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Low-Rank Matrix Approximation

with Weights or Missing Data is NP-hard

Nicolas Gillis1 and François Glineur1

Abstract

Weighted low-rank approximation (WLRA), a dimensionality reduction technique for data anal-
ysis, has been successfully used in several applications, such as in collaborative filtering to design
recommender systems or in computer vision to recover structure from motion. In this paper, we
prove that computing an optimal weighted low-rank approximation is NP-hard, already when a
rank-one approximation is sought. In fact, we show that it is hard to compute approximate solu-
tions to the WLRA problem with some prescribed accuracy. Our proofs are based on reductions
from the maximum-edge biclique problem, and apply to strictly positive weights as well as to binary
weights (the latter corresponding to low-rank matrix approximation with missing data).

Keywords: low-rank matrix approximation, weighted low-rank approximation, missing data, ma-
trix completion with noise, PCA with missing data, computational complexity, maximum-edge
biclique problem.

1 Introduction

Approximating a matrix with one of lower rank is a key problem in data analysis and is widely used
for linear dimensionality reduction. Numerous variants exist emphasizing different constraints and
objective functions, e.g., principal component analysis (PCA) [16], independent component analysis [6],
nonnegative matrix factorization [18], and other refinements are often imposed on these models, e.g.,
sparsity to improve interpretability or increase compression [7].

In some cases, it may be necessary to attach a weight to each entry of the data matrix, expressing
its relative importance [8]. This is for example the case in the following situations:

⋄ The matrix to be approximated is obtained via a sampling procedure and the number of samples
and/or the expected variance vary among the entries. For example, it has been shown that using
a weighted norm gives better results in 2-D digital filter design [19] and microarray data analysis
[20].

⋄ Some data is missing/unknown, which can be taken into account by assigning zero weights to
the missing/unknown entries of the data matrix. This is for example the case in collaborative
filtering, notably used to design recommender systems [24] (in particular, the Netflix prize com-
petition has demonstrated the effectiveness of low-rank matrix factorization techniques [17]), or
in computer vision to recover structure from motion [26, 15], see also [4]. This problem is often
referred to as PCA with missing data [26, 13], and can be viewed as a low-rank matrix completion
problem with noise, i.e., approximate a given noisy data matrix featuring missing entries with a
low-rank matrix1.

1Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium. E-mail: nicolas.gillis@uclouvain.be
and francois.glineur@uclouvain.be. Nicolas Gillis is a research fellow of the Fonds de la Recherche Scientifique (F.R.S.-
FNRS). This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by
the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the
authors.

1In our settings, the rank of the approximation is fixed a priori.
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⋄ A greater emphasis must be placed on the accuracy of the approximation on a localized part of
the data, a situation encountered for example in image processing [14, Chapter 6].

Finding a low-rank matrix which is closest to the input matrix according to these weights is an
optimization problem called weighted low-rank approximation (WLRA). Formally, it can be formulated
as follows: first, given an m-by-n nonnegative weight matrix W ∈ R

m×n
+ , we define the weighted

Frobenius norm of an m-by-n matrix A as ||A||W = (
∑

i,j WijA
2
ij)

1
2 . Then, given an m-by-n real

matrix M ∈ R
m×n and a positive integer r ≤ min(m,n), we seek an m-by-n matrix X with rank at

most r that approximates M as closely as possible, where the quality of the approximation is measured
by the weighted Frobenius norm of the error:

p∗ = inf
X∈Rm×n

||M −X||2W such that X has rank at most r.

Since any m-by-n matrix with rank at most r can be expressed as the product of two matrices of
dimensions m-by-r and r-by-n, we will use the following more convenient formulation featuring two
unknown matrices U ∈ R

m×r and V ∈ R
n×r but no explicit rank constraint:

p∗ = inf
U∈Rm×r ,V ∈Rn×r

||M − UV T ||2W =
∑

ij

Wij(M − UV T )2ij . (WLRA)

Even though (WLRA) is suspected to be NP-hard [15, 27], this has never, to the best of our knowledge,
been studied formally. In this paper, we analyze the computational complexity in the rank-one case
(i.e., for r = 1) and prove the following two results.

Theorem 1. When M ∈ {0, 1}m×n, and W ∈ ]0, 1]m×n, it is NP-hard to find an approximate solution
of rank-one (WLRA) with objective function accuracy less than 2−11(mn)−6.

Theorem 2. When M ∈ [0, 1]m×n, and W ∈ {0, 1}m×n, it is NP-hard to find an approximate solution
of rank-one (WLRA) with objective function accuracy less than 2−12(mn)−7.

In other words, it is NP-hard to find an approximate solution to rank-one (WLRA) with positive
weights, and to the rank-one matrix approximation problem with missing data. Note that these results
can be easily generalized to any fixed rank r, see Remark 3.

The paper is organized as follows. We first review existing results about the complexity of (WLRA)
in Section 2. In Section 3.1, we introduce the maximum-edge biclique problem (MBP), which is
NP-hard. In Sections 3.2 and 3.3, we prove Theorems 1 and 2 respectively, using polynomial-time
reductions from MBP. We conclude with a discussion and some open questions.

1.1 Notation

The set of real m-by-n matrices is denoted R
m×n, or R

m×n
+ when all the entries are required to be

nonnegative. For A ∈ R
m×n, we note A:j the jth column of A, Ai: the ith row of A, and Aij or A(i, j)

the entry at position (i, j); for b ∈ R
m×1 = R

m, we note bi the ith entry of b. The transpose of A
is AT . The Frobenius norm of a matrix A is defined as ||A||2F =

∑

i,j(Aij)
2, and ||.||2 is the usual

Euclidean norm with ||b||22 =
∑

i b
2
i . For W ∈ R

m×n
+ , the weighted Frobenius ‘norm’ of a matrix A

is defined2 by ||A||2W =
∑

i,j Wij(Aij)
2. The m-by-n matrix of all ones is denoted 1m×n, the m-by-n

matrix of all zeros 0m×n, and In is the identity matrix of dimension n. The smallest integer larger or
equal to x is denoted ⌈x⌉.

