1105.3180v2 [g-fin.PR] 13 Dec 2011

arXiv

The small-maturity smile for exponential Lévy models

José E. Figueroa-Lépez* Martin Fordef

Abstract

We derive a small-time expansion for out-of-the-money call options under an exponential Lévy model, using
the small-time expansion for the distribution function given in Figueroa-Lépez&Houdré[FLH09], combined with a
change of numéraire via the Esscher transform. In particular, we find that the effect of a non-zero volatility o of
the Gaussian component of the driving Lévy process is to increase the call price by 2o*t*e*v/(k)(1+ o(1)) as t — 0,
where v is the Lévy density. Using the small-time expansion for call options, we then derive a small-time expansion
for the implied volatility 7(k) at log-moneyness k, which sharpens the first order estimate &7 (k) ~ % given
in [TnkvI0]. Our numerical results show that the second order approximation can significantly outperform the first
order approximation. Our results are also extended to a class of time-changed Lévy models. We also consider a
small-time, small log-moneyness regime for the CGMY model, and apply this approach to the small-time pricing of
at-the-money call options; we show that for Y € (1, 2), lim¢—o til/YIE(St —S0)+ = SoE*(Z4) and the corresponding
at-the-money implied volatility &;(0) satisfies lim;—o &¢(0)/t*Y ~1/2 = \/2r E*(Z,.), where Z is a symmetric Y-
stable random variable under P* and Y is the usual parameter for the CGMY model appearing in the Lévy density
v(z)=Cx Ve M 1 0 + C|x|717yefc‘”‘1{x<o} of the process.

1 Introduction

Lévy processes have played an important role in the development of financial models which can accurately approximate
the so-called stylized features of historical asset prices and option prices. In the “statistical world”, financial asset prices
exhibit distributions with heavy tails and high kurtosis as well as other dynamical features such as volatility clustering
and leverage. In the “risk-neutral world”, market prices of vanilla options exhibit “skewed” implied volatilities (relative
to changes in the strike), contradicting the classical Black-Scholes model which predicts a flat implied volatility smile.
The smile phenomenon has been more pronounced after the 1987 market crash. Concretely, out-of-the-money equity
put options typically bear a higher risk-premium (larger implied volatilities) than in-the-money puts. This effect is
more dramatic as the time-to-maturity decreases. As explained in (see Section 1.2.2), the latter empirical fact
is viewed by many as a clear indication that a jump risk is recognized by the participants in the option market, and
stochastic volatility models are, in general, not able to reproduce the pronounced implied volatility skew of short-term
option prices unless the “volatility of volatility” is forced to take high values.

The literature on small-time asymptotics for option prices and implied volatilities has grown significantly during
the last decade. For recent accounts of the subject in the case of stochastic volatility models, we refer the reader
to [GHLOWQ9] for local volatility models, [FJLI0] for the Heston model, [FordeQ9] for a general uncorrelated local-
stochastic volatility model and [FordeI(] for SABR type models. We concentrate here on asset price models with
jumps. For an It6 semimartingale model for the underlying price process (S;), Carr& Wu[CWO03] argued, by partially
heuristic arguments, that the price of an out-of-the-money call option converges to zero at sharply different speeds
depending on whether the underlying asset price process is purely continuous, purely discontinuous, or a combination
of both. For instance, in the presence of jumps, they argue that the

E(S; — K)* — (So — K)4 ~ ct, (1)
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for some constant ¢ # 0, as the time-to-maturity ¢ tends to 0 , while the call price converges at the rate O(e‘c/ t) for a
purely-continuous model. These statements were subsequently exploited in [CW03] to investigate which kind of model
is more adequate to describe the observed market option prices near to expiration. They concluded the necessity of
both a continuous and a jump component to describe the implied volatility of S&P 500 index options and argued,
based on simulation experiments, that the theoretical asymptotic behavior is usually manifested by options maturing
within 20 days. We also refer the reader to [AS02] for further empirical evidence on the presence of both a continuous
and jump component.

Using the closed-form expressions for call option prices, Boyarchenko&Levendorksii[BL0Z2 (see also [Lev04al,
Lev04b], [Lev04c]) establish the following small-time asymptotic behaviour

SiE(st _ K, ~ t/(ef — M) w(da), (k>0 & t—0), 2)
0

for several popular exponential Lévy models S; = SpeXt, where k is the log-moneyness k := log(K/Sp) and v is the Lévy
measure of the underlying Lévy process (X;). Subsequently, Levendorskii [Lev08] obtained (2)) under certain technical
conditions (see Theorem 2.1 therein), namely that [(|z[2A1)e” <21y (dz) < oo for some e > 0, and lim;_,0 E(S; — K) 4/t
exists in the “out-of-the-money region”. More recently, Roper[Rop10] and Tankov prove that (@) holds for a
general Lévy process (X;) under mild conditions, using the first-order small-time moment asymptotic result

lig 1B {(X0)} = [ o(@w(do). ®)

valid for functions ¢ that converges to 0 as x — 0 at an appropriate rate (see, e.g. Figueroa-Lépez[FLOS] for details).
In particular, it suffices that f\w\zl ev(dz) < co. [Lev08] also provides a natural generalization of ([2)) for a wide class

of multi-factor Lévy and Markov models.

As a corollary of (2I), and [Tnkv10] prove independently that the implied volatility 6+(k) for exponential
Lévy models explodes near expiration for out-of-the-money vanilla options. This is a very peculiar feature of financial
models with jumps (see Remark 2.6 below for a brief discussion about its meaning). goes one step further
and shows that

~2 %kz 4

as t — 0. For at-the-money call option prices, also shows that the leading order term is O(y/f) and does not
depend on the jump component of the model. Moreover, the at-the-money implied volatility converges to the volatility
of the Gaussian component of the driving Lévy process, and the limit is zero if the Lévy process has no Gaussian part.
For bounded variation Lévy processes and for certain tempered-stable like Lévy processes, [Tnkvi0] gives also the
first-order asymptotic behavior of at-the-money implied volatilities. The asymptotic behavior () is in sharp contrast
with a pure-continuous stochastic volatility model, where the implied volatility converges to a non-negative constant
which depends on the shortest distance from zero to the vertical line with z-coordinate equal to the log-moneyness of
the call option, under the Riemmanian metric induced by the diffusion coefficient for the model (see, e.g. [GHLOWO09),
[EJLI0], [Forde09], [Fordel)).

In this article, we extend previous results by computing the second order correction term a;(k) in the call option
price approximation:
An important component in our proofs is played by the recent higher order small-time expansions for the distribution
function of a Lévy process obtained in Figueroa-Lopez&Houdré[FLH09]. In the spirit of the Black-Scholes formula
and the classical change of numéraire, our approach exploits an appealing representation of the prices of out-of-the
money options in terms of the tail distribution functions of the underlying Lévy process under both the original risk-
neutral probability measure P and under the martingale probability measure P* obtained when we take the stock as
the numéraire; i.e. P*(A) := E(S:14) (see e.g. Chapter 26 in and references therein). The latter measure P*
is sometimes called Share measure (see e.g Carr&Madan[CM09]). Our results allow us to quantify precisely the effects

L Actually, [CW03] wrote I¢(K) — (So — K)+ = O(t), even though in their empirical analysis they are assuming a stronger statement
such as ().



of a non-zero Gaussian-component in the call option prices near expiration. We find that a continuous-component
volatility of o will result in an call price increase of %aztzeky(k) (per each dollar of the underlying spot price), where
v is the Lévy density and k is the log-moneyness.

We also derive the corresponding small-time asymptotic behaviour for implied volatility, showing precisely how the
implied volatility diverges to oo (see Section ). We find that the dimensionless implied variance does tend to zero
as we would expect, but very slowly; in fact slower than ¢P for any p > 0, and consequently the implied volatility
explodes in the small-time limit. Furthermore, we characterize the asymptotic behavior of the relative error of the first
order approximation, which is then used to obtain a second-order approximation for the implied volatility of out-of-the
money call options. According to our numerical results (see Section [0l for the details), the second order approximation
significantly reduces the error compared to that of the first order approximation, achieving up to a two-fold relative
error reduction in some cases.

We later extend our analysis to the case of a time-changed exponential Lévy model Z; = X7, with an independent
absolutely-continuous time change T; = fg Yds satisfying some mild moment conditions (see Section Bl). The time-
changed Lévy model was proposed in [CGMY03] to incorporate the volatility clustering and leverage effects commonly
exhibited by financial price processes. We show that the small-time behavior of call option prices depends not only on
the triplet of the underlying Lévy process X but also on the time-zero first and second moments of the speed process
(Y;) and the quantity

1
-— lim = [EY; — EY,
¥ t{%t[ f ol

which is assumed to exist. In some sense, v measures the current average acceleration of the random clock. Under
mild conditions, we show that
11 9
; S—E(St — K); = EYpao(k) + [EYgai(k) 4+ yao(k)] t + o(t), (t—0),

0
where ap,a; are the first and second order terms appearing in the pure-Lévy option price approximation (Bl). For a
Cox-Ingersoll-Ross (CIR) speed process

dY; = k(0 — Y3)dt + o/YedWy, Yo = o

the current acceleration of the process is v = k(6 — yo) and, hence, call option prices will exhibit the following
small-maturity asymptotic behavior:

11
; S—E(St — K)+ = yoao(k) + [ygal(k) + K(e — yo)ao(k)] t+ O(t), (f — O) .
0
As seen from this expression, a mean reversion speed of k will increase (resp., decrease) the call option price when the
current volatility yo is above (resp. below) the long-run mean volatility value 6.

