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Abstract. We consider filtering for a hidden Markov model that evolves with multiple time scales in the hidden states.
In particular, we consider the case where one of the states is a scaled Ornstein-Uhlenbeck process with fast reversion to a
shifting-mean that is controlled by a continuous time Markov chain modeling regime change. We show that the nonlinear filter
for such a process can be approximated by an averaged filter that asymptotically coincides with the true nonlinear filter of
the regime-changing Markov chain as the rate of mean reversion approaches infinity. The asymptotics exploit weak converge
of the state variables to an invariant distribution, which is significantly different from the strong convergence used to obtain
asymptotic results in [19].

1. Introduction. When considering systems of stochastic differential equations with multiple time

scales, hidden Markov models (HMMs) come up because we often want to include regime changes. In

estimating the hidden states, filtering methods are used to obtain posterior distributions. If fast mean-

reversion is involved, one might expect that the posterior distribution of the mean-reverting states is tempered

only by an invariant measure and not by the history of the data. This is indeed correct, provided that

observations are sampled discretely, allowing for relaxation in the distribution of the fast mean-reverting

states by the time new observations arrive. Thus, it is reasonable to approximate the filtering distribution

with an asymptotic average over these states.

An asymptotic nonlinear filter can be useful because it may be of reduced dimension, and therefore

considerably easier to compute. By taking a Bayesian approach to filtering, the posterior distributions are

computed by integrating exhaustively over all states. These integrations are prohibitively slow for systems

with hidden states of multiple dimension. In contrast, the computational demands for filters of linear systems

with Gaussian white noise are usually not an issue because we use Kalman filters. They are obtained from

projections onto the linear subspace of observable data, while filtering in the presence of nonlinearity and/or

non-Gaussian components does not allow this linear theory. However, it is possible to find faster nonlinear

filtering algorithms when the HMM has states whose law quickly converges to an invariant measure. Such

filters are faster to compute because it becomes unnecessary to track the hidden states where convergence

quickly occurs.

Asymptotic analysis of multi-scale stochastic models has been done extensively by Yin and Zhang in

[28, 29], in which they also analyze the asymptotics of the Kalman filter and the Wonham filter. Multi-scale

asymptotics are also of interest in stochastic volatility models [10, 15], which suggests that filtering is also

useful in finance. In the setting of multiple time-scales (in particular HMMs with fast mean-reverting states),

nonlinear filtering has, to our knowledge, not been explored to its full extent. The basic nonlinear filtering

theory is presented by Rabiner [22], Jazwinski [16], and Yin and Zhang [29] as a fundamental Bayesian

method to track the hidden states of nonlinear HMMs. Nonlinear filtering has been used extensively in

target-tracking [3, 24], but in these types of problems it may be more efficient to generate particles for
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the nonlinear components of the state space and then exploit the Kalman filter everywhere else, as is done

in [14, 27] where they propose the use of marginalized filters which achieve a Rao-Blackwell lower bound

given the sufficient statistics provided by the Kalman filter. Essentially, nonlinear filtering of continuous

state-space random processes needs to be numerically computed with some kind of approximating scheme.

An important result in this area is that of Kushner [17], which shows consistency and stability for Markov

chain approximations of the nonlinear filter with continuous time observations. In general, particle filters

[1, 8] are a method used frequently for approximating the nonlinear filter, but the amount of time required

to generate the necessary Monte Carlo samples can be a deterrent in practice.

In this paper, we consider in detail a nonlinear multi-scale model with a mean-reverting state that

reverts faster as a parameter ε > 0 gets smaller. The model has applications in target-tracking in finance

and elsewhere. In the early sections we discuss how a distributional averaging occurs in the posterior as

ε↘ 0 if the data is sampled discretely, and we also give some examples to illustrate some possible variations

of the model. We then switch to a rigorous analysis and provide a detailed proof showing that indeed an

averaged filter is obtained as ε ↘ 0, provided that appropriate assumptions are made when defining the

model. We also present some numerical experiments to illustrate how such average filters perform compared

to other approximations of the nonlinear filter.

While the theory presented is for a specific model, the proofs can be carried out for other, more general

process of a similar nature. This paper will focus on models where the fast mean-reverting state is a

one-dimensional Ornstein-Uhlenbeck process, but the theory can be reworked for other diffusion such as

Cox-Ingersol-Ross processes. Also, the theory is easily generalized to the multivariate setting, both for cases

when observations are a vector and when the OU is a vector. In fact, a model with a multivariate OU

process and a scalar-valued regime process can be well-managed by our filter of reduced-dimensionality if

the asymptotic approximations apply. Parameter estimation is also an issue of interest, but one which we do

not cover in this paper. The expectation maximization (EM) algorithm is implementable for the asymptotic

model and will use the asymptotic filter that is computed in this paper, however the asymptotics of EM are

perhaps a topic for future research.

This paper is organized as follows: in Section 2 we present the HMM which is considered in this paper;

the associated nonlinear filter is written in Section 2.2; the asymptotically averaged filter is given in Section

2.3; some example applications are given in Section 2.4; and Section 2.5 describes some particular effects

that scaling and observation sampling can have on the asymptotic filter. In Section 3 we restate the model

and the problem in a mathematically rigorous manner, and then goes on to a proof, while relegating to

Appendix A some of the details that are included for the sake of completeness. Finally, in Section 4 we give

a detailed account of a numerical simulation to illustrate how the average filter performs relative to some of

the parameter choices.

2. Formulation. In this section we introduce the model that is the focus of the paper. The notation of

sections 2.1 and 2.2 is used throughout the paper. In Section 2.3 we discuss the averaged filter that occurs as

the rate of mean reversion approaches infinity, in 2.4 we give some examples, and in 2.5 we consider changes

in the averaged filter when using a somewhat different scaling.
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2.1. The Process. Given the parameter ε > 0, which denotes the mean reversion time, we let t ≥ 0

denote time and we consider a hidden Markov model (HMM) consisting of the following processes:

Θε(t) = a hidden Markov chain in a finite state space

Xε(t) = a hidden diffusion with mean reverting properties

Y ε(t) = an observed diffusion process.

The hidden pair (Xε(t),Θε(t)) ∈ R×S is a Markov process with Xε(t) being a real-valued process and Θε(t)

taking value in the finite discrete space S .
= {s1, . . . , sM}. The forward Kolmogorov equation for Θε(t) is

written in terms of a transition intensity matrix Q ∈ RM×M that is a function of Xε(t),

∂

∂t
P(Θε(t) = si) =

∑
j

Qji(X
ε(t))P(Θε(t) = sj) , t > 0 (2.1)

P(Θε(0) = si) = ρ0(si) (2.2)

for all i ≤ M . We assume that jumps in Θε(t) cannot occur at an infinite rate, and that there are no

cemetery states. Therefore there are constants β and α such that

sup
x

(−Qii(x)) ≤ β <∞ (2.3)

inf
x

(−Qii(x)) ≥ α > 0 (2.4)

for all i ≤M and all x ∈ R. The process Xε(t) is a type of Ornstein-Uhlenbeck (OU) with Θε(t) serving as

a regime changing shifting mean,

dXε(t) =
1

ε
(Θε(t)−Xε(t))dt+

1√
ε
dW (t) (2.5)

where W (t) is an independent Wiener process and the law of Xε(0) is given. We say that ‘1/ε’ is the rate of

mean-reversion for Xε(t). This model is a regime-switching OU, and as ε↘ 0 there is fast relaxation to the

local equilibrium. The generator of (Θε(t), Xε(t)) is 1
εL + Q(x), acting on smooth functions of x ∈ R and

si ∈ S, where

L =


L1 0 . . . 0
0 L2 . . . 0

. . .

0 0 . . . LM


and

Li = (si − x)
∂

∂x
+

1

2

∂2

∂x2
.

For any x, x′ ∈ R, i, j ≤ M and any t ≥ 0, we let Λεt denote the transition density function, which is the

solution of the Fokker-Planck equation

(
∂

∂t
− 1

ε
L∗
)

Λεt(x, si|x′, sj) =
∑
`

Q`i(x)Λεt(x, s`|x′, sj),
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Λε0(x, si|x′, sj) = δ(x− x′)δij ,

where L∗ is the adjoint of L. In particular, the transition probability over a time-step ∆t is given by Λε∆t,

Λε∆t(x, si|x′, sj) =
∂

∂x
P(Xε(t+ ∆t) ≤ x,Θε(t+ ∆t) = si|Xε(t) = x′,Θε(t) = sj).

Samples of this type of OU process with Q(x) ≡ Q (i.e. Q is a constant function of x) are shown in figure

2.1, where we that see the stationary behavior of Xε(t) around Θ(t) occurs more and more rapidly as ε

decreases.

Fig. 2.1. An example of the proposed OU-type process with Q(x) ≡ Q (i.e. Q is a constant indendent of x). In
this example we see the stationary behavior of Xε(t) around Θ(t) occur faster and faster as ε decreases.

The observation process Y ε(t) depends on the hidden states since it is given by a noisy and nonlinear

function of the hidden state(s). The continuous time dynamics of Y ε(t) are described by the following SDE:

dY ε(t) = h(Xε(t))dt+ dZ(t)

where Z(t) is another independent Wiener process, and h(·) is some continuous and bounded function.