2||.||W is a matrix norm if and only if W > 0, else it is a semi-norm.
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2 Previous Results

Weighted low-rank approximation is suspected to be much more difficult than the corresponding
unweighted problem (i.e., when W is the matrix of all ones), which is efficiently solved using the
singular value decomposition (SVD) [12]. In fact, it has been previously observed that the weighted
problem might have several local minima which are not global [27], while this cannot occur in the
unweighted case (i.e., when W is the matrix of all ones), see, e.g., [14, p.29, Th.1.14].

Example 1. Let

M =





1 0 1
0 1 1
1 1 1



 , and W =





1 100 2
100 1 2
1 1 1



 .

In the case of a rank-one factorization (r = 1) and a nonnegative matrix M , one can impose without
loss of generality that the solutions of (WLRA) are nonnegative. In fact, one can easily check that
any rank-one solution uvT of (WLRA) can only be improved by taking its component-wise absolute
value |uvT | = |u||v|T . Moreover, we can impose without loss of generality that ||u||2 = 1, so that only
two degrees of freedom remain. Indeed, for a given

u(x, y) =





x
y

√

1− x2 − y2



 , with

{

x ≥ 0, y ≥ 0
x2 + y2 ≤ 1

,

the corresponding optimal v∗(x, y) = argminv ||M − u(x, y)vT ||2W can be computed easily3. Figure 1
displays the graph of the objective function ||M −u(x, y)v∗(x, y)T ||W with respect to parameters x and

y; we observe four local minima, close to (
√
2
2 , 0), (0,

√
2
2 ), (0, 0) and (

√
2
2 ,

√
2
2 ). We will see later in

Figure 1: Objective function of (WLRA) with respect to the parameters (x, y).

Section 3 how this example has been generated.

3This problem can be decoupled into n independent quadratic programs in one variable, and admits the following
closed-form solution: v∗(x, y) = [(M ◦W )Tu]/.[W T (u◦u)], where ◦ (resp. /.) is the component-wise multiplication (resp.
division).
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However, if the rank of the weight matrix W ∈ R
m×n
+ is equal to one, i.e., W = stT for some

s ∈ R
m
+ and t ∈ R

n
+, (WLRA) can be reduced to an unweighted low-rank approximation. In fact,

||M − UV T ||2W =
∑

i,j

Wij (M − UV T )2ij =
∑

i,j

sitj (M − UV T )2ij

=
∑

i,j

(

√

sitj Mij − (
√
si Ui:)(

√

tj V
T
j: )
)2

.

Therefore, if we define a matrix M ′ such that M ′
ij =

√
sitj Mij ∀i, j, an optimal weighted low-rank

approximation (U, V ) of M can be recovered from a solution (U ′, V ′) to the unweighted problem for
matrix M ′ using Ui: = U ′

i:/
√
si ∀i and Vj: = V ′

j:/
√
tj ∀j.

When the weight matrix W is binary, WLRA amounts to approximating a matrix with missing
data. This problem is closely related to low-rank matrix completion, see [2] and the references therein,
which can be defined as

min
X

rank(X) such that Xij = Mij for (i, j) ∈ Ω, (MC)

where Ω ⊆ {1, 2, . . . ,m} × {1, 2, . . . , n} is the set of entries for which the values of M are known.
(MC) has been shown to be NP-hard [5], and it is clear that an optimal solution X∗ of (MC) can be
obtained by solving a sequence of (WLRA) problems with the same matrix M , with

Wij =

{

1 if (i, j) ∈ Ω
0 otherwise

,

and for different values of the target rank ranging from r = 1 to r = min(m,n). The smallest value of
r for which the objective function ||M − UV T ||2W of (WLRA) vanishes provides an optimal solution
for (MC). This observation implies that it is NP-hard to solve (WLRA) for each possible value of
r from 1 to min(m,n), since it would solve (MC). However, this does not imply that (WLRA) is
NP-hard when r is fixed, and in particular when r equals one. In fact, checking whether (MC) admits
a rank-one solution can be done easily4.

Rank-one (WLRA) can be equivalently reformulated as

inf
A

||M −A||2W such that rank(A) ≤ 1,

and, when W is binary, is the problem of finding, if possible, the best rank-one approximation of a
matrix with missing entries. To the best of our knowledge, the complexity of this problem has never
been studied formally; it will be shown to be NP-hard in the next section.

Another closely related result is the NP-hardness of the structure from motion problem (SFM), in
the presence of noise and missing data [21]. Several points of a rigid object are tracked with cameras
(we are given the projections of the 3-D points on the 2-D camera planes)5, and the aim is to recover
the structure of the object and the positions of the 3-D points. SFM can be written as a rank-four
(WLRA) problem with a binary weight matrix6 [15]. However, this result does not imply anything on
the complexity of rank-one (WLRA).

An important feature of (WLRA) is exposed by the following example.

4The solution X = uvT can be constructed observing that the vector u must be a multiple of each column of M .
5Missing data arise because the points may not always be visible by the cameras, e.g., in the case of a rotation.
6With the additional constraint that the last row of V must be all ones, i.e., Vr: = 11×n.

4



Example 2. Let

M =

(

1 ?
0 1

)

,

where ? indicates that an entry is missing, i.e., that the weight associated with this entry is 0 (1
otherwise). Observe that ∀(u, v) ∈ R

m × R
n,

rank(M) = 2 and rank(uvT ) = 1 ⇒ ||M − uvT ||W > 0.

However, we have
inf

(u,v)∈Rm×Rn
||M − uvT ||W = 0.

In fact, one can check that with

u(ǫ) =

(

1
ǫ

)

and v(ǫ) =

(

1
ǫ−1

)

, we have lim
ǫ→0

||M − u(ǫ)v(ǫ)T ||W = 0.

