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Abstract. In this paper we construct an “Interior Penalty” Discontinuous Galerkin method
to approximate the minimizer of a variational problem related to the p(x)−Laplacian. The
function p : Ω → [p1, p2] is log Hölder continuous and 1 < p1 ≤ p2 < ∞. We prove that the
minimizers of the discrete functional converge to the solution. We also make some numerical
experiments in dimension one to compare this method with the Conforming Galerkin Method,
in the case where p1 is close to one. This example is motivated by its applications to image
processing.

1. Introduction

In this paper we study a discontinuous Galerking method to approximate the minimizer of a
non homogeneous functional. This functional is related to the so-called p(x)−Laplacian operator,
i.e.

(1.1) ∆p(x)u = div(|∇u(x)|p(x)−2∇u).

This operator extends the classical Laplacian (p(x) ≡ 2) and the so-called p−Laplacian
(p(x) ≡ p with 1 < p < ∞) and it has been recently used in image processing and in the
modeling of electrorheological fluids, see [3, 8, 23] .

In an image processing problem, the aim is to recover the real image I from an observed
image ξ of the form ξ = I + η, where η is a noise.

Approaches to image denoising have been developed along three main lines: wavelet methods,
stochastic methods and variational methods, see references in [3]. One variational approach that
has attracted a great deal of attention is the total variation method of L. Rudin, S. Osher and
E. Fetami [22]. The variational problem is

Minimize the functional |Du|(Ω) over all the functions in BV (Ω) ∩ L2(Ω) such that
∫

Ω
u dx =

∫

Ω
ξ dx and

∫

Ω
|u− ξ|2 dx = σ2

for some σ > 0.

The conditions on the space come from the assumption that ξ is a function that represents a
white noise with mean zero and variance σ. Moreover, the authors prove that this problem is
equivalent to minimizing

|Du|(Ω) +
λ

2

∫

Ω
|u− ξ|2 dx
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for some nonnegative Lagrange multiplier λ = λ(σ, ξ). This model works when the image is
piecewise constant, but in some cases can cause a staircasing effect. See for instance [7].

An older approach consists in minimizing,
∫

Ω
|∇u|2 +

λ

2

∫

Ω
|u− ξ|2 dx.

This method solves the staircasing effect, but it has the problem that it does not preserve edges.

In [8], the authors introduce a model that involves the p(x)−Laplacian, for some function
p : Ω → [p1, 2], with p1 > 1. This function encodes the information on the regiones where the
gradient is sufficiently large (at edges) and where the gradient is close to zero (in homogeneous
regions). In this manner, the model avoids the staircasing effect still preserving the edges.

Recently, in [3] the authors propose a variant of the method of Chen, Levine and Rao [8].
More precisely, they consider the functional

∫

Ω
|∇u|p(x) +

λ

2

∫

Ω
|u− ξ|2 dx,

with p : Ω → [1, 2] a function such that p(x) = PM (|∇Gδ ∗ ξ|(x)), where Gδ(x) is an approxima-
tion of the identity, M >> 1 and PM is a function that satisfies PM (0) = 2 and PM (x) = 1 for
all |x| > M . Observe that, since p(x) = 1 for some values of x, the authors have to rewrite the
functional in a form that allow for computation of weak derivatives.

Motivated by the above mentioned applications, we study a numerical method to approximate
minimizers of a functional related to the p(x)− Laplacian.

We work in the following setting:

Let Ω be a bounded Lipschitz domain. For functions p, s, t the following conditions will be
assumed when necessary,

(H1) p : Ω → [p1, p2] (1 < p1 ≤ p2 < ∞) is log-Hölder continuous. That is, there exists a
constant Clog such that

|p(x)− p(y)| ≤
Clog

log
(

e+ 1
|x−y|

) ∀x, y ∈ Ω;

(H2) s ∈ L∞(Ω), with 1 ≤ s(x) < p∗(x)− ε for some ε > 0;
(H3) t ∈ C0(∂Ω) with 1 ≤ t(x) < p∗(x).

Here, p∗ and p∗ are the Sobolev critical exponents for these spaces, i.e.

(1.2) p∗(x) :=

{

p(x)N
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N,
and p∗(x) :=

{

p(x)(N−1)
N−p(x) if p(x) < N,

+∞ if p(x) ≥ N.

Given p, q, r satisfying (H1),(H2) and (H3) respectively and ξ ∈ Lq(·)(Ω), we want to minimize
the functional

I(v) =

∫

Ω

(

|∇v(x)|p(x) + |v(x)− ξ(x)|q(x)
)

dx+

∫

ΓN

|v|r(x) dS

over all v ∈ A, where

A = {v ∈ W 1,p(·)(Ω) : v − uD ∈ W
1,p(·)
ΓD

(Ω)},
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uD ∈ W 1,p(·)(Ω) and ∂Ω = ΓD ∪ΓN . For the definitions of the variable exponent Sobolev spaces

W 1,p(·)(Ω) and W
1,p(·)
ΓD

(Ω), see Section 2.

Let us observe that, considering the applications we have in mind, it is relevant to study
the minimization problem in the case where p approaches the value 1 in some regions. We can
see, by making some numerical experiments, that the minimizers have large derivative in these
regions. For this reason, the Conforming Finite Element Method is not appropriate since, its
use would imply the need of fine meshes in order to obtain good approximations, see Section 8.

We consider the so-called Discontinuous Galerkin Methods. These methods are relatively new
from the theoretical point of view. In [1], we can find a unification of all methods of this type.
In all the examples of that paper, the authors take as model a linear differential equation.

At this point we want to mention that, in [3] and [8] the authors find an approximation of
the solutions by using an explicit finite difference scheme for the associated parabolic problem.

Our aim is to study, in the future, the minimization problem in the case where p approaches
the value 1 in some regions (where there is no weak formulation). For this reason, we think
that the best way to find approximations is by finding a good discretization of the minimization
problem. We take a discretization similar to the one in [6] where the authors study a functional
that includes the case p = constant.

Our discrete functional is the following

Ih(vh) =

∫

Ω

(

|∇vh +Rh(vh)|
p(x) + |vh − ξ|q(x)

)

dx+

∫

ΓD

|vh − uD|
p(x)h1−p(x) dS

+

∫

Γint

|[[vh]]|
p(x)h1−p(x) dS +

∫

ΓN

|vh|
r(x) dS,

where h is the local mesh size, h is the global mesh size, Γint is the union of the interior edges of
the elements, [[vh]] is the jump of the function between two edges and ∇vh denotes the element-
wise gradient of vh, see Section 3 for a precise definition. Observe that the boundary condition
is weakly imposed by the second term of the functional. Lastly, Rh is the lifting operator defined
in Section 5.1, which represents the contributions of the jumps to the distributional gradient.

In the case p = constant, the boundedness of this operator is proved by using an inf-sup
condition. In our case, for technical reasons, we use a different approach, which consists of
finding a local characterization of the operator.

With this setting the discrete problem is to find a minimizer uh of Ih over the space Sk(Th)
of all the functions that are polynomials of degree at most k in each element, with k ≥ 1, see
Section 3.

In this work we show that the sequence uh converges to the minimizer u of I over the space
A. We want to remark here that we are assuming that, for each vh ∈ Sk(Th), all the terms of
Ih(vh) can be exactly computed.

In fact, we prove the following

Theorem 1.1. Let Ω be a polyhedral domain. Let p(x), q(x), and r(x) be functions satisfying
(H1), (H2) and (H3) respectively and let uD ∈ W 2,p2(Ω). For each h ∈ (0, 1], let uh ∈ Sk(Th)
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be the minimizer of Ih. If u is the minimizer of I then

uh → u strongly in Ls(·)(Ω) ∀s satisfying (H2),(1.3)

uh → u strongly in Lt(·)(∂Ω) ∀t satisfying (H3),(1.4)

Ih(uh) → I(u),(1.5)

R(uh) → 0 strongly in Lp(·)(Ω),(1.6)
∫

ΓD

|uh − uD|
p(x)h1−p(x) dS +

∫

Γint

|[[uh]]|
p(x)h1−p(x) dS → 0,(1.7)

∇uh → ∇u strongly in Lp(·)(Ω).(1.8)

Lastly, we want to mention the places where we need the regularity hypotheses on the func-
tion p. First, in order to prove Theorem 1.1 we need to use the continuity of the embedding
W 1,p(·)(Ω) →֒ Lp∗(·)(Ω), the continuity of the Trace operator W 1,p(·)(Ω) →֒ Lq(·)(∂Ω) and the
Poincaré inequality. As we can see in Theorem 2.9, Theorem 2.10 and Theorem 2.8 for these
results we need p to be log-Hölder and r ∈ C0(∂Ω).

