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Abstract. Stability of Wardrop equilibria is analyzed for dynamical transportation networks
in which the drivers’ route choices are influenced by information at multiple temporal and spatial
scales. The considered model involves a continuum of indistinguishable drivers commuting between
a common origin/destination pair in an acyclic transportation network. The drivers’ route choices
are affected by their, relatively infrequent, perturbed best responses to global information about the
current network congestion levels, as well as their instantaneous local observation of the immediate
surroundings as they transit through the network. A novel model is proposed for the drivers’ route
choice behavior, exhibiting local consistency with their preference toward globally less congested
paths as well as myopic decisions in favor of locally less congested paths. The simultaneous evolution
of the traffic congestion on the network and of the aggregate path preference is modeled by a system
of coupled ordinary differential equations. The main result shows that, if the frequency of updates
of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics,
then the state of the transportation network ultimately approaches a neighborhood of the Wardrop
equilibrium. The presented results may be read as a further evidence in support of Wardrop’s
postulate of equilibrium, showing robustness of it with respect to non-persistent perturbations. The
proposed analysis combines techniques from singular perturbation theory, evolutionary game theory,
and cooperative dynamical systems.

Key words. Transportation networks, Wardrop equilibrium, traffic flows, evolutionary game
dynamics, route choice behavior, multiscale decisions.

1. Introduction. As transportation demand is dramatically approaching its in-
frastructure capacity, a rigorous understanding of the relationship between the macro-
scopic properties of transportation networks and realistic driver route choice behavior
is attracting renewed research interest. Such an analysis is essential, among other
things, for appropriate design of incentives influencing drivers’ behavior in order to
induce a desired socially optimal usage of the transportation infrastructure. A partic-
ularly relevant issue is the impact of drivers’ en route responses to unexpected events
on the overall transportation network dynamics. This issue is particularly signifi-
cant in a modern real-life transportation network scenario, where recent technological
advancements in intelligent traveller information devices have enabled drivers to be
much more flexible in selecting their routes to destination even while being en route.
While there has been a significant research effort to investigate the effect of such tech-
nologies on the route choice behavior of drivers, e.g., see [19, 16], the analytical study
of the dynamical properties of the whole network under such behavior has attracted
very little attention.
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This paper is focused on the stability analysis of transportation networks in a
setup where the drivers have access to traffic information at multiple temporal and
spatial scales and they have the flexibility to switch their route to destination at
every intermediate traffic intersection. Specifically, we consider a model in which
the drivers choose their routes while having access to relatively infrequent global
information about the network congestion state, and real-time local information as
they transit through the network. The drivers’ route choice behavior is then influenced
by relatively slowly evolving path preferences as well as myopic responses to the
instantaneous observation of the local congestion levels at the intersections. This
setup captures many real-life scenarios where unexpected events observed en route
might cause drivers to take a temporary detour, but not necessarily to change their
path preferences. Such path preferences may instead be updated, e.g., on a daily,
weekly, or longer time basis, in response to information about the global congestion
state of the different origin-destination paths collected from the drivers’ personal
experience, their opinion exchanges with their peers, as well as from information
media. However, since the traffic dynamics is significantly influenced by the drivers’
response to real-time local information, such responses can influence the drivers’ path
preference thereby modifying their global route choice behavior in the long run. We
propose and analyze a novel model for the drivers’ route choice behavior that combines
relatively infrequent information about the global congestion status of the network
with real-time local observations as explained below.

In our model, the network is represented by a directed acyclic graph with one
origin and one destination. A continuous constant flow of indistinguishable drivers
enters from the origin, and flows through the network until reaching the destination
node. Traffic parameters, such as average speed, traffic density, and flow, are modeled
as homogeneous quantities on every link, related one to each other by functional
dependencies representative of the links’ congestion properties. The dynamics of
such traffic parameters is governed by the law of conservation of mass, as well as
the drivers’ route choice behavior. In turn, the drivers’ route choice behavior is
assumed to be influenced by two factors: the aggregate path preference, measuring
the relative appeal of the different routes to the drivers, and local observations of the
current congestion levels. The path preference dynamics evolve at a slow time scale
(as compared to the traffic dynamics), following a perturbed best response to global
information, embodied by the current congestion levels on the whole network. When
traversing an intermediate node in the network, drivers behave according to their path
preference, if this is consistent with the current, locally observed, aggregate behavior
of the other drivers. On the other hand, when there is a discrepancy between the
aggregate path preference and the locally observed aggregate behavior, then drivers
tend to compensate this by myopically preferring routes which appear to be locally
less congested.

The above-described model gives rise to a double feedback dynamics, governed by
a finite-dimensional system of coupled ordinary differential equations. Such a dynam-
ical system has two natural time scales, characterizing the dynamics of the drivers’
aggregate path preference and of the traffic parameters on the different links, respec-
tively. We study the long-time behavior of this dynamical system: our main result
shows that, in the limit of small update rate of the aggregate path preferences, a state
of approximate Wardrop equilibrium [20] is approached. The latter is a configuration
in which the delay associated to any source-destination path chosen by a nonzero
fraction of the drivers does not exceed the delay associated to any other path. Our
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results contribute to providing a stronger evidence in support of the significance of
Wardrop’s postulate of equilibrium for a transportation network. They may also be
read as a sort of robustness of such equilibrium notion with respect to non-persistent
perturbations of the network.

The analytical arguments we propose mainly rely on three ideas: adopting a
singular perturbation approach [13], by considering the aggregate path preference as
‘quasi-static’ when studying the fast scale dynamics of the traffic parameters, and the
traffic parameters as ‘almost equilibrated’ when analyzing the slow scale dynamics of
the aggregate path preference; exploiting the inherent cooperative1 dependence of the
route choice function on the local traffic parameters in order to establish exponential
stability of the fast scale dynamics of the traffic parameters; adapting results from
evolutionary population games [12, 18] in order to establish stability properties of the
slow scale perturbed best response dynamics of the aggregate path preference.