This indicates that, when W has zero entries, the set of optimal solutions of (WLRA) might be
empty. In other words, the (bounded) infimum of the objective function might be unattained. On the
other hand, the infimum is always attained for W > 0 since ||.||W is then a norm.

For this reason, these two cases will be analyzed separately: in Section 3.2, we study the compu-
tational complexity of the problem when W > 0, and, in Section 3.3, the case of a binary W (i.e., the
problem with missing data).

3 Complexity of rank-one (WLRA)

In this section, we use polynomial-time reductions from the maximum-edge biclique problem to prove
Theorems 1 and 2.

3.1 Maximum-Edge Biclique Problem

A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets such that there
is no edge between two vertices in the same set. The maximum-edge biclique problem (MBP) in a
bipartite graph is the problem of finding a complete bipartite subgraph (a biclique) with the maximum
number of edges.

Let M ∈ {0, 1}m×n be the biadjacency matrix of a bipartite graph Gb = (V1 ∪ V2, E) with V1 =
{s1, . . . sm}, V2 = {t1, . . . tn} and E ⊆ (V1 × V2) , i.e.,

Mij = 1 ⇐⇒ (si, tj) ∈ E.

The cardinality of E will be denoted |E| = ||M ||2F ≤ mn.

For example, Figure 2 displays the graph Gb generated by the matrix M of Example 1.

Figure 2: Graph corresponding to the matrix M of Example 1.
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With this notation, the maximum-edge biclique problem in a bipartite graph can be formulated as
follows [11]

min
u,v

||M − uvT ||2F
uivj ≤ Mij , ∀ i, j (MBP)

u ∈ {0, 1}m, v ∈ {0, 1}n,

where ui = 1 (resp. vj = 1) means that node si (resp. tj) belongs to the solution, ui = 0 (resp. vj = 0)
otherwise. The first constraint guarantees feasible solutions of (MBP) to be bicliques of Gb. In fact,
it is equivalent to the implication

Mij = 0 ⇒ ui = 0 or vj = 0,

i.e., if there is no edge between vertices si and tj, they cannot simultaneously belong to a solution.
The objective function minimizes the number of edges outside the biclique, which is equivalent to
maximizing the number of edges inside the biclique. Notice that the minimum of (MBP) is |E|− |E∗|,
where |E∗| denotes the number of edges in an optimal biclique.

The decision version of the MBP problem:

Given K, does Gb contain a biclique with at least K edges?

has been shown to be NP-complete [23] in the usual Turing machine model [9], which is our framework
in this paper. Therefore, computing |E| − |E∗|, the optimal value of (MBP), is NP-hard.

3.2 Low-Rank Matrix Approximation with Positive Weights

In order to prove NP-hardness of rank-one (WLRA) with positive weights (W > 0), let us consider
the following instance:

p∗ = min
u∈Rm,v∈Rn

||M − uvT ||2W , (W-1d)

with M ∈ {0, 1}m×n the biadjacency matrix of a bipartite graph Gb = (V,E) and the weight matrix
defined as

Wij =

{

1 if Mij = 1
d if Mij = 0

, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where d ≥ 1 is a parameter.
Intuitively, increasing the value of d makes the zero entries of M more important in the objective

function, which leads them to be approximated by small values. This observation will be used to show
that, for d sufficiently large, the optimal value p∗ of (W-1d) will be close to |E| − |E∗|, the optimal
value of (MBP) (Lemma 3).

A maximal biclique in Gb is a biclique not contained in a larger biclique, and can be seen as a
‘locally’ optimal solutions of (MBP). We will show that, as the value of parameter d increases, the
local minima of (W-1d) get closer to binary vectors describing maximal bicliques in Gb.

Example 1 illustrates the situation: the graph Gb corresponding to matrixM (cf. Figure 2) contains
four maximal bicliques {s1, s3, t1, t3}, {s2, s3, t2, t3}, {s3, t1, t2, t3} and {s1, s2, s3, t3}, and the weight
matrixW that was used is similar to the case d = 100 in problem (W-1d). We now observe that (W-1d)

has four local optimal solutions as well (cf. Figure 1) close to (
√
2
2 , 0), (0,

√
2
2 ), (0, 0) and (

√
2
2 ,

√
2
2 ). There

is a one to one correspondence between these solutions and the four maximal bicliques listed above (in

this order). For example, for (x, y) = (
√
2
2 , 0) we have u(x, y) = (

√
2
2 , 0,

√
2
2 )T , v∗(x, y) is approximately

equal to (
√
2, 0,

√
2)T , and this solution corresponds to the maximal biclique {s1, s3, t1, t3}.

Notice that a similar idea was used in [10] to prove NP-hardness of the rank-one nonnegative
factorization problem minu∈Rm

+ ,v∈Rn
+
||M − uvT ||F , where the zero entries of M were replaced by

sufficiently large negative ones.
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Remark 1 (Link with classical quadratic penalty method). It is worth noting that (W-1d) can be
viewed as the application of the classical quadratic penalty approach to the biclique problem, see, e.g.,
[22, §17.1]. In fact, defining F = {(i, j)|Mij = 1} and its complement F̄ = {(i, j)|Mij = 0}, the
biclique problem can be formulated as

min
u,v

∑

(i,j)∈F
(1− uivj)

2 such that uivj = 0 for all (i, j) ∈ F̄ . (3.1)

Indeed, in this formulation, it is clear that any optimal solution can be chosen such that vectors u and v
are binary, from which the equivalence with problem (MBP) easily follows. Penalizing (quadratically)
the equality constraints in the objective, we obtain

Pd(u, v) =
∑

(i,j)∈F
(1− uivj)

2 + d
∑

(i,j)∈F̄
(uivj)

2,

where d ≥ 0 is the penalty parameter. We now observe that our choice of W at the beginning of this
section gives Pd(u, v) = ||M − uvT ||2W , i.e., (W-1d) is exactly equivalent to minimizing Pd(u, v). This
implies that, as d grows, minimizers of problem (W-1d) will tend to solutions of the biclique problem
(MBP). Our goal is now to prove a more precise statement about the link between these two problems:
we provide (in Lemma 3) an explicit value for d that guarantees a small difference between the optimal
values of these two problems.