In Section M we also consider a small-time, small log-moneyness regime for the CGMY model of [CGMY02]. The
CGMY model is a particular case of the more general KoBoL class of models, named after the authors (who
first introduced the symmetric version of the model under the name of “truncated Lévy flights”) and [BL0O2]. Using
the fact that (Xt / 1/ Y) , converges weakly to a symmetric alpha-stable distribution with « =Y as ¢ — 0, we show that

o 1 X
lim ¢ 1/YS—O]E(St — S0)+ =E*(Z4),
for Y € (1,2), where Z is a symmetric Y-stable random variable under P*. We then apply this result to small-time

pricing of at-the-money call options for the CGMY model. Our method of proof is new and based on the following
representation by Carr&Madan[CM09]

1 K
—]E(St—K)+ :]P)*(Xt—E>10g—), (6)
SQ SO

where E is an independent exponential random variable under P* with parameter 1. As a corollary, we conclude
that the corresponding at-the-money implied volatility 64(0) satisfies limy_o 6,(0)/tY/Y =2 = \/2rE*(Z,). [TnkvI0]



obtains a similar result in a more general model using a different approach based on a Fourier-type representation for
call option prices. Let us also remark that the method of proof introduced here can be applied to a large class of Lévy
processes whose Lévy densities are symmetric and dominated by stable Lévy densities, and behave like a symmetric
Y-stable process in the small-time limit (see Remark for the details).

In section Bl we derive a similar small-time estimate for variance call options using the well known fact that the
quadratic variation [X]; of a Lévy process is itself a Lévy process. Using the main result in [FLO§|, we find that an
out-of-the- money variance call option which pays ([X]; — K)4 at time ¢ is worth the same as a European-style contract
paying (ln )2 K), at time t as t — 0, irrespective of the Lévy measure v(-). The diffusion component of (X3;) does
not show up at leading order for small ¢. See also [KRMKTI] for a related discussion on the difference between the
small-time behaviour of variance call options on the exact quadratic variation and its discretely sampled approximation
for Lévy driven models.

2 Small-time asymptotics for exponential Lévy models

Consider an exponential Lévy model for a stock price process
St = S()@X75 (7)

where (X;) is a Lévy process defined on a complete probability space (2, P, F) with generating triplet (02,b,v). We
are assuming zero interest rate and dividend yield for simplicity |4 and that P represents a risk-neutral pricing measure.

We assume that flml>1 e®v(dz) < oo and that the following condition is satisfied

1 (e 9]
b+ 5024—/ (" =1 —xly<)v(dz) =0, (8)

so that S; = SpeX* is indeed a P-martingale relative to its own filtration.

Throughout the paper, we also assume that the Lévy measure v(dz) admits a positive density, denoted v(z), and that
this density is C' in R\{0} satisfying sup,, .. »(z) < oo for every ¢ > 0. The choice between the Lévy measure v(dx)
and density v(x) should be clear from the context. Under the previous standing condition, Figueroa-Lépez&Houdré
[FLHO9] show the following result (see Remark 3.3 and Proposition 3.4 therein):

Theorem 2.1 [FLHQ0J]. Let y > 0 be fized. Then, we have the following small-time behaviour for the distribution
function of X;:

TB(X, 2 y) = vly,00) + gHda(y) + (1) (t—0),
where
B = dlbor) = —ou(>+2bu<>—u[y,oo>2+u<§y,y>2

+

Furthermore, if the pure-jump component of (Xt) has finite variation, i.e. fl |z|v(dx) < oo, then da simplifies to

z|<1

da(y) = da(y; b, 0,v) = —*V (y) + 2bov(y) — vy, 00 / / z)dudz — 2/ /y ' x)dudz, (10)

where by is the drift of the pure-jump component of (X;) defined by by = b — flw|<1 av(dr).

2For a non-zero constant interest rate r and dividend rate ¢, the results in this paper will not be qualitatively any different, because we
can just replace the stock price process (S¢) with the forward price process (e*“*q)tst)t, which is a martingale (see, e.g. Chapter 11 in

[CTO04)).



Remark 2.1 The double integrals in (@) and (I0) are well-defined. For instance, by the symmetry of s(u)s(x) about
the line u = z,

/ / dudx_/y/2 /U v(u)v(z )dudx+/;2 /y/2 I/(’U,)I/(:E)dud:l?—F/ij /y; v(u)v(z)dudz
= 2/y/2/ x)dudx +/y/2 /1//2 x)dudx (11)

y/2
<2[ sup u(u)]/ zv(x)dr + [(y/2) sup l/(u)]2,
u€(y/2,y) 0 u€(y/2,y)

which is finite because f‘ |z|v(z)dr < oo (being X a bounded variation process). To obtain the bound on the first

z|<1
integral ([[I), we used the fact that the range for x is from 0 to y/2 and, hence, the maximal range for u in the inner

integral is u € [y/2,y]. Similarly, by Fubini’s theorem,

// dudx—// 2)dadu
//yu z)dzv(u du+/ / z)drv(u)du

< fwps(a )]Ll(— wlu ”“/,oo v(u >du/y v(w)dz < oo.

In the following proposition, we use Theorem 2.1l to establish a small-time estimate for the price of an out-of-the-
money call option under the model in ():

Proposition 2.2 Assume that

(1) /z>1 e“v(x)dr < oo and (i) sup ev(z) < o0, (12)

|z|>e

for any € > 0. Then we have the following small-time expansion for the price of a call option with strike K > Sy

—E(S; — K); = Sy /00 (e® — ¥ v(z)de + %So d5 (k) — ekdg(k)]t + o(t) (t—0), (13)

— 00

where k = log & 5o > 0 is the log-moneyness and d3(k) = d2(k; b*, 0,v*) with b* and v* given by

v¥(z) =e"v(x) and b =b+ / z (e — 1) v(x)dx + o (14)

lz[<1

Remark 2.2 This result sharpens the asymptotic behavior (2)), established by Levendorskii [Lev0§| for a class of
multi-factor Lévy and Markov models under certain technical conditions. As explained in the introduction, for a Lévy
model, these conditions were relaxed by Roper[Ropl0] and Tankov [Tnkv10]. Note also that, by imposing that v has
a positive Lévy density, we are precluding the Black-Scholes case where there is a non-zero diffusion component with
volatility o and zero jump component, for which the implied volatility is just constant and equal to o.

Proof. Without loss of generality, we assume that (X;) is the canonical process X;(w) = w(t) defined on 2 =
D([0,0),R) (the space of right-continuous functions with left limit w : [0,00) — R) and equipped with the o—field
F =o0(Xs : s> 0) and the right-continuous filtration F; := Nss10(Xy, : u < s). Following the density transformation
construction of Sato[Sat99] (see Definition 33.4 and Example 33.4 therein) and using the martingale condition (&), we
define P* on (€2, F) such that

P*(B) =E (e**15), (15)



for any ¢t > 0 and B € F;. As explained in the introduction, we can interpret P* as the martingale measure associated
with using the stock price as the numéraire.

Let us first note that the price of a call option can be decomposed as follows:
E(S: — K)r = E(Silg,>kx)— KP(S; > K)
S()E(ext 15}2}() — SoekP(Xt 2 k)
= SoP*(X; > k) — SoeFP(X; > k) (16)

One can check that (X;) is a Lévy process under P* with characteristic triplet (b*, 02, v*). For this result see the more
general Theorem 33.1 in Sato[Sat99]. Finally, applying Theorem 2] to the probabilities under P and P* in (), we
have

%E(St “K)s = So / e v(z)de — K / v(w)dz + %Sodg(k)t - %Kdg(k)t—i-o(t) t=0), (7
k k
which simplifies to (I3). =

Remark 2.3 Let us note that for a bounded variation process, the drift of X under the Share measure P* is the same
as the drift under the measure IP. Indeed, denoting bj the drift under P*, we have that

by =b* — / av*(z)dx = b +/ xz (e — 1) v(x)dr — / xe®v(x)dx = b.
{lz|<1} lz]<1 {lz|<1}

Also, note that the call price approximation (I3) is independent of b. Indeed, let
R(y;v) = da(k;b,0,v) — (—0°V/(y) + 2bv(y)) ,

which depends only on v as seen from the expression of dp in ([@). Then, using (I4), the second order term in ([I3) can
be simplified as follows

1
a1 (k) == a1 (k;b,0,v) == 3 [do(k; b*, 0, v%) — e¥da(ks; b, 0, V)]
2
1
= %eky(k) + eky(k)/ x (em — 1) V(,’E)d(b + 5 [R(k, 1/*) — ekR(k; 1/)] s
|z]<1
which does not depend on b. The previous expression also shows that
o2
ay(k;b,0,v) — a1 (k;b,0,v) = 7eku(/€),

K . . . . . 242
and, hence, a non-zero volatility of ¢ has the effect of increasing the call price approximation by %eku(k:).

