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COUPLING FORWARD-BACKWARD WITH PENALTY SCHEMES AND

PARALLEL SPLITTING FOR CONSTRAINED VARIATIONAL INEQUALITIES

HÉDY ATTOUCH, MARC-OLIVIER CZARNECKI, AND JUAN PEYPOUQUET

Abstract. We are concerned with the study of a class of forward-backward penalty schemes for
solving variational inequalities

0 ∈ Ax + NC(x)

where H is a real Hilbert space, A : H ⇉ H is a maximal monotone operator, and NC is the outward
normal cone to a closed convex set C ⊂ H. Let Ψ : H → R be a convex differentiable function
whose gradient is Lipschitz continuous, and which acts as a penalization function with respect to
the constraint x ∈ C. Given a sequence (βn) of penalization parameters which tends to infinity,
and a sequence of positive time steps (λn) ∈ ℓ2 \ ℓ1, we consider the diagonal forward-backward
algorithm

xn+1 = (I + λnA)−1(xn − λnβn∇Ψ(xn)).

Assuming that (βn) satisfies the growth condition lim sup
n→∞

λnβn < 2/θ (where θ is the Lipschitz

constant of ∇Ψ), we obtain weak ergodic convergence of the sequence (xn) to an equilibrium for
a general maximal monotone operator A. We also obtain weak convergence of the whole sequence
(xn) when A is the subdifferential of a proper lower-semicontinuous convex function. As a key
ingredient of our analysis, we use the cocoerciveness of the operator ∇Ψ. When specializing our
results to coupled systems, we bring new light on Passty’s Theorem, and obtain convergence results
of new parallel splitting algorithms for variational inequalities involving coupling in the constraint.
We also establish robustness and stability results that account for numerical approximation errors.
An illustration to compressive sensing is given.

Key words: cocoercive operators; compressive sensing; constrained convex optimization; coupled
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Introduction

Let H be a real Hilbert space, A : H ⇉ H a general maximal monotone operator, and C a closed
convex set in H. We denote by NC the outward normal cone to C. We are concerned with the
study of a class of splitting algorithms for solving variational inequalities of the form

(1) 0 ∈ Ax+NC(x).

Specifically, we consider diagonal forward-backward algorithms, where at each step one has to
perform a proximal (backward or implicit) step with respect to A and a gradient (forward or
explicit) step with respect to a penalization function for the constraint C. As we shall see, these
algorithms offer several nice features which make them convenient for numerical purposes.

As a guiding principle of our study, we use the links between algorithms and continuous dis-
sipative dynamical systems, and their asymptotic analysis by Lyapunov methods. Indeed, our
algorithms can be derived by time discretization of the continuous nonautonomous differential
inclusion

(2) 0 ∈ ẋ(t) +Ax(t) + β(t)∂Ψ(x(t)),

which has been introduced in [6, Attouch and Czarnecki], and whose trajectories − under certain
growth conditions on the function β(·) − asymptotically reach equilibria given by (1). In system
(2), Ψ : H → R ∪ {+∞} acts as an exterior penalization function with respect to the constraint
x ∈ C. The corresponding penalization parameter β(t) tends to +∞ as t→ +∞.

This work is closely related and complementary to [7, Attouch, Czarnecki and Peypouquet],
where the authors considered the implicit time discretization (backward-backward scheme) of (2)

(3) xn = (I + λnβn∂Ψ)−1(I + λnA)−1xn−1,

which makes sense for a general convex lower semicontinuous penalization function Ψ, and which
combines proximal steps respectively relative to the operator A and the set C (see also [31] for a
purely explicit scheme). In [7], convergence results to equilibria have been obtained for algorithm
(3) under the key assumption that

(4)
∞∑

n=1

λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
< +∞ for each p ∈ R(NC),

where Ψ∗ is the Fenchel conjugate of Ψ and R(NC) denotes the range of NC . This condition is
satisfied if

∑∞
n=1

λn

βn
< +∞ whenever Ψ can be bounded from below by a multiple of the square of

the distance to C (see [7]). This is the case, for instance, if C = Ker(L) and Ψ(x) = ‖Lx‖2, where
L is a bounded linear operator with closed range (see for example [11, Paragraph II.7]).

By contrast, when the penalization function Ψ is differentiable (which is generally the case), it
is rather natural to consider the mixed explicit-implicit discretized version of (2)

0 ∈
1

λn
(xn − xn−1) +Axn + βn∇Ψ(xn−1),

which provides the following forward-backward algorithm

(5) xn = (I + λnA)−1(xn−1 − λnβn∇Ψ(xn−1)),

whose study is the central subject of this paper. Some of the ideas in [7] are useful for our purposes
but the mixed implicit-explicit character of the algorithm described in (5) poses a different challenge
that requires more subtle techniques, in some sense.

The forward-backward schemes (in general) have the advantage of being easier to compute than
the backward-backward schemes, which ensures enhanced applicability to real-life problems. Itera-
tions have lower computational cost and can be computed exactly. They naturally lead to parallel
splitting methods for solving coupled systems. However, they tend to be less stable than the implicit
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ones. An abundant literature has been devoted to the study of the forward-backward algorithms,
and their many applications, see [5, Attouch, Briceño and Combettes], [18, Combettes and Wajs]
and the references therein. Thus the main original aspect of our approach is to show how such
algorithms can be combined with penalization methods.

Diagonal algorithms combine classical algorithms (gradient, proximal, alternate minimization,
Newton) with approximations methods (penalization, regularization, vanishing viscosity, among
others). A rich literature has been devoted to this subject, see for example [1], [7], [8], [14], [19],
[25], [30] and the references therein. A unifying view on these algorithms can be obtained by
considering them as time discretization of some corresponding continuous-time nonautonomous
differential inclusions

0 ∈ ẋ(t) +A(t)x(t)

(see [2], [3]). In our situation, A(t)x = Ax+β(t)∂Ψ(x) involves multiscale aspects. Our algorithms
are naturally linked with diagonal methods involving asymptotically vanishing terms (viscosity
methods). Passing from one to the other relies on time rescaling, see [6]. They both involve
multiscale aspects and they asymptotically lead to a hierarchical selection principle. For Tikhonov
regularization see [25, Lehdili and Moudafi] and [20, Cominetti, Peypouquet and Sorin]. See [14,
Cabot] for some further related results and references.
This result is even clearer when A = ∂Φ is the subdifferential of a proper lower-semicontinuous
convex function Φ : H → R∪{+∞}. Assuming that some qualification condition holds (for instance
if Φ is continuous), the variational inequality (1) is equivalent to

(6) x ∈ Argmin{Φ(z) : z ∈ ArgminΨ}.

Therefore, our results can also be considered as numerical methods for hierarchical minimization.

Our main results. The main set of hypotheses is the following:

(H0)






i) TA, C = A+NC is maximal monotone and S = (TA, C)−10 6= ∅;

ii) For each p ∈ R(NC) (the range of NC),
∞∑

n=1

λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
<∞;

iii) (λn) ∈ ℓ2 \ ℓ1.

Depending on the regularity of the function Ψ we shall use a supplementary assumption on the
step sizes and penalization parameters. A discussion on these hypotheses will be given later on.

We are able to prove the following results A, B, C: Let (xn) be a sequence satisfying Algorithm
(5) up to a numerical error εn (see section 6 for precise details), and let (zn) be the sequence of
weighted averages

(7) zn =
1

τn

n∑

k=1

λkxk, where τn =

n∑

k=1

λk.

A. The sequence (zn) converges weakly to a solution of (1) (Theorems 5 and 12).

B. If A is strongly monotone then (xn) converges strongly to the unique solution of (1) (The-
orems 7 and 12).

C. If A = ∂Φ for some proper lower-semicontinuous convex function Φ : H → R ∪ {+∞}, and
either Φ or Ψ is inf-compact, then (xn) converges weakly to a solution of (6) (Theorem 16).