First, we establish that for any (u, v) such that ||M − uvT ||2W ≤ |E|, the absolute value of the row
or the column of uvT corresponding to a zero entry of M must be smaller than a constant inversely
proportional to 4

√
d.

Lemma 1. Let (i, j) be such that Mij = 0, then ∀(u, v) such that ||M − uvT ||2W ≤ |E|,

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj |
)

≤ 4

√

4|E|2
d

.

Proof. Without loss of generality u and v can be scaled such that ||u||2 = ||v||2 without changing

the product uvT , i.e., we replace u by u′ =
√

||v||2
||u||2u and v by v′ =

√

||u||2
||v||2 v so that ||u′||2 = ||v′||2 =

√

||u||2||v||2 and u′v′T = uvT . First, observe that since ||.||W is a norm,

||uvT ||W −
√

|E| = ||uvT ||W − ||M ||W ≤ ||M − uvT ||W ≤
√

|E|.

Since all entries of W are larger than 1 (d ≥ 1), we have

||u||2||v||2 = ||uvT ||F ≤ ||uvT ||W ≤
√

4|E|,

and then ||u||2 = ||v||2 ≤ 4
√

4|E|.
Moreover d(0 − uivj)

2 ≤ ||M − uvT ||2W ≤ |E|, so that |uivj | ≤
√

|E|
d which implies that either

|ui| ≤ 4

√

|E|
d or |vj | ≤ 4

√

|E|
d . Combining the above inequalities with the fact that (max1≤k≤n |vk|) and

(max1≤p≤m |up|) are bounded above by ||u||2 = ||v||2 ≤ 4
√

4|E| completes the proof.

We now prove the following general lemma which, combined with Lemma 1 above, will allow us
to derive a lower bound on the objective function of (W-1d) (it will also be used for the proof of the
problem with missing data in Section 3.3).
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Lemma 2. Let M ∈ {0, 1}m×n be the biadjacency matrix of a bipartite graph Gb = (V,E), W ∈ R
m×n
+

a weight matrix such that Wij = 1 for each pair (i, j) satisfying Mij = 1, and (u, v) be such that

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj|
)

≤ c, (3.2)

for each pair (i, j) satisfying Mij = 0, where 0 < c ≤ 1. Let also p = |E|−|E∗| be the optimal objective
function value of (MBP). Then, if p > 0, we have

||M − uvT ||W > p(1− 2c).

Proof. Define the biclique corresponding to the following set Ωc(u, v) ⊆ {1, 2, . . . ,m} × {1, 2, . . . , n}

Ωc(u, v) = { i | ∃j s.t. |uivj| > c } × { j | ∃i s.t. |uivj| > c }.

This biclique is part of the original graph, i.e., every edge in Ωc(u, v) belongs to Gb. Indeed, if Mij = 0,
the pair (i, j) cannot belong to Ωc(u, v) since, by Equation (3.2), the absolute value of either the ith

row or the jth column of uvT is smaller than c. By construction, we also have that the entries Mij

corresponding to pairs (i, j) not in the biclique Ωc(u, v) are approximated by values smaller than c.
The error corresponding to a unit entry of Mij not in the biclique Ωc(u, v) is then at least (1 − c)2

(because the corresponding weight Wij is equal to one). Since there are at least p = |E| − |E∗| such
entries (because there are |E| unit entries in M and at most |E∗| pairs in biclique Ωc(u, v)), we have

||M − uvT ||2W ≥ (1− c)2p > p(1− 2c) = p− 2pc.

We can now provide lower and upper bounds on the optimal value p∗ of (W-1d), and show that it
is not too different from the optimal value |E| − |E∗| of (MBP).

Lemma 3. Let 0 < ǫ ≤ 1. For any value of parameter d such that d ≥ 26|E|6
ǫ4

, the optimal value p∗ of
(W-1d) satisfies

|E| − |E∗| − ǫ < p∗ ≤ |E| − |E∗|.

Proof. Let (u, v) be an optimal solution of (W-1d) (since W > 0, there always exists at least one
optimal solution, cf. Section 2), and let us note p = |E|−|E∗| ≥ 0. If p = 0, then p∗ = 0 and the result
is trivial (it is the case when the rank of M is one, i.e., Gb contains only one biclique). Otherwise,
since any optimal solution of (MBP) plugged in (W-1d) achieves an objective function equal to p, we
must have

p∗ = ||M − uvT ||2W ≤ p = |E| − |E∗|,
which gives the upper bound.

Since d is greater than 4|E|2 for any 0 < ǫ ≤ 1, the constant α =
4

√

4|E|2
d appearing in Lemma 1

is smaller than one. This means that Lemma 2 is applicable, so that we have

||M − uvT ||2W > p− 2αp ≥ p− 2α|E| ≥ p− ǫ,

which gives the lower bound (the last inequality follows from the fact that 2α|E| ≤ ǫ is equivalent to

the condition d ≥ 26|E|6
ǫ4 ).

This result implies that for ǫ = 1, i.e., for d ≥ (2|E|)6, we have |E| − |E∗| − 1 < p∗ ≤ |E| − |E∗|,
and therefore computing p∗ exactly would allow to recover |E∗| (since |E∗| = |E| − ⌈p∗⌉), which is
NP-hard. Since the reduction from (MBP) to (W-1d) is polynomial (it uses the same matrix M and a
weight matrix W whose description has polynomial length), we conclude that solving (W-1d) exactly
is NP-hard. The next result shows that even solving (W-1d) approximately is NP-hard.
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Corollary 1. For any d ≥ (2mn)6, M ∈ {0, 1}m×n and W ∈ {1, d}m×n, it is NP-hard to find an

approximate solution of rank-one (WLRA) with objective function accuracy less than 1− (2mn)3/2

d1/4
.