Our work is naturally related to two streams of literature on transportation net-
works. On the one hand, traffic flows on networks have been widely analyzed with
fluid-dynamical and kinetic models: see, e.g., [8], and references therein. As compared
to these models (typically described by partial, or integro-differential equations), ours
significantly simplifies the evolution of the traffic parameters (treating them as homo-
geneous quantities on the links, representative of spatial averages), whereas it high-
lights the role of the drivers’ route choice behavior with its double feedback dynamics,
which is typically neglected in that literature.

On the other hand, transportation networks have been studied from a decision-
theoretic perspective within the framework of congestion games [3, 17]. In these
models, drivers make sequential myopic route choice decisions in pursuit of mini-
mizing their personal travel times, in response to complete information about the
whole network. Congestion games are known to belong to a class of games known
as potential games, a consequence of which is that, best responses of the drivers are
aligned with the gradient of a common potential function and hence the system even-
tually converges to a critical point of this potential function, which, under appropriate
monotonicity conditions of the congestion properties of the links of the network, cor-
responds to a Wardrop equilibrium. Such an approach has been used, for example
in [14]. The stability of Wardrop equilibrium in the context of communication net-
works has been studied in [4]. It is important to note that the two salient features
of a typical congestion game setup are that information is available to the drivers at
a single temporal and spatial scale, and that the dynamics of traffic parameters are
completely neglected by assuming that they are instantaneously equilibrated. In con-
trast, we study the stability of Wardrop equilibrium in a setting where the dynamics
of the traffic parameters are not neglected, and the drivers’ route choice decisions are
affected by, relatively infrequent global information, as well as their real-time local
information as they transit through the network. As a consequence, classic results of
evolutionary game theory and population dynamics [12, 18] are not directly applicable
to our framework, and novel analytical tools have to be developed, particularly for
the analysis of the fast scale dynamics of the traffic parameters.

The rest of the paper is organized as follows. In Section 2, we formulate the model
and state the main result. Section 3 is a technical section that contains the proofs for
the main result including intermediate results. In Section 4, we report results from
illustrative numerical experiments. Finally, we conclude in Section 5 and also mention
potential future research directions.

1Here, the adjective ‘cooperative’ is intended in the sense of Hirsch [9, 10].
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Before proceeding, we establish here some notation to be used throughout the
paper. Let R be the set of reals, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative
reals. Let A and B be finite sets. Then, |A| will denote the cardinality of A, RA
(respectively, RA+) the space of real-valued (nonnegative-real-valued) vectors whose
components are labeled by elements of A, and RA×B the space of matrices whose real
entries labeled by pairs of elements in A×B. The transpose of a matrix M ∈ RA×B,
will be denoted by M ′ ∈ RB×A, while I to be an identity matrix, and 1 the al-
one vector, whose size will be clear from the context. The simplex of probability
vectors over A will be denoted by S(A) := {x ∈ RA+ :

∑
a∈A xa = 1}. If B ⊆ A,

1B : A → {0, 1} will stand for the indicator function of B, with 1B(a) = 1 if a ∈ B,
1B(a) = 0 if a ∈ A\B. For p ∈ [1,∞], ‖ · ‖p is the p-norm. By default, let ‖·‖ := ‖ · ‖2
denote the Euclidean norm. Let int(X ) be the interior of a set X ⊆ Rd, and ∂X denote
its boundary. Let sgn : R → {−1, 0, 1} be the sign function, defined by sgn(x) is 1
if x > 0, sgn(x) = −1 if x < 1, and sgn(x) = 0 if x = 0. Conventionally, we shall
assume the identity d|x|/dx = sgn(x) to be valid for every x ∈ R, including x = 0.

2. Model formulation and main result. In this section, we formulate the
problem and state the main result. In our formulation, we represent the dynamics of
the traffic and the route choice behavior on a transportation network as a system of
coupled ordinary differential equations with two time scales representative of route
choice behavior influenced by the two levels of information. The key components of
our model are: network topology, congestion properties of the links, path preference
dynamics, and node-wise route choice decision. We next describe these components
in detail.

2.1. Network characteristics. Let the topology of the transportation network
be described by a directed graph (shortly, di-graph) G = (V, E), where V is a finite
set of nodes and E ⊆ V × V is the set of (directed) links. For every node v ∈ V,
we shall denote by E−v , and E+

v , the sets of its incoming, and, respectively, outgoing
links. A length-l (directed) path from u ∈ V to v ∈ V is an l-tuple of consecutive links
{(vj−1, vj) ∈ E : 1 ≤ j ≤ l} with v0 = u, and vl = v. A cycle is path of length l ≥ 1
from a node v to itself. Throughout this paper, we shall assume that:

Assumption 1. The di-graph G contains no cycles, has a unique origin (i.e.,
some v ∈ V such that E−v = ∅), and a unique destination (i.e., v ∈ V such that
E+
v = ∅). Moreover, there exists a path to the destination node from every other node

in V.
Assumption 1 implies that one can find a (not necessarily unique) topological ordering
of the node set V (see, e.g., [6]). We shall assume to have fixed one such ordering,
identifying V with the integer set {0, 1, . . . , n}, where n := |V|− 1, in such a way that

E−v ⊆
⋃

0≤u<v
E+
u , ∀v = 0, . . . , n .