Our results encompass the asymptotic behavior of the well-known proximal point algorithm with
variable time step λn, see [27, Lions] and [13, Brézis and Lions]. See also [32, Peypouquet and Sorin]
for a complete survey on the topic. It also brings new light to the Passty’s Theorem (see section
4), which can be considered as a special instance of our algorithm. The fact that λn → 0 is a key
assumption for our results. Its relevance is discussed in section 4, Remark 15.
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Organization of the paper. In section 1 we recall some basic facts about convex analysis and
monotone operators, we state and discuss on the standing assumptions, and present some results
from [28, Opial] and [29, Passty] that are useful for proving weak convergence of a sequence in a
Hilbert space without a priori knowledge of the limit. Section 2 contains a general abstract result
which is at the core of our asymptotic analysis. Section 3 contains our main results of type A, B
for Algorithm (5) when ∇Ψ is supposed to be Lipschitz continuous. Section 4 makes the links with
Passty’s Theorem. In section 5, we prove the weak convergence of trajectories generated by our
algorithm when A = ∂Φ is the subdifferential of some proper lower-semicontinuous convex function
Φ : H → R∪{+∞} (result of type C). In section 6 we address some application issues: we consider
inexact version of our algorithm, comment on particular instances for the function Ψ and mention
several domains of application including compressive sensing, which we discuss in more detail.

1. Preliminaries

1.1. Some facts of convex analysis and maximal monotone operator theory. Let Γ0(H)
denote the set of all proper lower-semicontinuous convex functions on a Hilbert space H. The norm
and inner product in H are denoted by ‖ · ‖ and 〈 · , · 〉, respectively. Given F ∈ Γ0(H) and x ∈ H,
the subdifferential of F at x is the set

∂F (x) = {x∗ ∈ H : F (y) ≥ F (x) + 〈x∗, y − x〉 for all y ∈ H}.

Given a nonempty closed convex set C ⊂ H its indicator function is defined as δC(x) = 0 if
x ∈ C and +∞ otherwise. The support function of C at a point x∗ is σC(x∗) = supy∈C〈x

∗, y〉. The
normal cone to C at x is

NC(x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ 0 for all y ∈ C}

if x ∈ C and ∅ otherwise. Observe that ∂δC = NC . We denote the range of NC by R(NC).
A monotone operator is a set-valued mapping A : H ⇉ H such that 〈x∗−y∗, x−y〉 ≥ 0 whenever

x∗ ∈ Ax and y∗ ∈ Ay. It is maximal monotone if its graph is not properly contained in the graph of
any other monotone operator. It is convenient to identify a maximal monotone operator A with its
graph, thus we equivalently write x∗ ∈ Ax or [x, x∗] ∈ A. The inverse A−1 : H ⇉ H of A is defined
by x ∈ A−1x∗ ⇔ x∗ ∈ Ax. It is still a maximal monotone operator. For any maximal monotone
operator A : H ⇉ H and for any λ > 0, the operator I + λA is surjective by Minty’s Theorem (see
[12, Brézis] or [32]). The operator (I + λA)−1 is nonexpansive and everywhere defined. It is called
the resolvent of A of index λ.

Let NC be the normal cone to the set C and let A be a maximal monotone operator on H.
Suppose the monotone operator TA, C = A+NC is maximal monotone and

S = (TA, C)−10 6= ∅.

By maximal monotonicity of TA, C , a point z belongs to S if, and only if

〈0 − w, z − u〉 ≥ 0 for all (u,w) ∈ TA, C .

Equivalently, a point z belongs to S if, and only if the following property holds

(8) 〈w, u− z〉 ≥ 0 for all u ∈ dom(TA, C) = C ∩ dom(A) and all w ∈ TA, Cu.

In the sequel we shall often use this relation as a characterization of the equilibria.
If A = ∂Φ for some Φ ∈ Γ0(H) and if u ∈ S then there exists p ∈ NC(u) such that −p ∈ ∂Φ(u).
Hence for each x ∈ C one has

Φ(x) ≥ Φ(u) + 〈−p, x− u〉 = Φ(u) + σC(p) − 〈p, x〉 ≥ Φ(u)

because

(9) p ∈ NC(u) ⇒ σC(p) = 〈p, u〉.
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Thus, when A = ∂Φ the maximal monotonicity of TA, C implies

S = Argmin{Φ(x) : x ∈ C}.

An operator A is strongly monotone with parameter α > 0 if

〈x∗ − y∗, x− y〉 ≥ α‖x− y‖2

whenever x∗ ∈ Ax and y∗ ∈ Ay. Observe that the set of zeroes of a maximal monotone operator
which is strongly monotone must contain exactly one element.

Finally recall that the subdifferential of a function in Γ0(H) is maximal monotone. For Ψ ∈ Γ0(H)
we denote by Ψ∗ the Fenchel conjugate of Ψ:

Ψ∗(x∗) = sup
y∈H

{〈x∗, y〉 − Ψ(y)} .

1.2. Some useful results. We now state some results that will be used throughout this paper.

The following lemma gathers results from [28, 29] (see also [32]). Though simple, it is a powerful
tool for proving weak convergence in Hilbert spaces without a priori knowledge of the limit. Let
(xn) be any sequence in H. Being given a sequence (λk) of positive numbers such that

∑
k λk = +∞,

let us define (zn) as in (7):

zn =
1

τn

n∑

k=1

λkxk, where τn =

n∑

k=1

λk.

Lemma 1 (Opial-Passty). Let F be a nonempty subset of H and assume that lim
n→∞

‖xn − x‖ exists

for all x ∈ F . If every weak cluster point of (xn) (resp. (zn)) lies in F , then (xn) (resp. (zn))
converges weakly to a point in F as n→ +∞.

Next, let us recall the following elementary fact concerning real sequences. We include the proof
for the reader’s convenience.

Lemma 2. Let (an), (bn) and (εn) be real sequences. Assume that (an) is bounded from below,
(bn) is nonnegative, (εn) ∈ ℓ1 and an+1 − an + bn ≤ εn for every n ∈ N. Then (an) converges and
(bn) ∈ ℓ1.

Proof. Define the sequence (wn) by wn = an −
∑n−1

k=1 εk. The sequence (wn) is bounded from

below and nonincreasing, hence convergent. It follows that limn→+∞ an =
∑+∞

k=1 εk + limn→+∞wn.
Next observe that

∑n
k=1 bk ≤ a1 − an+1 +

∑n
k=1 εk to conclude. �

Finally, the Baillon-Haddad Theorem (see [10]), stated below as Lemma 3, shows the relationship
between the Lipschitz continuity and the cocoerciveness of the gradient of a convex differentiable
function. It is a well established fact that the cocoerciveness of the operator, with respect to
which the forward step is performed, is a crucial property for obtaining the convergence of the
forward-backward algorithm, see [18], [5].

Lemma 3 (Baillon-Haddad). Let Ψ : H → R be a convex differentiable function. The following
are equivalent:

i) ∇Ψ is Lipschitz continuous with constant θ.

ii) ∇Ψ is 1
θ
-cocoercive, which means that, for every x, y belonging to H

〈∇Ψ(y) −∇Ψ(x), y − x〉 ≥
1

θ
‖∇Ψ(y) −∇Ψ(x)‖2.
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2. A general abstract result

In this section, we prove an abstract convergence result (Theorem 5) which is at the core of
the asymptotic analysis of our algorithms. It is valid for a general convex lower semicontinuous
penalization function Ψ. In the next section, we shall see that the assumptions of this theorem are
satisfied when Ψ is a differentiable function whose gradient ∇Ψ is θ-Lipschitz continuous and the
step sizes and penalization parameters satisfy a simple hypothesis with respect to θ. This approach
allows us to better delineate the importance of this regularity assumption and opens the gate to
possible further extensions.