Proof. Let d ≥ (2mn)6, 0 < ǫ = (2mn)3/2

d1/4
< 1, and (ū, v̄) be an approximate solution of (W-1d) with

objective function accuracy (1−ǫ), i.e., p∗ ≤ p̄ = ||M− ūv̄T ||2W ≤ p∗+1−ǫ. Since d = (2mn)6

ǫ4
≥ (2|E|)6

ǫ4
,

Lemma 3 applies and we have

|E| − |E∗| − ǫ < p∗ ≤ p̄ ≤ p∗ + 1− ǫ ≤ |E| − |E∗|+ 1− ǫ.

We finally observe that knowing p̄ allows to recover |E∗|, which is NP-hard. In fact, adding ǫ to the
above inequalities gives |E| − |E∗| < p̄+ ǫ ≤ |E| − |E∗|+ 1, and therefore

|E∗| = |E| −
⌈

p̄+ ǫ
⌉

+ 1.

We are now in position to prove Theorem 1, which deals with the hardness of rank-one (WLRA)
with bounded weights.

Theorem 1. Let us use Corollary 1 with W ∈ {1, d}m×n, and define W ′ = 1
dW ∈ {1

d , 1}m×n. Clearly,
replacing W by W ′ in (W-1d) simply amounts to multiplying the objective function by 1

d , with

||M − uvT ||2W ′ = 1
d ||M − uvT ||2W . Taking d1/4 = 2(2mn)3/2 in Corollary 1, we obtain that for

M ∈ {0, 1}m×n and W ∈]0, 1]m×n, it is NP-hard to find an approximate solution of rank-one (WLRA)

with objective function accuracy less than 1
d

(

1− (2mn)3/2

d1/4

)

= 1
2d = 2−11(mn)−6.

Remark 2. The above bounds on d have been crudely estimated, and can be improved. Our main goal
here was to show existence of a polynomial-time reduction from (MBP) to rank-one (WLRA).

Remark 3. Using the same construction as in [11, Theorem 3], this rank-one NP-hardness result can
be generalized to any factorization rank, i.e., approximate (WLRA) for any fixed rank r is NP-hard.
The idea is the following: given a bipartite graph Gb with biadjacency matrix M ∈ {0, 1}m×n, we
construct a larger bipartite graph G′

b which is made of r disconnected copies of Gb, whose biadjacency
matrix is therefore given by

M ′ =











M 0m×n . . . 0m×n

0m×n M 0m×n
...

. . .
...

0m×n . . . M











∈ {0, 1}rm×rn.

Clearly, no biclique in this graph can be larger than a maximum biclique in Gb, and there are (at least)
r disjoint bicliques with such maximum size in G′

b. Letting (U, V ) ∈ R
rm×r × R

r×rn be an optimal
solution of the rank-r (WLRA) problem with M ′ above and weights W ′ = M ′+d(1rm×rn−M ′) defined
as before, it can be shown that, for d sufficiently large, each rank-one factor U:kV

T
:k must correspond

to a maximum biclique of Gb.

3.3 Low-Rank Matrix Approximation with Missing Data

The above NP-hardness proof does not cover the case whenW is binary, corresponding to missing data
in the matrix to be approximated (or to low-rank matrix completion with noise). This corresponds to
the following problem

inf
U∈Rm×r ,V ∈Rn×r

||M − UV T ||2W =
∑

ij

Wij(M − UV T )2ij , W ∈ {0, 1}m×n.

9



In the same spirit as before, we consider the following rank-one version of the problem

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W , (MD-1d)

with input data matrices M and W defined as follows

M =

(

Mb 0s×Z

0Z×t dIZ

)

and W =

(

1s×t B1

B2 IZ

)

,

where Mb ∈ {0, 1}s×t is the biadjacency matrix of the bipartite graph Gb = (V,E), d > 1 is a
parameter, Z = st− |E| is the number of zero entries in Mb, and m = s + Z and n = t+ Z are the
dimensions of M and W .

Binary matrices B1 ∈ {0, 1}s×Z and B2 ∈ {0, 1}Z×t are constructed as follows: assume the Z zero
entries of Mb can be enumerated as

{Mb(i1, j1),Mb(i2, j2), . . . ,Mb(iZ , jZ)},

and let kij be the (unique) index k (1 ≤ k ≤ Z) such that (ik, jk) = (i, j) (therefore kij is only defined
for pairs (i, j) such that Mb(i, j) = 0, and establishes a bijection between these pairs and the set
{1, 2, . . . , Z}). We now define matrices B1 and B2 as follows: for every index 1 ≤ kij ≤ Z, we have

B1(i, kij) = 1, B1(i
′, kij) = 0 ∀i′ 6= i and B2(kij , j) = 1, B2(kij , j

′) = 0 ∀j′ 6= j .

Equivalently, each column of B1 (resp. row of B2) corresponds to a different zero entry Mb(i, j), and
contains only zeros except for a one at position i within the column (resp. at position j within the
row). Hence the matrix B1 (resp. B2) contains only zero entries except Z entries equal to one, one in
each column (resp. row).

In the case of Example 1, we get

M =









1 0 1
0 1 1
1 1 1

03×2

02×3 d I2









and W =













13×3

1 0
0 1
0 0

0 1 0
1 0 0

I2













,

i.e., the matrix to be approximated can be represented as













1 0 1 0 ?
0 1 1 ? 0
1 1 1 ? ?

? 0 ? d ?
0 ? ? ? d













. (3.3)

For any feasible solution (u, v) of (MD-1d), we also note

u =

(

u(b)

u(d)

)

∈ R
m, u(b) ∈ R

s and u(d) ∈ R
Z ,

v =

(

v(b)

v(d)

)

∈ R
n, v(b) ∈ R

t and v(d) ∈ R
Z .