We also use strongly that p is log-Hölder in Proposition 2.11. This result says that if κ is an
element with diameter hκ and pκ+ and pκ− are respectively the maximum and minimum of p over

κ then h
pκ
−
−pκ+

κ is bounded independent of hκ. This property is crucial in the proof of several
results along the paper.

On the other hand, in order to prove the convergence of the sequence uh we need a technical
hypothesis on the boundary condition uD. In fact, Lemma 6.4 only covers the case where
uD ∈ W 2,p2(Ω).

Outline of the paper. In Section 2 we state several properties of the Variable Exponent
Sobolev Spaces.

In Section 3 we give some definitions and properties related to the mesh and to the Broken
Sobolev Spaces.

In Section 4 we study the Reconstruction operator and we prove some error estimates that
are crucial for the rest of the paper (Corollary 4.5).

In Section 5 we prove the boundedness of the Lifting operator (Theorem 5.3).

In Section 6 we prove the Broken Poincaré inequality (Theorem 6.1), the coercivity of the
functional (Theorem 6.2) and finally we give the proof of Theorem 1.1.

In Section 7 we study the convergence of the Conforming Finite Element Method.

In Section 8 we give a 1d example and compare both conforming and non-conforming schemes.

2. Preliminaries: The spaces Lp(·)(Ω) and W 1,p(·)(Ω)

We now introduce the spaces Lp(·)(Ω) and W 1,p(·)(Ω) and state some of their properties.

Let p : Ω → [p1, p2] be a measurable bounded function, called a variable exponent on Ω where
p1 := essinf p(x) and p2 := esssup p(x) with 1 ≤ p1 ≤ p2 < ∞.

We define the variable exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions
u : Ω → R for which the modular

̺p(·)(u) :=

∫

Ω
|u(x)|p(x) dx
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is finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) := inf{k > 0: ̺p(·)(u/k) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.

The following properties can be obtained directly from the definition of the norm,

Proposition 2.1. If u, un ∈ Lp(·)(Ω), ‖u‖p(·) = λ, then

(1) λ < 1 (= 1, > 1) if only if

∫

Ω
|u(x)|p(x) dx < 1 (= 1, > 1);

(2) If λ ≥ 1, then λp1 ≤

∫

Ω
|u(x)|p(x) dx ≤ λp2 ;

(3) If λ ≤ 1, then λp2 ≤

∫

Ω
|u(x)|p(x) dx ≤ λp1 ;

(4)

∫

Ω
|un(x)|

p(x) dx → 0 if only if ‖un‖p(·) → 0;

(5) ‖1‖p(·) ≤ max
{

|Ω|
1
p1 , |Ω|

1
p2

}

;

(6) If Ω =

m
⋃

i=1

Ωi where Ωi ⊂ Ω are open sets then there exists a constant C > 0 depending

on m such that

‖u‖Lp(·)(Ω) ≤ C

m
∑

i=1

‖u‖Lp(·)(Ωi)
.

Proof. See Theorem 1.3 and Theorem 1.4 in [18]. �

For the proofs of the following three theorems we refer the reader to [21].

Theorem 2.2. Let q(x) ≤ p(x), then Lp(·)(Ω) →֒ Lq(·)(Ω) continuously.

Theorem 2.3. Let p, q, r : Ω → [1,∞) and ε > 0 be such that p(x) ≤ r(x) < q(x) − ε for all
x ∈ Ω. Then, there exists a positive constant C such that for every u ∈ Lp(·)(Ω) ∩ Lq(·)(Ω) the
inequality

‖u‖Lr(·)(Ω) ≤ C‖u‖µ
Lp(·)(Ω)

‖u‖ν
Lq(·)(Ω)

holds, where µ > 0 and ν ≥ 0 are define as

µ =



















esssupΩ
p(x)

r(x)

q(x)− r(x)

q(x)− p(x)
if ‖u‖Lp(·)(Ω) > 1,

essinfΩ
p(x)

r(x)

q(x)− r(x)

q(x)− p(x)
if ‖u‖Lp(·)(Ω) ≤ 1,

ν =



















esssupΩ
q(x)

r(x)

r(x)− p(x)

q(x)− p(x)
if ‖u‖Lq(·)(Ω) > 1,

essinfΩ
q(x)

r(x)

r(x)− p(x)

q(x)− p(x)
if ‖u‖Lq(·)(Ω) ≤ 1.

Theorem 2.4. Let p′(x) such that, 1/p(x)+ 1/p′(x) = 1. Then Lp′(·)(Ω) is the dual of Lp(·)(Ω).
Moreover, if p1 > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are reflexive.
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Now we give some well known inequalities,

Proposition 2.5. For any x fixed we have the following inequalities

|η − ξ|p(x) ≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) ≥ 2,

|η − ξ|2
(

|η|+ |ξ|
)p(x)−2

≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) < 2,

|η|p(x) ≤ 2p(x)−1(|η − ξ|p(x) + |ξ|p(x)) if p(x) ≥ 1.

These inequalities say that the function A(x, q) = |q|p(x)−2q is strictly monotone.

Proposition 2.6. Let Fn, F ∈ Lp(·)(Ω).

(1) If

Fn ⇀ F weakly in Lp(·)(Ω)

then
∫

Ω
|F |p(x) dx ≤ lim inf

n→∞

∫

Ω
|Fn|

p(x) dx.

(2) If

Fn → F strongly in Lp(·)(Ω)

then
∫

Ω
|Fn|

p(x) dx →

∫

Ω
|F |p(x) dx.

(3) If

(2.9) Fn ⇀ F weakly in Lp(·)(Ω) and

∫

Ω
|Fn|

p(x) dx →

∫

Ω
|F |p(x) dx

then
Fn → F strongly in Lp(·)(Ω).

Proof. For the proof of (1) and (3) see Theorem 3.9 and Lemma 2.4.17 in [13]. Finally (2) follows
by Proposition 2.3 in [15]. �

Let W 1,p(·)(Ω) denote the space of measurable functions u such that, u and the distributional

derivative ∇u are in Lp(·)(Ω). The norm

‖u‖W 1,p(·)(Ω) : = ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(Ω) a Banach space.

We define the space W
1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(·)(Ω). Then we have the
following version of Poincaré inequality, see Theorem 3.10 in [21].

Lemma 2.7. If p : Ω → [1,+∞) is continuous in Ω, there exists a constant C such that for

every u ∈ W
1,p(·)
0 (Ω),

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω).

We also have the following version of the Poincaré inequality, see Lemma 2.1 in [20],

Theorem 2.8. Let Ω ⊂ R
n be a Lipschitz domain and p, q : Ω → [1,+∞) with p ≤ q ≤ p∗.

Then,
‖u− (u)Ω‖Lq(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω)

for all u ∈ W 1,p(·)(Ω), where (u)Ω = 1
|Ω|

∫

Ω u dx.
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In order to have better properties of these spaces, we need more hypotheses on the regularity
of p. For expample, it was proved in [11], Theorem 3.7, that if one assumes that ∂Ω is Lipschitz
and p is log-Hölder continuous then C∞(Ω̄) is dense in W 1,p(·)(Ω), see also [10, 14, 16, 21, 24].
The local log-Hlöder condition was first used in the variable exponent context in [26].

We now state two Sobolev embedding Theorems (for the proofs see [12] and Corollary 2.4 in
[17], respectively).

Theorem 2.9. Let Ω be a Lipschitz domain. Let p : Ω → [1,∞) be log-Hölder continuous. Then
the embedding W 1,p(·)(Ω) →֒ Lp∗(·)(Ω) is continuous.

Theorem 2.10. Let Ω be an open bounded domain with Lipschitz boundary. Suppose that
p ∈ C0(Ω) with p1 > 1. If r ∈ C0(∂Ω) satisfies the condition 1 ≤ r(x) < p∗(x) for all x ∈ ∂Ω,

then there is a compact boundary trace embedding W 1,p(·)(Ω) →֒ Lr(·)(∂Ω).