2.1 Implied volatility

Let 64(k) denote the Black-Scholes implied volatility at log-moneyness k and maturity ¢ with zero interest rates, and
let V(t,k) = 64(k)?*t denote the dimensionless implied variance. Let

ap(k) = /_OO (e* — ek)+1/(d:v) and aq(k) := %[d;(k) - ekdg(k)] (18)

denote the (normalized) leading order and correction terms in (I3). By put-call parity, the dominated convergence
theorem, and the stochastic continuity of the Lévy process (X;), we have

lim B(S, ~ K)+ = (S0~ K+,

and from this we can show that V(¢,k) — 0 as t — 0. The following corollary shows more precisely how V(¢,k) — 0
as t — 0 and, hence, sharpening a result in Tankov (Proposition 4 therein):



Theorem 2.3 For the exponential Lévy model in (), we have the following small-time behavior for the implied variance
V(t, k) for k>0

V(t, k) =Vo(t,k)[1+Vi(t, k) + o(@)] (t —0), (19)
where
152
VO(tv k) = 102g(%) )
1 dy/mag(k)e /2 1\1%
Vi(t, k) = 1og(%) log l . [log (;)] ) (20)

Proof. See Appendix[Al m

Remark 2.4 Multiplying ([I) by 1/¢, we have the following expansion for the implied volatility

R L
62(k) = ﬂjg( )[1 + Vi(t, k) + of

and we see that 62(k) — oo as t — 0T, as is well documented in e.g. Carr&Wu[CWO03] (see also Roper[Rop10] and
[Tnkv10]). The leading order term agrees with that obtained in Tankov|[Tnkv1(] and, moreover, we see that

l—l)] (t —0), (21)
0g

=

[tlog(;)]Z6:(k) ~ |k|/V2, (t—0),

~ | —

so the (re-scaled) leading order implied volatility smile is V-shaped and independent of v, except that we require v to
be non-zero.

Remark 2.5 V(t, k) = O(@), so V(t,k) — 0 but slowly; in fact slower than ¢? for any p > 0. In particular, for a
1

given desired “precision” bound ¢ < 1, we will need t = O(e~'/¢) to ensure that V (t,k) = O(e) and for the ToaT
t
term in (I9) to be O(e). For this reason, the call option estimate (I3]) is more useful than the implied volatility estimate
@I) in practice. We remark that in Corollary 8.3 of the very recent article by Gao&Lee[GLII], the authors give an
expansion which sharpens (I9), but proving their result is more involved and requires several preliminary lemmas

error

Remark 2.6 Based on high-frequency statistical methods for It6 semimartingales, several empirical studies have
statistically rejected the null hypothesis of either a purely-jump or a purely-continuous model (see, e.g., [AJ09b,
[AJI0], [BNSOG]). If this really is the case, then our results show that theoretically, the small-maturity smile must
tend to infinity, if put/call options are priced correctly. Nevertheless, this effect is often obscured in reality by market
practicalities - high bid /offer spreads, daycount/settlement conventions, and times when the market is closed. However,
even if we cannot trade an option with infinitesimally small maturity in practice, we can still look at rate at which
the implied volatility smile steepens as the maturity goes small; typically it is difficult to fit the one of the fashionable
class of purely continuous models (e.g. Heston, SABR, and other local-stochastic volatility hybrid models) to this kind
of data, with realistic parameters. Carr&Wu[CW03]’s study of S&P 500 option price data (in contrast to the previous
statistical approaches) also suggests that the sample path of the index contains both continuous and discontinuous
martingale components (working under a risk neutral measure), and that, while the presence of the jump component
varies strongly over time, the continuous component is omnipresent.

In the same vein, ATit-Sahalia&Jacod[AJ09a| define a jump activity index to test for the presence of jumps, which
for a Lévy process coincides with the Blumenthal-Getoor index of the process. [AJ09a] also proposes estimators of this
index for a discretely sampled process and derive the estimators’ properties. These estimators are applicable despite
the presence of a Brownian component in the process, which makes it more challenging to infer the characteristics of
the small, infinite activity jumps. When the method is applied to high frequency stock returns, [AJ09a] found evidence
of infinitely active jumps in the data and they were able to estimate the index of activity.



3 Time-changed Lévy processes

3.1 A formula for out-of-the-money call option prices

In addition to the Lévy process (X;) of Section 2] we now consider a random clock (7;) defined on (Q,P,F) and
independent of X. A random clock is a right-continuous non-decreasing process such that Ty = 0. We consider a
time-changed Lévy model of the form

Sy = Spe?t, with Z;:= Xr,. (22)

As explained in the introduction, this type of model is important because it can incorporate volatility clustering effects.

Given that eX* is a martingale under P (relative to the natural filtration generated by X), it is known that (S;)
above is a martingale under P relative to the natural filtration generated by the random clock 7} and the time-changed
process Z; (see Lemma 15.2 in [CT04]). Note also that our simplifying assumption () implies that

et

S, = Som (23)

because E(e?t) = 1. [CGMY03] (Section 4.2) shows that the price process (23)) is free of static arbitrage opportunities.
Furthermore, under certain conditions (e.g. if X has infinite jump activity and (T}) is continuous), (T, : u < t) C
o(Xr, :u <t) (see, e.g., Theorem 1 in [Win01]), and hence (22]) will be a martingale relative to the filtration generated
by only the time-changed process (Z;) or, equivalently, the filtration generated by the stock-price process (S;). In that
case, the model [22)) will be free of dynamic arbitrage opportunities by the sufficiency part of the First Fundamental
Theorem of Asset Pricing.

Let N be the set of P-null sets of F and define a probability measure P on F := o(Zy, Ty - t > 0) VN such that, for
any t > 0, ~
P(B) =E (e”'1p), (24)

whenever B € F; = 0(Zu, Ty :u < t) VN. We note that P is well defined since {e?t},>0 is a P-martingale relative to
{Fi}+>0. The following proposition will play a key role in the sequel:

Proposition 3.1 Suppose that the assumptions of Proposition [22 are satisfied and let (b*,0% v*) be defined as in
(Z4). Then, under P, the process (Z;) in (22) has the same distribution as a Lévy process with the characteristic triplet
(b*,02,v*) evaluated at the independent random clock Ty.

Proof. Fix0 =ty <---<t, =t <ooand uy,...,u, € R. Then, using the independence between T" and X,

E(expli Y uy(Zi, — 21, )}) = Blexp{Z+ 13 uy(Z,, - Zi,)}) = Blexp(Y_ ilw; = i)(Xn,, — Xr,, ,)})

= E(GXP{Z(th - thfl)w(uj - Z)}) = E(GXP{Z(th - thfl)i/f* (uj)}) .

The last expression corresponds to the characteristic function of a process of the form X7,, where (X}) is a Lévy
process with triplet (b*, 0%, v*) defined on (2, P, F) and independent of the random clock (T;). m

In light of the previous result, we have the following representation for call option prices:

E(S; — K); = E(Sils,>x)— KP(S; > K)
= SoE(exp(Z)1z,5k) — Soe"P(S; > K).
= SoP(Z > k) — Soe"P(Z, > k). (25)

We emphasize again that, under Iﬁ’, Z; has the same distribution as a Lévy process with characteristic triplet (b*, o2, v*)
evaluated at an independent random clock (7). Hence, as for the pure-Lévy model case, the problem of finding
small-time expansions for out-the-money option prices reduces to finding small-time asymptotics of the corresponding
distribution functions.



3.2 Small-time asymptotics for the time-changed Lévy model

In this section, we determine the asymptotic behavior of out-the-money call option prices. We consider random clocks
(T}) that are absolutely continuous with non-negative rate process (v;) (i.e. Ty = fot Ysds) such that Yy > 0. We will
also refer to the following conditions in the sequel:

1
(i) EY; —EYy = O(t), (ii) limsup EY? < oo, (iii) ll\I‘I(l) n [EY; — EYy] = v € [0, 00), (26)
+\0
1
(iv) limsup EY;> < oo, (v) lim —ET} = p € (0,00). (27)
t\0 tN\O ¢
In the case that (Y;) is a stationary process with finite moment of third order, EY/ is constant for k = 1,...,3

and (i)-(iv) are automatically satisfied. Also, if ¥; — Y and (iv) are satisfied, then (v) holds true with p = EYZ.
Indeed, note first that lims_,0 EY? = EY{ since (Y;?)i<, are uniformly integrable for small enough to by (iv) above.