However, the process Yε(t) is only discretely observed, and so for some time-step ∆t there are time

points tk = k∆t for k = 1, 2, 3, 4, .... such that the observations are given by a discrete sequence Y εk
.
= Y ε(tk),

with all the observations up to time tk denoted by Y ε1:k. The process Y εk is given incrementally as

Y εk+1 = Y εk +

∫ tk+1

tk

h(Xε(τ))dτ + ∆Zk

where Y εk+1 is the observation at time tk+1 and ∆Zk = Z(tk+1)− Z(tk). The standard filtering problem for

an HMM of this sort is to find an estimate of the hidden states (Θ̂ε(tk), X̂ε(tk)) which is adapted to the

filtration Fεk = σ(Y ε1:k), where σ(Y ε1:k) denotes the σ-algebra generated by the observations.

4



2.2. The Standard Nonlinear Filter. For diffusion processes, nonlinear filtering is implemented

either through numerical integration or through Monte Carlo simulation (such as particle filters; see [1, 8]).

In most of the applied literature, it is standard to write a filtering algorithm as a recursive formula for

the posterior distribution of the hidden states as new data arrives, and many filtering recursions (linear as

well as nonlinear) can be derived by an application of Bayes rule. When applying Bayes rule, the essential

assumptions are the Markov property and incremental independence of the noise in the observations, both of

which are specified apriori in the model. These two conditions comprise what is referred to as the memoryless

channel [13], which allows the joint transition probabilities to be written as

∂

∂x
P(Y εk+1, X

ε(tk+1) ≤ x,Θε(tk+1) = si|Y ε1:k, X
ε(tk) = x′,Θε(tk) = sj)

= P(Y εk+1|Y εk , Xε(tk+1) = x,Xε(tk) = x′)× Λε∆t(x, si|x′, sj).

Given the memoryless channel, a simple application of Bayes rule yields the recursive formulas for filtering

in discrete time. The formulas for filtering in continuous time can be heuristically derived by passing the

limit in ∆t in the discrete filter. In this paper the primary focus is on discretely observed processes, making it

straight-forward to derive all the filtering recursions and they will always come from the Bayesian recursion.

In discrete time, the observed data is collected and retained as a sequence of real numbers from which a

filtering distribution is constructed. At time tk, the observed data is retained in a sequence {y1, · · · yk} that

can be interpreted as the event {Y ε1:k = y1:k}. For any pair si ∈ S and x ∈ R, the filtering distribution at

time tk is then a function of y1:k,

πεk(x, si)
.
=

∂

∂x
P(Xε(tk) ≤ x,Θε(tk) = si|Y ε1:k = y1:k).

The fundamentals of Bayesian filtering are presented in the earlier works by Kushner [17], Jazwinski

[16], and Baum et al [4, 5]. The Bayesian approach has since been used in many different applications.

Some more recent references include Asmussen and Glynn [1], Cappé, Moulines and Rydén [8], Krylov et

al [13], and Rabiner [22]. Bayesian filtering is usually done with a recursive formula, which we refer to as

the Forward Baum-Welch equation. For any x, x′ ∈ R, i, j ≤ M and any t ≥ 0, the Forward Baum-Welch

equation is

πεk+1(x, si) =
1

ck+1

∑
j

∫
P(yk+1|yk, Xε(tk+1) = x,Xε(tk) = x′)Λε∆t(x, si|x′, sj)πεk(x′, sj)dx

′ (2.6)

where ck+1 is a normalizing constant, P(yk+1|yk, Xε(tk+1) = x,Xε(tk) = x′) is the likelihood function of

yk+1 given (yk, x, x
′), and π0(x, si) is given independent of ε.

The filtering recursion in (2.6) is difficult both to compute and to analyze because of the path-dependence

in the likelihood function,

P(yk+1|yk, Xε(tk+1) = x,Xε(tk) = x′)

= E [P(yk+1|yk, Xε(τ) ∀τ ∈ [tk, tk+1])|Xε(tk+1) = x,Xε(tk) = x′]

5



= C · E

exp

−1

2

(
yk+1 − yk −

∫ tk+1

tk
h(Xε(τ))dτ

√
∆t

)2

∣∣∣∣∣Xε(tk+1) = x,Xε(tk) = x′


where C is a normalizing constant (dependent on ∆t). This path-dependence can be avoided by adding

to the HMM an extra process that allows the filter to be written with a point-wise-dependent likelihood

function. Denote this process by V ε(t) and let it satisfy the differential equation

dV ε(t) = h(Xε(t))dt.

With the addition of V ε(t) the observations no longer depends on a path since

Y εk+1 = Y εk + V ε(tk+1)− V ε(tk) + ∆Zk

We call the triplet (V ε(t), Xε(t),Θε(t)) ∈ R×R×S, which is a Markov process, the augmented HMM with

generator 1
εL+Q(x) + h(x) ∂∂v . For any (v, x, si) ∈ R×R× S and (v′, x′, sj) ∈ R×R× S, we let Γεt denote

the Green’s function of the Fokker-Planck equation given by the generator of the augmented HMM,(
∂

∂t
− 1

ε
L∗ − h(x)

∂

∂v

)
Γεt(v, x, s`|v′, x′, sj) =

∑
`

Q`i(x)Γεt(v, x, s`|v′, x′, sj),

with Γε0(v, x, s`|v′, x′, sj) = δ(v − v′)δ(x− x′)δ`j .
The augmented filter is then

πεk(v, x, si)
.
=

∂2

∂v∂x
P(V ε(tk) ≤ v,Xε(tk) ≤ x,Θε(tk) = si|Y ε1:k = y1:k)

for which the forward Baum-Welch equation is

πεk+1(v, x, si) =
1

ck+1

∑
j

∫ ∫
P(yk+1|yk, V ε(tk+1) = v, V ε(tk) = v′)

× Γε∆t(v, x, si|v′, x′, sj)πεk(v′, x′, sj)dx
′dv′ (2.7)

where ck+1 is another normalizing constant. The advantage of the augmented filter is that the likelihood

function is now a Gaussian,

P(yk+1|yk, V ε(tk+1) = v, V ε(tk) = v′) = C · exp

{
−1

2

(
yk+1 − yk − (v − v′)√

∆t

)2
}

where C is a normalizing constant (dependent on ∆t). It can be readily verified that the marginal posterior

density
∫
πεk(v, x, si)dv satisfies the Baum-Welch recursion (2.6) with the correct path-dependent likelihood

function.

2.3. Averaged Filters. The rate at which Xε(t) reverts to an approximately stationary distribution

is 1/ε, and as ε ↘ 0 we would expect there to be some stationary behavior in the filter provided that the

condition in (2.3) holds. Indeed, this is the case and we give a direct proof in later sections, but for now we

want to provide some intuition about the filter in the limit, and consider some applications.
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For any i, j ≤M , let µi(x) be the invariant density such that L∗iµi(x) = 0, which can be written as

µi(x) =
1√
π
e−(x−si)2

and integrates to one,
∫
µi(x)dx = 1, making it a probability density. Let Q and h = (hsi)i be the averages

under the invariant measure,

Q̄ij =

∫
Qij(x)µi(x)dx and h̄si =

∫
h(x)µi(x)dx for all i ≤M.

Then for a fixed T < ∞, the process (V ε(t),Θε(t)) ∈ R × S, t ∈ [0, T ] converges weakly to the process

(V (t),Θ(t)) ∈ R × S, t ∈ [0, T ] as ε ↘ 0.1 The generator of the limit proces (V (t),Θ(t)) is the sum of the

averaged operands Q+ h ∂
∂v , from which it is clear that (V (t),Θ(t)) is a Markov process. In particular, Θ(t)

is a continuous-time Markov chain with transition intensities Q, and

dV (t) = hΘ(t)dt.

Therefore, V (t) is a deterministic function of the path of Θ(t), and so the limiting nonlinear filter is of

significantly reduced dimension and is related directly to the regime-determining path.

Based on this result we expect the limiting nonlinear filter to be a marginal posterior probability function

πk satisfying the reduced recursion

πk+1(si) =
1

ck+1

∑
j

ψij(yk+1|yk)(eQ̄
∗∆t)ijπk(sj) (2.8)

where Q̄∗ denotes matrix transpose of Q̄, ck+1 is a normalizing constant, and ψ is the likelihood function

that is computed by integrating over all possible paths,

ψij(yk+1|yk) = E

exp

−1

2

(
yk+1 − yk −

∫ tk+1

tk
hΘ(τ)dτ√

∆t

)2

∣∣∣∣∣Θ(tk+1) = si,Θ(tk) = sj

 .
The averaged filter in (2.8) is of significantly reduced complexity compared to the filter in (2.6) or the

augmented filter of (2.7). There is path-dependence in the likelihood function, but this is a relatively minor

complication because this dependence is on the path of a finite-state Markov chain over a relatively short

interval. In contrast, the extra two dimensional state space that we need to deal with in order to filter V ε(tk)

and Xε(tk) adds to the complexity of the filter. Therefore, provided that ε and ∆t are chosen appropriately,

it is faster and almost as effective to use the average filter to compute the posterior of Θε(tk). Later sections

include discussion on regimes for ε and ∆t that make it appropriate to use this asymptotic approximation.

2.4. Some Examples. Ornstein-Uhlenbeck-type processes with fast mean reversion are used in a va-

riety of applications. Examples come from target tracking, biology, imaging, finance etc.