Let ΓD ⊂ ∂Ω, and p be log-Hölder. We define the space W
1,p(·)
ΓD

(Ω) as the closure of the space

{ϕ ∈ C∞(Ω) : ϕ = 0 on ΓD} in W 1,p(·)(Ω).

The following proposition is crucial in order to prove the main result of this paper.

Proposition 2.11. Let p : Ω → [1,∞) be log-Hölder continuous and bounded. Let α > 0,
D ⊂ Ω and h = diam(D) then:

(1) There exists a constants C independent of h such that

(2.10) hα(p(x)−p(y)) ≤ C ∀x, y ∈ D;

(2) If A ≥ hα then Ap(x) ≤ CAp(y) for all x, y ∈ D such that p(x) ≤ p(y).

Proof. Let x, y ∈ D. If p(x) ≥ p(y) or h ≥ 1 the result follows since Ω is bounded. If p(x) ≤ p(y)
and h < 1, using that p is log-Hölder, we have

p(y)− p(x) ≤
C

log

(

e+
1

|x− y|

) ≤
C

log

(

e+
1

h

) .

Then, we get (2.10).

By (2.10) and as A ≥ hα, we have that for all x, y ∈ D such that p(x) ≤ p(y),

Ap(x) = Ap(y)

(

A

hα

)p(x)−p(y)

hα(p(x)−p(y)) ≤ CAp(y).

�

3. The mesh Th and properties of W 1,p(·)(Th)

In this section we give some definitions and properties related to the mesh and to the Broken
Sobolev Space.

Hypothesis 3.1. Let Ω be a polygonal Lipschitz domain and (Th)h∈(0,1] be a family of partitions

of Ω into polyhedral elements. We assume that there exist a finite number of reference polyhedral
κ̂1, ..., κ̂r such that for all κ ∈ Th there exists an invertible affine map Fκ such that, κ = Fκ(κ̂i).
We assume that each κ ∈ Th is closed and that diam(κ) ≤ h for all κ ∈ Th.
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Now we give some notation,

Eh := {κ ∩ κ′ : dimH(κ ∩ κ′) = N − 1} ∪ {κ ∩ ∂Ω : dimH(κ ∩ ∂Ω) = N − 1},

Γint :=
⋃

{e ∈ Eh : dimH(e ∩ ∂Ω) < N − 1}.

Nh is the set of nodes of Th. For every z ∈ Nh and e ∈ Eh we define,

Tz :=
⋃

{κ ∈ Th : z ∈ κ}, Tκ :=
⋃

{Tz : z ∈ κ}, Te :=
⋃

{Tκ : e ∈ κ},

hκ := diam(κ), hz := diam(Tz) he := diam(e),

pκ− := ess inf
x∈κ

p(x) pκ+ := ess sup
x∈κ

p(x), pe− := ess inf
x∈e

p(x) and pe+ := ess sup
x∈e

p(x).

We assume that the mesh satisfies the following hypotheses,

Hypothesis 3.2. The family of partitions (Th)h∈(0,1] satisfies the Hypothesis 3.1 and

(a) There exist positive constants C1 and C2, independent of h, such that for each element
κ ∈ Th

C1h
N
κ ≤ |κ| ≤ C2h

N
κ .

(b) There exists a constant C1 > 0 such that for all h ∈ (0, 1] and for all face e ∈ Eh there
exists a point xe ∈ e and a radius ρe ≥ C1diam(e) such that Bρe(xe)∩Ae ⊂ e, where Ae

is the affine hyperplane spanned by e. Moreover, there are positive constants such that

chκ ≤ he ≤ Chκ, chκ′ ≤ he ≤ Chκ′

where e = κ ∩ κ′.

We use the notation ∼ to compare quantities which differ only up to positive constants that
do not depend on the local or global mesh size or on any function which appears in the estimate.

Remark 3.3. By the regularity assumption of the mesh we have the following,

♯{z ∈ Nh : z ∈ κ} ∼ 1, ♯{κ ∈ Th : κ ⊂ Tz} ∼ 1,

♯{κ′ ∈ Th : κ
′ ⊂ Tκ} ∼ 1, ♯{e ∈ Eh : e ⊂ Tz} ∼ 1 and ♯{e ∈ Eh : e ⊂ Tκ} ∼ 1.

Remark 3.4. As a consequence, we have that diam(Tκ) ∼ hκ and for each z ∈ κ and e ⊂ ∂κ,
hz ∼ hκ and he ∼ hκ. See the discussion on Section 4.2 in [6].

Remark 3.5. By Proposition 2.11, we also have that for each edge e ⊂ ∂κ, h
p(x)
κ ∼ h

p(y)
e for any

x, y ∈ κ. We will replace pκ−, p
e
− by p− and pκ+, p

e
+ by p+ when no confusion can arise.

Now, we introduce the finite element spaces associated with Th. We define the variable broken
Sobolev space as

W 1,p(·)(Th) := {u ∈ L1(Ω): u|κ ∈ W 1,p(·)(κ) for all κ ∈ Th},

and the subspaces

Uk(Th) := {u ∈ C(Ω): u|κ ∈ P k for all κ ∈ Th},

Sk(Th) := {u ∈ L1(Ω): u|κ ∈ P k for all κ ∈ Th}

where P k is the space of polynomials functions of degree at most k ≥ 1.
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We also define, for any κ ∈ Th, the space

W 1,p(·)(Tκ) := {u|Tκ : u ∈ W 1,p(·)(Th)},

and in the same manner we define the spaces W 1,p(·)(Tz) and W 1,p(·)(Te), for any z ∈ Nh and
e ∈ Eh .

For each face e ∈ Eh, e ⊂ Γint we denote by κ+ and κ− its neighboring elements. We write
ν+, ν− to denote the outward normal unit vectors to the boundaries ∂κ±, respectively. The jump
of a function u ∈ W 1,p(·)(Th) and the average of a vector-valued function φ ∈ (W 1,p(·)(Th))

N ,
with traces u±, φ± from k± are, respectively, defined as the vectors

[[u]] := u+ν+ + u−ν− and {φ} :=
φ+ + φ−

2
.

Let h : ∂Ω ∪ Γint → R a piecewise constant function define by

h(x) = diam(e) if x ∈ e,

where e ∈ Eh.
We consider the following seminorms on W 1,p(·)(Th),

|u|W 1,p(·)(Th)
= ‖∇u‖Lp(·)(Ω) + ‖[[u]]h

−1
p′(x) ‖Lp(·)(Γint)

,

|u|
W

1,p(·)
D (Th)

= |u|W 1,p(·)(Th)
+ ‖uh

−1
p′(x) ‖Lp(·)(ΓD),

and the following local seminorm

|u|W 1,p(·)(Tκ)
= ‖∇u‖Lp(·)(Tκ)

+
∑

e⊂Tκ

‖[[u]]h
−1

p′(x) ‖Lp(·)(e),

for any κ ∈ Th. Similarly, we define the seminorms |u|W 1,p(·)(Tz)
and |u|W 1,p(·)(Te)

for any z ∈ Nh

and e ∈ Eh .

Lemma 3.6. For all p : [1,∞) → R, there exist a constant C, independent of h such that,

|Du|(Ω) ≤ C|u|W 1,p(·)(Th)
∀u ∈ W 1,p(·)(Th), ∀h ∈ (0, 1].

Proof. For all u ∈ W 1,p(·)(Th), we have that

|Du|(Ω) ≤

∫

Ω
|∇u| dx+

∫

Γint

|[[u]]| ds.

Thus, by Hölder inequality, Proposition 2.1 (5) and the Hypothesis 3.2, there exists a constant
C depending only of |Ω|, p1 and p2 such that

|Du|(Ω) ≤ C
(

‖∇u‖Lp(·)(Ω) + ‖h
−1

p′(x) [[u]]‖Lp(·)(Γint)

)

.