Also, since T2 /t? < fot Y2ds/t (by Jensen’s inequality) and lim; o E fot Y2ds/t = Elim;_0 fot Y2ds/t, so the dominated
convergence theorem implies that

1 1 ?
lim —ET? = Elim (— / sts> = EYZ.
t—0 12 =0\t Jo
The following result gives the small-time asymptotic behavior of the tail distributions of time-changed Lévy models:
Theorem 3.2 Suppose that the conditions of Theorem[2] are satisfied as well as conditions (1)-(ii) of (28). Then,
P(Z; > x) = tEYyv[z,0) [1 + O(t)] , (t —0). (28)

If, additionally, conditions (iii)-(v) of (Z7) are satisfied, then
P(Z; > x) = tEYyv[z, 00) + % (pda(z) + vz, 00))t? + o(t?), (t —0), (29)
where dy is the same as in Theorem [21].
Proof. See Appendix[Al m
Remark 3.1 A very popular rate process in applications is the Cox-Ingersoll-Ross (CIR) diffusion process, defined by
dY; = k(0 — Y,)dt 4+ /Y, dWy, (30)

where (W) is a standard Brownian motion, Y is an integrable positive random variable independent of W, and
k,0,0 > 0 are such that xf/0? > 1/2 (which ensures that ¥ = 0 is an inaccessible boundary). If Yy ~ I'(22£, %),
the proces (Y;) is stationary and EY}¥ is finite and constant in ¢ for any k > 1. In particular, (i)-(v) are satisfied with
p = EYZ. In the non-stationary case, it is known that EY; — EYy = (0 — EYy) (1 — e ) and (i) & (iii) are satisfied
with v = k(6 — EYp). The other conditions in (268{27)) will also hold true. Thus we conclude that the time-changed
Lévy model with CIR speed process satisfies:

P(Z > x) = tEYyv|z, 00) + (EY da(z) + k(6 — EYp)v[z, 00)) %tQ + o(t?), (t—0).

We are now ready to give the small-time asymptotic behavior of out-the-money call option prices and the corresponding
implied volatility:

Corollary 3.3 Under the conditions of Proposition[3.2, we have the following small-time expansions

%E(St — K); = SoEYoao(k) + So[pai(k) + ~vao(k)|t + o(t) (t—0), (31)



where k =log K/Sy > 0 and ag,ay are the first and second order terms of the call price approzimation (I3) as defined
in (I8). Furthermore, we have the following small-time behaviour for the implied variance V (t, k) for k >0

VIt k) =Vo(t,k)[1+ Vi(t, k) + o(IO; 7)) (t —0), (32)
where
Volt.k) = lfgk%) :

(
logl(%) log <4ﬁE(Yo):0(/€)e—k/2 [log (1)}@2) | )

Proof. The expansion (3] follows from the representation (25) and ([29). The asymptotics (B2)) follows from the proof
of Thorem |

Remark 3.2 As it was indicated before, the time-changed Lévy model (22]) was introduced to account for the volatility
clustering exhibited by financial time series. Indeed, the process (Y;); controls the speed of the random clock so that
when Y; is high, the random clock runs faster and, hence, the price process exhibits more variability. Another approach
to incorporate stochastic volatility is via stochastic integration along the lines of the following jump-diffusion model

dIn(S,/So) = p(Ya)dt + o(Y)dW, + dZ,,  dYi = a(Yy)dt + v(V,)dW ), (34)

where W and W® are two (possibly correlated) Brownian motions and Z is a pure-jump process. For a comparison
of these two methods, we refer the reader to Chapter 15 of [CT04]. Recently, have provided small-time
expansions for vanilla option prices under the stochastic model ([B4) when Z is a pure-jump Lévy process independent
of Y.

4 Small-time, small log-moneyness asymptotics

In this section, we survey the behavior of P(X; > k) for a Lévy process X, when t — 0 and k = k; also converges to zero
at an appropriate rate. We can think of this scaling as a small-time, small log-moneyness regime. As an application,
we deduce the asymptotic behavior of at-the-money call option prices for a CGMY model.

4.1 Lévy models with non-zero Brownian component

Several financial models in the literature consist of a Lévy model with non-zero Brownian component. The most
popular models of this kind are the Merton model and Kou model determined by the characteristic functions

P 1-p
Ay —iu A —i—iu))]’

1
E(exp(iuXy)) = exp[t(ibu — 502112 +iuA (
1 .
E(exp(iuX,)) = explt(ibu — 500> + A (e~ 07" /2 i _1y)].
It turns out that, for a general Lévy process (X;) with o # 0,
: . _ L 5 o
tlgr(l)E(exp(qut/\/f)) = exp(—§o u®),

(see e.g. pp. 40 in [Sat99] for a formal proof). The right-hand side is the characteristic function of a Normal N (0, o?)
random variable Z, thus (X;/v/t) converges weakly to a Normal distribution with variance ¢ and

%%P(Xt/ﬂ >z)=P(Z >z).
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4.2 The CGMY model and other tempered stable models

The so-called CGMY model is a pure-jump Lévy process determined by a Lévy density of the form

Cesz CeGm

v(z) = i leasoy + Ekas 1izcoy- (35)

for C;G,M >0 and Y € (0,2). As explained in the introduction, the CGMY model is a particular case of the more
general KoBoL class of models, named after the authors (who first introduced the symmetric version of the
model under the name of “truncated Lévy flights”) and [BL02]. The term CGMY was introduced later on by Carr et al.
[CGMY02]. This process is a tempered stable process (see Section 4.5 in Cont&Tankov[CT04]), and its characteristic

function is given as
e (u) = E(e™X) = exp [t CT(=Y) {(M —iu)Y + (G +iu)” — MY —G¥} + iéut}, (36)

for Y # 1 and some constant b € R (see for the formula when Y = 1). We note that we must have M > 1 for
([@2) to be satisfied, and under this condition, X is again a CGMY process under P* with parameters C* = C,Y* =Y,
M* =M —1, and G* = G + 1. In the bounded variation case (Y < 1), b coincides with the drift b.

The following result characterizes the small-time behavior of P(X; > k;) with small log-moneyness k; ~ wt/Y

Proposition 4.1 For the CGMY model with Y € (1,2), (X:/tY/Y) converges weakly to a symmetric Y -stable distri-
bution as t — 0. Concretely,

lim P(X,/tYY > 2) =P(Z > z),

5

where Z is a symmetric Y -stable random variable with scale parameter ¢ = (2CT(=Y)|cos(3Ym))"/Y; i.e. Z has
characteristic function

C(u) = exp(—2CT(-Y)| cos(%Ywﬂ |u|Y) .

Remark 4.1 Note that Z has infinite variance because Y < 2. The stable distribution was famously used by
Mandelbrot[Man63] to model power-like tails and self-similar behaviour in cotton price returns.

Proof. Let .
Y(u) = CT(=Y)((M —iu)” + (G +iu)” — MY —GY) +iub (37)

denote the characteristic exponent for the CGMY process. Then we have
T u _ _ _ CAY Y Y
C(u) = limexp(t(757)) = exp(=CT(=Y)|(=0)" + " [[ul"),

where we used that Y € (1,2). ((u) is continuous at zero and we recognize ((u) as the characteristic function of a
symmetric alpha-stable distribution. Thus, by Lévy’s convergence theorem (see Theorem 18.1 in Williams[Will91]),
the sequence of random variables (X;/t'/Y) converges weakly to Z. The second result follows from the Lemma on

page 181, chapter 17 in [Will91]. m

Remark 4.2 Proposition [4]is a particular case of a result shown in Rosiniski [Ros07] where a more general class of
tempered Lévy measures is considered. Concretely, [Ros07] considers Lévy measures of the form

v(A) = /R/OOO La(uw)u™ ~te  duR(dw), (38)

for a measure R such that R({0}) = 0 and [ (Jw[* A |w|")R(dw) < co. The CGMY model is recovered by taking
R(dw) = CMY 6ps-1y(dw) +CGY §;{_g-1}(dw). In light of Rosiniski’s Theorem 3.1, it follows that Proposition LT also

holds true for Y € (0,1) (finite-variation case) provided that (X;) is driftless, i.e. b in (B8) must be 0 (otherwise, we
have to replace X; by X; — bt). Note that under P*, X is also driftless (see Remark 2.3]).
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Another well-know class of Lévy processes is the Normal Inverse Gaussian (NIG) model, introduced in Barndorff-
Nielsen[Bar97], for which the characteristic function is given by

E(exp(iuX;)) = exp[—té(\/oz2 — (B +iu)? — \/042 —5?)].

The Lévy density of the NIG model takes the form v(x) = Ce* K (B|z|)/|x| where K is the modified Bessel function
of second kind and A,B, and C are certain positive constants (see for their expressions). Hence, one can view
the NIG process as an improper tempered stable process in the sense of Rosinski [Ros07]. It is also easy to see that

}%E(exp(iuXt/t)) = exp[—td|ul] .

The right-hand side is the characteristic function of a symmetric alpha-stable random variable Z with a = 1 and
scale parameter ¢ i.e. a Cauchy distribution; thus by the same argument we see that (X;/ Y/ Y) converges weakly to a
symmetric Cauchy distribution:

lim P(X,/tYY > ) =P(Z > z).