1This result is proven here in Section 3; the proof follows well-known general methods ([28] chapter 7) for weak convergence
of processes.
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2.4.1. Target-Tracking Models. Regime-switching models and nonlinear filtering are applied to

target-tracking by Bar-Shalom [3] and also by Rozovsky [23]. Suppose that a computerized-tracking system

is following an object with measurements made by a video camera. For such a problem we interpret the

variables as follows:

Θε(t) = a hidden maneuver to be identified,

Xε(t) = tracked velocity

where Xε(t) rapidly relaxes to Θε(t) but in the presence of significant noise. Observations of the target are

noisy measurements of the target’s position,

Y εk+1 = Y εk +

∫ tk+1

tk

h(Xε(τ))dτ + ∆Zk

We introduce an auxiliary field P ε(t) to denote position, and a change in position of the target is P ε(tk+1)−
P ε(tk) =

∫ tk+1

tk
h(Xε(τ))dτ . Then the discrete-time observation model becomes

Y εk+1 − Y εk = P ε(tk+1)− P ε(tk) + ∆Zk

which can be interpreted as relative changes in measured position being equal to the relative change in the

actual position plus noise. The filter for such a model is given by (2.7), and the average filter of (2.8) can

be applied as ε ↘ 0. Ultimately, if the computerized tracking system can positively identify Θε(tk), it will

be possible to have information about the sequence of maneuvers made by the target.

The potential for an averaged filter’s success in these video-tracking problems depends on the user’s

ability to choose ∆t such that

min
i,x

−1

Qii(x)
� ∆t� ε.

Provided that Q and ε are of different scales, the operator of the video-surveillance system should select a

frame-rate for the camera that is both effective for tracking (ie. mini,n(−1/Qii(x)) � ∆t), and consistent

with the fast mean-reverting hypothesis (i.e. ∆t� ε).

2.4.2. Ornstein-Uhlebeck process for Stochastic Volatility. Multi-scale models for stochastic

volatility have been considered extensively by Fouque, Papanicolaou and Sircar [10] and also by Howison

[15]. In this example we introduce filtering to stochastic volatility models of the form

Y ε(t) = Observed log-price

Θε(t) = stochastic volatility regime√
h(Xε(t)) = stochastic volatility

Here Xε(t) is the Ornstein-Uhlenbeck process defined by (2.5), the function h(x) is taken to be continuous,

positive, bounded and monotone, and it is assumed that there is a constant δ > 0 and H <∞ such that

0 < δ ≤ h(x) ≤ H <∞ ∀x ∈ R.
8



For example, the exponential OU model of Perelló, Sircar and Masoliver [21] can be modified to fit this

framework.

Letting (Xε(t),Θε(t)) satisfy (2.1) and (2.5), we take the logarithm of a stock price to satisfy the following

SDE:

dY ε(t) =

(
r − 1

2
h(Xε(t))

)
dt+

√
h(Xε(t))

(√
ερdW (t) +

√
1− ερ2dZ(t)

)
where r is a known parameter (the interest rate), Z(t) is a standard Brownian motion independent of W (t),

and ρ ∈ (−1, 0) models the volatility leverage effect provided that h′(x) ≥ 0 for all x,∫ t

0

dY ε(τ) · dh(Xε(τ)) = ρ

∫ t

0

h′(Xε(τ))
√
h(Xε(τ))dτ.2

Note that W̃ (t) =
√
ερW (t) +

√
1− ερ2Z(t) is a standard Brownian correlated with 1√

ε
W , with correlation

coefficient ρ. Since the log price Y ε(t) is observed discretely (e.g. daily), we write the observation model as

follows:

Y εk+1 − Y εk = r∆t− 1

2

∫ tk+1

tk

h(Xε(τ))dτ +
√
ερ

∫ tk+1

tk

√
h(Xε(τ))dW (τ) +

√
1− ερ2

∫ tk+1

tk

√
h(Xε(τ))dZ(τ)

=d r∆t−
1

2

∫ tk+1

tk

h(Xε(τ))dτ +
√
ερ

∫ tk+1

tk

√
h(Xε(τ))dW (τ) +

√
(1− ερ2)

∫ tk+1

tk

h(Xε(τ))dτ · Zk

where the equality is in distribution and Zk ∼ iidN(0, 1).

As before, we introduce two auxiliary fields, namely (V ε(t), ζε(t)), where

dV ε(t) = (1− ερ2)h(Xε(t))dt and dζε(t) =
√
ερ
√
h(Xε(t))dW (t)

with initial conditions V ε(0) = 0 = ζε(0), for which we see that (V ε(·),Θε(·)) ⇒ (V (·),Θ(·)) as ε ↘ 0, and

ζε(t) → 0 a.s. as ε ↘ 0 for all t < ∞. Applying these limits, we have the following weak limit of the

observations,

Y εk+1 − Y εk ⇒ µ∆t− 1

2

∫ tk+1

tk

h̄Θ̄(τ)dτ +

√∫ tk+1

tk

h̄Θ̄(τ)dτ · Zk

and by the same token that shows V ε(·) converges, we have the following averaging of the leverage effect,∫ tk+1

tk

dY ε(τ) · dh(Xε(τ))⇒ ρ

∫ tk+1

tk

(h′
√
h)Θ(τ)dτ

where (h′
√
h)si =

∫
h′(x)

√
h(x)µi(x)dx, both limits taken as ε↘ 0.

The standard nonlinear filter for this problem is more complicated than the one given in equation (2.7),

but we will see later on that a simple generalization of theorem 3.1 of Section 3 leads to an averaged filter

as ε↘ 0,

πk+1(si) =
1

ck+1

∑
j

ψij(yk+1|yk)
(
eQ̄
∗∆t
)
ij
πk(sj)

2We write “
∫ t
0 dY

ε(τ) · dh(Xε(τ))” to denote the quadratic cross-variation Y ε(τ) and h(Xε(τ)).
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where the likelihood function has the form

ψij(yk+1|yk) = E


exp

− 1
2

yk+1−yk−µ∆t+ 1
2

∫ tk+1
tk

hΘ(τ)dτ√∫ tk+1
tk

hΘ(τ)dτ

2
√∫ tk+1

tk
hΘ(τ)dτ

∣∣∣∣∣Θ(tk+1) = si,Θ(tk) = sj


with hsi =

∫
h(x)µi(x)dx = 1√

π

∫
h(x)e−(x−si)2

dx. We will revisit this example in Section 3 after we

have gone over the rigorous proof of the averaged filter, at which point we will be able to give a detailed

explanation as to why this stochastic volatility filter has the asymptotic averaging that we show here. From

the point of view stochastic volatility modeling, we see that nonlinear filters for tracking regime changes in

the volatility can be significantly simplified if we have fast mean reversion and if the observation interval is

chosen appropriately.

The potential for the averaged filter to be effective in tracking the state of volatility will depend on the

data. Time scales in financial data have been observed, with fast mean-reversion happening on the order

of 1-2 days (or less), and slow mean-reversion happening on the order of weeks and months. Therefore, a

choice of ∆t corresponding to a few days or a week would allow the averaged filter to track regime-changes

effectively. It should also be mentioned that there are time-dependent effects in financial data (e.g. daily

intra-day trading patterns) that should be included in a stochastic volatility model, but the averaged filter

has the ability to track a time-independent regime-process without estimating/tracking the time-dependent

components (see [11]).

2.5. Issues with ε and ∆t. There are some subtle issues in fast mean reversion models and filtering

that can be easily overlooked. In this subsection we highlight some of them that can arise when seemingly

small changes are made to the proposed model. They are from a general class of fast mean reverting models

that may look similar to the model in this paper, but are in fact quite different. In particular their limiting

filters are not the same.

2.5.1. Allowing for Relaxation Between Observations. For a fixed ε > 0, the choice to implement

the filter in (2.8) is appropriate provided that the sampling rate of observations, ∆t, is chosen correctly. If

∆t is too small (i.e. ∆t << ε) then there will not be enough time between observations for the diffusion

distribution of Xε to relax. If the average filter is applied in such a situation, there will be estimation error

that is not present when the optimal nonlinear filter is used. Therefore, it is important to impose a condition

such as ∆t > ε to decide if it is appropriate to use the average filter in (2.8). In other words, such a condition

ensures that the average time to mean reversion, ε, in the diffusion process is faster than the rate at which

new observations arrive. The interval between observations, ∆t, must also not be too large because then

the filter will be neglectful of regime changes. In applications where there is regime change and fast mean

reversion, and the time scales for these two effects are well separated, the observation time should be chosen

to be intermediate between the two,

ε� ∆t� min
i,x

−1

Qii(x)
. (2.9)
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The above discussion suggests that fast mean-reversion asymptotics cannot be applied to the Zakai

equation [25, 30], which gives the continuous time filter. This is because averaged filters only work when

there is some coarse-graining of the observations (for example, by discretizing the observation time) and

when the rate of mean reversion is faster than the observation sampling rate.

2.5.2. Different Scalings. In this section we present an example to illustrate some subtleties in the

scaling of stochastic differential equations. The example is the focus of the paper by Papanicolaou [19] in

which there is a limiting filter of reduced dimension, but the type of averaging that is used to obtain it is

different and thus the limiting filter is considerably different from that in (2.8).