Let us fix the notations. Let A : H ⇉ H be a maximal monotone operator, Ψ : H → R ∪ {+∞}
a proper lower-semicontinuous convex function with C = Argmin(Ψ) 6= ∅ and min(Ψ) = 0. Finally
consider (λn), (βn) two sequences of positive real numbers. We are interested in sequences (xn)
generated by

Algorithm (basic form): Fix x1 ∈ H. For each n ∈ N set

(10)

{
xn+1 = (I + λnA)−1(xn − λnβnwn),
wn ∈ ∂Ψ(xn).

This is equivalent to

(11) xn − λnβnwn ∈ xn+1 + λnAxn+1 and
xn − xn+1

λn
− βnwn ∈ Axn+1.

This algorithm is well defined if, for example, Ψ is everywhere defined, which will be the case in
the next section. In this section we do not discuss any further the well posedness of the algorithm.
Instead, we take for granted the existence of sequences (xn) satisfying (10).

Set TA, C = A + NC , so that dom(TA, C) = C ∩ dom(A) and S = T−1
A, C0. If [u,w] ∈ TA, C there

exist v ∈ Au and p ∈ NC(u) such that w = v + p. Recall that Ψ vanishes on Argmin(Ψ) = C.

Lemma 4. Take [u,w] ∈ TA, C so that w = v + p for some v ∈ Au and p ∈ NC(u). The following
inequality holds for all n ∈ N:

‖xn+1−u‖
2−‖xn−u‖

2 ≤ 2λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
+2λ2

nβ
2
n‖wn‖

2+2λ2
n‖v‖

2+2λn〈w, u−xn〉.

Proof. Since xn−xn+1

λn
− βnwn ∈ Axn+1 and v ∈ Au, the monotonicity of A implies

〈xn − xn+1 − λn(βnwn + v), xn+1 − u〉 ≥ 0.

Therefore,

〈xn − xn+1, u− xn+1〉 ≤ λn 〈βnwn + v, u− xn+1〉 .

Since

2 〈xn − xn+1, u− xn+1〉 = ‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − xn‖
2

we have

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈βnwn + v, u− xn+1〉 − ‖xn+1 − xn‖
2

= 2λn〈βnwn + v, u− xn〉 + 2λn〈βnwn + v, xn − xn+1〉 − ‖xn+1 − xn‖
2

≤ 2λn〈βnwn + v, u− xn〉 + λ2
n‖βnwn + v‖2

≤ 2λn〈βnwn + v, u− xn〉 + 2λ2
nβ

2
n‖wn‖

2 + 2λ2
n‖v‖

2.(12)

The proof will be complete if we verify that

(13) 〈βnwn + v, u− xn〉 ≤ βn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
+ 〈w, u − xn〉.
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To this end we first write

(14) 〈βnwn + v, u− xn〉 = βn〈wn, u− xn〉 + 〈v, u− xn〉.

Since u ∈ C, and wn ∈ ∂Ψ(xn) the subdifferential inequality for the convex function Ψ gives

(15) 0 = Ψ(u) ≥ Ψ(xn) + 〈wn, u− xn〉.

Combining inequalities (14) and (15) and recalling that v = w − p we obtain

〈βnwn + v, u− xn〉 ≤ −βnΨ(xn) + 〈v, u− xn〉

= −βnΨ(xn) + 〈w − p, u− xn〉

= 〈p, xn〉 − βnΨ(xn) − 〈p, u〉 + 〈w, u − xn〉

= βn

[〈
p

βn
, xn

〉
− Ψ(xn) −

〈
p

βn
, u

〉]
+ 〈w, u− xn〉

≤ βn

[
Ψ∗

(
p

βn

)
−

〈
p

βn
, u

〉]
+ 〈w, u− xn〉.(16)

Since p ∈ NC(u), one has 〈p, c− u〉 ≤ 0 for all c ∈ C, thus
〈

p
βn
, u

〉
= sup

c∈C

〈
p

βn
, c

〉
= σC

(
p

βn

)
.

Using this fact in (16) we obtain (13), which completes the proof. �

2.1. Ergodic convergence. Consider a sequence (xn) satisfying (10) and the sequence (zn) of
averages as defined in (7).

Theorem 5. Let (H0) hold. If (λnβn‖wn‖) ∈ ℓ2 then the sequence (zn) converges weakly as n→ ∞
to a point in S.

Proof. By Opial-Passty Lemma 1, it suffices to prove that the two following properties hold:

O1) for each u ∈ S the sequence (‖xn − u‖) is convergent,

O2) every weak cluster point of the sequence (zn) lies in S.

For item O1), let u ∈ S. Then we can take w = 0 in Lemma 4 to obtain

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
+ 2λ2

nβ
2
n‖wn‖

2 + 2λ2
n‖v‖

2.

Since the right-hand side is summable, and the sequence (‖xn − u‖) is bounded from below, we
immediately deduce that lim

n→∞
‖xn − u‖ exists by Lemma 2.

For item O2), as we already observed in (8), since TA, C is maximal monotone, a point z belongs
to S if, and only if, 〈w, u− z〉 ≥ 0 for all [u,w] ∈ TA, C .
Take u ∈ C ∩ dom(A) and w ∈ TA, Cu. Recall from Lemma 4 that

‖xn+1−u‖
2−‖xn−u‖

2 ≤ 2λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
+2λ2

nβ
2
n‖wn‖

2+2λ2
n‖v‖

2+2〈w, λnu−λnxn〉.

Summing up for n = 1, . . . , N , discarding the nonnegative term ‖xN+1 − u‖2 and dividing by

2τN = 2
N∑

k=1

λk we obtain

(17) −
‖x1 − u‖2

2τN
≤

L

2τN
+ 〈w, u − zN 〉
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for some positive constant L. For example, take

L = 2
∞∑

n=1

λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
+ 2

∞∑

n=1

λ2
nβ

2
n‖wn‖

2 + 2‖v‖2

∞∑

n=1

λ2
n,

which is finite in view of our assumptions. By passing to the limit in (17) and using that τN → +∞
as N → +∞ (because (λn) /∈ ℓ1) we obtain

lim inf
n→∞

〈w, u− zn〉 ≥ 0.

Finally, if some subsequence (znk
) converges weakly to z, then 0 ≤ 〈w, u− z〉. Since this is true for

each w ∈ TA, Cu and TA, C is maximal monotone, we conclude that z ∈ S. �

Remark 6. Under the hypotheses of Theorem 5 one has lim
n→∞

λnβn‖wn‖ = 0. Thus the sequence

(yn) defined by yn = xn − λnβnwn satisfies lim
n→∞

‖xn − yn‖ = 0. �

2.2. Strong convergence for strongly monotone operators. Recall that A is strongly mono-
tone with parameter α > 0 if

〈x∗ − y∗, x− y〉 ≥ α‖x− y‖2

whenever x∗ ∈ Ax and y∗ ∈ Ay. As a distinctive feature, the set of zeroes of a maximal monotone
operator which is strongly monotone is a singleton (thus nonempty). We now prove the strong
convergence of the sequences (xn) defined by Algorithm (10) when A is a maximal monotone
operator which is strongly monotone.

Theorem 7. Let (H0) hold. If (λnβn‖wn‖) ∈ ℓ2 and the operator A is strongly monotone then any
sequence (xn) generated by Algorithm (10) converges strongly to the unique u ∈ S.

Proof. Recall that xn−xn+1

λn
− βnwn ∈ Axn+1.

Let u be the unique element in S. Hence there exists v ∈ Au and p ∈ Nc(u) such that v + p = 0.
The strong monotonicity of A implies

〈xn − xn+1 − λn(βnwn + v), xn+1 − u〉 ≥ λnα‖xn+1 − u‖2.

We follow the arguments in the proof of Lemma 4 (with w = 0) to obtain successively

2αλn‖xn+1 − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈βnwn + v, u− xn+1〉 − ‖xn+1 − xn‖
2,

and

2αλn‖xn+1−u‖
2+‖xn+1−u‖

2−‖xn−u‖
2 ≤ 2λnβn

[
Ψ∗

(
2p
βn

)
− σC

(
2p
βn

)]
+2λ2

nβ
2
n‖wn‖

2+2λ2
n‖v‖

2.