4.3 At-the-money call option prices for the CGMY model

Our approach to deal with at-the-money call option prices is based on the following result from Carr&Madan[CMO09]:
1 ) K
< E(St = K)4 =P*(Xy — E > log ), (39)
S() SO

where F is an independent exponential random variable under P* with parameter 1. Now set K = Sy. Consider the
CGMY model with Y € (1,2). The idea is to use the small-time, small log-moneyness result in the previous section.
Indeed, note that

tVYPH(X, > E) = t—l/Y/ e PH (X, > x)dr = / P (X, > 1YY w)du. (40)
0 0

From our Proposition 1]
P* (X, > tYYu) = P*(Z > u),

for any u > 0, where Z is a symmetric a-stable r.v. under P*. The previous fact suggests the following result:

Proposition 4.2 Suppose that X is a CGMY process under P with Y € (1,2). Then, the at-the-money call option
price has the following asymptotic behavior:

lim 61/ VB(S, — o)+ = SoB* (Z4), (11)
—
where Z is a symmetric Y -stable r.v. as in Proposition 4.1.

Proof. See Appendix[Al m

In order to justify the previous argument, we will need the following estimate:

Lemma 4.3 Let X denote a symmetric CGMY process under P (hence G = M) with Y € (1,2), M > 1, and C > 0.
Then, there exists a universal constant K > 0 such that

P* (X; >z) < Kzt (42)
(e* = Nv(dz)) < z/4.

for any t > 0 and x > 0 satisfying t(b+ f‘z‘<w/4 z

Proof. See Appendix[Al m
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Remark 4.3 As seen in the proof of Lemma 3] the estimate ([@2)) is valid for any pure-jump Lévy process admitting

a symmetric Lévy density v(x) such that
—M|z|
e

V((E) < Cw,

for some Y € (1,2), C > 0, and M > 1 . Moreover, as seen in the proofs of Proposition 2] if we further assume that
(£7x) 2 (20, (43)
t

as t — 0 under P* (for a symmetric Y-stable process (Z;);), then the asymptotic behavior [{I]) will also hold. Condition
#3) holds for a wide range of processes (see, for instance, Proposition 1 in [RT1I] for relatively mild conditions).

4.4 At-the-money implied volatility

Proposition 4.4 For the CGMY model with Y € (1,2) in Proposition[{.3, we have the following small-time behaviour
for the at-the-money implied volatility 6.(0)

lim 6,(0)/tV/Y =2 = 2rE*(Z,).
1

Proof. We first recall that the dimensionless implied variance V' (¢,0) = 6,(0)*t — 0 as t — 0. Equating prices under
the the Lévy model and the Black-Scholes model, we know that for any 6 > 0, there exists a t* = t*(§) such that for
all t < t* we have

EX(Z)1Y (1-8) < L E(S, - SAduL)

(149).
So V2

Re-arranging, we see that
1-6 - V(t,0)
1+6 = V2rE(Z)tV/Y

We proceed similarly for the upper bound. m

5 Robust pricing of variance call options at small maturities

Let (X;) denote the general Lévy process defined in section2l The quadratic variation process [X|, = o%t+> ,(AX,)?
is a subordinator and has Lévy density given by B

D) | U=V
NI

(see e.g. [CGMY05]). The function f(y) = (y — K) for K > 0 satisfies the conditions of Theorem 1.1 in Figueroa-
Lépez[FLOS], so we have

qly) = (y >0)

TE(X) - Aw d)dy + 0 (1 0) (a4)
* NN )
/0 2\/_ + NG }dy—i—O()
:/ (@) dz + O(t) (45)
:%<X2 K)+ +0(1)
= lp[m Sty ot t—0
= B[ = K] +00) (=),
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From this we see that an out-of-the-money variance call option of strike K which pays ([X]; — K )+ at time ¢ is worth
the same as a European-style contract paying ((In §—3)2 — K) at time t as t — 0, irrespective of v(-). Note that the
diffusion component of X; does not show up at leading order for small . We also remark that the higher order terms
in (@4)) and {3 can be obtained by using the expansions in Theorem 2] and the following identities:

E(X]); — K)y = /: P([X]; > u)du, E(X?—-K), = /; ulP(X; > u)du.

6 Numerical examples

In their seminal work, Carr et al.[CGMY02] calibrated the CGMY model and the Variance Gamma (VG) model to
option closing prices of several stocks and indices. In this section, we shall use some of their calibrated parameters to
illustrate the approximation proposed in this paper. As in Section 2] we are assuming below that the risk-free rate r
and the dividend rate q are both set to be zero.

Using IBM closing option prices on February 10th, 1999 and maturities of 1 and 2 months, [CGMY02] report the
following calibrated parameters for the VG model:

o =0.4344, v =0.1083, 6= —.3726, n =0.0051,

where o, v, and 6 are the three parameters characterizing the VG process (see e.g. [CT04]), and 7 is the volatility of
an additional independent Wiener component. In order to assess the accuracy of the call price approximation (I3]),
we have plotted (in Figure [I) the first and second order approximations of E(S; — K)./t as a function of the log
moneyness k = log K /Sy for Sy = 1 and time-to-maturities ¢ = 5/252 and t = 10/252 (in years). We have also plotted
the “true” option prices obtained via an inverse Fourier Transform (IFT) method (see Theorem 5.1 in [Lee04] for the
case G = (G1 corresponding to the call option payoff with o > 0). Table[I] also shows the numerical approximations for
1000 x E(S; — K) /t corresponding to four maturities, together with the numerical values obtained via the IFT. Note
that the first order approximation (i.e. 1000 x [ _(e® —e*) v(z)dz) is independent of time-to-maturity ¢. The graphs
show that the second order approximation significantly outperforms the first order approximation. The corresponding
table shows that the second order approximation is quite good for maturities of 5 to 10 days and logmoneyness values
larger than 0.1.

The numerical values via the IFT method were implemented in Mathematica, while the coefficient (@) was computed
using numerical integration routines of Mathematica. This computation is typically slow due to the singularity of the
Lévy density v and the cumbersome double integrals. A much faster numerical method, valid for bounded variation
Lévy processes, is described in [FLI0] (see below for an illustration of this method).

In order to illustrate the performance of the approximations for larger volatility values, we now consider the
parameters:
o =0.1452, 6= -0.1497, v =0.1536, n = 0.0869,

which were calibrated to fit INTEL option data as reported in [CGMY02]. The results are shown in Figure [ for
So = 1 and time-to-maturities t = 5/252 and ¢ = 10/252 (in years). Table 2 shows the numerical approximations for
1000 x E(S; — K4/t corresponding to four maturities. We also show the numerical values obtained via the IFT. The
second order approximation is again quite good for mid-range log-moneyness values and no noticeable difference is
observed even though 7 is significantly larger.

For the case of Microsoft option prices on December 9th, 1999 and maturities of 1 and 2 months, [CGMY02] report
the following parameters for a CGMY model:

C=11 G=509, M=86, Y =0.4456.

Table Bl shows the numerical approximations for 1000 x E(S; — K/t corresponding to four maturities, together with
the numerical values obtained via the IFT (computed using Mathematica). As before, the approximations perform
quite well and we are able to attain a decent approximation even for a maturity of 20 days. To compute the second
order approximations (or more specifically, to compute the coefficient ([@)), we have employed the method in [FLI0].
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Figure 1: Here we have plotted the leading order term (grey line) and the correction term (solid blue line) of the
approximation ([[3) for E(S; — K); as a function of the log-moneyness 2 = k = log K/Sj for a Variance Gamma
model with an independent Brownian component. The parameters of the VG model are ¢ = 0.4344, v = 0.1083,
and 0 = —.3726, while the volatility of the independent continuous component is n = 0.0051. Left and right panels
corresponds to the expiration times ¢ = 5/252 and t = 10/252, respectively. The numerical “true” option prices
obtained via the IFT are also shown (dashed grey line).