We shall model the traffic parameters as time-varying quantities which are ho-
mogeneous over each link of the network. Specifically, for every link e ∈ E , and time
instant t ≥ 0, we shall denote the current traffic density, and flow, by ρe(t), and fe(t),
respectively, while

ρ(t) := {ρe(t) : e ∈ E} , f(t) := {fe(t) : e ∈ E}

will stand for the vectors of all traffic densities, and flows, respectively. Current traffic
flow and density on each link are related by a functional dependence

fe = µe(ρe) , e ∈ E . (2.1)
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Such functional dependence models the drivers’ speed and lane adjustment behavior
in response to traffic density on a particular segment of a road. It will be assumed to
satisfy the following:

Assumption 2. For every link e ∈ E, the flow-density function µe : R+ → R+

is continuously differentiable, strictly increasing, strictly concave and is such that
µe(0) = 0 and limρe↓0 dµe/dρe(ρe) < +∞.

Remark 1. Flow-density functions commonly used in transportation theory typ-
ically are not globally increasing, but rather have a ∩-shaped graph [8]: µe(ρe) in-
creases from µe(0) = 0 until achieving a maximum Ce = µe(ρ̃e), and then decreases
for ρe ≥ ρ̃e. Assumption 2 remains a good approximation of this setting, provided
that ρe stays in the interval [0, ρ̃e).
For every link e ∈ E , let

Ce := sup{µe(ρe) : ρe ≥ 0} = lim
ρe→+∞

µe(ρe)

be its maximum flow capacity. Moreover, let

Fv := ×e∈E+v [0, Ce) , F := ×e∈E [0, Ce)

be the sets of local, and, respectively, global admissible flow vectors. Observe that
our formulation allows for both the cases of bounded and unbounded maximum flow
capacities. As the flow fe is the product of speed and density, it is natural to introduce
the delay function

T : RE+ → [0,+∞]E , Te(fe) :=


+∞ if fe ≥ Ce
µ−1
e (fe)/fe if fe ∈ (0, Ce),

1/dµe
dρe

(0) if fe = 0 ,

(2.2)

whose components measure the flow-dependent time taken to traverse the different
links.2

Example 1. A flow-density function that satisfies Assumption 2 is given by

µe(ρe) = Ce
(
1− e−θeρe

)
∀e ∈ E , (2.3)

where Ce > 0, and θe > 0. The corresponding delay function is

Te(fe) =
1

θefe
log

Ce
Ce − fe

.

We shall denote by P the set of distinct paths in G from the origin node 0 to the
destination node n, and let

A ∈ RE×P , Aep =

{
1 if e ∈ p
0 if e /∈ p ,

be the link-path incidence matrix of G. The relative appeal of the different paths to
the drivers will be modeled by a time-varying probability vector over P, which will
be referred to as the current aggregate path preference, and denoted by π(t). If one

2Here it has implicitly been assumed, without any loss of generality, that all the links are of unit
length.
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assumes, as we shall do throughout this paper, a constant unit incoming flow in the
origin node, it is natural to consider the vector

fπ := Aπ

of the flows associated to the current aggregate path preference. Indeed, fπe =∑
pAepπp represents the total traffic flow that a link e ∈ E would sustain in a hypo-

thetic equilibrium condition in which the fraction of drivers choosing any path p ∈ P
is given by πp. Now, let

Π := {π ∈ S(P) : (Aπ)e < Ce, ∀e ∈ E}

be the set of feasible path preferences. Here, the term ‘feasible’ refers to the fact that
the flow vector fπ associated to any π ∈ Π satisfies the capacity constraint fπe < Ce
for every e ∈ E . Observe that, whenever Ce > 1 for every e ∈ E (or, in particular,
when link capacities are infinite), the set of admissible path preferences Π coincides
with the whole simplex S(P). In contrast, when Ce ≤ 1 for some e ∈ E , Π ⊂ S(P) is
a strict inclusion. On the other hand, whether Π is empty or not depends solely on
the value of the min-cut capacity of the network [1, Ch. 4]

C∗ := min
U⊆V:

0∈U,n/∈U

CU , CU :=
∑

e=(u,v)∈E :
u∈U, v∈V\U

Ce ,

as shown in the following, simply established, result.
Proposition 2.1. The set Π is nonempty if and only if C∗ > 1.
Proof. Fix a cut-set U ⊆ V such that 0 ∈ U , and n /∈ U . Then, every path p ∈ P

contains exactly one link (u, v) ∈ p such that u ∈ U , and v ∈ V \ U . Hence, for every
π ∈ Π, one has that

CU =
∑

e=(u,v)∈E:
u∈U,v∈V\U

Ce >
∑
p∈P

∑
e=(u,v)∈E:
u∈U,v∈V\U

Aepπp =
∑
p∈P

πp = 1 .

Minimizing over all cut-sets U shows that C∗ > 1 is necessary for Π to be nonempty.
For the inverse implication, consider a network with the same topology G and link

capacities ce = max{Ce − |E|−1(C∗ − 1), 0}. The min-cut capacity of this network
satisfies c∗ ≥ C∗ − (C∗ − 1) = 1. Note also that, from our construction, Ce > ce ≥ 0.
Therefore, the max-flow min-cut theorem (see, e.g., [1, Thm. 4.1]) implies that there
exists some π ∈ Π, thus proving that Π is nonempty.

In the case when C∗ ≤ 1 it is not hard to show that, since the incoming flow
exceeds the outgoing flow of the network, the system will grow unstable, i.e., ρe(t) is
unbounded as t grows large, for some link e ∈ E . Therefore, throughout this paper
we shall confine ourselves to transportation networks satisfying:

Assumption 3. The min-cut capacity satisfies C∗ > 1.