Summation gives

2α

∞∑

n=1

λn‖xn+1−u‖
2 ≤ ‖x1−u‖

2+2

∞∑

n=1

λnβn

[
Ψ∗

(
2p
βn

)
− σC

(
2p
βn

)]
+2

∞∑

n=1

λ2
nβ

2
n‖wn‖

2+λ2
n‖v‖

2 <∞.

Since
∞∑

n=1

λn = +∞ and lim
n→∞

‖xn − u‖ exists, we must have lim
n→∞

‖xn − u‖ = 0. �
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3. The cocoercive case.

When the penalty function Ψ is smooth enough, we are going to exhibit conditions that only
involve the given data of the problem, and which guarantee the summability assumption on the
sequence (λnβn‖wn‖). Throughout this section we assume that Ψ is a differentiable function whose
gradient ∇Ψ is θ-Lipschitz continuous. By virtue of Lemma 3 this is equivalent to ∇Ψ being 1

θ
-

cocoercive. Then wn = ∇Ψ(xn) and our basic algorithm now writes

Algorithm (cocoercive case): Fix x1 ∈ H. For each n ∈ N set

(18) xn+1 = (I + λnA)−1(xn − λnβn∇Ψ(xn)).

Consider a sequence (xn) satisfying (18). Lemma 10 below is a refinement of Lemma 4 that
will be used later to show our main convergence result (Theorem 12). We shall first prove two
intermediate results:

Lemma 8. Take u ∈ C ∩ dom(A) and v ∈ Au. Then for all η ≥ 0 and all n ∈ N we have

(19) ‖xn+1 − u‖2 − ‖xn − u‖2 +
η

1 + η
‖xn+1 − xn‖

2 +
2η

1 + η
λnβnΨ(xn)

≤ λnβn

(
(1 + η)λnβn −

2

θ(1 + η)

)
‖wn‖

2 + 2λn〈v, u− xn+1〉.

Proof. Since v ∈ Au and xn − xn+1 − λnβnwn ∈ λnAxn+1, the monotonicity of A implies

(20) 〈xn − xn+1 − λnβnwn − λnv, xn+1 − u〉 ≥ 0

so that

〈xn − xn+1, u− xn+1〉 ≤ λn 〈βnwn + v, u− xn+1〉 ,

which in turn gives

(21) ‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − xn‖
2 ≤ 2λn〈βnwn + v, u− xn+1〉.

By developping the right-hand side, we deduce the following inequality

(22) ‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − xn‖
2

≤ 2λnβn〈wn, u− xn〉 + 2λn〈βnwn, xn − xn+1〉 + 2λn〈v, u− xn+1〉.

We now focus on the first term of the right-hand side of (22). We give two different bounds of
the term 〈wn, u− xn〉, each of which will be essential in the following.
First, the cocoercivness of ∇Ψ writes at points xn and u

〈∇Ψ(xn) −∇Ψ(u), xn − u〉 ≥
1

θ
‖∇Ψ(xn) −∇Ψ(u)‖2.

Since ∇Ψ(xn) = wn and ∇Ψ(u) = 0, we have

(23) 〈wn, u− xn〉 ≤ −
1

θ
‖wn‖

2.

Second, the subdifferential inequality

Ψ(u) ≥ Ψ(xn) + 〈∇Ψ(xn), u− xn〉

gives, since Ψ(u) = 0,

(24) 〈wn, u− xn〉 ≤ −Ψ(xn).
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Take η ≥ 0, and bound the first term on the right-hand side of (22) by using a convex combination
of inequalities (23) and (24), namely

(25) 2λnβn〈wn, u− xn〉 ≤ −
2

θ(1 + η)
λnβn‖wn‖

2 −
2η

1 + η
λnβnΨ(xn).

For the remaining term 2λnβn〈wn, xn − xn+1〉, use the identity

1

1 + η
‖xn+1 − xn + (1 + η)λnβnwn‖

2 =
1

1 + η
‖xn+1 − xn‖

2 + (1 + η)λ2
nβ

2
n‖wn‖

2

+ 2λnβn〈wn, xn+1 − xn〉,

to obtain the bound

(26) 2λnβn〈wn, xn − xn+1〉 ≤
1

1 + η
‖xn+1 − xn‖

2 + (1 + η)λ2
nβ

2
n‖wn‖

2.

Inequalities (22), (25) and (26) together give

‖xn+1 − u‖2 − ‖xn − u‖2 +
η

1 + η
‖xn+1 − xn‖

2 +
2η

1 + η
λnβnΨ(xn)

≤ λnβn

(
(1 + η)λnβn −

2

θ(1 + η)

)
‖wn‖

2 + 2λn〈v, u − xn+1〉

and the proof is complete. �

Lemma 9. Assume lim sup
n→∞

λnβn < 2/θ. Then there exist a > 0, b > 0 and N ∈ N such that for

all n ≥ N , any u ∈ C ∩ dom(A) and any v ∈ Au we have
(27)

‖xn+1−u‖
2−‖xn−u‖

2 +a
[
‖xn+1 − xn‖

2 + λnβnΨ(xn) + λnβn‖wn‖
2
]
≤ 2λn〈v, u−xn〉+bλ

2
n‖v‖

2.

Proof. We begin by analyzing the last term on the right-hand side of (19). Observe that

2λn〈v, u− xn+1〉 = 2〈λnv, xn − xn+1〉 + 2λn〈v, u− xn〉

≤
η

2(1 + η)
‖xn+1 − xn‖

2 +
2(1 + η)

η
λ2

n‖v‖
2 + 2λn〈v, u− xn〉.

Replacing this in inequality (19), and adding a term η
1+η

λnβn‖wn‖
2 to each side, we deduce that

‖xn+1 − u‖2 − ‖xn − u‖2 +
η

2(1 + η)
‖xn+1 − xn‖

2 +
2η

1 + η
λnβnΨ(xn) +

η

1 + η
λnβn‖wn‖

2

≤ λnβn

(
(1 + η)λnβn −

2

θ(1 + η)
+

η

1 + η

)
‖wn‖

2 +
2(1 + η)

η
λ2

n‖v‖
2 + 2λn〈v, u − xn〉.

To conclude, since lim sup
n→∞

λnβn < 2/θ, there exists N ∈ N such that λnβn < 2/θ for all n ≥ N .

Notice that

lim
η→0

λnβn

(
(1 + η)λnβn −

2

θ(1 + η)
+

η

1 + η

)
= λnβn

(
λnβn −

2

θ

)
< 0.

Therefore, it suffices to take η0 > 0 small enough, then set

a =
η0

2(1 + η0)
and b =

2(1 + η0)

η0
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to obtain (27). �

Without any loss of generality we may assume that λnβn < 2/θ for all n ∈ N and that inequality
(27) holds for all n ∈ N.

With the notation of the preceding lemma, for u ∈ C ∩ dom(A) set

Dn(u) = ‖xn+1 − u‖2 − ‖xn − u‖2 + a

[
‖xn+1 − xn‖

2 +
λnβn

2
Ψ(xn) + λnβn‖wn‖

2

]
.

Notice the difference with the left-hand side of inequality (27).

Lemma 10. Let u ∈ C ∩ dom(A). Take w ∈ TA, Cu, v ∈ Au and p ∈ NC(u), so that v = w − p.
The following inequality holds:

(28) Dn(u) ≤
aλnβn

2

[
Ψ∗

(
4p

aβn

)
− σC

(
4p

aβn

)]
+ 2λn〈w, u− xn〉 + bλ2

n‖v‖
2.

Proof. First observe that

2λn〈v, u − xn〉 −
aλnβn

2
Ψ(xn) = 2λn〈w, u− xn〉 + 2λn〈p, xn〉 −

aλnβn

2
Ψ(xn) − 2λn〈p, u〉

= 2λn〈w, u− xn〉 +
aλnβn

2

[〈
4p

aβn
, xn

〉
− Ψ(xn) −

〈
4p

aβn
, u

〉]

≤ 2λn〈w, u− xn〉 +
aλnβn

2

[
Ψ∗

(
4p

aβn

)
−

〈
4p

aβn
, u

〉]
.