We consider the following video-tracking model:

Θ(t) = target velocity

Xε(t) = camera velocity

P ε(t) = position error

Y εk = noisy measurement of position error

Suppose the dynamics of Θ(t) have intensity matrix Q which no longer depends on Xε(t), and the diffusion

is no longer scaled by 1/
√
ε,

∂

∂t
P(Θ(t) = si) =

∑
j

QjiP(Θ(t) = sj)

dXε(t) =
1

ε
(Θ(t)−Xε(t))dt+ dW (t)

dP ε(t) =
1

ε
(Θ(t)−Xε(t))dt

Y εk = h (P ε(tk)) + Zk

where Zk ∼ N(0, 1). The main differences between the model here and in the rest of the paper is the lack of

a scaling factor before the dWt term and the addition of a scaling term in the dynamics of the auxiliary field

(in this case we have P ε as the auxiliary field). In [19], the limit theory used to obtain the average filter for

this model is simpler than the theory presented in the rest of this paper, but the asymptotic average of the

filter is a of an entirely different nature.

The filter for this model is

πεk(p, x, si) =
∂

∂x

∂

∂p
P(P ε(tk) ≤ p,Xε(tk) ≤ x,Θ(tk) = si|Y ε1:k = y1:k)

and satisfies the following forward Baum-Welch equation:

πεk+1(p, x, si) =
1

ck+1
e−

1
2 (yk+1−h(p))2 ∑

j

∫ ∫
Λε∆t(p, x, si|p′, x′, sj)πεk(p′, x′, sj)dx

′dp′

where Λε∆t( · ) is the joint transition kernel of the hidden process. By a generalization of the Kramers-

Smoluchowski theorem [19, 12], we have

Xε(t)→ Θ(t) a.s. pointwise in time,

11



from which it follows that

P ε(tk+1)− P ε(tk)→ Θ(tk+1)−Θ(tk)−∆Wk a.s. pointwise in time.

These limits allow us to obtain the following averaged filter in the limit

πk+1(p, si) =
1

ck+1
e−

1
2 (yk+1−h(p))2 ∑

j

∫
e
− 1

2

(
p−p′−(si−sj)

√
∆t

)2 (
eQ
∗∆t
)
ij
πk(p′, sj)dp

′

This filter is of reduced dimension, but it is not entirely reduced to a filter for the state Θ(tk). In fact,

such a fully reduced filter is not possible because the likelihood function has not been averaged. Therefore,

although the theory used to obtain the limit is simpler and the convergence stronger, the limiting filter is

nevertheless more complicated than the averaged filter of (2.8).

3. Rigorous Averaging For Filter. In this section we reintroduce the model in a probabilistic setting,

which will allow us to rigorously prove the limit theorem, giving us the average filter of (2.8). The statements

and proofs that build the theory for the averaged filter use pathwise weak convergence and test functions,

and so it is necessary to redefine all the dynamics of the processes in their weak or integrated form. In

particular, convergence of the solutions to a martingale problem is the essential tool in showing that the

processes (Θε(t), V ε(t)) , 0 ≤ t ≤ T, converge path-wise in the weak sense.

3.1. Preparation for Theorem. Consider the Markov process (Θε(t), Xε(t), V ε(t)) for ε > 0 and

t ∈ [0, T ], on the probability space (Ω, (Ft)t≤T ,P). Let Θε(t) be a jump process taking value in the space of

finite values S = {s1, ....., sM}. The process Xε(t) is an Ornstein-Uhlenbeck (OU) process with a shifting-

mean,

dXε(t) =
1

ε
(Θε(t)−Xε(t)) dt+

1√
ε
dW (t) (3.1)

where W (t) is an independent, standard Brownian motion and ε > 0 is an arbitrarily small parameter. From

this, the third process is defined as

V ε(t) = V0 +

∫ t

0

h(Xε(τ))dτ

where h : R→ R is bounded and continuous.

The space Ω can be defined as

Ω = D ([0, T ];S)× C
(
[0, T ];R2

)
were D ([0, T ];S) can be taken to be here the set of right-hand continuous piece-wise constant functions in

S, C
(
[0, T ];R2

)
are the continuous functions in R2, and Ft, 0 ≤ t ≤ T is the associated filtration. There is

a matrix operator Q where

Q(x) = (Qji(x)) ∈ RM×M ,

which is a transition rate matrix for all x ∈ R such that for any bounded function g(θ) : S → R,

Q(x)g(θ)
∣∣∣
θ=si

=
∑
j

Qij(x)g(sj),

12



We assume the conditions set forth in (2.3) and (2.4) of Section 2 hold (with constants 0 < α ≤ β <∞) so

that Θε(t) communicates on all possible states of S, that jumps cannot occur at an infinite rate, and that

there are no cemetery states. We also take the generators Li to be the same as they were in section (2),

and we take the matrix of these operators L to be the same as well. Then for any scalar-valued function

g(s, x, v) with compact support, two derivatives in x and one in v (both bounded), the dynamics of the

Markov process (Θε(t), Xε(t), V ε(t)) are determined by the martingale,

E
[
g(Θε(t), Xε(t), V ε(t))−

∫ t

0

(
1

ε
L+Q(Xε(τ)) + h(Xε(τ))

∂

∂v

)
g(Θε(τ), Xε(τ), V ε(τ))dτ

∣∣∣Fs]

= g(Θε(s), Xε(s), V ε(s))−
∫ s

0

(
1

ε
L+Q(Xε(τ)) + h(Xε(τ))

∂

∂v

)
g(Θε(τ), Xε(τ), V ε(τ))dτ (3.2)

holding for any test function g and 0 ≤ s < t ≤ T . Equation (3.2) is a weak form of the forward equation

for the Markov process (Θε(t), Xε(t), V ε(t)).

Observations on (Θε(t), Xε(t), V ε(t)) are given at the discrete times tk = k∆t by the process Y εk ,

Y εk+1 = Y εk + V ε(tk+1)− V ε(tk) + ∆Zk

where ∆Zk ∼ iidN(0,∆t).

3.2. Theorem for Averaged Filter. We consider a sequence y1:k = {y1, . . . , yk} to be the observed

realization of Y ε1:k, for which we have the following asymptotic theory for the filter.

Theorem 3.1. Assume (2.3) is true. Then for any bounded function g : S → R, point-wise for any

y1:k = {y1, y2, ..., yk} ∈ Rk the optimal filter has the following limit as ε↘ 0:

E
[
g(Θε(tk))

∣∣∣Y ε1:k = y1:k

]
→
∑
i

g(si)π̄k(si) as ε↘ 0

where

π̄k+1(si) =
1

c̄k+1

∑
j

ψij(yk+1|yk)
(
eQ̄
∗∆t
)
ij
π̄k(sj) (3.3)

with

ψij(yk+1|yk) = E

[
exp

{
− 1

2∆t

(
yk+1 − yk −

∫ tk+1

tk

h̄Θ(τ)dτ

)2
}∣∣∣Θ(tk+1) = si,Θ(tk) = sj

]

and c̄k+1 being a normalizing constant.

One main component of the proof of theorem 3.1 is the path-wise weak limit of (Θε(·), V ε(·)),

(Θε(·), V ε(·))⇒ (Θ(·), V (·)) (3.4)

where (Θ(·), V (·)) is a Markov process with generator Q̄ + diag(h̄) ∂∂v . Appendix A goes through the steps

proving that the limit in (3.4) holds given the setup of Section 3.1.

The other component of the proof of theorem 3.1 is the use of the unnormalized posterior. The kernel

used to obtain the unnormalized posterior is a likelihood function, and so in spirit it is similar to the change
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of measure used in the Zakai equation (in the case of continuous-time observations) as was done by Zakai

[30], and also is also a part of Rozovsky’s proof of the uniqueness of solutions to the Zakai equation [25].

Proof of Theorem 3.1: Without loss of generality, let ∆t = 1. For any vector (y1, ..., yk) ∈ Rk define the

likelihood function of V ε(·),

Mk(y1:k;V ε(·)) =

k−1∏
i=1

exp

{
−1

2
(yi+1 − yi − (V ε(ti+1)− V ε(ti)))2

}
.

The posterior expectation can be written as a function of the observed data in terms of Mk,

E
[
g(Θε(tk))

∣∣∣Y ε1:k = y1:k

]
=

E [Mk(y1:k;V ε(·))g(Θε(tk))]

E [Mk(y1:k;V ε(·))]

We can now apply the weak convergence theorem to the ratio on the right. From the weak limit of

(Θε(·), V ε(·)) in (3.4) this is equal to a function of y1:k which converges point-wise,

E [Mk(y1:k;V ε(·))g(Θε(tk))]

E [Mk(y1:k;V ε(·))]
→

E
[
Mk(y1:k;V (·))g(Θ(tk))

]
E
[
Mk(y1:k;V (·))

]
as ε↘ 0. Letting Y k denote the process

Y k =

∫ tk+1

tk

h̄Θ(τ)dτ + Zk

it is easily seen thatMk(y1:k;V (·)) is the likelihood function associated with the filtering problem as ε↘ 0.

Therefore, the limit ratio can be identified with a conditional expectation and we have

E
[
g(Θε(tk))

∣∣∣Y ε1:k = y1:k

]
→ E

[
g(Θ(tk))

∣∣∣Y 1:k = y1:k

]
as ε↘ 0 pointwise for y1:k.