The proof is now complete. �

Lemma 3.7. Let (Th)h∈(0,1] be a family of partitions of Ω. Then, for each function p, q : Ω → [1,∞),
there exists a constant C > 0 independent of h, such that for any κ ∈ Th

‖u‖Lp(·)(κ) ≤ Ch
N
p+

− N
q
−

κ ‖u‖Lq(·)(κ) ∀u ∈ Sk(Th), ∀h ∈ (0, 1].
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Proof. Let κ ∈ Th, κ̂ its corresponding reference element and Fκ : κ̂ → κ the associated affine
mapping. We set J = |det(DFκ)|. Using Hypothesis 3.2, we have C−1hNκ ≤ J ≤ ChNκ , for some
constant C which is independent of κ. Let K > 0, then we have

∫

κ

(

|u|

K

)p(x)

dx =

∫

κ̂

(

|u ◦ Fκ|

K

)p◦Fκ(x)

J dx ≤ ChNκ

∫

κ̂

(

|u ◦ Fκ|

K

)p◦Fκ(x)

dx.

Thus,

‖(ChNκ )−1/p(x)u‖Lp(·)(κ) ≤ ‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

Using that hκ ≪ 1, we obtain

(3.11) ‖u‖Lp(·)(κ) ≤ (ChNκ )1/p+‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

Similarly, we have

(3.12) ‖u ◦ Fκ‖Lq◦Fκ(·)(κ̂) ≤ (Ch−N
κ )1/q−‖u‖Lq(·)(κ).

As on a finite dimensional space all the norms are equivalent, we have that there exists a
constant C̄ depending only on N and k such that,

(3.13) ‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂) ≤ C‖u ◦ Fκ‖Lp2 (κ̂) ≤ C‖u ◦ Fκ‖Lq1 (κ̂) ≤ C̄‖u ◦ F‖Lq(·)(κ̂),

where in the first and last inequalities we are using Theorem 2.2.

Finally, by (3.11)–(3.13) we arrive at the desired result. �

Lemma 3.8. If p is log-Hölder continuous then, for any e ∈ Eh ∩ ∂Ω and z ∈ Nh ∩ e we have
that,

(3.14) ‖u‖Lp(·)(e) ≤ Ch
− 1

p
−

z ‖u‖Lp(·)(Tz)
∀u ∈ Sk(Th),

where C = C(p1, p2, N,Ω, Clog).

Proof. Let κ ∈ Th such that e ⊂ κ. Let Fκ and κ̂ be as in the proof of Lemma 3.7 and let
ê = F−1

κ (e).

Then,
∫

e

(

|u(x)|

k

)p(x)

dS ≤ ChN−1
κ

∫

ê

(

|u ◦ Fκ(x)|

k

)p◦Fκ(x)

dS.

Hence,
∥

∥

∥
(C−1hκ)

1
p(x)

u

h
N/p(x)
κ

∥

∥

∥

Lp(·)(e)
≤ ‖u ◦ Fκ‖Lp◦Fκ(·)(ê).

By using Theorem 2.2 and that all the norms are equivalent, we have

‖u ◦ Fκ‖Lp◦Fκ(·)(ê) ≤ C‖u ◦ Fκ‖Lp2 (ê) ≤ C‖u ◦ Fκ‖L1(ê).

On the other hand, by the local inverse estimate in [6, page 837 ], we have

‖u ◦ Fκ‖L1(ê) ≤ C‖u ◦ Fκ‖L1(κ̂).

By using again Theorem 2.2, we obtain

‖u ◦ Fκ‖L1(κ̂) ≤ C‖u ◦ Fκ‖Lp◦Fκ(·)(κ̂).

By using all the inequalities and the definition of the Luxembourg norm, we arrive at
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∥

∥

∥
hκ

1
p(x)

u

h
N/p(x)
κ

∥

∥

∥

Lp(·)(e)
≤ C

∥

∥

∥

u

h
N/p(x)
κ

∥

∥

∥

Lp(·)(κ)
.

Finally, we obtain

‖hκ
1

p(x)u‖Lp(·)(e) ≤ Ch

N(p
−

−p+)

p
−

p+
κ ‖u‖Lp(·)(κ),

By Remark 2.11, we get

‖hκ
1

p(x)u‖Lp(·)(e) ≤ Ce
N C

p21 ‖u‖Lp(·)(κ).

Now, inequality (3.14) follows immediately using Proposition 2.1(3) and the fact that hz ∼
hκ. �

The next result establishes the existence of the local projector operator (for the proof see
Subsection 3.1 of [6]).

Lemma 3.9. For all z ∈ Nh there exists a linear map πz : BV (Ω) → R such that

‖u− πz(u)‖L1(Tz) ≤ Chz|Du|(Tz) ∀u ∈ BV (Ω)

where C is a constant independent of h and z.

4. The reconstruction operator Qh

In many Discontinuous Galerkin problems one uses a priori bounds in order to prove the
Poincaré inequality for the discrete space. In order to prove these inequalities it is required to
use a reconstruction operator. In this section we define, as in [6], a family of quasi-interpolant
operators and prove some error estimates depending on the mesh size. These results are more
general than the ones in [6], because we prove bounds in the variable p(x)− norm. On the other
hand these results are less general than the ones in [4] in the sense that they only cover the case
of the finite dimensional space Sk(Th). This last restriction comes from the fact that in Lemma
3.7 we need to use the equivalence of the norms in the space of polynomials.

In order to prove these error estimates we strongly use Proposition 2.11. This is the reason
why we need p to be log-Hölder continuous.

Now, we define and study the reconstruction operator. For each h ∈ (0, 1], let

Qh : S
k(Th) → W 1,∞(Ω)

be the linear operator defined by

Qh(u) =
∑

z∈Nh

πz(u)λz ,

where λz is the standard P 1 nodal basis function associated with the vertex z on the mesh Th.

In the next theorem, we give some local estimates of the Lq(·)(κ) and Lq(·)(e) norms in terms
of the W 1,p(·)(Tκ) seminorm and h.
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Theorem 4.1. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Then, the operator Qh

satisfies

‖u−Qh(u)‖Lq(·)(κ) ≤Ch
N
q
−

− N
p
−

+1

κ |u|W 1,p(·)(Tκ) ∀κ ∈ Th,(4.15)

‖u−Qh(u)‖Lq(·)(e) ≤Ch
N−1
q
−

− N
p
−

+1

e |u|W 1,p(·)(Te)
∀e ∈ Eh ∩ ∂Ω,(4.16)

‖∇Qh(u)‖Lp(·)(κ) ≤C|u|W 1,p(·)(Tκ) ∀κ ∈ Th,(4.17)

for all u ∈ Sk(Th) where C is a constant independent of h.

Proof. We proceed in three steps.

Step 1. We first show inequality (4.15).

Fix κ ∈ Th. For z ∈ Nh ∩ κ, by using Proposition 2.1 (6) and Lemma 3.7, we get

‖u− πz(u)‖Lq(·)(Tz)
≤ C

∑

{κ′:κ′⊂Tz}

h
N
q+

−N

κ′ ‖u− πz(u)‖L1(κ′).

By Remark 3.4 and Proposition 2.11, we get

‖u− πz(u)‖Lq(·)(Tz)
≤ Ch

N
q
−

−N

z ‖u− πz(u)‖L1(Tz).

Thus, by Lemma 3.9, we have

‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q
−

−N+1

z

(

‖∇u‖L1(Tz) +
∑

e⊂Tz

∫

e
|[[u]]| ds

)

.

Then, by using again Lemma 3.7 and Remark 3.3 we have

(4.18) ‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q
−

+1

z

(

h
− N

p
−

z ‖∇u‖Lp(·)(Tz) + h−N
z

∑

e⊂Tz

∫

e
|[[u]]| ds

)

.

To estimate the second term, we use Hölder inequality, obtaining

(4.19)

∫

e
|[[u]]| ds ≤2‖ [[u]]h

− 1
p′(x)

e ‖Lp(·)(e)‖h
1

p′(x)
e ‖Lp′(·)(e)

≤C‖ [[u]]h
− 1

p′(x)
e ‖Lp(·)(e)h

1− 1
p
−

e ‖1‖Lp′(·)(e).

Now, by Proposition 2.1 (5), we have that

‖1‖Lp′(·)(e) ≤ Ch
(N−1)(1− 1

p
−

)

e .

Then, we obtain
∫

e
|[[u]]| ds ≤ C‖[[u]]h

− 1
p′(x)

e ‖Lp(·)(e)h
N(1− 1

p
−

)

z .