We will show that this formulation ensures that, as d increases, the zero entries of matrix Mb (the
biadjacency matrix of Gb which appears as the upper left block of matrix M) have to be approximated
with smaller values. Hence, as for (W-1d), we will be able to prove that the optimal value p∗ of

10



(MD-1d) will have to get close to the minimal value |E| − |E∗| of (MBP), implying NP-hardness of
its computation.

Intuitively, when d is large, the lower right matrix dIZ of M will have to be approximated by
a matrix with large diagonal entries, since they are weighted by unit entries in matrix W . Hence

u
(d)
kij

v
(d)
kij

has to be large for all 1 ≤ kij ≤ Z. We then have at least either u
(d)
kij

or v
(d)
kij

large for all

kij (recall that each kij corresponds to a zero entry in M at position (i, j), cf. definition of B1 and
B2 above). By construction, we also have two entries M(s + kij, j) = 0 and M(i, t + kij) = 0 with
unit weights corresponding to the nonzero entries B1(i, kij) and B2(kij , j), which then also have to be

approximated by small values. If u
(d)
kij

(resp. v
(d)
kij

) is large, then v
(b)
j (resp. u

(b)
i ) will have to be small

since u
(d)
kij

v
(b)
j ≈ 0 (resp. u

(b)
i v

(d)
kij

≈ 0). Finally, either u
(b)
i or v

(b)
j has to be small, implying that Mb(i, j)

is approximated by a small value, because (u(b), v(b)) can bounded independently of the value of d.

We now proceed as in Section 3.2. Let us first give an upper bound for the optimal value p∗ of
(MD-1d).

Lemma 4. For d > 1, the optimal value p∗ of (MD-1d) is bounded above by |E| − |E∗|, i.e.,

p∗ = inf
u∈Rm,v∈Rn

||M − uvT ||2W ≤ |E| − |E∗|. (3.4)

Proof. Let us build the following feasible solution (u, v) of (MD-1d): (u(b), v(b)) is a (binary) optimal
solution of (MBP) and (u(d), v(d)) is defined as7

u
(d)
kij

=

{

dK if v
(b)
j = 0,

d1−K if v
(b)
j = 1,

and v
(d)
kij

=

{

d1−K if v
(b)
j = 0,

dK if v
(b)
j = 1,

(3.5)

where K is a real parameter and kij is the index of the column of B1 and the row of B2 corresponding
to the zero entry (i, j) of Mb (i.e., (i, j) = (ikij , jkij )).

We have that

(uvT ) ◦W =

(

u(b)v(b)
T

D1

D2 dIZ

)

,

where ◦ is the component-wise (or Hadamard) product between two matrices, and matrices D1 and
D2 satisfy

{

Di(l, p) = 0 if Bi(l, p) = 0,
Di(l, p) ∈ {0, d1−K} if Bi(l, p) = 1,

i = 1, 2.

In fact, let us analyze the four blocks of (uvT ) ◦W :

1. Upper-left: the upper-left block of W and uvT are respectively the all-one matrix and u(b)v(b)
T
.

2. Lower-right: since the lower-right block of W is the identity matrix, we only need to consider

the diagonal entries of the lower-right block of uvT , which are given by u
(d)
kij

v
(d)
kij

= d for kij =

1, 2, . . . , Z, cf. Equation (3.5).

3. Upper-right and lower-left: by definition of B1 and B2, the only entries of D1 and D2 which may
be different from zero are given by

D1(i, kij) = u
(b)
i v

(d)
kij

and D2(kij , j) = u
(d)
kij

v
(b)
j ,

7Notice that this construction is not symmetric, and the variant using u(b) instead of v(b) to define u(d) and v(d) is
also possible.
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for all (i, j) such that Mb(i, j) = 0. By construction, we have either v
(b)
j = 0 or v

(b)
j = 1. If

v
(b)
j = 0, then v

(d)
kij

= d1−K by Equation (3.5) and we have D1(i, kij) = u
(b)
i v

(d)
kij

∈ {0, d1−K}
and D2(kij , j) = 0. If v

(b)
j = 1, we have u

(b)
i = 0 (since Mb(i, j) = 0) and u

(d)
kij

= d1−K by

Equation (3.5) whence D1(i, kij) = 0 and D2(kij , j) = d1−K .

Finally, D1 and D2 have at most Z non-zero entries (recall Z is the number of zero entries in Mb),
which are all equal to d1−K ; therefore,

p∗ ≤ ||M − uvT ||2W ≤ |E| − |E∗|+ 2Zd2(1−K), ∀K. (3.6)

Since d > 1, taking the limit K → +∞ gives the result.

Example 3. Let us illustrate the construction of Lemma 4 on the matrix from Example 1, which
contains two maximum bicliques with 4 edges, including the one corresponding to u(b) = (0, 1, 1)T and
v(b) = (0, 1, 1)T . Taking u = (0, 1, 1, d1−K , dK)T and v = (0, 1, 1, dK , d1−K)T , we obtain













1 0 1 0 ?
0 1 1 ? 0
1 1 1 ? ?

? 0 ? d ?
0 ? ? ? d













≈ uvT =













0 0 0 0 0
0 1 1 dK d1−K

0 1 1 dK d1−K

0 d1−K d1−K d d2(1−K)

0 dK dK d2K d













,

with ||M −uvT ||2W = (|E| − |E∗|)+2d2(1−K) = 3+2d2(1−K), which is less than the bound 3+4d2(1−K)

guaranteed by Equation (3.6).

We now prove a property similar to Lemma 1 for any solution with objective value smaller that
|E|.