In connection with the Baum-Welch equation, the posterior expectation is written as

E
[
g(Θ(tk))

∣∣∣Y 1:k = y1:k

]
=
∑
i

g(si)π̄k(si)

where the posterior distribution π̄k is given recursively as

π̄k(si) =
1

ck

∑
j

∂

∂y
P(Y k ≤ y|Y k−1 = yk−1Θ(tk) = si,Θ(tk−1) = sj)

∣∣∣∣∣
y=yk

(
eQ̄
∗∆tk

)
ji
π̄k−1(sj)

=
1

ck

∑
j

ψji(yk|yk−1)
(
eQ̄
∗∆tk

)
ji
π̄k−1(sj).

This completes the proof of the theorem. �
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3.3. Stochastic Volatility Example (Revisited). We now provide some details to show why theo-

rem 3.1 applies to the stochastic volatility model of Section 2.4.2. Recall that the example had two hidden

states

Θε(t) = the hidden volatility regime

Xε(t) = the hidden volatility process

with two auxiliary fields

dV ε(t) = (1− ερ2)h(Xε(t))dt and dζε(t) =
√
ερ
√
h(Xε(t))dW (t)

where V ε(0) = 0 = ζε(0), and observations were given by

Y εk+1 − Y εk =d

(
µ∆t− 1

2
(V ε(tk+1)− V ε(tk))

)
+ ζε(tk+1)− ζε(tk)−

√
V ε(tk+1)− V ε(tk) · Zk

where Zk ∼ iidN(0, 1). It was also mentioned in Section 2.4.2 that path-wise convergence holds for Θε(·)
and the auxiliary fields,

(ζε(·), V ε(·),Θε(·))⇒ (0, V (·),Θ(·))

as ε↘ 0.

Now, in order to apply the steps in the proof of theorem 3.1, the likelihood function is defined as

Mk(y1:k;V ε(·), ζε(·)) =

k−1∏
i=1

exp

{
− 1

2

(
yi+1−yi−µ∆t+ 1

2 (V ε(ti+1)−V ε(ti))−ζε(ti+1)−ζε(ti)√
(V ε(ti+1)−V ε(ti))∆t

)2
}

(V ε(ti+1)− V ε(ti))∆t
,

and because 0 < δ ≤ h(x) ≤ H <∞, we have Mk(y1:k;V ε(·), ζε(·)) is bounded for all tk <∞. Then, using

the weak convergence we have that for any bounded function g : S → R

E[g(Θε(tk))|Y ε1:k = y1:k]→
∑
i

g(si)π̄k(si)

as ε↘ 0, where π̄k is given by theorem 3.1 but with

ψij(yi+1|yi) = E


exp

− 1
2

yi+1−yi−µ∆t+ 1
2

∫ ti+1
ti

h̄Θ̄(τ)dτ√(∫ ti+1
ti

h̄Θ̄(τ)dτ
)

∆t

2
√(∫ ti+1

ti
h̄Θ̄(τ)dτ

)
∆t


for all i ≤ k − 1.

One disadvantage to this averaged filter is that ρ does not appear. Leverage is present for all ε > 0, but

depends on the path of Xε. Therefore, the averaged filter is useful only in settings where volatility’s regime

appears independent of returns. For instance, suppose option prices have independent short-term dynamics,

but the common level of volatility remains constant for extended periods and does not have any short-term
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effects on returns. If leverage is a considerable concern, it can make in an impact on the averaged filter if the

model includes a slowly-scaled OU which depends on Θ (see Fouque, Papanicolaou and Sircar [10]). Another

option is to add jumps in a manner that is similar Bakshi, Cao and Chen [2],

dY ε(t) =

(
µ− 1

2
h(Xε(t))

)
dt+

√
h(Xε(t))dW (t)− J(t)dΘε(t)− νdt

where dΘε(t) = Θε(t) − Θε(t−), J(t) is a random variable that depends on the sign of dΘε(t), and ν is a

compensator.

4. Numerical Simulations. In this section we carry out some numerical simulations of the proposed

model and implement the filtering algorithms. Methods for simulating the HMM and computing the filter

are described in detail, and simulated results verify some basic properties of the averaged filter. In particular,

Sections 4.1 and 4.2 describes the numerical methods, and Sections 4.3 and 4.4 explore how the filter performs

for various ε and ∆t.

In estimating the hidden states, it is optimal to use the filter from Section 2.2, referred to as the ‘optimal

filter’, but Theorem 3.1 proved that the averaged filter is equivalent as ε↘ 0. Section 4.3 will focus on how

the averaged filter compares to the optimal filter, and for this reason the simulations use a simplified linear

model under which it is easier to compute the optimal filter. The main conclusions are

1. that the averaged filter is indeed optimal as ε↘ 0,

2. that ∆t needs to be chosen within a certain range depending on the mean time of reversion and the

expected switching times of the hidden Markov chain, as in (2.9).

4.1. Generating the Simulation Data. The simulation occurs over a time interval [0, T ], and given

time-step ∆t we will have observations Y εk occurring at a set of equidistant time-points {tk}Nk=0

0 = t0 < t1 < t2 < .... < tN = T

with tk+1 = tk + ∆t. Given the linear observation function h(x) = h · x, the observations are given simply

by

Y εk+1 = Y εk + h ·
∫ tk+1

tk

Xε(s)ds+ ∆Zk

where ∆Zk = Z(tk+1)−Z(tk). The task of simulating consists of two parts: (1) how to generate the hidden

states, and (2) how to generate the observations.

We’ll assume the dynamics of Θ(t) are homogeneous (i.e. they are not affected by Xε(t); Q does not

have an ‘x’ argument). To simulate the processes, we need to selected a finer time-step, which we will call

∆̃t. For some positive integer m, we define ∆̃t as

∆̃t =
1

m
∆t, for some m ∈ Z+.

Thus, the observations are m-many ∆̃t’s apart, and the simulated state processes are generated at the

m-many points in between,

t̃`+1 = t̃` + ∆̃t for ` = 0, 1, 2, . . . ,m ·N − 1.
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At each time t̃`, a discrete-time Markov process (Θ̃`, X̃
ε
` ) is sampled sequentially according to Algorithm 1.

Algorithm 1 Sequential Sampling of State-Processes

1. set a = exp(−∆̃t/ε).

2. set the matrix p = [pij ] where pij
.
=
{

exp{∆̃tQ∗}
}
ij

3. Sequentially sample the states:
for ` = 0→ m ·N − 1 do

a. Θ̃`+1 ← θ where θ is sampled from p conditional on Θ̃`,

b. X̃ε
`+1 ← aX̃ε

` + (1− a)Θ̃` +
√

1−a2

2 W` where W` ∼ iidN(0, 1).

end for

Given the discrete process from Algorithm 1, we approximate (Θ(·), Xε(·)) with a piece-wise constant

process (Θ̃(·), X̃ε(·)), defined as follows:

(Θ̃(t), X̃ε(t))
.
=

m·N−1∑
`=0

(Θ̃`, X̃
ε
` ) · 1{t∈[t̃`,t̃`+1)} for t ∈ [0, T ]. (4.1)

The process in (4.1) converges path-wise in the weak sense to (Θ(·), Xε(·)) as m → ∞ (the proof of this

convergence is similar to the convergence proofs in Appendix A.2, and is also covered in [9]).

Finally, we approximate the observations with Riemann sums,

Ỹ εk+1 = Ỹ εk + ∆̃t h ·
m(k+1)∑
`=mk+1

X̃ε
` + ∆Zk for k = 0, 1, 2, . . . , N − 1. (4.2)

Indeed, it can be further proved that Ỹ εk ⇒ Y εk as m→∞, and so our simulations will assume that Ỹ ε = Y ε

and choose m so that the Riemann sum is close to an integral.

4.2. Computing the Filter. Suppose that we have used Algorithm 1 and (4.2) to generate the ob-

served the process Y ε1:k = y1:k. Algorithm 1 is used again to generate samples for a particle filter (see [1, 8])

or a Rao-Blackwellized filter (see [14, 27]),

{θ̃(n)
` , X̃

ε,(n)
` }m·N`=0 for n = 1, 2, 3, . . . , R

where R is the number of samples generated. The particle filter consists of a set of weights {ω(n)
k }n,k such

that for R large we have the following approximation:

E
[
g(Xε(tk),Θ(tk))

∣∣∣Y ε1:k = y1:k

]
≈

R∑
n=1

g(Θ̃
(n)
km, X̃

ε,(n)
km ) · ω(n)

k for k = 0, 1, 2, . . . , N.

where the weights are computed as

ω
(n)
k+1 =

1

ck+1
exp

−1

2

(
yk+1 − yk − ∆̃t h ·

∑m(k+1)
`=km+1 X̃

ε,(n)
`√

∆t

)2
 · ω(n)

k
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with ck+1 being a normalizing constant. This algorithm of sampling and weighting is usually accompanied

by sampling-importance-resampling (SIR), which basically replaces the samples with boot-strap samples if

relative importance starts to favor a select-few particles. For instance if the number of important particles

falls below some critical level we should perform SIR,

1/
∑
n

(ω
(n)
k )2 ≤ ηR, then perform SIR

where η ∈ [0, 1] is the required fraction of important particles. SIR involves the following: (1) for each

n we sample a random variable Vn from
{

(Θ̃
(n)
m(k+1), X̃

ε,(n)
m(k+1))

}R
n=1

with probabilities
{
ω

(n)
k

}R
n=1

; (2) after

R-many V ’s have been obtained, set

(Θ̃
(n)
mk+`+1, X̃

ε,(n)
mk+`+1) = Vn, ω

(n)
k = 1/R for each n.