Time-to-mat. t 1/252 5/252 10/252 20/252
X Ist 2nd IFT 2nd IFT 2nd IFT 2nd IFT

0.05 | 234.6977 | 239.4463 | 239.2843 | 258.4404 | 254.5205 | 282.1831 | 267.3434 | 329.6684 | 277.3445
0.06 | 195.4777 | 200.0560 | 199.9317 | 218.3694 | 215.3264 | 241.2611 | 229.5224 | 287.0445 | 244.4061
0.07 | 163.8997 | 168.2079 | 168.1131 | 185.4408 | 183.0887 | 206.9820 | 197.7644 | 250.0643 | 215.6399
0.08 | 138.1606 | 142.1521 | 142.0805 | 158.1182 | 156.3154 | 178.0757 | 170.8989 | 217.9909 | 190.4486
0.09 | 116.9799 | 120.6392 | 120.5857 | 135.2765 | 133.9099 | 153.5732 | 148.0422 | 190.1665 | 168.3418
0.1 | 99.4165 | 102.7465 | 102.7072 | 116.0661 | 115.0451 | 132.7157 | 128.5074 | 166.0149 | 148.9089
0.11 | 84.7611 | 87.7748 | 87.7466 | 99.8297 | 99.0818 | 114.8984 | 111.7494 | 145.0357 | 131.8027
0.12 | 72.4675 | 75.1840 | 75.1644 | 86.0500 | 85.5170 | 99.6325 | 97.3285 | 126.7974 | 116.7270
0.13 | 62.1087 | 64.5497 | 64.5368 | 74.3137 | 73.9493 | 86.5186 | 84.8855 | 110.9285 | 103.4274
0.14 | 53.3465 | 55.5346 | 55.5269 | 64.2872 | 64.0541 | 75.2279 | 74.1246 | 97.1093 | 91.6844
0.15 | 45.9096 | 47.8674 | 47.8636 | 55.6984 | 55.5669 | 65.4873 | 64.7996 | 85.0649 | 81.3079
0.16 | 39.5787 | 41.3278 | 41.3269 | 48.3238 | 48.2701 | 57.0689 | 56.7045 | 74.5590 | 72.1326
0.17 | 34.1752 | 35.7358 | 35.7372 | 41.9783 | 41.9835 | 49.7815 | 49.6660 | 65.3878 | 64.0145
0.18 | 29.5521 | 30.9433 | 30.9463 | 36.5080 | 36.5571 | 43.4639 | 43.5376 | 57.3758 | 56.8280
0.19 | 25.5884 | 26.8275 | 26.8317 | 31.7841 | 31.8651 | 37.9799 | 38.1947 | 50.3714 | 50.4628
0.2 | 22.1834 | 23.2864 | 23.2913 | 27.6985 | 27.8019 | 33.2136 | 33.5313 | 44.2438 | 44.8227

Table 1:  Approximations ([I3]) for 1000 x %E(St — K)4 as a function of the log-moneyness x = k = log K/Sy for a
Variance Gamma model with an independent Brownian component. The parameters of the VG model are o = 0.4344,
v = 0.1083, and § = —.3726, while the volatility of the continuous component is = 0.0051. The column “1st” indicates
the first order approximation (which is independent of ¢). The column “2nd” refers to the second order approximation
term.
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Figure 2: Here we have plotted the leading order term (grey line) and the correction term (solid blue line) of the
approximation ([[3) for E(S; — K); as a function of the log-moneyness 2 = k = log K/Sj for a Variance Gamma
model with an independent Brownian component. The parameters of the VG model are ¢ = 0.1452, § = —0.1497,
v = 0.1536, while the volatility of the independent continuous component is n = 0.0869. Left and right panels
corresponds to the expiration times ¢ = 5/252 and t = 10/252, respectively. The numerical “true” option prices
obtained via the IFT are also shown (dashed grey line).

Time-to-mat. t 1/252 5/252 10/252 20/252
X Ist 2nd IFT 2nd IFT 2nd IFT 2nd IFT

0.05 | 12.7382 | 13.6052 | 13.6253 | 17.0732 | 17.5978 | 21.4081 | 23.7455 | 30.0780 | 36.6508
0.06 | 8.3203 | 8.8906 | 8.9038 | 11.1717 | 11.5085 | 14.0232 | 15.4255 | 19.7261 | 24.6815
0.07 | 5.4984 | 5.8797 | 5.8887 | 7.4046 | 7.6352 | 9.3108 | 10.2499 | 13.1232 | 16.7357
0.08 | 3.6672 | 3.9249 | 3.9312 | 4.9559 | 5.1175 | 6.2446 | 6.9034 | 8.8221 | 11.4468
0.09 | 24641 | 2.6398 | 2.6443 | 3.3426 | 3.4572 | 4.2212 | 4.6912 | 5.9782 | 7.8929
0.1 | 1.6660 | 1.7865 | 1.7897 | 2.2687 | 2.3504 | 2.8714 | 3.2090 | 4.0769 | 5.4783
011 | 1.1323 | 1.2154 | 1.2177 | 1.5479 | 1.6063 | 1.9635 | 2.2067 | 2.7947 | 3.8216
0.2 | 0.7730 | 0.8306 | 0.8322 | 1.0608 | 1.1027 | 1.3485 | 1.5239 | 1.9241 | 2.6763
0.13 | 0.5298 | 0.5698 | 0.5709 | 0.7297 | 0.7598 | 0.9297 | 1.0562 | 1.3295 | 1.8801
0.14 | 0.3643 | 0.3922 | 0.3930 | 0.5037 | 0.5252 | 0.6430 | 0.7343 | 0.9216 | 1.3240
0.15 | 0.2513 | 0.2708 | 0.2714 | 0.3486 | 0.3641 | 0.4460 | 0.5119 | 0.6406 | 0.9344
0.16 | 0.1738 | 0.1875 | 0.1879 | 0.2420 | 0.2531 | 0.3101 | 0.3577 | 0.4464 | 0.6607
0.17 | 0.1205 | 0.1301 | 0.1304 | 0.1683 | 0.1763 | 0.2161 | 0.2504 | 0.3117 | 0.4679
0.18 | 0.0837 | 0.0905 | 0.0907 | 0.1173 | 0.1231 | 0.1509 | 0.1757 | 0.2181 | 0.3318
0.19 | 0.0583 | 0.0630 | 0.0632 | 0.0819 | 0.0861 | 0.1056 | 0.1234 | 0.1528 | 0.2356
0.2 | 0.0407 | 0.0440 | 0.0441 | 0.0573 | 0.0603 | 0.0740 | 0.0869 | 0.1073 | 0.1675

Table 2:  Approximations ([I3]) for 1000 x %E(St — K)4 as a function of the log-moneyness x = k = log K/Sy for a
Variance Gamma model with an independent Brownian component. The parameters of the VG model are o = 0.1452,
0 = —0.1497, v = 0.1536, while the volatility of the continuous component is 7 = 0.0869. The column “lst” indicates
the first order approximation (which is independent of ¢). The column “2nd” refers to the second order approximation

term.
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Time-to-mat. t 1/252 5/252 10/252 20/252
X Ist 2nd IFT 2nd IFT 2nd IFT 2nd IFT

0.05 | 118.8662 | 120.2883 | 120.5386 | 125.9768 | 125.9179 | 133.0875 | 131.5844 | 147.3088 | 139.5891
0.06 | 99.6004 | 100.8808 | 101.1351 | 106.0023 | 106.0868 | 112.4042 | 111.5177 | 125.2081 | 119.9024
0.07 | 84.3149 | 85.4610 | 85.7023 | 90.0455 | 90.1924 | 95.7760 | 95.2726 | 107.2372 | 103.5827
0.08 | 71.9095 | 72.9321 | 73.1727 | 77.0226 | 77.2339 | 82.1358 | 81.9201 | 92.3620 | 89.9114
0.09 | 61.7191 | 62.6303 | 62.8747 | 66.2750 | 66.5275 | 70.8309 | 70.8150 | 79.9426 | 78.3608
0.1 | 53.2682 | 54.0799 | 54.3141 | 57.3264 | 57.5892 | 61.3846 | 61.4910 | 69.5011 | 68.5328
0.11 | 46.1664 | 46.8892 | 47.1192 | 49.7805 | 50.0626 | 53.3947 | 53.6011 | 60.6229 | 60.1205
0.12 | 40.1763 | 40.8204 | 41.0433 | 43.3967 | 43.6782 | 46.6171 | 46.8806 | 53.0579 | 52.8833
0.13 | 35.0705 | 35.6445 | 35.8690 | 37.9408 | 38.2302 | 40.8111 | 41.1241 | 46.5517 | 46.6292
0.14 | 30.7034 | 31.2154 | 31.4361 | 33.2632 | 33.5566 | 35.8230 | 36.1693 | 40.9425 | 41.2037
0.15 | 26.9570 | 27.4140 | 27.6311 | 29.2418 | 29.5285 | 31.5266 | 31.8864 | 36.0962 | 36.4806
0.16 | 23.7163 | 24.1244 | 24.3391 | 25.7565 | 26.0433 | 27.7968 | 28.1703 | 31.8772 | 32.3565
0.17 | 20.9085 | 21.2731 | 21.4858 | 22.7315 | 23.0167 | 24.5545 | 24.9355 | 28.2005 | 28.7454
0.18 | 18.4722 | 18.7982 | 19.0082 | 20.1025 | 20.3798 | 21.7327 | 22.1107 | 24.9933 | 25.5756
0.19 | 16.3432 | 16.6349 | 16.8407 | 17.8017 | 18.0761 | 19.2602 | 19.6377 | 22.1771 | 22.7868
0.2 | 14.4852 | 14.7463 | 14.9482 | 15.7910 | 16.0580 | 17.0968 | 17.4672 | 19.7084 | 20.3280
0.21 | 12.8531 | 13.0870 | 13.2891 | 14.0226 | 14.2859 | 15.1920 | 15.5580 | 17.5310 | 18.1563
0.22 | 11.4193 | 11.6289 | 11.8268 | 12.4672 | 12.7267 | 13.5150 | 13.8752 | 15.6108 | 16.2344
0.23 | 10.1595 | 10.3474 | 10.5434 | 11.0990 | 11.3517 | 12.0385 | 12.3891 | 13.9176 | 14.5312
0.24 | 9.0459 | 9.2145 | 9.4085 | 9.8885 | 10.1371 | 10.7310 | 11.0744 | 12.4161 | 13.0193
0.25 | 8.0621 | 8.2133 | 84040 | 88179 | 9.0625 | 9.5737 | 9.9096 | 11.0853 | 11.6753
0.26 | 7.1931 | 7.3287 | 7.4365 | 7.8714 | 81099 | 8.5498 | 8.8759 | 9.9065 | 10.4792
0.27 | 64212 | 6.5430 | 6.7291 | 7.0301 | 7.2645 | 7.6389 | 7.9573 | 8.8567 | 9.4132
028 | 57374 | 5.8468 | 58054 | 6.2842 | 6.5132 | 6.8309 | 7.1400 | 7.9243 | 8.4622
029 | 51285 | 52267 | 54878 | 5.6194 | 58445 | 6.1103 | 6.4118 | 7.0920 | 7.6128
0.3 | 4.5867 | 4.6749 | 4.8038 | 5.0275 | 5.2487 | 5.4683 | 57624 | 6.3499 | 6.8534
0.31 | 4.1050 | 4.1842 | 3.4559 | 4.5009 | 4.7173 | 4.8968 | 5.1826 | 5.6886 | 6.1739
0.32 | 3.6746 | 3.7457 | 3.7292 | 4.0301 | 4.2427 | 4.3856 | 4.6643 | 5.0966 | 5.5652
0.33 | 3.2905 | 3.3543 | 3.6098 | 3.6097 | 3.8185 | 3.9280 | 4.2006 | 4.5673 | 5.0195
0.34 | 29479 | 3.0053 | 3.2470 | 3.2346 | 3.4391 | 3.5212 | 3.7855 | 4.0944 | 4.5299
0.35 | 2.6410 | 2.6925 | 28716 | 2.8983 | 3.0991 | 3.1555 | 3.4134 | 3.6701 | 4.0903