Since 4p
aβn

∈ NC(u), the support function satisfies σC( 4p
aβn

) = 〈 4p
aβn

, u〉. Whence

2λn〈v, u− xn〉 ≤
aλnβn

2
Ψ(xn) + 2λn〈w, u− xn〉 +

aλnβn

2

[
Ψ∗

(
4p

aβn

)
− σC

(
4p

aβn

)]
.

Using inequality (27) and regrouping the terms containing Ψ(xn) we obtain (28). �

Proposition 11. Let (H0) hold and lim sup
n→∞

λnβn < 2/θ. Then we have the following:

i) For each u ∈ S, lim
n→∞

‖xn − u‖ exists.

ii) The series
∞∑

n=1

‖xn+1 − xn‖
2,

∞∑
n=1

λnβnΨ(xn) and
∞∑

n=1

λnβn‖wn‖
2 are convergent.

In particular, lim
n→∞

‖xn+1−xn‖ = 0. If moreover lim inf
n→∞

λnβn > 0 then lim
n→∞

Ψ(xn) = lim
n→∞

‖wn‖ = 0

and every weak cluster point of (xn) lies in C.

Proof. Since u ∈ S one can take w = 0 in (28). By hypothesis the right-hand side is summable
and all the conclusions follow using Lemma 2. �

Recall that zn = 1
τn

n∑
k=1

λkxk, where τn =
n∑

k=1

λk.

Theorem 12. Let (H0) hold and lim sup
n→∞

λnβn < 2/θ. Then

• (weak ergodic convergence) A being a general maximal monotone operator, the sequence
(zn) converges weakly as n→ ∞ to a point in S.

• (strong convergence) A being maximal monotone and strongly monotone, the sequence (xn)
converges strongly as n→ ∞ to a point in S.
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Proof. By Proposition 11, item ii), we have
∞∑

n=1

λnβn‖wn‖
2 < ∞. Since the sequence (λnβn) is

bounded from above by some constant c, it follows that
∑

λ2
nβ

2
n‖wn‖

2 ≤ c
∑

λnβn‖wn‖
2 < +∞.

Therefore the results follow from Theorems 5 and 7, respectively. �

4. Strong coupling and Passty’s Theorem

Our method sheds new light on Passty’s Theorem [29, Theorem 1], which is a classical splitting
alternating algorithm for finding zeroes of the sum of two maximal monotone operators. Passty’s
Theorem, which is itself an extension of a result by P. L. Lions [27], is in the line of the Lie-Trotter-
Kato formulae, and can be stated as follows.

Theorem 13 (Passty). Let A1 and A2 be two maximal monotone operators on a Hilbert space,
with maximal monotone sum A1 + A2, and such that (A1 + A2)

−1(0) 6= ∅. Let (µn) be a sequence
of positive real numbers, which belongs to ℓ2 \ ℓ1. Every sequence (xn) generated by the algorithm

(29) xn = (I + µnA2)
−1(I + µnA1)

−1xn−1

converges weakly in average to a zero of A1 +A2.

4.1. Splitting algorithm with strong coupling. With the notations of Passty’s Theorem, let
us consider A1 : H ⇉ H and A2 : H ⇉ H two maximal monotone operators on a Hilbert space H.
Set H = H ×H and define the (maximal monotone) operator A on H by

A(x1, x2) = (A1x
1, A2x

2).

Set C = {(x1, x2) : x1 = x2} and observe that NC(x) = C⊥ = {(p1, p2) : p1 + p2 = 0} if x ∈ C and
is empty otherwise. We deduce that (x1, x2) ∈ S ⇔ x1 = x2 = u for some u ∈ H and A1u+A2u ∋ 0.
Let Ψ be the (strong)1 coupling function

Ψ(x1, x2) =
1

2
‖x1 − x2‖2

so that
∇Ψ(x1, x2) = (x1 − x2, x2 − x1).

Set xn = (x1
n, x

2
n), n ∈ N. In our situation, the cocoercive Algorithm (18) becomes

Algorithm (strong coupling):

(30)

{
x1

n+1 = (I + λnA1)
−1

(
x1

n − λnβn

(
x1

n − x2
n

))

x2
n+1 = (I + λnA2)

−1
(
x2

n − λnβn

(
x2

n − x1
n

))
.

The limiting case λnβn = 1 is of particular interest since (30) simplifies to
{
x1

n+1 = (I + λnA1)
−1

(
x2

n

)

x2
n+1 = (I + λnA2)

−1
(
x1

n

)
.

This implies

(31)

{
x1

n+1 = (I + λnA1)
−1 (I + λn−1A2)

−1 x1
n−1

x2
n+1 = (I + λnA2)

−1 (I + λn−1A1)
−1 x2

n−1

and we recover Passty’s algorithm on the sequence (x2
2n) provided λ2n+1 = λ2n = µn. Let us

consider the conditions of Theorem 12 in this situation (strong coupling case):

1For strong coupling versus weak coupling see section 6.
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i) Take (λn) ∈ ℓ2 \ ℓ1.
ii) Because of the quadratic property of the function Ψ, the condition

∞∑

n=1

λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
<∞ for all p ∈ R(NC)

is equivalent to
∞∑

n=1

λn

βn
<∞.

ii) An elementary computation shows that ∇Ψ is 2−Lipschitz continuous (θ = 2), or equiva-
lently that ∇Ψ is 1

2
-cocoercive. The condition lim sup

n→∞
λnβn < 2/θ is equivalent to

lim sup
n→∞

λnβn < 1.

iv) The maximal monotonicity of A+NC is equivalent to that of A1 +A2:

Proof. By Minty’s Theorem it suffices to prove that the surjectivity of I + (A+NC) in H×H is
necessary and sufficient for the surjectivity of 2I+(A1+A2) in H.2 For necessity, let (y1, y2) ∈ H×H
and take x1 ∈ H such that 2x1+z1+z2 = y1+y2, where zi ∈ Aix1. Then set −p2 = p1 = y1−x1−z1.
Clearly (p1, p2) ∈ NC(x1, x1) and (I + (A +NC))(x1, x1) ∋ (y1, y2). For sufficiency, let y ∈ H and
choose (x1, x2) such that (I + (A + NC))(x1, x2) ∋ (y, 0). This implies x1 = x2 and there exists
p ∈ H such that x1 +A1x1 + p ∋ y and x1 +A2x1 − p ∋ 0. Whence 2x1 +A1x1 +A2x1 ∋ y. �

Clearly, items i)−iii) are satisfied if one takes (λn) ∈ ℓ2 \ ℓ1 and λnβn = γ for some γ < 1. By
combining the previous results we obtain the following:

Proposition 14 (Strong coupling). Let A1 and A2 be two maximal operators on a Hilbert space H
with maximal monotone sum A1 + A2, and such that (A1 + A2)

−1(0) 6= ∅. Let (λn) be a sequence
of positive real numbers, which belongs to ℓ2 \ ℓ1. Take 0 < γ < 1.

i) Every sequence
(
(x1

n, x
2
n)

)
generated by the algorithm

(32)

{
x1

n+1 = (I + λnA1)
−1

(
(1 − γ)x1

n + γx2
n

)

x2
n+1 = (I + λnA2)

−1
(
(1 − γ)x2

n + γx1
n

)

converges weakly in average to some element (u, u) with u being equal to a zero of A1 +A2.
ii) Suppose moreover that A1 + A2 is strongly monotone. Then the sequences (x1

n) and (x2
n)

converge strongly to the unique zero of A1 +A2.

Remark 15. The above algorithm, just like Passty’s, is a splitting algorithm: at each step, it only
requires the computation of the resolvents of the operators A1 and A2, separately. We point out
two noticeable differences between our algorithm and Passty’s algorithm.