Basically, SIR is a variance reduction technique that will prevent the particle filter from relying on relatively

few samples. Algorithm 2 summarizes the steps taken to recursively to compute the particle filter upon the

arrival of the (k + 1)th observation.

Algorithm 2 Recursive Particle Filter Algorithm at (k + 1)th observation

for n = 1→ R do
for ` = 0→ m− 1 do

Generate (Θ̃
(n)
mk+`+1, X̃

ε,(n)
mk+`+1) given (Θ̃

(n)
mk+`, X̃

ε,(n)
mk+`)

end for
Compute unnormalized weight given yk+1 − yk, (Θ̃

(n)
m(k+1), X̃

ε,(n)
m(k+1)), and ω

(n)
k

ω
(n)
k+1 = exp

−1

2

(
yk+1 − yk − ∆̃t h ·

∑m(k+1)
`=km+1 X̃

ε,(n)
`√

∆t

)2
 · ω(n)

k

end for
set ck+1 =

∑
n ω

(n)
k+1

set ωk+1 = ωk+1/ck+1

if 1/
∑
n(ω

(n)
k+1)2 ≤ ηR then

replace
{

(Θ̃
(n)
m(k+1), X̃

ε,(n)
m(k+1))

}R
n=1

with an {ω(n)
k+1}Rn=1-weighted bootstrap sample of size R

replace {ω(n)
k+1}Rn=1 with (1, 1, . . . , 1)/R

end if

Convergence of the particle filter to the optimal filter as R → ∞ can be slow, particularly if X is a

multi-dimensional OU process. Rao-Blackwellization can speed things up dramatically if a large portion of

the hidden state’s dimensionality is conditionally linear, and if the function h is linear. However, if h is

nonlinear but ε is small, then the averaged-filter will be close to optimal, will be faster to compute, and its

particle filter will converge faster.

In fast mean-reverting regimes, we take weights ω̄ given by

ω̄
(n)
k+1 =

1

c̄k+1
exp

−1

2

(
yk+1 − yk − ∆̃t h ·

∑m(k+1)
`=km+1 Θ̃

(n)
`√

∆t

)2
 · ω̄(n)

k
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where c̄k+1 is a normalizing constant. The averaged filter is

E
[
g(Θ(tk))

∣∣∣Y 0
1:k = y1:k

]
≈

R∑
n=1

g(Θ̃
(n)
km) · ω̄(n)

k for k = 0, 1, 2, . . . , N.

The filter computed with the ω̄’s is appealing because it does not require samples of X̃ε. Thus, fewer samples

are required and the filter will converge at a faster rate with R.

4.3. Filtering Error as a Function of ε. For any ε > 0, we define Eε[·] to be the expectation operator

associated with the Pε-measure. Then, we consider two estimates of Θ(tk) among all the FY εk -measurable

functions: an optimal and an averaged,

Θ̂opt
k = arg max

si
πεk(si) = arg min

θ∈FY εk
Eε1Θ(tk)6=θ

Θ̂avg
k = arg max

si
π̄k(si).

For a given estimator Θ̂
{·}
k , the 0-1 error is defined and approximated as

errorε = Eε1{Θ(tk)6=Θ̂
{·}
k }
≈ 1

N

N∑
k=1

1{Θ(tk)6=Θ̂
{·}
k }

for N large.

From the theory presented in the Sections leading up to now, we should find that the 0-1 error of the averaged

estimate converges to the error of the optimal estimate as ε ↘ 0. The estimators are computed with the

following approximated π’s:

πεk(si) ≈
R∑
n=1

ω
(n)
k · 1{Θ̃(n)

km=si}

and

π̄k(si) ≈
R∑
n=1

ω̄
(n)
k · 1{Θ̃(n)

km=si}
.

The figures in this section and the next are generated with the following parameterization of the problem:

∆t = .01, N = 100, 000 S = [−3.333, 3.333], α = 10, β = 5

Q =

(
−α α
β −β

)
X(0) ∼ U [−1, 1], h(x) = 10 · x.

For R = 100 and m = 5 (so that ∆̃t = .0005), Figure 4.1 shows how the 0-1 error of the average and optimal

converge. The figure was computed using the Rao-Blackwellized filter described in Appendix B, rather than

the particle filter of Algorithm 2. From the figure, we can clearly see that there is convergence of the averaged

filter’s error to the optimal filter’s error as a ε decreases,
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Fig. 4.1. The error of the averaged filter Θ̂avg
k becomes closer to that of the optimal filter Θ̂k as ε↘ 0. Also, the

error of the optimal filter decreases as ε↘ 0, indicating that SNR is increasing.

0 ≤ Eε
(
1{Θtk 6=Θ̂avgk } − 1{Θtk 6=Θ̂optk }

)
ε↘0−→ 0.

It should also be noted that we can easily identify the signal-to-noise ratio (SNR) for this problem because

it is linear. In fact, in Figure 4.1 we see a decrease in the optimal filter’s error as ε decreases, indicating that

the variance of the estimator decreases as well.

It is interesting to compare similarities and differences between the filter in [19] (described in Section

2.5.2) and the one in this paper. The two filters are quite different because they have different scalings, and

because the filter in [19] is derived from a strong-sense limit whereas the one in this paper is derived under

the weak-topology. Also, averaging over h(x) makes the filter in this paper simpler and easier to implement

than the one in [19] where no such averaging occurs. However, these filters are similar because both of their

performances are contingent on the goodness of the asymptotic approximation. Indeed, the ability of the

reduced-dimension filter to improve as the rate of mean-reversion increases is seen in the simulations of both

papers. In fact, [19] has a plot that is similar to Figure 4.1.

Our conclusion from this section is that the averaged-filter can perform well, but its closeness to the

optimal filter will depend on ε. Whether or not optimality is essential will depend on the problem and the

user’s specific needs; it might be merely an extra 1%-2% in error that is under scrutiny.

4.4. Search for the Optimal ∆t. In this section we run simulations in an attempt to find the optimal

rate at which observations should be sampled. The simulation and parameters are the same as they were

in Section 4.3, except we will vary ∆t. The emphasis will be on the choice of ∆t which minimizes filtering

error,
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Fig. 4.2. A realization where sampling too slow ∆t = .01 or too fast ∆t = .0001 will not be optimal. The black
line is the observations ∆Yk, the red line is the true state Θ, the green line is the filter obtain by sampling observations
very slow, and the blue line is the filter obtained by sampling too fast. Notice how the green line sometimes tracks
noise.

min
∆t

(
Eε1Θ(tk) 6=Θ̂avgk

)
. (4.3)

Simply stated, sampling too fast will eliminate any hypothesis regarding a fast mean-reverting regime, while

sampling too slow will cause the filter’s memory to deteriorate and the performance will be poor. Therefore,

given all the other parameters, the user must choose the value of ∆t that gives the averaged filter a good

chance to perform well.

The first thing to notice is the potential for the filter to track noise. In Figure 4.2, two filters are

plotted alongside the true state and the observations. One of the filters takes ∆t = .01 and returns an

estimate that misses the transition in Θ. The other filter takes ∆t = .0001, which is entirely too fast for the

fast-mean-reverting hypothesis and results in the tracking of noise.

Ideally, the averaged filter will be implemented with a priori knowledge of the optimal sampling rate,

but analytical expressions for such optima are not known. Instead, the simulation is run several times with

different ∆t’s, and the errors are compared. Figure 4.3 shows the optimal ∆t to be around .002 for this

model (∆t = m∆̃t = m × .0001 = .002). For each m in Figure 4.3, the averaged filter is computed with

R = 20× log2(m) as the number of particles.

The conclusion is that ∆t cannot be too small; otherwise, the fast filter becomes more erroneous.

Intuitively, it makes sense if one understands that some ‘coarse-graining’ is required to insure that the fast-

averaging of the model’s integrals will occur between observation times. For this reason, the average filter

does not apply for filters based on a continuum of observations. In practice, the user must consider the
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simulation, and the dotted line is a spline included so that the low-point is clearer.

model’s parameters and make a decision on ∆t’s value.

5. Conclusion. We have considered a filtering problem for a hidden Markov model where one of the

hidden states is fast mean-reverting with a shifting mean given by a Markov chain that is also a hidden process

that models regime change. We have derived an averaged filter of low complexity for tracking directly the

regime changes. We have given examples of where this model may be useful and we have also provided some

related examples to show that subtle changes to the model will change the asymptotic behavior of the filter.

We have also given a rigorous treatment and proof to show that the averaged filter is asymptotically optimal.

We have also presented the results of some numerical simulations to show how the averaged filter performs

as the rate of mean reversion increases. These simulations indicate that the averaged filter is a powerful

numerical method if used correctly. Specifically, the filter’s performance depends in large part on parameter

values for the rate of mean-reversion and the rate of observations.

In the future, possible research on nonlinear filters for HMMs with fast mean-reverting states includes

robustness analysis, parameter estimation and the EM algorithm, and further application of the algorithms

to financial data.

Appendix A. Tightness of Marginal Measures and Weak Convergence to a Unique Limit.