2.2. Route choice behavior and traffic dynamics. We now describe the
drivers’ route choice behavior and traffic dynamics on the network. We envision a
continuum of indistinguishable drivers traveling through the network. Drivers enter
the network from the origin node 0 at a constant unit rate, travel through it, and
leave the network from the destination node n. While inside the network, drivers
occupy some link e ∈ E . The time required by the drivers to traverse link e, and
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the current flow on such link are governed by its congestion properties, as given by
(2.2), and (2.1), respectively. When entering the network from the origin node v = 0,
as well as when reaching the tail node v ∈ {1, 2, . . . , n − 1} of some link e /∈ E−n ,
the drivers instantaneously join some link e ∈ E+

v . In this paper, we shall model the
choice of such new link to depend on infrequently updated perturbed best responses
of the drivers to global information about the congestion status of the whole network
as well as on their instantaneous observation of the local congestion levels. We next
describe these two aspects of the model in detail.

Aggregate path preference dynamics. The drivers’ aggregate path prefer-
ence π(t), already introduced in Sect. 2.1, models the relative appeal of the different
paths to the drivers’ population. The aggregate path preference π(t) is updated as
drivers access global information about the current congestion status of the whole
network. This occurs at some rate η > 0, which will be assumed small with respect
to the time-scale of the network flow dynamics. Information about the current sta-
tus of the network is embodied by the current traffic flow vector f(t). From f(t),
drivers can evaluate the vector A′T (f(t)), whose p-th component

∑
e∈E AepTe(fe(t))

coincides with the total delay one expects to incur on path p assuming that the con-
gestion levels on such path won’t change. Drivers’ are assumed to react to such global
information by a perturbed best response

Fh(f) := argmin
ω∈Πh

{
ω′A′T (f) + h(ω)

}
, (2.4)

where h : Πh → R is an admissible perturbation, satisfying the following:
Assumption 4. An admissible perturbation is a function h : Πh → R where

Πh ⊆ Π is a closed convex set, h( · ) is strictly convex, twice differentiable in int(Πh),
and is such that limπ→∂Πh ||∇̃h(π)|| = +∞, where ∇̃ := (I − |P|−111′)∇ is the
projected gradient on S(P)3.

As a result, the aggregate path preference π(t) evolves as

d

dt
π = η

(
Fh(f)− π

)
. (2.5)

The perturbed best response function Fh(f) provides an idealized description of the
behavior of drivers whose decisions are based on inexact information about the state
of the network. In particular, it can be shown that the form of Fh(f) given in (2.4) is
equivalent to the minimization over paths p ∈ P of the expected delay

∑
e∈E AepTe(fe)

corrupted by some (admissible) stochastic perturbation (see e.g. [11]).
It is easy to establish that the perturbed best response Fh(f) is continuously

differentiable on F . Moreover, it is well known [18] that, as ‖h‖∞ ↓ 0, and Πh ↑ Π,
the perturbed best response Fh(f) converges to the set argmin{ω′A′T (f) : ω ∈ Π}
of best responses.4

Example 2. Assume that Ce > 1 for all e ∈ E. Then, an example of perturbed
best response satisfying Assumption 4 is the logit function with noise level β > 0,
which is defined as

Fhp (f) =
exp(−β(A′T (f))p)∑
q∈P exp(−β(A′T (f))q)

, p ∈ P . (2.6)

3We shall use the notation Φ := I − |P|−111′ ∈ RP×P to denote the corresponding projection
matrix.

4Here, the convergences Πh ↑ Π, and {Fh(f)} → argmin{ω′A′T (f) : ω ∈ Π} are intended to
hold in the Hausdorff metric. (see, e.g., [2, Def. 4.4.11])
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This corresponds to the admissible perturbation function h(ω) = −β−1
∑
p ωp logωp.

For any fixed f ∈ F , one has that limβ→+∞ Fh(f), with Fh(f) as defined in (2.6),
is a uniform distribution over the set argmin{(A′T (f))p : p ∈ P}. We refer the
reader to [7] for more on the connection between Fh characterized by Assumption 4
and smooth best response functions.

Remark 2. In the evolutionary game theory literature, e.g., see [12, 18], the do-
main of an admissible perturbation function h, as well as the one of the minimization
in the right-hand side of (2.4), is typically assumed to be the whole simplex S(P),
instead of a closed polytope Πh ⊆ Π ⊆ S(P). Notice that, as already observed in
Sect. 2.1, when Ce > 1 for every e ∈ E, Π = S(P) is a closed polytope, so that one
can choose Πh = Π. Therefore, in this case, Assumption 4 does not introduce any
additional restriction with respect to such theory.

On the other hand, when Ce ≤ 1 for some e ∈ E, then the inclusions of Πh ⊂
Π ⊂ S(P) are both strict, so that Assumption 4 does introduce additional restrictions
on the admissible perturbations. However, it is worth observing that, in a classic
evolutionary game theoretic framework, the dynamics of the aggregate path preference
would be autonomous rather than coupled to the one of the actual flow. In particular,
perturbed best response dynamics in that framework would read as

d

dt
π = Fh(fπ)− π , (2.7)

rather than as in (2.5). For such dynamics, the fact that Te((Aπ)e) = +∞ whenever
(Aπ)e ≥ Ce, can be shown to imply that π(t) would reach a compact Πh ⊆ Π in some
finite time and never leave it. In contrast, in the two time-scale model of coupled
dynamics considered in this paper (see (2.11)), such more restrictive assumption is
needed in order to ensure the same property for the trajectories of π(t) (see Lemma
3.4).