Therefore, summing over all e ⊂ Tz and using (4.18), we arrive at

(4.20) ‖u− πz(u)‖Lq(·)(Tz) ≤ Ch
N
q
−

− N
p
−

+1

z |u|W 1,p(·)(Tz).

Now, as in the proof Theorem 3.1 in [6] and using Proposition 2.1 (6), we have the inequality
(4.15).

Step 2. We now show the inequality (4.16).
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Fix e ∈ Eh ∩ ∂Ω and let z ∈ Nh ∩ e. By the inequality (3.14),

‖u− πz(u)‖Lq(·)(e) ≤ Ch
− 1

q
−

z ‖u− πz(u)‖Lq(·)(Tz)
.

Again, following the lines in [6] and using that p and q are log-Hölder continuous in Ω, we arrive
at the inequality (4.16).

Step 3. Finally, we will show the inequality (4.17).

Fix κ ∈ Th. First, since (λz)z∈Nh∩κ is a partition of the unity in κ we have that for any x ∈ κ

∇Qhu(x)−∇u(x) =
∑

z∈Nh∩κ

(πz(u)− u(x))∇λz(x) +
∑

z∈Nh∩κ

∇u(x)λz(x)

‖∇Qhu‖Lp(·)(κ) ≤
∑

z∈Nh∩κ

‖(πz(u)− u)∇λz‖Lp(·)(κ) +
∑

z∈Nh∩κ

‖∇uλz‖Lp(·)(κ) + ‖∇u‖Lp(·)(κ).

Now, using Hypothesis (3.2), we have that there exists a constant C1 such that |∇λz| < C1h
−1

in κ, and by (4.20) we get, using Remark 3.3,

‖∇Qhu‖Lp(·)(κ) ≤ C
∑

z∈Nh∩κ

|u|W 1,p(·)(Tz)
+ |u|W 1,p(·)(Tκ)

≤ (C + 1)|u|W 1,p(·)(Tκ)
.

The proof is now complete. �

Our next aim is to prove some global estimates. To this end we will need some definitions.

Definition 4.2. Let p : Ω → [1,∞). Given q : Ω → [1,∞) and q ≤ p∗ in Ω, we define

γ = sup

{

q(x)

p∗(x)
: x ∈ Ω

}

.

Observe that 0 ≤ γ ≤ 1 and γ = 0 if p(x) ≥ N for all x ∈ Ω and γ = 1 if p(x) < N and
q(x) = p∗(x) for all x ∈ Ω.

Definition 4.3. Let p : Ω → [1,∞). Given q : Ω → [1,∞) and q ≤ p∗ in Ω, we define

β = sup

{

q(x)

p∗(x)
: x ∈ Ω

}

.

Observe that 0 ≤ β ≤ 1 and β = 0 if p(x) ≥ N for all x ∈ Ω and β = 1 if p(x) < N and
q(x) = p∗(x) for all x ∈ Ω.

Lemma 4.4. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Let u ∈ Sk(Th) satisfy

(4.21) |u|W 1,p(·)(Th)
≤ 1.

Then, we have that

• If p ≤ q ≤ p∗ in Ω, then
∫

Ω
|u−Qh(u)|

q(x) dx ≤ChN(1−γ),(4.22)

∫

Ω
|∇Qh(u)|

p(x) dx ≤ C,(4.23)
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• If p ≤ q ≤ p∗ in Ω, then

(4.24)

∫

∂Ω
|u−Qh(u)|

q(x) dS ≤ Ch(N−1)(1−β),

where C = C(p1, p2,Ω, Clog, N) and γ and β are given in Definitions 4.2 and 4.3, respectively.

Proof. First observe that, by (4.15), we have
∫

κ

|u−Qh(u)|
q(x)

(

Ch
N
q
−

− N
p
−

+1

k |u|W 1,p(·)(Tκ)

)q(x)
dx ≤ 1 ∀κ ∈ Th,

and by (4.21), we get

1

Ch
N−

Nq
−

p
−

+q−

k |u|
q−
W 1,p(·)(Tκ)

∫

κ
|u−Qh(u)|

q(x)dx ≤ 1 ∀κ ∈ Th.

Then, by Proposition 2.11,
∫

κ
|u−Qh(u)|

q(x) dx ≤ Ch
N−

Nq
−

p
−

+q−
κ |u|

q−
W 1,p(·)(Tκ)

≤ Ch
N−Nq(x)

p(x)
+q(x)

κ |u|
q−
W 1,p(·)(Tκ)

for any κ ∈ Th and x ∈ κ. Therefore,

(4.25)

∫

κ
|u−Qh(u)|

q(x) dx ≤ ChN(1−γ)|u|
q−
W 1,p(·)(Tκ)

∀κ ∈ Th.

On the other hand, by Remark 3.3, the number of κ ⊂ Tκ is uniformly bounded in h. Using
this fact and Proposition 2.1 (6), we have that

(4.26) |u|
q−
W 1,p(·)(Tκ)

≤ C
∑

κ⊂Tκ

(

‖∇u‖
q−
Lp(·)(κ)

+ ‖[[u]]h
1−p
p ‖

q−
Lp(·)(κ∩Γint)

)

.

On the other hand, if we suppose that ‖∇u‖Lp(·)(κ) ≥ h
N/q−
κ , by Proposition 2.11 (2), we have

that

(4.27) ‖∇u‖
q−
Lp(·)(κ)

≤ C‖∇u‖
q+
Lp(·)(κ)

.

Arguing as before, if ‖[[u]]h
1−p
p ‖Lp(·)(κ∩Γint)

≥ h
N/q−
κ , we have that

(4.28) ‖[[u]]h
1−p
p ‖

q−
Lp(·)(κ∩Γint)

≤ C‖[[u]]h
1−p
p ‖

q+
Lp(·)(κ∩Γint)

.

Now, we take

A =
{

κ ∈ Th : ‖∇u‖Lp(·)(κ) ≥ hN/q−
κ

}

,

and

B =
{

κ ∈ Th : ‖[[u]]h
1−p
p ‖Lp(·)(κ∩Γint)

≥ hN/q−
κ

}

.

Observe that

(4.29)

∑

κ∈Ac

‖∇u‖
q−
Lp(·)(κ)

≤
∑

κ∈Ac

hNκ ≤ C,

∑

κ∈Bc

‖[[u]]h
1−p
p ‖

q−
Lp(·)(κ∩Γint)

≤ C.
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On the other hand, by hypothesis (4.21), we have that ‖∇u‖Lp(·)(κ) ≤ 1 and then, for all
κ ∈ Th

(4.30)

‖∇u‖
q+
Lp(·)(κ)

≤ ‖∇u‖
p+
Lp(·)(κ)

≤

∫

κ
|∇u|p(x) dx,

‖[[u]]h
1−p
p ‖

q+
Lp(·)(κ∩Γint)

≤

∫

κ∩Γint

|[[u]]|p(x)h1−p(x) dx.

Since each κ appears only in finitely many sets Tκ′ we have, by (4.26)–(4.30),

∑

κ∈Th

|u|
q−
W 1,p(·)(Tκ)

≤C

(

∑

κ∈A

‖∇u‖
q+
Lp(·)(κ)

+
∑

κ∈Ac

‖∇u‖
q−
Lp(·)(κ)

)

+ C

(

∑

κ∈B

‖[[u]]h
1−p
p ‖

q+
Lp(·)(κ∩Γint)

+
∑

κ∈Bc

‖[[u]]h
1−p
p ‖

q−
Lp(·)(κ∩Γint)

)

≤C

(

∑

κ∈A

∫

κ
|∇u|p(x) dx+

∑

κ∈B

∫

κ∩Γint

|[[u]]|p(x)h1−p(x) ds+ 1

)

=C

(
∫

Ω
|∇u|p(x) dx+

∫

Γint

|[[u]]|p(x)h1−p(x) ds + 1

)

.

Thus, by (4.21) and (4.25) we get,
∫

Ω
|u−Qh(u)|

q(x) dx =
∑

κ∈Th

∫

κ
|u−Qh(u)|

q(x) dx ≤ ChN(1−γ).