This section contains the lemmas and theorems necessary to prove (3.4). In doing so, it is useful to introduce

a marginal probability space (Ω̄, F̄t, P̄) for the non-Markov process (Θε(t), V ε(t)), where

Ω̄ = D ([0, T ];S)× C ([0, T ];R)

and we define the measures
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P̄ε(A) = P̄((Θε(·), V ε(·)) ∈ A)

for all ε > 0 and A ∈ F̄T . It can be shown that the process Θε(·) is tight in the space D([0, T ];S) and V ε(·)
is tight in the space C([0, T ];R), which therefore makes the family (P̄ε)ε>0 tight in Ω̄. Furthermore, for any

bounded and differentiable g : S × R → R, we can define the following continuous functional for any path

(θ(·), v(·)) ∈ Ω̄,

φg(t) = g (θ(t), v(t))− g (θ(0), v(0))−
∫ t

0

(
Q̄+ h̄θ(τ)

∂

∂v

)
g(θ(τ), v(τ))dτ (A.1)

Under the measure P̄ε the expectation of Mg(t) is defined as

EP̄ε [φg(t)]
.
=

∫
φg(t)dPε

for which we will show that for any t, s ∈ [0, T ] with t ≥ s,

EP̄ε
[
φg(t)− φg(s)

∣∣∣Fs]→ 0 as ε↘ 0

in probability, which is sufficient to conclude that for any weakly convergent subsequence of (P̄ε)ε>0 with

limit P̄, we have that φg is a P̄-Martingale. Therefore, from the tightness of the marginal measures (P̄ε)ε>0

it follows that

(Θε(·), V ε(·))⇒ (Θ(·), V (·)) as ε↘ 0

where (Θ(·), V (·)) uniquely solves the P̄-Martingale problem associated with φg in (A.1), and is a Markov

process with generator Q̄+ h̄si
∂
∂v .

To summarize, the goal of this section is to prove (3.4) by showing that the marginal measures (P̄ε)ε>0

are tight in Ω̄ and that every convergent subsequence must converge to the measure of a process (Θ(·), V (·))
which is the unique solution to a specific Martingale problem. This is a well known method of proving weak

convergence and is presented in [28], for example.

A.1. Tightness. General result regarding tightness of measures and weak convergence can be found

in the book by Ethier and Kurtz [9], (chapter 3). In fact the proof of the tightness of Θε(·) that is shown in

this section is a specific case of lemma 6.1 on page 122 of their book.

Tightness of a family of measures means that for all δ > 0 there exists a compact set Kδ ⊂ Ω̄ such that

sup
ε

P̄ε(Kc
δ) < δ

It turns out that because of the bound in (2.3), the family of measures is tight in Ω̄.

Lemma A.1. Assuming that the initial condition V0 is almost-surely bounded, the bound in (2.3) insures

that (P̄ε)ε>0 is tight in Ω̄.
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Proof of Lemma A.1: First, let’s prove that V ε(·) is tight in C([0, T ];R). Since there exists a positive

constant κ < ∞ such that P(|V0| < κ) = 1 and because h is bounded, the function V ε(t) is uniformly

bounded,

|V ε(t)| ≤ κ+ T‖h‖∞ ∀t ∈ [0, T ],∀ε > 0

Furthermore, V ε(t) is uniformly equicontinuous with modulus of continuity ‖h‖∞,

|V ε(t)− V ε(s)| ≤ ‖h‖∞|t− s| ∀t, s ∈ [0, T ],∀ε > 0

Therefore, by the Ascoli theorem, any subsequence of V ε(·) has a further subsequence that converges uni-

formly, and therefore the support of all measures P̄ε on V ε is compact. Therefore, for any δ > 0 there is a

set Kδ(V ) such that

P̄ε(Kδ(V )) > 1− δ/2 ∀ε > 0.

Next, to prove compactness of Θε(·), consider any f ∈ D([0, T ],S) and define the switching times

{τk(f)}∞k=0 for k = 1, 2, 3, ...

τk(f) =

{
inf{s ∈ (τk−1(f), T ] : f(s) 6= f(s−) or s = T} if τk−1(f) < T

T otherwise

with τ0(f) = 0. For any compact set U ⊂ R, let the set A(U, δ) be defined as

A(U, δ) = {f : f(s) ∈ U for all s ≤ T, τk(f)− τk−1(f) > δ, ∀k with τk(f) < T}

The closure of A(U, δ) is compact:

Given any sequence fn ∈ A(U, δ), by a diagonal argument there exists a subsequence fn` , and limits tk

and ak such that

τk(fn`)→ tk ∈ [0, T ]

and

fn`(τk(fn`))→ ak ∈ U

as `↗∞. Therefore,

fn`(s)→ ak, for s ∈ [tk, tk+1)

which proves that A(U, δ) is sequentially compact, and since D([0, t];S) is equipped with the point-wise

metric, the subset is therefore compact.

For the Markov process Θε(·), take U s.t. {s1, ...., sM} ⊂ U and recall that

Pε(A(U, δ)c) ≤ 1− e−βδ ≤ βδ ∀ε > 0
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which shows that Θε(·) is compact in D([0, T ];R).

Finally, tightness of (P̄ε)ε>0 follows by considering the compact set Kδ(V )×A(U, δ/2β),

P̄ε
(

(Kδ(V )×A(U, δ/2β))c
)
≤ P̄ε (Kδ(V )c) + P̄ε

(
A(U, δ/2β)

c
)
< δ/2 + δ/2 = δ

�

A.2. Convergence of the Martingale Problem. In this section it will be shown by theorem A.3

that for any t, s ∈ [0, T ] with t ≥ s,

EPε [φg(t)− φg(s)|Fs]→ 0 as ε↘ 0

in probability.

To prove that the family of marginal measures will converge to the unique solution of the Martingale

problem, the following lemma will be necessary:

Lemma A.2. For any positive ∆t > 0 and any function g such that ‖g‖∞+
∥∥ ∂
∂v g
∥∥
∞ ≤ C, the expectation

of the following terms converge to a term of o(∆t) as ε↘ 0

lim
ε↘0

∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣F0

]∣∣∣∣∣ ≤ 2β2∆t2

lim
ε↘0

∣∣∣∣∣E
[∫ ∆t

0

(
h(Xε(s))− h̄Θε(s)

) ∂
∂v
g(Θε(s), V ε(s))ds

∣∣∣F0

]∣∣∣∣∣ ≤ 2β2∆t2

in probability.

Proof of lemma A.2: Start by proving the first statement. By iteratively conditioning the σ-algebras, the

expectation can be separated into two parts,∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣F0

]∣∣∣∣∣

≤

∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣∣∣F0 ∩ {Θε(s) ≡ Θε(0) ∀s ∈ [0,∆t]}

]∣∣∣∣∣
×P(Θε(s) ≡ Θε(0) for s ∈ [0,∆t])

+

∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣∣∣F0 ∩ {max
s≤∆t

|Θε(s)−Θε(0)| > 0}

]∣∣∣∣∣

× (1− P(Θε(s) ≡ Θε(0) for s ∈ [0,∆t]))
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Now, it obvious that P(Θε(s) ≡ Θε(0) for s ∈ [0,∆t]) ≤ 1, and from the bound in (2.3) it follows that

1− P(Θε(s) ≡ Θε(0) for s ∈ [0,∆t]) ≤ 1− e−β∆t

On intervals where Θε(t) is constant, we have

Xε(t) =d Θε(0) + e−t/ε(x−Θε(0)) +N

(
0,

1

2

(
1− e−2t/ε

))
and on these intervals the densities of Xε(t) given X(0) = x can be written as µt/ε(y|x) ∈ RM×M as

µt/ε(y|x) =
1√

π(1− e−2t/ε)


exp{− (y−s1−e−2t/ε(x−s1))2

1−e−2t/ε } . . . 0

. . .

0 . . . exp{− (y−sM−e−2t/ε(x−sM ))2

1−e−2t/ε }


From here, there is the following upper-bound,∣∣∣∣∣E

[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣F0

]∣∣∣∣∣
≤

∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣∣∣F0 ∩ {Θε(s) ≡ Θε(0) ∀s ∈ [0,∆t]}

]∣∣∣∣∣
+2β∆t(1− e−β∆t)

=

∣∣∣∣∣
∫ ∆t

0

(∫
µs/ε(y|Xε(0))Q(y)dy − Q̄

)
g(Θε(0), V ε(0))ds

∣∣∣∣∣+ 2β∆t(1− e−β∆t)

≤ ‖g‖∞

∥∥∥∥∥∥∥∥∥
∫ ∆t

εα

(∫
µs/ε(y|Xε(0))Q(y)dy − Q̄

)
︸ ︷︷ ︸

:=γ(∆t,ε)

ds

∥∥∥∥∥∥∥∥∥+ 2β∆t(1− e−β∆t)︸ ︷︷ ︸
≤2β2∆t2

+ ‖g‖∞ sup
x
‖Q(x)− Q̄‖︸ ︷︷ ︸

=C′

εα

where 0 < α < 1. It is clear the γ(∆t, ε)→ 0 as ε↘ 0 for all ∆t > 0 in probability. Therefore, we have

∣∣∣∣∣E
[∫ ∆t

0

(
Q(Xε(s))− Q̄

)
g(Θε(s), V ε(s))ds

∣∣∣F0

]∣∣∣∣∣ ≤ ∆tγ(∆t, ε) + 2β2∆t2 + C ′εα → 2β2∆t2

which proves the first statement of the lemma.