Local route decisions. We now describe the local route decisions, characteriz-
ing the fraction of drivers choosing each link e ∈ E+

v when traversing a non-destination
node v. Such a fraction will be assumed to be a continuously differentiable function
Gve(fE+v , π) of the local traffic flow fE+v := {fe : e ∈ E+

v }, as well as of the current
aggregate path preference π. We shall refer to

Gv : Fv ×Π→ S(E+
v ) (2.8)

as the local decision function at node v ∈ {0, 1, . . . , n−1}, and assume that it satisfies
the following:

Assumption 5. For all 0 ≤ v < n, and π ∈ Π,(∑
j∈E+v

fπj

)
Gve

(
fπE+v

, π
)

= fπe , ∀e ∈ E+
v .

Assumption 6. For all 0 ≤ v < n, π ∈ Π, and fE+v ∈ Fv,

∂

∂fe
Gvj (fE+v , π) ≥ 0 , ∀j 6= e ∈ E+

v .

Assumption 5 is a consistency assumption. It postulates that, when the locally
observed flow coincides with the one associated to the aggregate path preference π,
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drivers choose to join link e ∈ E+
v with frequency equal to the ratio between the flow

fπe and the total outgoing flow
∑
j∈E+v f

π
j .

Assumption 6 instead models the drivers’ myopic behavior in response to varia-
tions of the local congestion levels. It postulates that, if the congestion on one link
increases while the congestion on the other links outgoing from the same node is kept
constant, the frequency with which each of the other outgoing links is chosen does not
decrease. It is worth observing that Assumption 6 is reminiscent of Hirsch’s notion of
cooperative dynamical system [9, 10].

Example 3. An example of local decision function Gv satisfying Assumptions 5
and 6 is the i-logit function. The i-logit route choice with sensitivity γ > 0 is given by

Gve(fE+v , π) =
fπe exp(−γ(fe − fπe ))∑

j∈E+v f
π
j exp(−γ(fj − fπj ))

, (2.9)

for every e ∈ E+
v , 0 ≤ v < n.

For every non-destination node v ∈ {0, 1, . . . , n − 1}, and outgoing link e ∈ E+
v ,

conservation of mass implies that

d

dt
ρe = He(f, π) , He(f, π) :=

{
Gve(fE+v , π)− fe if v = 0

(
∑
j∈E−v fj)G

v
e(fE+v , π)− fe if 1 ≤ v < n .

(2.10)

2.3. Objective of the paper and main result. The objective of this paper
is to study the evolution of the coupled dynamics

d

dt
π = η

(
Fh(f)− π

)
d

dt
ρ = H(f, π) ,

(2.11)

where Fh is the perturbed best response function defined in (2.4), η > 0 is the rate
at which global information becomes available, H(f, π) = {He(f, π) : e ∈ E}, with
He defined in (2.10), and f and ρ are related by the functional dependence (2.1). In
particular, our analysis will focus on the double limiting case of small η and small h.
We shall prove that, in such limiting regime, the long-time behavior of the system is
approximately at Wardrop equilibrium [20, 15]. The latter is a configuration in which
the delay is the same on all the paths chosen by a nonzero fraction of the drivers.
More formally, one has the following:

Definition 2.2 (Wardrop Equilibrium). An admissible flow vector fW ∈ F is
a Wardrop equilibrium if fW = Aπ for some π ∈ Π such that, for all p ∈ P,

πp > 0 =⇒ (A′T (Aπ))p ≤ (A′T (Aπ))q , ∀q ∈ P . (2.12)

Existence and uniqueness of a Wardrop equilibrium are guaranteed by the following
standard result:

Proposition 2.3 (Existence and uniqueness of Wardrop equilibrium). Let As-
sumptions 1-3 be satisfied. Then, there exists a unique Wardrop equilibrium fW ∈
F .

Proof. It follows from Assumption 2 that, for every e ∈ E , the delay function
Te(fe) is continuous, strictly increasing, and such that Te(0) > 0. The proposition
then follows by applying Theorems 2.4 and 2.5 from [15].
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The following is the main result of this paper. It will be proved in Sect. 3 using
a singular perturbation approach.

Theorem 2.4. Let Assumptions 1–6 be satisfied. Then, for every initial condition
π(0) ∈ int(S(P)), ρ(0) ∈ (0,+∞)E , there exists a unique solution of (2.11). Moreover,
there exists a perturbed equilibrium flow fh ∈ F such that, for all η > 0,

lim sup
t→+∞

||f(t)− fh|| ≤ δ(η) , (2.13)

where δ(η) is a nonnegative-real-valued, nondecreasing function of η > 0, such that
limη↓0 δ(η) = 0. Moreover, for every sequence of admissible perturbations {hk : k ∈
N} such that limkt +∞ ||hk||∞ = 0, and limk→+∞Πhk = Π, one has

lim
k→+∞

fhk = fW . (2.14)

Theorem 2.4 states that, in large time limit, the flow vector f(t) approaches a
neighborhood of the Wardrop equilibrium, whose size vanishes as both the time-scale
ratio η and the perturbation norm ||h||∞ vanish. While a qualitatively similar result is
known to hold [18] in a classic evolutionary game theoretic framework (i.e., neglecting
the traffic dynamics, and assuming it is instantaneously equilibrated, as in the ODE
system (2.7)), the significance of the above is to show that an approximate Wardrop
equilibrium configuration is expected to emerge also in our more realistic model of two-
time scale dynamics. Therefore, our results provide a stronger evidence in support of
the significance of Wardrop’s postulate of equilibrium for a transportation network.
In fact, they may be read as a sort of robustness of such equilibrium notion with
respect to non-persistent perturbations.

3. Proofs. In this section, Theorem 2.4 is proved. First, observe that, thanks to
the continuous differentiability of Fh, Gv, and µ, standard analytical arguments imply
the existence and uniqueness of a solution of the the initial value problem associated
to the system (2.11), with initial condition ρ(0) ∈ (0,+∞)E , π(0) ∈ int(Π).