(1) The algorithm (32) is a parallel splitting algorithm. By contrast, Passty’s algorithm is
naturally described as an alternating algorithm. Indeed they are naturally linked as shown
by (31) by considering the sequences x1

2n+1 and x1
2n.

(2) In Proposition 14 it is assumed that 0 < γ < 1. The case γ = 1, which corresponds to
Passty’s Theorem, does not fit directly into our framework, which is based on the cocoer-
civness property of the coupling function. Indeed, we shall prove in the next subsection
that the case γ = 1 can be obtained by adapting our approach to this specific situation.

2The maximal monotonicity of an operator is equivalent to the maximal monotonicity of any positive multiple.
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(3) To better understand the importance of the assumption λn → 0 in our algorithms, take
λn ≡ λ > 0, γ = 1/2, A1 = ∇f1, A2 = ∇f2 in (32). An elementary computation shows that
the stationary points of (32) are the minimizers of the function f1(x

1)+f2(x
2)+ 1

2λ
‖x1−x2‖2

(which is different from the original problem and approaches it only when λ → 0). This is
a specific feature of our approach that makes it different from other decoupling algorithms.
�

Barycenter. In (32) take A1 = ∂δC1
and A2 = ∂δC2

, where C1 and C2 are nonempty closed convex
sets in H. Then the resolvent (I + λnAi)

−1 is the projection onto Ci. The iteration described in
(32) becomes {

x1
n+1 = PC1

(
(1 − γ)x1

n + γx2
n

)

x2
n+1 = PC2

(
(1 − γ)x2

n + γx1
n

)
.

Observe that we recover the classical barycentric projection method.

The case of M variables. This procedure can be easily generalized toM variables. Let A1, . . . AM

be maximal montone operators in a Hilbert space H. Set H = HM and denote ~x = (x1, . . . xM ).
Define the operator A on H by A(~x) = (A1x

1, . . . , AMxM ) and set Ψ(~x) = 1
2

∑
i<j

‖xi − xj‖2. The

j-th partial derivative of Ψ is given by ∂Ψ
∂xj (~x) = (M − 1)xj −

∑
k 6=j x

k and ∇Ψ is Lipschitz with

constant θ = 2(M − 1). Let λnβn <
2
θ

= 1
M−1

. If we set αn = λnβn(M − 1) then we can write

xj
n+1 = (I + λnAj)

−1



(1 − αn)xj
n +

(
αn

M − 1

)∑

k 6=j

xk
n



 , for j = 1, . . . ,M.

We now show that, in the specific situation of the Passty’s Theorem, the convergence result still
holds in the limiting (equality) case. This provides an alternative proof for Theorem 13.

4.2. A parallel approach to Passty’s Theorem. Under the considerations and notation of the
preceding subsection, setting γ = 1, we obtain (31):

{
x1

n+1 = (I + λnA1)
−1 (I + λn−1A2)

−1 x1
n−1

x2
n+1 = (I + λnA2)

−1 (I + λn−1A1)
−1 x2

n−1,

which is precisely Passty’s algorithm on the sequence (x2
2n) provided λ2n+1 = λ2n = µn.

Proof of Theorem 13. With the notation of the preceding subsection, first remark that

∇Ψ(x) = (x1 − x2, x2 − x1) = x− sx,

where we have written x = (x1, x2) and sx = (x2, x1).
Let u ∈ C ∩ dom(A) and v ∈ Au. That is, u = (u1, u1) with u1 ∈ dom(A1) ∩ dom(A2) and
v = (v1, v2) with v1 ∈ A1u1 and v2 ∈ A2u1.
Since wn = ∇Ψ(xn) = xn − sxn, inequality (20) gives

〈sxn − xn+1, xn+1 − u〉 ≤ λn〈v, u − xn+1〉.

Since ‖xn − u‖ = ‖sxn − u‖, we deduce that

(33) ‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − sxn‖
2 ≤ 2λn〈v, xn − xn+1〉 + 2λn〈v, u − xn〉.

Noticing that

0 ≤ ‖xn+1 − sxn + λnv‖
2 = ‖xn+1 − sxn‖

2 + 2λn〈v, xn+1 − sxn〉 + λ2
n‖v‖

2,
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we obtain the two following inequalities

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈v, u − sxn〉 + λ2
n‖v‖

2(34)

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈v, u − xn+1〉.(35)

But su = u and 〈v, u− sxn〉 = 〈sv, u− xn〉, thus

(36) ‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈sv, u− xn〉 + λ2
n‖v‖

2.

Write (36) at rank 2n+ 1, and (35) at rank 2n

‖x2n+2 − u‖2 − ‖x2n+1 − u‖2 ≤ 2λ2n+1〈sv, u− x2n+1〉 + λ2
2n+1‖v‖

2

‖x2n+1 − u‖2 − ‖x2n − u‖2 ≤ 2λ2n〈v, u− x2n+1〉.

Since λ2n+1 = λ2n, summing the two above inequalities we obtain

(37) ‖x2n+2 − u‖2 − ‖x2n − u‖2 ≤ 2λ2n〈v + sv, u− x2n+1〉 + λ2
2n+1‖v‖

2.

Take u1 ∈ (A1 +A2)
−1(0) and v = (v1,−v1). From

‖x2n+2 − u‖2 − ‖x2n − u‖2 ≤ λ2
2n+1‖v‖

2

and Lemma 2 we deduce the convergence of ‖x2n − u‖. Next, from (34) and (35), we deduce the
convergence of ‖x2n+1 − u‖ to the same limit.
We now consider the sequences of averages. First set

zodd
n =

∑n
k=0 λ2k+1x2k+1∑n

k=0 λ2k+1

and let z∞ be a weak cluster point of (zodd
n ) as n→ ∞. In view of (37), since λ2n = λ2n+1 we have

‖x2n+2 − u‖2 − ‖x0 − u‖2

∑n
k=0 λ2k+1

≤ 2〈v + sv, u− zodd
n 〉 +

∑n
k=0 λ

2
2k+1‖v‖

2

∑n
k=0 λ2k+1

.

Passing to the limit we obtain

0 ≤ 〈v + sv, u− z∞〉,

thus 0 ≤ 〈v1 + v2, u1 − z∞,1〉 and 0 ≤ 〈v1 + v2, u1 − z∞,2〉. This being true for every u1 ∈ dom(A1)∩
dom(A2), and every v1+v2 ∈ (A1+A2)u1, we deduce that (A1+A2) z∞,1 ∋ 0 and (A1+A2) z∞,2 ∋ 0.

The Opial Lemma, implies the weak convergence of and (zodd
n ) to a zero of (A1 +A2)× (A1 +A2).

Now set

zeven
n =

∑n
k=0 λ2kx2k∑n

k=0 λ2k
.

From (33), we deduce that limn→∞ ‖xn+1 − sxn‖
2 = 0. This implies that the sequences (zeven

n ),
and (szodd

n ) have the same weak limits. We conclude that the sequence of averages

zn =

∑n
k=0 λkxk∑n

k=0 λk

also converges to a zero of (A1 +A2) × (A1 +A2). �

Observe that Passty’s Theorem is not contained in Theorem 12 but the proof uses the same ideas.
An interesting question is whether or not there exist conditions on the function Ψ (more general
than strong coupling) such that convergence can still be granted in the limiting case λnβn ≡ 2/θ.
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5. Weak convergence for subdifferentials

In this section, we consider algorithm (18) in the special case where A = ∂Φ is the subdifferential
of a proper lower-semicontinuous convex function Φ : H → R ∪ {+∞}. Assuming that ∂Φ +NC is
maximal monotone, the solution set S is equal to

S = (∂Φ +NC)−1(0) = ArgminCΦ.

In the following theorem, we are going to prove that the sequence (xn) generated by algorithm (18)
converges weakly to a point in S. We will need to make an inf-compactness assumption on the
functions Φ or Ψ. Recall that a function f : H → R ∪ {+∞} is said to be inf-compact if,

∀r > 0,∀λ ∈ R, {x ∈ H : ‖x‖ ≤ r, f(x) ≤ λ} is relatively compact in H.