Lastly, using the same argument, (4.16) and (4.17), we get
∫

∂Ω
|u−Qh(u)|

q(x) dS ≤ Ch(N−1)(1−β) and

∫

Ω
|∇Qh(u)|

p(x) dx ≤ C,

where C is independent of h. �

The following corollary follows immediately

Corollary 4.5. Let p, q : Ω → [1,∞) be log-Hölder continuous in Ω. Then, for all u ∈ Sk(Th),
we have,

• If p ≤ q ≤ p∗ in Ω, then
∫

Ω
|u−Qh(u)|

q(x) dx ≤ChN(1−γ)max
{

|u|q1
W 1,p(·)(Th)

, |u|q2
W 1,p(·)(Th)

}

,(4.31)

∫

Ω
|∇Qh(u)|

p(x) dx ≤Cmax
{

|u|p1
W 1,p(·)(Th)

, |u|p2
W 1,p(·)(Th)

}

.(4.32)

• If p ≤ q ≤ p∗ in Ω, then

(4.33)

∫

∂Ω
|u−Qh(u)|

q(x) dS ≤ Ch(N−1)(1−β) max
{

|u|q1
W 1,p(·)(Th)

, |u|q2
W 1,p(·)(Th)

}

.

Where C = C(p1, p2,Ω, Clog, N) and γ and β are given in Definitions 4.2 and 4.3, respectively.

Proof. It follows by Lemma 4.4, taking v = u|u|−1
W 1,p(·)(Th)

. �
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Remark 4.6. Under the same hypothesis of the last corollary, if 1 ≤ q ≤ p∗ in Ω, we have that,
for all u ∈ Sk(Th),

‖u−Qh(u)‖Lq(·)(Ω) ≤ ChN(1−γ)|u|W 1,p(·)(Th)
and ‖∇Qh(u)‖Lp(·)(Ω) ≤ C|u|W 1,p(·)(Th)

,

where C = C(p1, p2,Ω, Clog, N).

5. The lifting operator

We begin this section by defining, as in [6] (see also [1]), the lifting operator, i.e.

Definition 5.1. Let l ≥ 0 and Rh : W
1,p(·)(Th) → Sl(Th)

N defined as,
∫

Ω
〈Rh(u), φ〉 dx = −

∫

Γint

〈[[u]], {φ}〉 dS ∀φ ∈ Sl(Th)
N .

This operator appears in the first term of the discretized functional Ih. As we can see from the
definition, this operator represents the contribution of the jumps to the distributional gradient.
This is the reason why it is crucial to add this term in order to have the consistency of the
method.

We point out that this lifting operator was first used in [2] in order to describe the contributions
of the jumps across the interelements of the computed solution on the (computed) gradient of
the solution in a mixed formulation of Navier-Stokes equations. It was also used in [5] where a
solid mathematical background for the method introduced in [2] was proposed.

Now, we give a bound of the Lp(·)(Ω)-norm of Rh(u) in terms of the jumps of u in Γint.

When p is constant the proof follows from an inf-sup condition. Since in our case, we are
dealing with the Luxemburg norm, we can’t prove the boundedness directly from the definition.
We can prove this inf-sup condition, but we can not use it to prove the result. Instead, we find
a local characterization of Rh in order to prove a local bound and then, we prove the global
bound.

We give first the local estimate.

Lemma 5.2. There exists a constant C1 such that, for any κ ∈ Th, we have

‖Rh(u)‖Lp(·)(κ) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(κ∩Γint)
∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

Proof. We proceed in two steps.

Step 1. We first want to prove that,

(5.34) |Rh(u)| ≤
C

hNκ

∑

e⊂κ

∫

e
|[[u]]| dS ∀κ ∈ Th

where C is independent of κ and h.

We begin by observing that, by Hypothesis 3.1, there exists m = m(k,N) ∈ N such that for
each κ ∈ Th,

Rh(u)|κ ◦ Fκ =
m
∑

i=1

aiϕi(x),

where {ϕi} is the standard nodal base of
(

P l
)N

in the reference element κ̂ := F−1
κ (κ).
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Using the definition of Rh we have that for each 1 ≤ j ≤ m,
∫

Ω
Rh(u)ϕj ◦ F

−1
κ (x) dx =

m
∑

i=1

ai

∫

κ
ϕi ◦ F

−1
κ (x)ϕj ◦ F

−1
κ (x) dx = −

∑

e⊂κ

∫

e
[[u]]{ϕj ◦ F

−1
κ (x)} dS.

On the other hand, if we change variables and we use Hypothesis 3.2 and the fact that |ϕi(x)| ≤ 1,
we get

∫

κ
ϕi ◦ F

−1
κ (x)ϕj ◦ F

−1
κ (x) dx = hNκ

∫

κ̂
ϕi(x)ϕj(x)

|det(DFκ)|

hκ
N

dx = hNκ dij

with dij ∼ 1.

Therefore,

Rh(u)|κ ◦ Fκ =
1

hNκ

m
∑

i=1

(D−1b)iϕi(x) dx,

where D = (dij) and bj = −
∑

e⊂κ

∫

e
[[u]]{ϕj ◦ F

−1
κ (x)} dS.

Thus, using that |ϕi(x)| ≤ 1, we arrive at (5.34).

Step 2. Now, we show that there exists a constant C1 such that, for any κ ∈ Th, we have

‖Rh(u)‖Lp(·)(κ) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(κ∩Γint)
∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

By inequality (4.19), we have
∫

e
|[[u]]| ds ≤ Ch

N(1− 1
p
−

)

e ‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e).

Thus, by Hypothesis 3.2 and (5.34), we have that

|Rh(u)| ≤
C

h
N/p−
κ

∑

e⊂κ

‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e).

Now, take T =
∑

e∈κ ‖[[u]]h
− 1

p′(x)
e ‖Lp(·)(e). Then,

∫

κ

∣

∣

∣

Rh(u)

T

∣

∣

∣

p(x)
dx ≤ C

∫

κ
h−Np(x)/p−
κ dx ≤ ChN(1−p+/p−)

κ ≤ C

where in the last inequality we are using Proposition 2.11.

The result follows now by Remark 3.3. �

Lemma 5.3. Let p : Ω → : [1,∞) be log-Hölder continuous in Ω. Then, there exists a constant
C such that,

‖Rh(u)‖Lp(·)(Ω) ≤ C‖h−1/p′(x)[[u]]‖Lp(·)(Γint)
∀u ∈ W 1,p(·)(Th) ∀h ∈ (0, 1].

Proof. First, if we assume that ‖h−1/p′(x)[[u]]‖Lp(·)(Γint)
≤ 1, we can prove using Lemma 5.2 and

proceeding as in Lemma 4.4 that,
∫

Ω
|Rh(u)|

p(x) dx ≤ C.

Finally, taking v = u
(

‖h−1/p′(x)[[u]]‖Lp(·)(Γint)

)−1
, we obtain the desired result. �
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6. Convergence of the method

In this section we first prove the broken Poincaré Sobolev inequality which is crucial to get
compactness. We also prove the coercivity of the functional and we finally arrive at the proof
of Theorem 1.1.

Theorem 6.1. Let p : Ω → [1,+∞) be log−Hölder continuous in Ω. There exists a constant C
such that,

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ C|u|W 1,p(·)(Th)
∀u ∈ Sk(Th) ∀h ∈ (0, 1],

where (u)Ω = 1
|Ω|

∫

Ω u dx. In particular,

‖u‖Lp∗(·)(Ω) ≤ C
(

‖u‖L1(Ω) + |u|W 1,p(·)(Th)

)

∀u ∈ Sk(Th) ∀h ∈ (0, 1].

Proof. We begin by observing that

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ ‖u−Qh(u)‖Lp∗(·)(Ω) + ‖Qh(u)− (Qh(u))Ω‖Lp∗(·)(Ω) + C‖Qh(u)− u‖L1(Ω).

Then, using the Remark 4.6 and Theorem 2.8, we have

‖u− (u)Ω‖Lp∗(·)(Ω) ≤ C|u|W 1,p(·)(Th)
∀u ∈ Sk(Th) ∀h ∈ (0, 1].

The proof is complete. �

Theorem 6.2. For each h ∈ (0, 1], let uh ∈ W 1,p(·)(Th). If there exists a constant C independent
of h such that Ih(uh) ≤ C for all h ∈ (0, 1], then

sup
h∈(0,1]

(

‖uh‖L1(Ω) + |uh|W 1,p(·)(Th)

)

< ∞.