In order to prove the rest of the statement, we shall adopt a singular perturba-
tion approach (e.g., see [13]), viewing the traffic density ρ (or, equivalently, the traffic
flow f) as a fast transient, and the aggregate path preference π as a slow component.
Hence, we shall first think of π as quasi-static (i.e., ‘almost a constant’) while analyz-
ing the fast-scale dynamics (2.10), and then assume that f is ‘almost equilibrated’,
i.e. close to fπ, and study the slow-scale dynamics (2.5) as a perturbation of (2.7).
We shall proceed by proving a series of intermediate technical results, gathered in the
following subsections.

Before proceeding, we introduce some notation to be used throughout the section.
Let

ρπe := µ−1
e (fπe ) , σe := sgn (ρe − ρπe ) = sgn (fe − fπe )

denote, respectively, the density corresponding to the flow associated to the path
preference π, and the sign of the difference between it and the actual density ρe.
Finally, fix some α ∈ (0, 1), and define

V (f, π) :=

n−1∑
v=0

αv
∑
e∈E+v

|fe − fπe | , W (ρ, π) :=

n−1∑
v=0

αv
∑
e∈E+v

|ρe − ρπe |.

10



3.1. Stability of the fast-scale dynamics. We gather here a few properties of
the fast-scale dynamics. Our results will essentially amount to showing that V (f, π)
and W (ρ, π) are Lyapunov functions for the fast-scale dynamics (2.10) with stationary
path preference π.

The following result is a consequence of Assumptions 5 and 6 on the drivers’ local
decision function.

Lemma 3.1. For all π ∈ Π, v ∈ {0, . . . , n− 1}, and fE+v ∈ Fv,∑
e∈E+v

σe

(
λπvG

v
e(fE+v , π)− fπe

)
≤ 0 ,

where λπv :=
∑
e∈E+v f

π
e .

Proof. Throughout this proof, the explicit dependence of Gve on π will be dropped.
Define J := {e ∈ E+

v : fe > fπe }, K := {e ∈ E+
v : fe < fπe }, and let GJ :=

∑
j∈J G

v
j ,

GK :=
∑
k∈KG

v
k, and GJ c :=

∑
e∈E+v \J G

v
e . First, observe that, since

∑
e∈E+v G

v
e = 1,

one has that ∇GJ = −∇GJ c . Now, we are going to show that

GJ (fπE+v
)−GJ (fE+v ) ≥ 0 , (3.1)

by writing the difference above as a path integral of ∇GJ ( · ) first along the segment

SJ from fE+v to the point f∗ ∈ RE
+
v

+ with f∗j := fπj , for j ∈ J and f∗e := fe for

e ∈ E+
v \ J , and then along the segment SK from f∗ to fπ. In this way, one gets:

GJ (fπE+v
)−GJ (fE+v ) =

∫
SJ

∇GJ (f̃E+v ) · df̃E+v +

∫
SK

∇GJ (f̃E+v ) · df̃E+v

= −
∫
SJ

∇GJ c(f̃E+v ) · df̃E+v +

∫
SK

∇GJ (f̃E+v ) · df̃E+v .

(3.2)
Assumption 6 implies that ∂GJ c/∂ρj ≥ 0 for all j ∈ J , and ∂GJ /∂ρk ≥ 0 for all

k ∈ K. In turn, this implies that ∇GJ c · df̃E+v ≤ 0 along SJ , and ∇GJ · df̃E+v ≥ 0
along SK. This and (3.2) prove (3.1). In a very similar fashion, one proves that

GK(fE+v )−GK(fπE+v
) ≥ 0 . (3.3)

Now, observe that Assumption 5 implies that λπvG
v
e(f

π
E+v
, π) = fπe . From this, (3.1),

and (3.3), it follows that

0 ≥ λπv

(
GJ (fE+v )−GJ (fπE+v

)
)
− λπv

(
GK(fE+v )−GK(fπE+v

)
)

=
∑
e∈E+v

σe

(
λπvG

v
e(fE+v )− λπvGve(fπE+v )

)
=

∑
e∈E+v

σe

(
λπvG

v
e(fE+v )− fπe

)
,

which proves the claim.

We now proceed to analyzing, for a fixed global decision π ∈ Π, the fast scale
dynamics (2.10). Let

V +
v (f, π) :=

∑
e∈E+v

|fπe − fe| , v = 0, 1, . . . , n− 1 ,
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be the l1-distance between the current flows on the outgoing links of v, and the flow
associated to the aggregate path preference π, and

V −v (f, π) :=
∣∣λπv − λ−v ∣∣ , v = 1, 2, . . . , n ,

with λπv :=
∑
e∈E+v f

π
e and λ−v :=

∑
e∈E−v fe, be the absolute difference between the

current flow incoming in node v, and the one associated to the aggregate path pref-
erence π. Also, let V −0 (f, π) := 0.

Lemma 3.2. For all v = 0, 1, . . . , n− 1, π ∈ Π, and f ∈ F ,∑
e∈E+v

σeHe(f, π) ≤ −V +
v (f, π) + V −v (f, π) .

Proof. Writing Gve for Gve(fE+v , π), and using Lemma 3.1, one gets that∑
e∈E+v

σeHe(f, π) =
∑
e∈E+v

σe (λ−v G
v
e − fe)

=
∑
e∈E+v

σe(λ
−
v − λπv )Gve +

∑
e∈E+v

σe (λπvG
v
e − fπe ) +

∑
e∈E+v

σe (fπe − fe)

≤ |λ−v − λπv | −
∑
e∈E+v |f

π
e − fe|

= −V +
v (f, π) + V −v (f, π) ,

which proves the claim.