Lemma 5. Let d >
√

|E| and (i, j) be such that Mb(i, j) = 0, then the following holds for any pair
(u, v) such that ||M − uvT ||2W ≤ |E|:

min
(

max
1≤k≤n

|uivk|, max
1≤p≤m

|upvj|
)

≤
√
2 |E| 34

(

d−
√

|E|
)

1
2

. (3.7)

Proof. Without loss of generality we set ||u(b)||2 = ||v(b)||2 by scaling u and v without changing uvT .
Observing that

||u(b)||2||v(b)||2 −
√

|E| = ||u(b)v(b)T ||F − ||Mb||F ≤ ||Mb − u(b)v(b)T ||F
≤ ||M − uvT ||W ≤

√

|E|,

we have ||u(b)||2||v(b)||2 ≤ 2
√

|E|, and ||u(b)||2 = ||v(b)||2 ≤
√
2|E| 14 .

Assume Mb(i, j) is zero for some pair (i, j) and let k = kij denote the index of the corresponding

column of B1 and row of B2 (i.e., such that B1(i, k) = B2(k, j) = 1). By construction, u
(d)
k v

(d)
k has to

approximate d in the objective function. This implies (u
(d)
k v

(d)
k − d)2 ≤ |E| and then

u
(d)
k v

(d)
k ≥ d−

√

|E| > 0.

Suppose |u(d)k | is greater than |v(d)k | (the case where |v(d)k | is greater than |u(d)k | is similar), which implies

|u(d)k | ≥ (d−|E| 12 ) 1
2 . Moreover, since B2(k, j) is a unit weight, we have that u

(d)
k vj has to approximate

zero in the objective function, implying

(u
(d)
k vj − 0)2 ≤ |E| ⇒ |u(d)k vj | ≤

√

|E|.
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Hence

|vj| ≤
√

|E|
|u(d)k |

≤ |E| 12
(

d−
√

|E|
)

1
2

, (3.8)

and since (max1≤p≤m |up|) is bounded by ||u(b)||2 ≤
√
2|E| 14 , the proof is complete.

Using Lemma 2, we can now derive a lower bound for the value of p∗.

Lemma 6. Let 0 < ǫ ≤ 1. For any value of parameter d strictly greater than 8|E|
7
2

ǫ2 +|E| 12 , the infimum
p∗ of (MD-1d) satisfies

|E| − |E∗| − ǫ < p∗.

Proof. Let us note p = |E| − |E∗|. If p = 0, the result is trivial since p∗ = 0. Otherwise, suppose

p∗ ≤ p − ǫ and let β =
√
2 |E|

3
4

(

d−
√

|E|
) 1

2
. First observe that d > 8|E|

7
2

ǫ2
+ |E| 12 is equivalent to 2|E|β < ǫ.

Then, by continuity of (MD-1d), for any δ such that δ < ǫ, there exists a pair (u, v) such that

||Mb − u(b)v(b)T ||2W ≤ ||M − uvT ||2W ≤ p− δ ≤ |E|.

In particular, let us take δ = 2|E|β < ǫ. Observe that β ≤ 1 as soon as d ≥ 2|E| 32 + |E| 12 (which is
guaranteed because 0 < ǫ ≤ 1). By Lemma 5 and Lemma 2 (applied on matrix Mb and the solution
(u(b), v(b))), we then have

p− 2βp < ||Mb − u(b)v(b)T ||2W ≤ ||M − uvT ||2W ≤ p− δ.

Dividing the above inequalities by p > 0, we obtain

1− 2β < 1− δ

p
< 1− δ

|E| ⇒ δ < 2|E|β,

a contradiction.

Corollary 2. For any d > 8(mn)7/2 +
√
mn, M ∈ {0, 1, d}m×n, and W ∈ {0, 1}m×n, it is NP-hard to

find an approximate solution of rank-one (WLRA) with objective function accuracy 1− 2
√
2(mn)7/4

(d−√
mn)1/2

.

Proof. Let d > 8(mn)7/2 +
√
mn, 0 < ǫ = 2

√
2(mn)7/4

(d−√
mn)1/2

< 1, and (ū, v̄) be an approximate solution

of (W-1d) with absolute error (1 − ǫ), i.e., p∗ ≤ p̄ = ||M − ūv̄T ||2W ≤ p∗ + 1 − ǫ. Lemma 6 applies

because d = 8(mn)7/2

ǫ2
+
√
mn ≥ 8(st)7/2

ǫ2
+
√
st ≥ 8|E|7/2

ǫ2
+ |E|1/2. Using Lemmas 4 and 6, the rest of the

proof is identical as the one of Theorem 1. Since the reduction from (MBP) to (MD-1d) is polynomial
(description of matrices W and M has polynomial length, since the increase in matrix dimensions
from Mb to M is polynomial), we conclude that finding such an approximate solution for (MD-1d) is
NP-hard.

We can now easily derive Theorem 2, which deals with the hardness of rank-one (WLRA) with a
bounded matrix M .

Theorem 2. Replacing M by M ′ = 1
dM in (MD-1d) gives an equivalent problem with objective func-

tion multiplied by 1
d2
, since 1

d2
||M −uvT ||2W = ||M ′− uvT

d ||2W . Taking d = 25(mn)7/2+
√
mn in Corol-

lary 2, we find that it is NP-hard to compute an approximate solution of rank-one (WLRA) for M ∈
[0, 1]m×n and W ∈ {0, 1}m×n, and with objective function accuracy less than 1

d2

(

1 − 2
√
2(mn)7/4

(d−√
mn)1/2

)

=
1

2d2 ≥ 2−12(mn)−7.
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4 Concluding Remarks

In this paper, we have studied the complexity of the weighted low-rank approximation problem
(WLRA), and proved that computing an approximate solution with some prescribed accuracy is NP-
hard, already in the rank-one case, both for positive and binary weights (the latter also corresponding
to low-rank matrix completion with noise, or PCA with missing data).