Moreover,

sup
h∈(0,1]

∫

∂Ω
|uh − uD|

p(x)h1−p(x) dS < ∞.

Proof. Since Ih(uh) ≤ C then, ‖h−1/p′(x)[[uh]]‖Lp(·)(Γint)
≤ C. And, by Lemma 5.3 and Proposi-

tion 2.1, we have
∫

Ω
|Rh(uh)|

p(x) dx ≤ C.

Using the third inequality in Proposition 2.5 and the above inequality, we get
∫

Ω
|Rh(uh) +∇uh|

p(x) dx ≥ 21−p2

∫

Ω
|∇uh|

p(x) dx−C.

Therefore,

Ih(uh) + C ≥ 21−p2

∫

Ω
|∇uh|

p(x) dx+

∫

ΓD

|uh − uD|
p(x)h1−p(x) dS +

∫

Γint

|[[uh]]|
p(x)h1−p(x) dS.

Thus, as Ih(uh) ≤ C, we obtain that |uh|W 1,p(·)(Th)
and

∫

∂Ω
|uh−uD|

p(x)h1−p(x) dS are uniformly

bounded.
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Finally, by Friedrichs inequality for BV, Lemma 3.6, Hölder inequality, Proposition 2.1 and
the fact that h ≤ 1 we have,

‖uh‖L1(Ω) ≤C

(

|uh|W 1,p(·)(Th)
+

∫

ΓD

|uh| dS

)

≤C

(

|uh|W 1,p(·)(Th)
+

∫

ΓD

|uD| dS + ‖(uh − uD)h
−1/p′(x)‖Lp(·)(ΓD)‖h

1/p′(x)‖Lp′(·)(ΓD)

)

≤C

(

|uh|W 1,p(·)(Th)
+

∫

ΓD

|uD| dS + ‖(uh − uD)h
−1/p′(x)‖Lp(·)(ΓD)

)

.

This completes the proof. �

Lemma 6.3. Let p, s and t be functions satisfying (H1), (H2) and (H3) respectively. Let
uh ∈ Sk(Th) be under the conditions of Theorem 6.2. Then, there exist a sequence hj → 0 and

a function u ∈ W 1,p(·)(Ω) such that

uhj

∗
⇀ u weakly* in BV (Ω)(6.35)

∇uhj
+Rh(uhj

) ⇀ ∇u weakly in Lp(·)(Ω),(6.36)

uhj
→ u strongly in Ls(·)(Ω),(6.37)

uhj
→ u strongly in Lt(·)(∂Ω).(6.38)

Proof. We first observe that, by Theorem 6.2, we have that

sup
h∈(0,1]

(‖uh‖L1(Ω) + |uh|W 1,p(·)(Th)
) < ∞ ∀h ∈ (0, 1].

Then, the proofs of (6.35) and (6.36) follows by applying Theorem 5.2 in [6] with value p1, and

using that Rh(uh) is bounded in Lp(·)(Ω), see Lemma 5.3.

We now prove (6.37). By (6.35) and the compactness of the embedding BV (Ω) ⊂ L1(Ω),
there exists a subsequence of uhj

, still denoted by uhj
, such that

uhj
→ u in L1(Ω).

Since ‖uhj
‖L1 + |uhj

|W 1,p(·)(Th)
is bounded, by Theorem 6.1, ‖uhj

‖Lp∗(·)(Ω) is bounded, and by

Theorem 2.9, u ∈ W 1,p(·)(Ω) ⊂ Lp∗(·)(Ω). Therefore, using Theorem 2.3, we obtain that

(6.39) uhj
→ u in Ls(·)(Ω),

for all s satisfying (H2).

Finally, we prove (6.38). We begin by observing that, by Corollary 4.5,

(6.40) ‖uh −Qh(uh)‖Lp(·)(Ω) → 0 as h → 0

and {Qh(uh)} is bounded in W 1,p(·)(Ω). Then, there exists v ∈ W 1,p(·)(Ω) and subsequence

{Qhj
(uhj

)} such that Qhj
(uhj

) ⇀ v weakly in W 1,p(·)(Ω). Therefore, by (6.39) and (6.40),
v = u.

Using Theorem 2.10,

(6.41) Qhj
(uhj

) → u strongly in Lt(·)(∂Ω).

Now, taking t̄ : Ω → [1,∞) log-Hölder with t ≤ t̄ < p∗ and by Corollary 4.5, we get Qhj
(uhj

)−

uhj
→ 0 strongly in Lt(·)(∂Ω). Therefore, uhj

→ u in Lt(·)(∂Ω). �
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Before proving the convergence of the minimizers, we need an auxiliary lemma. It is in this
step where we need more regularity of the boundary data.

Lemma 6.4. Let h ∈ (0, 1], and p : Ω → (1,∞) satisfying (H1). Assume that uD ∈ W 2,p2(Ω)
and let v ∈ W 2,p2(Ω) ∩ A then, there exists vh ∈ U1(Th), such that

‖vh − v‖W 1,p(·)(Ω) → 0 as h → 0,

and

Ih(vh) → I(v) as h → 0.

Proof. Since p is log-Hölder, we have that C∞(Ω̄) are dense in W 1,p(·)(Ω). Then the first part
follows by standard approximation theory, see in Theorem 3.1.5 [9].

Moreover, vh satisfies

(6.42) ‖v − vh‖Lp2 (∂κ) ≤ C‖v − vh‖W 1,p2 (κ) ≤ Chκ‖D
2v‖Lp2 (κ)

for each κ ∈ Th. Using Remark 3.4 and summing over all e ∈ ∂Ω, we have

(6.43)

∫

∂Ω
|v − vh|

p2h1−p2 ds ≤ Ch‖D2v‖p2Lp2 (Ω).

In addition, by Hölder inequality and since h ≤ 1, we have
∫

∂Ω
|v − vh|

p(x)h1−p(x) ds ≤ C‖|v − vh|
p(·)h(1−p2)p(·)/p2‖Lp2/p(·)(∂Ω).

Since
∫

∂Ω
(|v − vh|

p(x)h(1−p2)p(x)/p2)p2/p(x) ds =

∫

∂Ω
|v − vh|

p2h(1−p2) ds,

then, by (6.43)
∫

∂Ω
|v − vh|

p(x)h1−p(x) ds → 0 as h → 0.

Since vh ∈ W 1,p(·)(Ω) then [[vh]] = 0 and Rh(vh) = 0. Finally, using (6.42) and Theorem 2.6, we
obtain the desired result. �

Now, we are in a condition to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 6.4 there exist wh ∈ U1(Th) such that wh → uD strongly
in W 1,p(·)(Ω) and Ih(wh) → I(uD). Therefore, since Ih(uh) ≤ Ih(wh), we have that Ih(uh) is
bounded.

Then, by Theorem 6.2 and Lemma 6.3 there exist a subsequence uhj
and u ∈ W 1,p(·)(Ω) such

that

(6.44)

uhj

∗
⇀ u weakly* in BV (Ω),

∇uhj
+Rh(uhj

) ⇀ ∇u weakly in Lp(·)(Ω),

uhj
→ u strongly in Ls(·)(Ω), ∀s satisfying (H2)

uhj
→ u strongly in Lt(·)(∂Ω), ∀t satisfying (H3).

On the other hand, since the penalty term,
∫

ΓD

h1−p|uh − uD|
p dS
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is bounded, we have that

‖u− uD‖Lp(·)(ΓD) ≤ ‖u− uhj
‖Lp(·)(ΓD) + ‖uhj

− uD‖Lp(·)(ΓD) → 0.

Then u ∈ A.

Taking s = q and t = r in (6.44), by Proposition 2.6 we have

(6.45)
I(u) ≤ lim inf

j→∞

[
∫

Ω

(

|∇uhj
+Rh(uhj

)|p(x) + |uhj
− ξ|q(x)

)

dx+

∫

ΓN

|uhj
|r(x) dS

]

≤ lim inf
j→∞

Ihj
(uhj

) ≤ lim sup
j→∞

Ihj
(uhj

).