By combining Lemma 3.2, and Assumption 1, one gets the result below. Recall
that we are using the convention d|x|/dx = sgn(x), for all x ∈ R.

Lemma 3.3. For every f = µ(ρ) ∈ F , and π ∈ Π,

∇ρW (ρ, π)′H(f, π) ≤ −(1− α)V (f, π) .

Proof. Observe that, thanks to the acyclicity of the graph as per Assumption 1,
if e ∈ E−v ∩ E+

w for some nodes v and w, then necessarily v ≥ w + 1. Since α < 1, it
follows that

αv1E−v (e)1E+w (e) ≤ αw+1
1E−v (e)1E+w (e) ,

for every 1 ≤ v ≤ n, and 0 ≤ w ≤ n− 1. Hence,∑
0≤v<n

αvV −v (f, π) ≤
∑

0≤v<n

∑
e∈E−v

αv |fe − fπe |

=
∑

1≤v<n

∑
0≤w<n

∑
e∈E

αv1E−v (e)1E+w (e) |fe − fπe |

≤
∑

0≤w<n

αw+1
∑
e∈E

1E+w (e) |fe − fπe |
∑

1≤v<n

1E−v (e)

≤ α
∑

0≤w<n

αw
∑
e∈E+w

|fe − fπe |

= αV (f, π) ,
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where the last inequality follows from the fact that
∑n−1
v=1 1E−v (e) ≤

∑n
v=1 1E−v (e) = 1.

Thus, Lemma 3.2 implies that

∇ρW (ρ, π)′H(f, π) =
∑

0≤v<n

αv
∑
e∈E+v

σeHe(f, π)

≤
∑

0≤v<n

αvV −v (f, π)−
∑

0≤v<n

αvV +
v (f, π)

≤ αV (f, π)− V (f, π) ,

which proves the claim.

3.2. Boundedness of the traffic densities. We shall now prove a couple of
results guaranteeing that the traffic density on every link e ∈ E remains bounded in
time. We start with the following result, guaranteeing that, on every link e ∈ E , the
flow associated to the current path preference, fπe (t), stays eventually bounded away
from the maximum flow capacity Ce. Its proof relies on Assumption 4. Recall that
our formulation allows for both the cases of finite and infinite maximum flow capacity
on a link.

Lemma 3.4. For every admissible perturbation h, there exists t0 ∈ R+, and, for
every link e ∈ E, a positive finite constant Ce, dependent on h but not on η, such
that, for every initial condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

fπe (t) ≤ Ce < Ce , ∀t ≥ t0 , ∀ e ∈ E .

Proof. The fact that fπe (t) ≤ 1 for all e ∈ E follows from the fact that the arrival
rate at the origin is unitary. Therefore, for all e ∈ E with Ce > 1 or Ce = ∞ in
particular, the lemma follows trivially with Ce = 1 and t0 = 0. We now prove the
lemma for all e ∈ E with Ce < ∞. Recall that, by Assumption 4, the domain of the
admissible perturbation h is a closed set Πh ⊂ int(Π). This, in particular implies
that, for all e ∈ E with Ce <∞,

κe := Ce − sup{(Aπ̃)e : π̃ ∈ Πh} > 0 .

For every link e ∈ E with Ce <∞, it follows from (2.4) that

Ce − κe = sup{(Aπ̃)e : π̃ ∈ Πh}
≥ sup {(A argmin{π̃′A′T (f) + h(π̃) : π̃ ∈ Πh})e : f ∈ F}
= sup

{(
AFh(f)

)
e

: f ∈ F
}
.

(3.4)

Hence, one has for every link e ∈ E with Ce <∞,

d

dt
fπe (t) = η

(
A(Fh(f(t))− π(t))

)
e
≤ η (Ce − κe − fπe ) .

Then, Gronwall’s inequality implies that

fπe (t) ≤ fπe (0)e−ηt + (1− e−ηt)(Ce − κe) ≤ e−ηt + Ce − κe ,

for all t ≥ 0 and for every link e ∈ E with Ce <∞. The lemma for e ∈ E with Ce <∞
now follows from the above, by choosing, e.g., Ce := Ce− κ with κ := 1

2 min{κe : e ∈
E s.t. Ce <∞}, and t0 := −η−1 log κ.
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The following result shows that the actual flow fe(t) also stays bounded away
from the maximum flow capacity Ce.

Lemma 3.5. For every admissible perturbation h, there exists positive finite con-
stants η∗, and C̃e, for every e ∈ E, such that, for every η < η∗, and every initial
condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

fe(t) ≤ C̃e < Ce , ∀t ≥ 0, ∀ e ∈ E .

Proof. Let ζ(t) := W (ρ(t), π(t)), and χ(t) := V (f(t), π(t)). Observe that, thanks
to Lemma 3.4, there exists a positive real constant Ce for every e ∈ E , and t0 ≥ 0,
such that, for every t ≥ t0,

ρπe (t) ≤ ρ∗e , ρ∗e := µ−1
e (Ce) , ∀e ∈ E . (3.5)

Since ρπe (t) ≥ 0, the above implies that, if |ρe(t) − ρπe (t)| ≥ 2ρ∗e for some e ∈ E
and t ≥ t0, then necessarily for that e ∈ E , we have that fe(t) − fπe (t) ≥ χ∗e, where
χ∗e := µe(2ρ

∗
e)−Ce > 0. Now, let ζ∗ := 2|E|max{ρ∗e : e ∈ E}, and χ∗ := αn−1 min{χ∗e :

e ∈ E}. Note that W (ρ, π) ≤ |E|max{|ρe−ρπe )| : e ∈ E}, and V (f, π) ≥ αn−1|fe−fπe |
for every e ∈ E . Therefore, it follows that, for any t ≥ t0, if ζ(t) ≥ ζ∗, then for
some e′ ∈ E , we have that |ρe′(t) − ρπe′ | ≥ 2ρ∗e′ for t ≥ t0. This in turn implies that
χ(t) ≥ χ∗e′ ≥ χ∗. Therefore, in summary,

ζ(t) ≥ ζ∗ =⇒ χ(t) ≥ χ∗ , ∀t ≥ t0. (3.6)

On the other hand, observe that (3.5) implies that there exists some ` > 0 such
that ∑

0≤v<n

αv
∑
e∈E+v

1

µ′e(ρ
π
e (t))

≤ ` , ∀t ≥ t0 .