Let dist(·,S) denote the distance function to the closed convex set S and set d(x) = 1
2
dist(x,S)2.

Then d is a convex differentiable function and ∇d(x) = x− PSx, where PS denotes the projection
onto the set S.

It is convenient to reformulate algorithm (18) as

(38) ϕn+1 :=
xn − xn+1

λn
− βnwn ∈ ∂Φ(xn+1),

where wn = ∇Ψ(xn).

Theorem 16. Assume that ∂Φ + NC is maximal monotone, ∇Ψ is θ-Lipschitz continuous, and
Φ or Ψ is inf-compact. Suppose that 0 < lim inf

n→∞
λnβn ≤ lim sup

n→∞
λnβn < 2/θ, (λn) ∈ ℓ2 \ ℓ1 and

∞∑
n=1

λnβn

[
Ψ∗

(
p

βn

)
− σC

(
p

βn

)]
< ∞ for all p ∈ R(NC). Then lim

n→∞
d(xn) = 0 and the sequence

(xn) converges weakly as n→ ∞ to a point in S. Convergence is strong if Ψ is inf-compact.

Proof. The key part is that lim
n→∞

d(xn) = 0. Once this is done, for the weak convergence, since

lim
n→∞

d(xn) = 0 every weak cluster point of the sequence (xn) as n → ∞ belongs to S. This fact,

along with part i) of Proposition 11, gives the weak convergence of the sequence by virtue of Opial’s
Lemma. Finally observe that, since lim

n→∞
Ψ(xn) = 0, if Ψ is inf-compact the weak convergence of

the relatively compact sequence (xn) implies its strong convergence.

Let us prove now that lim
n→∞

d(xn) = 0. Since d is convex we have

d(xn) ≥ d(xn+1) + 〈xn+1 − PSxn+1, xn − xn+1〉

= d(xn+1) + λn〈xn+1 − PSxn+1, ϕn+1〉 + λnβn〈xn+1 − PSxn+1, wn〉,(39)

where ϕn+1 is given by (38). Let

α = min{Φ(z) : z ∈ C}.

From the convexity of Φ and (38) we deduce that

α = Φ(PSxn+1) ≥ Φ(xn+1) + 〈ϕn+1, PSxn+1 − xn+1〉

and so

(40) 〈ϕn+1, xn+1 − PSxn+1〉 ≥ Φ(xn+1) − α.

Since ∇Ψ(PSxn+1) = 0, the 1/θ cocoercivity of ∇Ψ implies

〈wn, xn − PSxn+1〉 ≥
1

θ
‖wn‖

2,
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whence

〈wn, xn+1 − PSxn+1〉 ≥
1

θ
‖wn‖

2 + 〈wn, xn+1 − xn〉

≥ −
θ

4
‖xn+1 − xn‖

2.(41)

We may suppose, without loss of generality, that supn∈N λnβn ≤ 2/θ. Replacing (40) and (41) in
(39) we obtain

(42) d(xn+1) − d(xn) + λn [Φ(xn+1) − α] ≤
1

2
‖xn+1 − xn‖

2.

Observe that, by virtue of part ii) in Proposition 11 the right-hand side of the previous inequality
is summable. Since xn+1 need not be in C one cannot guarantee that Φ(xn+1) − α ≥ 0 for all
n ∈ N. We shall analyze the two possible situations separately, namely

Case I: There exists n0 ∈ N such that Φ(xn) ≥ α for all n ≥ n0.
Case II: For each n ∈ N there exists n′ > n such that Φ(xn′) < α.

In our analysis we follow the arguments in [14, Cabot], [6, Attouch-Czarnecki] which can be
traced back to [9, Baillon-Cominetti].

Case I: For every n ≥ n0 we have

d(xn+1) − d(xn) ≤
1

2
‖xn+1 − xn‖

2.

Since d(xn) is bounded from below and the right-hand side is summable, we conclude that lim
n→∞

d(xn)

exists by Lemma 2. In order to verify that this limit must be 0 it suffices to find a subsequence
that converges to 0. Let us sum up inequality (42) for n = n0, . . . , N to obtain

d(xN+1) − d(xn0
) +

N∑

n=n0

λn [Φ(xn+1) − α] ≤
1

2

N∑

n=n0

‖xn+1 − xn‖
2.

Letting N → ∞ we deduce that
∞∑

n=n0

λn[Φ(xn+1) − α] < +∞. Since (λn) /∈ ℓ1 we must have

lim inf
n→∞

Φ(xn) ≤ α. Consider a subsequence (xkn
) such that

lim
n→∞

Φ(xkn
) = lim inf

n→∞
Φ(xn).

Clearly the sequence (Φ(xkn
)) is bounded. By part i) in Proposition 11, the sequence (xn) is

bounded and so (Ψ(xkn
)) is bounded as well. The inf-compactness assumption ensures the existence

of subsequence (xk′

n
) that converges strongly to some x̄, that must belong to C by Proposition 11.

From the weak lower-semicontinuity of Φ we deduce that

α ≤ Φ(x̄) ≤ lim
n→∞

Φ(xk′

n
) = lim inf

n→∞
Φ(xn) ≤ α.

This shows that x̄ ∈ S and so lim
n→∞

d(xk′

n
) = 0 by the continuity of d.

Case II: For all sufficiently large n the number

τn = max{k ≤ n : Φ(xk) < α}

is well defined. Observe that we have lim
n→∞

τn = +∞. Take N ∈ N (large enough for τN to exist).

If τN < N then Φ(xn+1) ≥ α for n = τN , . . . , N − 1. Inequality (42) then gives

d(xN ) − d(xτN
) ≤

1

2

N−1∑

n=τN

‖xn+1 − xn‖
2.
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If N = τN then d(xτN
) = d(xN ). In either case we have

d(xN ) − d(xτN
) ≤

1

2

∞∑

n=τN

‖xn+1 − xn‖
2

and so letting N → ∞ we deduce that

0 ≤ lim sup
n→∞

d(xn) ≤ lim sup
n→∞

d(xτn).

It suffices to prove that lim sup
n→∞

d(xτn) = 0. Since Φ(xτn) < α for all n one has lim sup
n→∞

Φ(xτn) ≤ α.

In particular, the sequence (Φ(xτn)) is bounded. As before, the same is true for (Ψ(xτn)) and using
the inf-compactness assumption one concludes, as in case I, that a subsequence converges strongly
to a point in S, which guarantees that lim

n→∞
d(xn) = 0. �

6. Application issues

In this section we discuss on the implementation and applicability of this method. We begin by
establishing that the main conclusions remain true if the iterates are computed inexactly. Next we
discuss on some specializations to the case of coupled constraints and when the objective function
has a decomposable structure. These appear frequently in real problems. We finish by mentioning
several domains of application and develop in further depth the problem of compressive sensing.

6.1. Inexact version. Let us assume that we can compute the iterates following the rule (10) only
approximately. More precisely, assume the sequence (x̂n) satisfies

(43) x̂n+1 = (I + λnA)−1 [x̂n − λnβn∇Ψ(x̂n) + ζn] + ξn.

We shall establish that if the errors are summable then the sequences computed via (43) have
the same asymptotic behavior as those computed exactly using (10). To this end we make use of
the following result:

Lemma 17. [2, Proposition 6.1] Let (Fn) be a family of nonexpansive functions on a Banach space
X and assume that every sequence (zn) satisfying zn+1 = Fn(zn) converges in a sense3. Then so
does every sequence (ẑn) satisfying ẑn+1 = Fn(ẑn) + εn provided

∑∞
n=1 ‖εn‖ < +∞.

Proposition 18. Assume that λnβn ≤ 2/θ for all (sufficiently large) n. The conclusions of Theo-
rems 12 and 16 remain true under the same hypotheses if x̂n satisfies (43) with

∑∞
n=1 ‖ζn‖ < +∞

and
∑∞

n=1 ‖ξn‖ < +∞.