Table 3: Approximations (I3) for 1000 x +E(S; — K)4 as a function of the log-moneyness = = k = log K /Sy for the
CGMY model with parameter values C' = 1.1, G = 5.09, M = 8.6, and Y = 0.4456. The column “lst” indicates the

first order approximation (which is independent of t). The column “2nd” refers to the second order approximation
term.
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We now proceed to illustrate the performance of the implied volatility approximations described in Section 21
Concretely, we analyze the relative error of the approximations

riathy = R - R RO LA, (46)

Let us first analyze the Variance Gamma model with parameter values as above. The left panel of Figure Bl shows
the relative errors (41 — 6¢)/6, and (642 — 0¢)/6, as a function of time-to-maturity ¢ for values of k ranging from
0.1 to 0.3. Note that both ;1 and &2 consistently underestimate the true implied volatility. For k& = 0.3, the first
order approximation is actually quite good with a relative error of about —5% uniformly in ¢ and it is only for very
small values ¢ (less than 3 days) when & 5 is better than & ;. However, for the other values of k, &; 2 significantly
outperforms 6,1. For instance, for k = 0.2, the relative error of 6,1 ranges from —19% to —34% with a mean absolute
error of 27.0%, while the relative error of 6, o rages from —4.4% to —23% with a mean absolute error of 14.2%. The left
panel of Figure @l compares the term structure of the approximated implied volatilities to the “true” implied Volatilityﬁ.
The right panel of Figure [B] shows the analog results for the CGMY with parameter values as above. The results are
qualitatively similar to those of the Variance Gamma model. However, all the approximations seem to perform better
in terms of error stability in time and accuracy. For k = 0.2, the relative error of ;1 ranges from —12% to —20%
with a mean absolute error of 18.6%, while the relative error of 6, 2 ranges from 0.83% to —13% with a mean absolute
error of 9.25%. The right panel of Figure ll compares the term structure of the approximated implied volatilities to
the “true” implied volatilityﬁ.

Approximation of Implied Volatility for VG Approximation of Implied Volatility for the CGMY
Term Structure of Relative Error Term Structure of Relative Error

—oal

-0z B

“oal

a
a

—oal

Relative Error ( 0. -0)/0
Relative Error ( 0. -0)/0

—e—1st, k=0.3 —e—1st, k=0.3
osl| © 2nd, k=0.3 sk | © 2nd, k=0.3
—=—1st, k=0.2 —&—1st, k=0.2 r
2nd, k=0.2 ¥ 2nd, k=0.2
—#—1st, k=0.1 ——1st, k=0.1
7| % 1st, k=0.1 7 e = 2nd, k=0.1 b
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Time—to—Maturity (in Days) Time—to—maturity (in Days)

Figure 3: Relative errors of the implied volatility approximations for the VG and CGMY models as function of time
to maturity using the two estimators &; 1 and 642 in ([@8).
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A Proofs

Proof of Theorem

We know that V (¢, k) — 0. Equating call prices in the small-time limit under the exponential Lévy model (using
Proposition 2:2)), and the Black-Scholes model with zero interest rates and implied variance V' = V (¢, k) (using e.g.
Proposition 3.4 in [FJL10] or Lemma 2.5 in [GHLOW09]) we know that for any 6 > 0, there exists a t* = t*(d) such
that for all ¢ < t*

tag(k)(1 — §) < SiE(st LK) < e 3RA-0/VER) (A-1)
0

Re-arranging, we see that
1
—V (t, k) log[tao(k)(1 — &)] > 5k2(1 —90),

or
1 1
V(t,k)- log(g) > 5/{4’(1 —68) + V(t, k) log(1 —6) + V(t, k) logag(k) .
V(t,k) — 0, so this yields a lower bound for V (¢, k). Using a similar argument for the corresponding upper bound,
we establish the leading order asymptotic behaviour for the implied variance as

L
log(1)

Now let V(t,k) = Vo(t,k)[1 + Vi(t, k)] and note that Vi(t,k) = o(1) as t — 0. Then for any § > 0, there exists a
t** = t**(9) such that for ¢ < t** we have

Vit k) ~ Volt, k) == (t = 0). (A-2)

1.1 1
2[5 E(Si — K)* — ao(k)] - ar (k) > 5. (4-3)
0
Re-arranging, we have
tao(k) + (an (k) — ) < £ B(S — K)* . (A-4)
0

Using this bound and again equating small-time call prices under the Lévy model and the Black-Scholes model, we
have that there exists a positive constant ¢ such that for ¢ small enough

3

1 3
eV (t k)2 o BRIV (1K)
V2 k2
1 3 ~ 3
e Vo (t, k)2 (1 + Vi(t, k)2 e,%kz/{vo(t,k)(lﬂh(t,k))}(1 F eVt k)
V2 k2 ’
1 3 B
ez Vo(t, k)2 e,%kz/{vo(t,k)(HVl(t,k))}(1 + E(t, k)), (t N 0) )

V2 k2

tao(k) + (a1 (k) — 6)2 < —E(S, — K)t <

<5 (14 cV(t,k))

IN
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where E(t, k) := (14 Vi (t, k))3/2(14cV(t, k))—1, which converges to 0 as t — 0. Dividing both sides by ¢t = e~ 2**/Vo(t:k)
we have

Vo (k)3 1jep -
ao(k) + (a1 (k) = §)t < €z Vol k)2 e%kzvl(twk)/{VO(tvk)(1+V1(t-,k))}(1 +E(t, k),

T V2mk2
and re-arranging we obtain
M > —Vo(t k) log [(ao(k) + (a1 (k) — 8)t)v2m kK2~ 2"Vo (t, k) =% /(1 + E(t, k)] .
1+ Vi(t, k) k2

ot

2 o 1 s | — awram
= Vo(t.k)log [(ao(k) + tar (k)27 k2~ 2KV (t, k)~ 2] +k2Vo<f B)log [——*ei 5y

ot
1 dy/mag(k)e ™2 1 ] 1 { al(k)} 1~ Soram:
— 1 log(=)]2 | + 1 1+t :
log(1) Og[ 2 [log ()] log(1) a0 (k) 1+ E(Lk)
Vi (t,k) &' (t,k)

Note that V; = Vi (t, k) = O (loilgoi%) and & =&'(t, k) = 0(10; ) since E(t, k) — 0 as ¢ — 0. Solving the inequality
> Vi + &', we find that

1+V -

~ Vi+¢& V242V, & + &2
> 7:‘/ g/ 1
O 0 R R S ey s Ty

Since &'(t, k) > V2(t, k) for t sufficiently small, we conclude that V; > V; 4 0( ) Proceeding similarly for the upper
bound, we conclude that

~ 1
Vl(t7k):V1(t7k)+O( 1)'
log 7

ast—0. m

Proof of Theorem Let F(t) :== P(X; > z) and B := v[z,00) + sup, o P(X; > z)/t. In the light of Theorem
211 there exist constants tp > 0 and K < oo such that

1
Lp(x, > 0) - u[sc,oo>\ < K1,

for any 0 < t < ty. Next, conditioning on T,

$ PO, 2 2) = BF) = 5B 4 L8 ({ LA - oo} 71)

Let Rs(t) denote the second term on the right-hand side, which we can bound as follows:

1
|R2| < E (1{Tr<t0} Tt

1 1
TP 10| T) + 1 (L)

1 B1
< K;]E T? + B;E( Lir >3 Tt) < K;ETt + ——E(Tt ),

L rmy) - V[x,oo)‘ Tt>

using a Chebyshev upper bound. Combining the previous bounds, we have

v[xz,00) |1 B1

11 K
—|=P(Z; > x) — EYyv[z,00)| < ~ET; - EYy| + E(T7) + — 5E (T7)
t|t t t 12 to 12
viz,00) [* K _ o Bl 5
< T/o [BY. — BYi|ds + 3E(T?) + 7 5E(T?)