The following more general problem is sometimes also referred to as WLRA:

inf
U∈Rm×r,V ∈Rr×n

||M − UV ||2(P ), (4.1)

where ||A||2(P ) = vec(A)TPvec(A), with vec(A) a vectorization of matrix A and P an mn-by-mn posi-

tive semidefinite matrix, see [25] and the references therein. Since our WLRA formulation corresponds
to the special case of a diagonal (nonnegative) P , our hardness results also apply to Problem (4.1).

It is also worth pointing out that, when the data matrix M is nonnegative, any optimal solution
to rank-one (WLRA) can be assumed to be nonnegative (see discussion for Example 1). Therefore, all
the complexity results of this paper apply to the weighted nonnegative matrix factorization problem
(weighted NMF), which is the following low-rank matrix approximation problem with nonnegativity
constraints on the factors

min
U∈Rm×r ,V ∈Rn×r

||M − UV T ||2W such that U ≥ 0, V ≥ 0.

Hence, it it is NP-hard to find an approximate solution to rank-one weighted NMF (used, e.g., in
image processing [14, Chapter 6]) and to rank-one NMF with missing data (used, e.g., for collaborative
filtering [3]). This is in contrast with unweighted rank-one NMF, which is polynomially solvable (e.g.,
taking the absolute value of the first rank-one factor generated by the singular value decomposition).
Note that (unweighted) NMF has been shown to be NP-hard when r is not fixed [29] (i.e., when r is
part of the input).

Nevertheless, many questions remain open, including the following:

⋄ Our approximation results are rather weak. In fact, they require the objective function accuracy
to increase with the dimensions of the input matrix, in proportion with (mn)−6, which is some-
what counter-intuitive. The reason is twofold: first, independently of the size of the matrix, we
needed the objective function value of approximate solutions of problems (W-1d) and (MD-1d)
to be no larger than the objective function of the optimal biclique solution plus one (in order
to obtain |E∗| by rounding). Second, parameter d in problems (W-1d) and (MD-1d) depends
on the dimensions of matrix M . Therefore, when matrices W or M are rescaled between 0
and 1, the objective function accuracy is affected by parameter d, and hence decreases with the
dimensions of matrix M . Strengthening of these bounds is a topic for further research.

⋄ Moreover, as pointed out to us, these results say nothing about the hardness of approximation
within a constant multiplicative factor. It would then be interesting to combine our reduc-
tions with inapproximability results for the biclique problem (which have yet to be investigated
thoroughly, see, e.g., [28]), or construct reductions from other problems.

⋄ When W is the matrix of all ones, WLRA can be solved in polynomial-time. We have shown
that, when the ratio between the largest and the smallest entry inW is large enough, the problem
is NP-hard (Theorem 1). It would be interesting to investigate the gap between these two facts,
i.e., what is the minimum ratio between the entries of W that leads to an NP-hard WLRA
problem?

14



⋄ When rank(W ) = 1, WLRA can be solved in polynomial-time (cf. Section 2) while it is NP-hard
for a general matrix W (with rank up to min(m,n)). What is the complexity of (WLRA) if the
rank of the weight matrix W is fixed and greater than one, e.g., if rank(W ) = 2?

⋄ When data is missing, the rank-one matrix approximation problem is NP-hard in general. Nev-
ertheless, it has been observed [1] that when the given entries are sufficiently numerous, well-
distributed in the matrix, and affected by a relatively low level of noise, the original uncorrupted
low-rank matrix can be recovered accurately, with a technique based on convex optimization
(minimization of the nuclear norm of the approximation, which can be cast as a semidefinite
program). It would then be particularly interesting to analyze the complexity of the problem
given additional assumptions on the data matrix, for example on the noise distribution, and deal
in particular with situations related to applications.

Acknowledgments

We thank Chia-Tche Chang for his helpful comments. We are grateful to the insightful comments of
the three anonymous reviewers which helped to improve the paper substantially.

References

[1] E.J. Candès and Y. Plan, Matrix Completion with Noise, in Proceedings of the IEEE, 2009.

[2] E.J. Candès and B. Recht, Exact Matrix Completion via Convex Optimization, Foundations of Com-
putational Mathematics, 9 (2009), pp. 717–772.

[3] F. Chen, G. Wanga and C. Zhang, Collaborative filtering using orthogonal nonnegative matrix tri-
factorization, Information Processing & Management, 45(3) (2009), pp. 368–379.

[4] P. Chen, Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-Rank Matrix,
International Journal of Computer Vision, 80(1) (2008), pp. 125–142.

[5] A.L. Chistov and D.Yu. Grigoriev, Complexity of quantifier elimination in the theory of algebraically
closed fields, Proceedings of the 11th Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Springer, 176 (1984), pp. 17–31.

[6] P. Comon, Independent component analysis, A new concept?, Signal Processing, 36 (1994), pp. 287–314.

[7] A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet, A Direct Formulation for
Sparse PCA Using Semidefinite Programming, SIAM Rev., 49(3) (2007), pp. 434–448.

[8] K.R. Gabriel and S. Zamir, Lower Rank Approximation of Matrices by Least Squares With Any Choice
of Weights, Technometrics, 21(4) (1979), pp. 489–498.

[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide to the theory of NP-
completeness, Freeman, San Francisco, 1979.

[10] N. Gillis and F. Glineur, Nonnegative Factorization and The Maximum Edge Biclique Problem. CORE
Discussion paper 2008/64, 2008.

[11] , Using underapproximations for sparse nonnegative matrix factorization, Pattern Recognition, 43(4)
(2010), pp. 1676–1687.

[12] G.H. Golub and C.F. Van Loan, Matrix Computation, 3rd Edition, The Johns Hopkins University
Press Baltimore, 1996.

[13] B. Grung and R. Manne, Missing values in principal component analysis, Chemom. and Intell. Lab.
Syst., 42 (1998), pp. 125–139.

[14] N.-D. Ho, Nonnegative Matrix Factorization - Algorithms and Applications, PhD thesis, Université
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