration
as above. Once again, we record the number of iterations and PDE solves for each of
the cases. We also record the difference between the models recovered by stochastic
programming to the models recovered by the deterministic one. The results for the
different cases are summarized in Table 2. A few comments are in order.

• For SAA1 we used five vectors and found that it was sufficient to obtain
results with little variability.
• For SAA2 we used two vectors for wi and five vectors for xj and the com-
putation is almost double compared with SAA1. As can be seen in Table 2
SAA1 has a smaller variance compared with SAA2.
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Table 2

Number of iterations and PDE solves required by each of the methods for different C’s. The
difference between the solutions and the deterministic solution are recorded in the rightmost column.

C Method Iterations PDE solves Difference
Dense Deterministic 25 26500 0%

SAA1 33 321 1.5%
SAA2 38 654 5.1%

Sparse Deterministic 31 33500 0%
SAA1 32 325 1.7%
SAA2 36 745 5.3%

Diagonal Deterministic 27 28500 0%
SAA1 32 331 0.9%
SAA2 39 789 6.2%

Fig. 4. A sketch of the seismic tomography experiment. The parameter to be recovered is the
seismic velocity, the sources (in the blue left region), and the receivers (in the yellow right region).
Color is available only in the online version.

• All optimization algorithms were terminated when the gradient was reduced
to 10−3 of its original value.

As can be seen from Table 2, the model recovered by statistical methods is very
similar to the models recovered by the deterministic models. This is done in a fraction
of the cost of the deterministic method.

5.2. Experiments with seismic tomography. In our second experiment we
use the two-dimensional seismic borehole tomography problem presented in Example
2. Similar problems in seismology are discussed in [8, 32]. In our experiment we use a
single low frequency as a model problem. More complex problems (that require other
sophistication such as continuation in frequency and mesh) are discussed in [8].

We assume two boreholes 1 meter apart and assume that the left borehole contains
500 sources while the right borehole contains 500 receivers. We use a frequency of 2 Hz,
which for the material properties assumed here implies roughly three wavelengths be-
tween boreholes. A sketch of the experiment and the true model is plotted in Figure 4.

For this experiment we use two different meshes. We start with a mesh of 1282

and then use a mesh of 2562 to compare the scalability of our algorithm. In this

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PDE OPTIMIZATION WITH MULTIPLE RIGHT-HAND SIDES 755

1 vec 2 vecs 3 vecs

4 vecs 5 vecs 6 vecs

Fig. 5. Models obtained for the seismic tomography experiment using one to six samples.

Table 3

Number of iterations and PDE solves required by each of the methods. The difference between
the solutions and the deterministic solution are recorded in the rightmost column.

Mesh # of realization 1 2 3 4 5 6

1282 76 23 12 6 4 4
2562 73 25 11 5 3 3

experiment, we use only SAA; however, unlike the previous example, where we set
the number of vectors a priori, we use continuation to determine the number of samples
needed. We start with a single sample, solve the optimization problem, and then use
two new samples, starting from the previous solution. We continue until the recovered
model does not change much (less that 1% change). In Figure 5 we plot the models
obtained through this process. The number of LBFGS iterations on every level and
mesh is recorded in Table 3.

As can be clearly seen, using a single sample (single simultaneous source) was
not beneficial here. However, when using five and then six sources the result was
unchanged. It is also evident that using “hot starts” helps in reducing the number
of iterations needed for each new set of realizations. Finally, it can also be observed
that the algorithm is unaffected by the mesh size. This implies that future work that
combines Monte Carlo with multilevel techniques has merit. We believe that such
algorithms that use continuation in the number of samples and mesh size may play a
more important role in the future.

6. Discussion and summary. In this paper we explored the incorporation of
stochastic programming techniques into PDE optimization problems with multiple
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right-hand sides. We have shown the equivalence between the deterministic optimiza-
tion problem and the stochastic ones. We then proposed stochastic programming
techniques that allow for the solution of the stochastic problems in a fraction of the
cost of deterministic techniques.

It is interesting to see that the stochastic programming problems are obtained by
combining very basic linear algebra and probability. This allows us to understand and
to extend the use of some of the methods previously proposed in the literature, the
so-called simultaneous sources, that are based on physical arguments. In particular,
we extended the method to deal with the case that not all sources share the same
receivers, including the case where each source receiver combination has a different
noise level.

There are a number of open questions that will be investigated in future work:
• How to choose the number of vectors in the SAA algorithm? The question
can be formulated as, “How many vectors are needed in order to approximate
the expected value?” We claim that this problem is similar in spirit to the
question of how to discretize a continuous optimization problem into a discrete
form. Two approaches have been taken in the literature. First, one can try to
obtain a priori estimates of the error and discretize the optimization problem
by using these estimates, and second, one can use a post priori estimate of
the error and adaptively discretize the problem. The former is known to be
pessimistic and the latter is known to be more efficient. We believe that
a similar approach should be taken here and one should use adaptivity to
estimate the number of vectors in SAA. We have experimented with this
approach for the seismic tomography problem but would like to have a more
quantitative evaluation.
• Given the fact that we know something about the distribution and structure
of S, is there a better choice than the Rademacher distribution? The paper
[29] suggests that in cases where we know something about the properties of
the matrix S better approximation can be obtained.
• We intend to further study the approximation properties of the stochastic
estimates (4.5) and (4.9).

There are a few obvious extensions to be done. First, for problems that contain
only a small number of right-hand sides one can use algorithms that converge better
and faster than LBFGS. In particular, the Gauss–Newton method and methods that
are based on equality constrained optimization should have better numerical proper-
ties [13]. In the above experiments we avoided the use of these methods so we can
compare the deterministic optimization to the two stochastic programming techniques.
Using better optimization techniques can further deepen the gap between stochastic
programming and deterministic optimization in the context of our problems. A second
question is the performance of SA methods and the development of adequate theory for
methods beyond steepest descent. Finally, applying the methods to different problems
in science and engineering and speeding up practical inversion codes should be made.
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