Next, (28] and Jensen’s inequality imply that

1 I
1rnsup - o] as < o0, 1Insup < limsup - s < 00,
li 3 EY EY,|d li —E(T7) <1li EY2d
0

t—0 t—0 t—0
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and (28) will follow. In order to show ([29)), consider now

dg (I)
2 )

Cult) = 1 {%P(Xt > ) ~ vz, oo)} -

and note that, in view of Theorem [ZT] there exist constants to(e) > 0 and K € (0, 00) such that

sup |G, ()] < K, and |G,(t)| <e,

t>0
for any 0 < t < ty. As before,
1 1 1 _ vz, 00)
t—2P(ZtZ£L'):t—2E :—2 ({FF Tt —V.’II OO)}Tt>+ 2 ETt
1 da(x) v[z,00)
Zt—Q]E(G(t) 7) + 50 E(T7) + 2 ET:.

The first term in the last expression can be bounded as follows:

1
7 E(Go(T)TY)| < |5 E (Lrcu) Ga(TTY) | + | 5 B (Liz 0y Go(TTY)
€ 1
< E (T7) + K5 E( Lr, >t T7)-
Then, it is now clear that we can bound the expression
1 1 pda(z) vz, 00)
D, := t—2]P’(Zt >ux) — ;EYou[x,oo) - 5 ,
as follows
1 1 1/1 vl |de(x)] | 1
D, < et—2E(TE) + Kt—2E(Tt21{Tt2t0}) + v[z,00) ‘; (;ETt - EYO> - 5‘ += t—2E(Tf) —p

The third term on the right hand side of the above inequality is such that

1/1 vy o1t (1
—(=ET, —EYy ) — = = = —(EY; — EYp) — 7 ¢ ds,
t(t t 0) 2 12 Os{s( o) 7} °

which converges to 0 as ¢ — 0 due to (iii) in (26]). Hence, using (iv)-(v) in 21) and

t
BT 1n510)) < B/t < ¢ [ BY)ds /o,
0

we have
limsup D; < ep,
t—0
which implies [29)) because ¢ is arbitrary. =

Proof of Lemmal[4.3l We start by introducing some notation. Suppose that, under P*, X has Lévy-Ito decomposition

¢ ¢
X, =bt+ / / z " (dz,ds) + / / zp*(dz,ds), (A-5)
0 JizI<1 0 JIz|>1

where p* is an independent Poisson measure on R\{0} x Ry with mean measure v*(dz)dt, and i*(dz, dt) := p*(dz,dt)—
v*(dz)dt. Next, for a given fixed € > 0, we set

t
X; ::/ /Zl{|z|25}u*(d2,d8), and X} =X, — X}; (A-6)
0 JR
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hence, X¢ is a compound Poisson process with intensity A. := v*(|z| > ¢) and jumps {¢7}; with common distribution
1;>.v*(dz) /), while the remainder process X is a Lévy process with triplet (0,57, 1¢.|<-3v*(dz)), where

» Ve

b: =0b" —/ 21{‘Z‘ZE}V*(dz).
|z[<1
Let us fixed e = x/2. We first note that
P* ()?f > 3:) < Kz 't

for any ¢,x > 0 and for some universal constant K. Indeed, if we let Vi denote the number of jumps before time ¢ of
the compound Poisson process X<, then we have

P* ()?f > 33) SPNE£0)=1—e Mt < M\t =v({z:|2] > 2/2))t < Ca Yt

We now estimate P* (X7 > ). First, note that, due to the symmetry of the Lévy measure v,
B () = e + [
|2[>1

=t(b —|—/ z(e® = 1)v(dz) — / 212> €7v(d2) —|—/ 21y 1<cye°v(dz))
|z]<1 [zI<1

|z[=1

21j2<eyv (dz)) = £(b° _/

21<1

Zl{\z\Zs}ezV(dZ)Jr/ 21, 1<cye”v(d2))

2>1

=tb+ /| - z(e® = 1)v(dz)) = t(b+/ z(e® — 1)v(dz)).

|2|<a/2

Thus, using concentration inequalities for centered random variable (e.g. [Hou02], Corollary 1), for x > 2EX},

o w Ve _ex_ 2\ 3¢ 4v2
1 z -
P*(Xf > (E) < ]P)*(Xf —E*Xf > Jf/2) < 625 (25"" o2 ) 0g<1+2tV€2> < (26‘/5 ) 1 < /2t,

ex z2

where V2 := Var*(X{) = f{lle} 2%v*(dz). Since M > 1, there exists a universal constant K such that

2 z/2 o—(G-Dz o /2 g~ (M—1)z 4
Vw/2 B C’fo —rv—27dz n Cfo —v—27dz
22 22 2

X
_20 [y 20(a/2)* Y

= =Kz V.
- x? (2—-Y)a? *

We conclude that P*(X§ > z) < Kta™Y for t(b+ f‘z‘<$/2 z(e* — 1)v(dz)) < x/2. This completes the proof, since

P* (X, > ) < P*(XF > 2/2) + PH(X{ > 2/2) < Kta™Y,

whenever ¢(b + f‘z‘<m/4 z

(e = Dv(dz)) < z/4. m
Proof of Proposition Without loss of generality, we assume Sy = 1. We break the proof into two parts:

(1) Let us assume through this part that (X;); is a symmetric CGMY process. Let b(u) := b+ f‘zKuz(ez — 1)v(dz).
Obviously, -

b(u) < |b(u)] < |0| + /ZSl |z||le* — 1|v(dz) + 2/221 |zle*v(dz) := b < oo. (A-7)
Next, we write
/°° et up (Xt > tl/yu) du = /OO 1{u/4§t1*1/yi)}€7tl/yuP* (Xt > tl/Yu) du (A-8)
0 0
+ /Ooo Liwaspoivgpe VP (Xt > tl/yu) du. (A-9)
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Y

Clearly, e uP* (X > tl/yu) < 1, so the first term converges to 0 as t — 0 because Y € (1,2). From the inequality

(A=7), we have

1{u/4>t1*1/yl3} = 1{t1/Yu>tl3} < 1{t1/Yu/4>tb(t1/Yu/4)}’
and using Lemma [£.3] we obtain that

1Y

UTD* VA S
P (Xt =z tl/Y“) = 1{t1/yu/4>tb(t1/Yu/4)}e il (Xt > tl/yu)
< min{K(#/Yu)"Yt,1} = min{ Ku"Y, 1},

1{u/4>t1*1/YB}6

which is integrable because Y € (1,2). Hence, we can apply dominated convergence in the second term (A=9) and,
using Proposition [} we obtain that
41y

lim [ et/ upr (Xt > tl/Yu) du = / P*(Z > w)du = E*(Z,).
t—0 0 0

This show the result in view of (39)-0).

(2) In this second part, we relax the symmetry restriction. The idea is to reduce the problem to the symmetric case

by applying a change of probability measure[] Concretely, let 3 := & > ¢ and, as in the proof of Proposition 22} define

a probability measure P on (Q, F) such that
P(B) = E (¢ Xt15) /E (%), (A-10)

for any B € F;. We can check that, under I@, (X¢): is a symmetric CGMY model with C = C,Y =Y, and
G =M = (M + G)/2. Indeed, it follows that

B (eX0) =B (e0m9%0) /K (¢7X)
= exp [tCF(—Y) {(M=B—iw) +(G+B+iu)Y —(M—B)Y —(G+B8)}+ iimt] .
Also, assuming 8 > 0,
[ (X 1), ) =B (X = 1) | =E((eX = 1), (7 = 1)) SE((eX 1) (X~ 1)) = O(1),

since the moment function ¢(z) := 5(e” —1)(e”* — 1) ~ 2* and Theorem 1.1-(ii) in [FLO§| can be applied. If 5 < 0,
then

[ (X —1), ) =B (X = 1) | =E((eX = 1), (1= X)) SE((eX 1) (1-¢#X)) = Oft),

for the same reason. Then, we only need to consider the asymptotic behavior of E ((eXf — 1)+ eﬁxf) as t — 0, because

Y € (1,2) so the O(t) terms above are smaller than O(t'/Y"). However,
X, X\ X\ | Xt
E((e —1)+e'8 ) —E(eﬂ )E((e —1)+>,
and thus, using the fact that (X;); is symmetric under P and part (1) in this proof,

lim ¢t~ YYE ((eXf - 1)+ eﬂX‘> =lim¢t YYE ((eX‘ - 1)+) =E"(Z;).

t—0 t—0

5A similar argument is applied in the proof of Proposition 5-(2) in [TnkvI0] but with a different aim.
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