Now, we want to prove that u is the minimizer of I. Let v ∈ A∩W 2,p2(Ω), and let vh ∈ U1(Th)
as in Lemma 6.4. Then Ih(vh) → I(v). Therefore, by (6.45)

(6.46) I(u) ≤ lim inf
j→∞

Ihj
(uhj

) ≤ lim sup
j→∞

Ihj
(uhj

) ≤ lim
j→∞

Ihj
(vhj

) = I(v).

Now, let w ∈ A, then for any ε > 0 there exists v ∈ A∩W 2,p2(Ω) such that ‖v−w‖W 1,p(·)(Ω) <

ε. By Theorem 2.6 we have that I(v) < I(w) + ε, therefore by (6.46)

I(u) ≤ lim inf
j→∞

Ihj
(uhj

) ≤ lim sup
j→∞

Ihj
(uhj

) ≤ I(w) + ε.

Taking ε → 0, we get

I(u) ≤ lim inf
j→∞

Ihj
(uhj

) ≤ lim sup
j→∞

Ihj
(uhj

) ≤ I(w) ∀w ∈ A.

Therefore I(u) ≤ I(w).

Moreover, taking w = u, we have that all the inequalities in (6.45) are equalities, therefore
we have that Ihj

(uhj
) → I(u). Then

∫

Γint

|[[uhj
]]|p(x)hj

1−p(x) dS → 0

and using Lemma 5.3 we have that Rh(uhj
) → 0. This fact and (6.44) imply that ∇uhj

⇀ ∇u

weakly in Lp(·)(Ω).

Since u is the unique minimizer of I, the whole sequence uh converges to u.

Finally, since

∇uh +Rh(uh) ⇀ ∇u weakly in Lp(·)(Ω) and

∫

Ω
(|∇uh +Rh(uh)|

p(x) dx →

∫

Ω
|∇u|p(x) dx,

by Proposition 2.6, ∇uh + Rh(uh) → ∇u strongly in Lp(·)(Ω). Therefore, since Rh(uh) → 0

strongly in Lp(·)(Ω), we get that ∇uh → ∇u strongly in Lp(·)(Ω). �

7. The Continuous Galerkin Method

In order to make a complete study of this problem, we prove the convergence of the Continuous
Galerkin finite element method for our problem. In the next section, we make a comparison of
the two methods in an example.

For simplicity, we take the following functional:

I(u) =

∫

Ω

(

|∇u|p(x)

p(x)
+

|u− ξ|q(x)

q(x)

)

dx
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with q(x) satisfying (H2). Then, since the functional I is strictly convex and coercive in A there
exists a unique minimizer of the problem.

We take now a partition of Ω as in Hypothesis 3.1 and the usual conforming subspace Uk(Th)
of W 1,p(·)(Ω). This subspace consists of all continuous functions such that they are polynomials
of degree at most k in each κ ∈ Th . We assume that for some h′, uD ∈ Uk(Th′) (this assumption
replaces the one on Lemma 6.4).

Let now h ≤ h′ and

V k
h = {vh ∈ Uk(Th) : vh = uD on ∂Ω}.

For simplicity, we may assume that h′ = 1.

Remark 7.1. Let Πh : C∞
0 (Ω) → Uk

h be the interpolant mapping defined in Theorem 3.1.5 in [9].
Then,we have that

‖Πhφ− φ‖W 1,p(·)(Ω) ≤ C‖Πhφ− φ‖W 1,p2 (Ω) → 0,

for any φ ∈ C∞
0 (Ω). We also have, by the continuity of I, that I(Πhφ + uD) → I(φ + uD) as

h → 0.

By the strict convexity of I, for each h ∈ (0, 1] there exists a function uh ∈ V k
h such that uh

is a minimizer in V k
h of I.

Now we prove the main result of this section.

Theorem 7.2. The sequence {uh} converges to u strongly in W 1,p(·)(Ω), where u is the unique
minimizer of I.

Proof. Since {I(uh)} is uniformly bounded, there exists a subsequence of {uh} (still denoted by
{uh}) such that

uh ⇀ u weakly in W 1,p(·)(Ω),(7.47)

uh → u strongly in Lp(·)(Ω).(7.48)

As in the proof of Theorem 1.1, using Remark 7.1 instead of Lemma 6.4, we can prove that
u is the minimizer of I and that I(uh) → I(u) as h → 0. By the convexity of I and (7.47), we
have that

(7.49)

∫

Ω
|∇uh|

p(x) dx →

∫

Ω
|∇u|p(x) dx as h → 0.

Then, by (7.48) and (7.49), using Proposition 2.6 (3), we have that {uh} converges to u strongly

in W 1,p(·)(Ω).

Observe that, as in Theorem 1.1, we can conclude that the whole sequence {uh} converges to

u strongly in W 1,p(·)(Ω). �

8. One dimensional example

In this section, we give an example in one dimension. Our idea is to compare the Continuous
Galerkin Finite Element Method (CGFEM) versus the Discontinuous Galerkin Finite Element
Method (DGFEM). We will see in the following example that, if the function p attains values
close to one, our method converges faster to the solution.
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Let Ω = (−1, 1), 0 < ε, a < 1 and p : [−1, 1] → [1, 2] given by

p(x) =

{

1−ε
a |x|+ 1 + ε if |x| ≤ a,

2 if a ≤ |x| ≤ 1.

For this function p(x) and for a given B > 0, we study the following problem,

(8.50)

{

(|u′(x)|p(x)−1u′(x))′ = 0 in (−1, 1),

u(1) = −u(−1) = B.

We begin by observing that, since the operator is strictly monotone, we have a unique solution

of (8.50). Moreover, the solution satisfies |u′(x)| = C
1

(p(x)−1) for some constant C > 0. Therefore,
|u′(x)| > max{C,C1/ε} and, using that u ∈ C1,α([−1, 1]), we have that u′ does not change sign.
Then, since u(1) > u(−1) we obtain that u′(x) > 0.

Thus,

u(x) = C(x+ 1)−B if − 1 ≤ x ≤ −a,(8.51)

u(x) = C(x− 1) +B if a ≤ x ≤ 1.(8.52)

Since p is even, we have that u is odd, so u(0) = 0. Therefore, u(x) =
∫ x
0 C

1
p(s)−1 ds for all

x ∈ [−a, a].

On the other hand, since the derivative of u at zero has modulus C1/ε, if C > 1 we have

lim
ε→0

|u′(0)| = +∞.

This is reasonable since we expect to have big derivative when p approaches the value one.

From now on, we take ε = a = .01 and since it is easier to get B from C, we impose C = 1.3.

Then B =
∫ 1
0 1.3

100
1+999s ds ≃ 1.03 106. Observe that in this case, |u′(0)| = 1.3100 ≃ 2.4× 1011.

Now, we find the corresponding solution for the CGFEM and the DGFEM. In both cases
we take a uniform partition of [−1, 1] in n subintervals with size 2/n and k = 1. We use the
trapezoidal numerical quadrature to compute the integrals appearing in the discrete functionals.
The analysis of these integration errors falls beyond the scope of this paper.

Observe that for the continuous method, we impose the boundary conditions and then, the
space where we find minimizers has dimension n − 2. For the Discontinuous method, since
we do not impose conditions on the boundary, and the number of nodal basis are 2n − 2, we
are minimizing in a space of this dimension. Therefore, to make a comparison between both
methods, we compare the discrete problem for the DGFEM in n−intervals with the CGFEM in
2n−intervals.

We want to mention that, in order to find minimizers of both discrete problems, we use a
BFGS Quasi-Newton method (see [19, 25]).

In the next two figures, we first plot the solution versus the approximation using the DGFEM
and CGFEM for the case n = 41. The second figure is the graphic of the function p(x).
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Note that, when we use the CGFEM the discrete solution is close to the function y = x which
is a solution of (8.50) with p ≡ 2, that means that this method needs a smaller step in order to
see the points where p is close to one.

In the following figure we can see that, the minimizers of the continuous methods are far from
the solution even for n = 150 (300-intervals). We need n = 200 (400-intervals) to arrive at a
good approximation of u.
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Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos

Aires, 1428 Buenos Aires, Argentina.

E-mail address: ldpezzo@dm.uba.ar

Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150, B1613GSX

Los Polvorines, Provincia de Buenos Aires, and Departamento de Matemática, Facultad de Cien-
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