Repeating these steps with Q(Xε(s)) replaced by h(Xε(s)) and Q̄ replace by h̄Θε(s), the second statement

in the lemma is proven provided that there is a constant such that

‖g‖∞ +

∥∥∥∥ ∂∂v g
∥∥∥∥
∞
≤ C.
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With lemma A.2, the key calculation for proving weak convergence of (Θε(·), V ε(·)) can be shown. Namely,

from the time-homogeneity and Markov property of the solution to the Martingale problem associated with

φg, it is sufficient to show that the expectation under Pε of the function φg(t) conditioned on F0 converges

to zeros as ε↘ 0.

Theorem A.3. For any function g(θ, v) with ‖g‖∞+
∥∥ ∂
∂v g
∥∥
∞ ≤ C, condition (2.3) and the boundedness

of h insure that for any t, s ∈ [0, T ] with t ≥ s,

EPε [φg(t)− φg(s)|Fs]→ 0

as ε↘ 0 in probability.

Proof of Theorem A.3: Without loss of generality we take s = 0 and any t ∈ [0, T ]. For a fixed step-size

∆t > 0, we consider the following discretization of the interval [0, t],

0 < ∆t < 2∆t < . . . · · · < N∆t = t

For any n < N , let tn = n∆t. We then have a collapsing sum

EPε [φg(t)|F0]

= E [g(Θε(t), V ε(t))− g(Θε(0), V ε(0))|F0]

−E

[∫ t

0

(
Q̄+ h̄Θε(s)

∂

∂v

)
g(Θε(s), V ε(s))ds

∣∣∣∣∣F0

]

= E

[
N−1∑
n=0

g(Θε(tn+1), V ε(tn+1))− g(Θε(tn), V ε(tn))|F0

]

−E

[
N−1∑
n=0

∫ tn+1

tn

(
Q̄+ h̄Θε(s)

∂

∂v

)
g(Θε(s), V ε(s))ds

∣∣∣∣∣F0

]

= E

[
N−1∑
n=0

E[g(Θε(tn+1), V ε(tn+1))|Ftn ]− g(Θε(tn), V ε(tn))
∣∣∣F0

]
︸ ︷︷ ︸

(∗)

−E

[
N−1∑
n=0

∫ tn+1

tn

E
[(
Q̄+ h̄Θε(s)

∂

∂v

)
g(Θε(s), V ε(s))

∣∣∣Ftn] ds
∣∣∣∣∣F0

]
︸ ︷︷ ︸

(∗∗)
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The summand in (∗∗) can be shown to be equal to the summand in (∗) plus a correction term,

∫ tn+1

tn

E
[(
Q̄+ h̄Θε(s)

∂

∂v

)
g(Θε(s), V ε(s))

∣∣∣Ftn] ds

=

∫ tn+1

tn

E
[(
Q̄+ h̄Θε(s)

∂

∂v
−Q(Xε(s))− h(Xε(s))

∂

∂v

)
g(Θε(s), V ε(s))

∣∣∣Ftn] ds︸ ︷︷ ︸
=en(ε,∆t))

+

∫ tn+1

tn

E
[(
Q(Xε(s))− h(Xε(s))

∂

∂v

)
g(Θε(s), V ε(s))

∣∣∣Ftn] ds

= E[g(Θε(tn+1), V ε(tn+1))|Ftn ]− g(Θε(tn), V ε(tn)) + en(ε,∆t)

By lemma A.2, the correction term en(ε,∆t) can be controlled so that the limit as ε ↘ 0 is o(∆t) in

probability. Therefore,

∣∣∣EPε [φg(t)|F0]
∣∣∣ ≤ N−1∑

n=0

|en(ε,∆t)| →
N−1∑
n=0

o(∆t) = O(∆t) as ε↘ 0

and the entire sum converges to something of order O(∆t) as ε↘ 0 in probability, which proves the theorem

since ∆t is arbitrarily small.

�

Theorem A.3 confirms that any convergent sequence in the family of tight measure (P̄ε)ε>0 must have a

limit P̄ which is the measure for which paths in the space Ω̄ uniquely solve the Martingale problem associated

with φg . Therefore, this proves (3.4) and the reduced filter of theorem 3.1 stands.

Appendix B. The Rao-Blackwellized Filter for Linear Observations, (h(x) = h · x). The Rao-

Blackwellized filter for a general class of target tracking problems is covered in [14, 27]. The Rao-Blackwellized

filter will be specific to the model in question; this appendix covers the case for the OU model of this paper.

Using auto-regressive coefficient a = e−∆̃t/ε, we have the following recursion for Algorithm 1:

X̃ε
(k+1)m = aX̃ε

(k+1)m−1 + (1− a)Θ̃ε
(k+1)m +

√
1− a2

2
W(k+1)m

= a2X̃ε
(k+1)m−2 + (1− a)Θ̃ε

(k+1)m + (1− a)aΘ̃ε
(k+1)m−1 +

√
1− a2

2

(
W(k+1)m + aW(k+1)m−1

)

. . . . . . . . .
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= amX̃ε
km + (1− a)

m∑
`=1

am−`Θ̃km+` +

√
1− a2

2

m∑
`=1

am−`Wkm+`,

where W` ∼ iidN(0, 1). Using this recursive formula, the values of X̃ε and Θ̃ that occur at the m-many

times between observations can be stored in a vectors ~̃Xε
k+1 = (X̃ε

(k+1)m, X̃
ε
(k+1)m−1, . . . , X̃

ε
km+1)T , and

~̃Θk+1 = (Θ̃(k+1)m, Θ̃(k+1)m−1, . . . , Θ̃km+1)T where ‘T ’ denotes matrix/vector transpose. There matrix/vector

form of the recursion is

~̃Xε
k+1 = A ~̃Xε

k +B~̃Θk+1 +R ~Wk+1

where ~Wk+1 = (W(k+1)m,W(k+1)m−1, . . . ,Wkm+1)T , and the matrices are

A =


am 0 . . . 0
am−1 0 . . . 0

...
...

. . .
...

a 0 . . . 0

 , B = (1− a)


1 a . . . am−2 am−1

0 1 . . . am−3 am−2

...
...

. . .
...

...
0 0 . . . 1 a
0 0 . . . 0 1



and R =

√
1− a2

2


1 a . . . am−2 am−1

0 1 . . . am−3 am−2

...
...

. . .
...

...
0 0 . . . 1 a
0 0 . . . 0 1

 .

Observations are given by

Y εk+1 − Y εk = H ~̃Xε
(k+1)m + ∆Zk

with ∆Zk ∼ iidN(0, ∆̃t), and H = ∆t · (h, h, h, . . . , h).

The idea of Rao-Blackwellization is to generate particles of Θ̃, and then exploit the remaining linearity.

For each sample-path of Θ̃
(n)
1:km, there corresponds a weight ω

(n)
k , and a Kalman filter ( ~̂̃X

ε,(n)

k ,Σk) where

~̂̃X
ε,(n)

k = E[Xε
k|Fk,

~̃Θ
(n)
1:km]

Σk = E( ~̃Xε
km −

~̂̃X
ε,(n)

k )( ~̃Xε
km −

~̂̃X
ε,(n)

k )T .

The covariance matrix Σk evolves independently of Y , and it also evolves independently of Θ̃(n) for the

particular model that were implementing. Therefore, Σk does not depend on the data or the samples.

However, ~̂̃X
ε,(n)

k does depend on the data and samples. Algorithm 3 lays out the steps for programming

such a filter.
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Algorithm 3 Rao-Blackwellized Particle Filter Algorithm at (k + 1)th observation

Σk+1|k = AΣkA
T +RTR //compute the covariance of ~̃Xε

k+1 given Fk.

Sk+1 = HΣk+1|kH
T + ∆̃t //compute covariance of Y εk+1 − Y εk given Fk

Kk = Σk+1|kH
T /Sk+1 //compute Kalman filter gain operator,

Σk+1 = (I −KkH)Σk+1|k //compute the covariance of ~̃Xε
k+1 given Fk+1.

for n = 1→ R do
for ` = 0→ m− 1 do

Θ̃
(n)
mk+`+1 given Θ̃

(n)
mk+` //sequentially update the particle

end for

~̂̃
X

ε,(n)

k+1|k = A
~̂̃
X

ε,(n)

k +B~̃Θ
(n)
k+1 //predict the state at the next time step.

ω
(n)
k+1 = exp

− 1
2

(
yk+1−yk−H

~̂̃
X
ε,(n)

k+1|k√
Sk+1

)2
 · ω(n)

k //compute unnormalized weight

~̂̃
X

ε,(n)

k+1 =
~̂̃
X

ε,(n)

k+1|k +Kk

(
yk+1 − yk −H

~̂̃
X

ε,(n)

k+1|k

)
// update the filter.

end for
ck+1 =

∑
n ω

(n)
k+1 //compute normalization weight

ωk+1 = ωk+1/ck+1 //normalize
//////////////////////////////////////////////////////////////////////////////////////////
// perform SIR if necessary

if 1/
∑
n(ω

(n)
k+1)2 ≤ ηR then

replace

{
Θ̃

(n)
m(k+1),

~̂̃
X

ε,(n)

k+1

}R
n=1

with an {ω(n)
k+1}Rn=1-weighted bootstrap sample of size R

replace {ω(n)
k+1}Rn=1 with (1, 1, . . . , 1)/R

end if
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