Proof. For n ∈ N write Rn = (I + λnA)−1 and Tn = I − λnβn∇Ψ. Since A is monotone we have

(44) ‖Rn(u) −Rn(v)‖ ≤ ‖u− v‖.

On the other hand,

‖Tn(u) − Tn(v)‖2 = ‖(u− v) − λnβn(∇Ψ(u) −∇Ψ(v))‖2

= ‖u− v‖2 + λ2
nβ

2
n‖∇Ψ(u) −∇Ψ(v)‖2 − 2λnβn〈u− v,∇Ψ(u) −∇Ψ(v)〉

≤ ‖u− v‖2 + λnβn

(
λnβn −

2

θ

)
‖∇Ψ(u) −∇Ψ(v)‖2

≤ ‖u− v‖2.(45)

3Here the expression in a sense can be replaced by: strongly, weakly, strongly in average, or weakly in average,
among others (see [2]).
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For n ≥ 1 define Fn and εn as follows:
{
F2n−1 = Tn

F2n = Rn
and

{
ε2n−1 = ζn
ε2n = ξn.

Consider the following nonexpansive algorithm defined by

zn+1 = Fn(zn).

Then the sequence (xn) computed via the error-free algorithm (10) satisfies

xn = z2n.

By Remark 6, the sequence (yn) given by

yn = xn − λnβn∇Ψ(xn) = z2n−1

satisfies lim
n→∞

‖xn−yn‖ = 0 so that the sequences (xn) and (zn) have the same convergence properties

to the extent of the results presented in this paper.
By Lemma 17 the sequence (ẑn) computed approximately following the rule

ẑn+1 = Fn(ẑn) + εn

also has the same convergence properties as (zn). We conclude by noticing that x̂n = ẑ2n. �

6.2. Some specializations. A special case is when C is of the form

C = {x ∈ H : Mx ∈ D},

where M is a bounded linear operator from H to another Hilbert space G and D is a nonempty
closed convex subset of G. This accounts for bilateral (subspace) and unilateral (conic) constraints,
among others. Let us denote by |||M ||| the operator norm of M . Let ψ : G → R be a convex
differentiable function such that ∇ψ is τ -Lipschitz and ψ vanishes on D = Argminψ. Observe
that if D is a hyperplane then ψ(x) = ‖x − PD(x)‖2 has this property and is easy to compute
(PD denotes the orthogonal projection onto D). Set Ψ = ψ ◦M . Then Ψ is differentiable and its
gradient ∇Ψ is given by

∇Ψ(x) = M∗∇ψ(Mx),

where M∗ is the adjoint of M . The function ∇Ψ is Lipschitz with constant bounded by τ |||M |||2.
This situation can be easily extended to several constraints of the form given above. Let

C = {x ∈ H : Mkx ∈ Dk, k = 1, . . . , p},

where each Dk is a closed convex subset of a Hilbert space Gk. For k = 1, . . . , p take ψk such that
∇ψk is τk-Lipschitz and ψk vanishes on Dk = Argminψk and define Ψ(x) =

∑p
k=1 ψk(Mkx). Then

∇Ψ(x) =

p∑

k=1

M∗
k∇ψk(Mkx).

The Lipschitz constant of ∇Ψ can be bounded above by
∑p

k=1 τk|||Mk|||
2.

Now let H = H1 × · · · × HN and assume that the objective function Φ can be decomposed as
Φ(x) =

∑N
i=1 φi(x

i), where each φi is proper, lower-semicontinuous and convex. Then

∂Φ = (∂φ1, . . . , ∂φN ).

On the other hand, assume also that each Mk can be expressed as Mkx =
∑N

i=1M
i
kx

i, where each

M i
k is a bounded linear operator on Hi. Observe that in this case |||Mk|||

2 =
∑N

i=1 |||M
i
k|||

2 if all
the norms are defined in the canonical fashion. As before, the Lipschitz constant of ∇Ψ can be
bounded by

∑p
k=1

∑N
i=1 τk|||M

i
k|||

2.
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Our algorithm is given by the following system of equations:

xi
n+1 = (I + λn∂φi)

−1



xi
n − λnβn

p∑

k=1

(M i
k)

∗∇ψk




N∑

j=1

M j
kx

j
n



 + ζi
n



 + ξi
n, for i = 1, . . . , N.

6.3. Domains of application. The method developed in this paper can be applied to find
Wardrop equilibria for network flows and construct best approximations for the convex feasibil-
ity problem (see [5]), as well as domain decomposition methods for PDE’s [4] and optimal control
problems [7] or best response dynamics for potential games [4]. Here we discuss on the problem of
finding the sparsest solutions of underdetermined systems of equations.

Sparse solutions for underdetermined systems of equations. Let A be a matrix of size
J × N and let b ∈ R

J . When the system Ax = b is underdetermined, an important problem in
signal compression and statistics (see [21, 33]) is to find its sparsest solutions. That is,

(P0) min{‖x‖0 : Ax = b},

where ‖ · ‖0 denotes the counting norm (number of nonzero entries). The convex relaxation of this
nonconvex problem is

(P1) min{‖x‖1 : Ax = b}.

Under some conditions on the matrix A (see [22]) solutions of (P0) can be found by solving (P1).
We define Φ(x) = ‖x‖1 and Ψ(x) = 1

2
‖Ax− b‖2. Then ∇Ψ(x) = A∗(Ax− b), which is Lipschitz-

continuous with constant θ = |||A∗A|||.
As in Remark 6 we write

yn = xn−1 − λnβn∇Ψ(xn−1) = xn−1 − λnβnA
∗(Axn−1 − b).

Now for s ∈ R denote φ(s) = |s| so that Φ(x) =
∑N

i=1 φ(xi) and ∂Φ(x) =
(
∂φ(x1), . . . , ∂φ(xN )

)
.

The algorithm explicitly reads

(46) xi
n = (I + λn∂φ)−1yi

n =






yi
n − λn if yi

n > λn

yi
n + λn if yi

n < −λn

0 if yi
n ∈ [−λn, λn],

for i = 1, . . . , N.

Related ℓ1-regularization approaches can be found in [15, 17, 23]. The LASSO method [33] is
different because it considers a constraint of the form ‖x‖1 ≤ T and minimizes ‖Ax− b‖2.

A simple illustration. The following academic example aims at illustrating the procedure, cer-
tainly not at testing its numerical performance. Consider the system Ax = b, where

A =




1 0 −1 1 0
0 1 0 −1 0
0 1 −1 0 1



 and b =




1
0
1



 .

The solutions form a two-dimensional affine subspace of R
5 among which the sparsest point is

x̂ = (0 0 − 1 0 0)′.

Here θ = |||A∗A||| = 4. We implement our algorithm in SCILAB with λn = 1/n, λnβn ≡ 0.49 < 2/θ,
starting from 10 randomly generated initial points in [−2, 2]5. The average outcome after 50
iterations was

x̃ = (0 0 − 0.9796 0 0)′

and the average processing time was 0.05 seconds in a laptop computer with a U9300 Intel(R)
Core(TM)2 CPU and 3 GB of RAM.

Remark 19. Some variants:
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(1) For the problem with inequality constraints

min{‖x‖1 : Ax ≤ b}

one defines

Ψ(x) =
1

2

J∑

j=1

[
〈rj , x〉 − bj

]2

+
,

where rj is the j-th row of A and [s]+ denotes the positive part of s ∈ R. In that case

yi
n = xi

n−1 − λnβn

J∑

j=1

ri
j

[
〈rj, xn−1〉 − bj

]

+

and one computes xi
n from yi

n using (46).
(2) For stable signal recovery [16], where the constraint Ax = b is replaced by ‖Ax − b‖ ≤ ε

one can write Ψ(x) = ‖Ax− b‖2 − ε2 if ‖Ax− b‖ ≥ ε and Ψ(x) = 0 otherwise. �
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lier 2, place Eugène Bataillon, 34095 Montpellier cedex 5, France

E-mail address: attouch@math.univ-montp2.fr, marco@math.univ-montp2.fr
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