By combining the above with Lemma 3.3, one finds that, for any u, t ≥ t0,

ζ(t)− ζ(u) =

∫ t

u

∑
0≤v<n

αv
∑
e∈E+v

σe

(
d

ds
ρe −

d

ds
ρπe

)
ds

≤
∫ t

u

∇ρW (ρ, π)′H(f, π)ds

+

∫ t

u

∑
0≤v<n

αv
∑
e∈E+v

η

µ′e(ρ
π
e )

∣∣(AFh(fπ))e − (Aπ)e
∣∣ds

≤
∫ t

u

(−(1− α)χ(s) + 2η`) ds .

(3.7)

Now, define η∗ := (1 − α)χ∗/(2`). Assume, by contradiction, that lim supt→∞
fe(t) ≥ Ce for some e ∈ E . Since fe(t) = µe(ρe(t)) < Ce for every t ≥ 0, this implies
that lim supt→+∞ ρe(t) = +∞. This, together with (3.5) implies that lim supt→+∞
ζ(t) = +∞. Then, in particular, the set T := {t > 0 : ζ(t) > ζ(s) ,∀s < t} is an
unbounded union of open intervals, with limt∈T ,t→+∞ ζ(t) = +∞. This, and (3.6)
imply that there exists a non negative constant t∗ ≥ t0 such that

χ(t) ≥ χ∗ , ∀t ≥ t∗ .
14



For every η < η∗, Equation (3.7) and the above give

ζ(t)− ζ(u) =

∫ t

u

(−(1− α)χ(s) + 2η`) ds ≤
∫ t

u

(−(1− α)χ∗ + 2η`) ds < 0

for every t > u ≥ t∗ such that t and u belong to the same connected component
of T . But this contradicts the definition of the set T . Hence, if η < η∗, then
lim supt→+∞ fe(t) < Ce for every e ∈ E . Since on every compact time interval I ⊆
[0,+∞), one has supt∈I fe(t) = fe(t̂) < Ce for some t̂ ∈ I, the foregoing implies the
lemma.

The result below is a consequence of Lemma 3.5, and will prove useful in the
sequel.

Proposition 3.6. There exists K > 0, and t1 ≥ 0 such that, for every initial
condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E , ||∇̃πh(π(t))|| ≤ K for all t ≥ t1.

Proof. First, observe that, thanks to Lemma 3.5, there exists T ∗ > 0 such that
||T (f(t))|| ≤ T ∗ for all t ≥ 0. Thanks to this, and Assumption 4, one has that
Fh(f(t)) ∈ int(Πh), and ∇̃πh(Fh(f(t))) = −ΦA′T (f(t)), where recall that Φ =
I − |P|−111′ is the projection matrix corresponding to the projected gradient with
respect to π on S(P). Hence, ||∇̃πh(Fh(f(t)))|| ≤ ||Φ||||A′||T ∗, which implies that
there exists a convex compact K ⊆ int(Πh) such that Fh(f(t)) ∈ K for all t ≥ 0.
Define

∆(t) := η
(
1− e−ηt

)−1
∫ t

0

e−η(t−s)Fh(f(s))ds .

As ∆(t) is an average of elements of the convex set K, necessarily ∆(t) ∈ K for all
t ≥ 0. Then, π(t) = e−ηtπ(0) + (1 − e−ηt)∆(t) approaches K, which implies that,
for large enough t, π(t) ∈ K1 ⊂ int(Πh), where K1 is a closed subset of int(Πh) that
contains K. Hence, after large enough t, say t1, ∇̃πh(π(t)) stays bounded.

3.3. Estimating the distance between the current density and the one
associated to the current path preference. We analyze here the behavior in time
of W (ρ(t), π(t)). First, we have the following result, characterizing the variation of
W (ρ, π) as a function of π. Recall that ∇̃π = (I−|P|−111′)∇π denotes the projected
gradient with respect to π on S(P).

Lemma 3.7. There exists l > 0, and t0 ≥ 0, such that, for every initial condition
π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

∇̃πW (ρ(t), π(t))′(Fh(f(t))− π(t)) ≤ 2l

1− α
, ∀t ≥ t0 .

Proof. First, observe that, thanks to Lemma 3.4, one has that there exists t0 ≥ 0
such that le := sup{1/µ′e(ρπe (t)) : t ≥ t0} < +∞. Put l := max{le : e ∈ E}. Then,
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for every path p ∈ P, and every t ≥ t0, one has∣∣∣∣∂W (ρ, π)

∂πp

∣∣∣∣ =

∣∣∣∣∣− ∑
0≤v<n

αv
∑
e∈E+v

σe
∂

∂πp
ρπe

∣∣∣∣∣
=

∣∣∣∣∣ ∑
0≤v<n

αv
∑
e∈E+v

σe
∂

∂πp
µ−1
e

(∑
p
Aepπp

) ∣∣∣∣∣
≤

∑
0≤v<n

αv
∑
e∈E+v

Aep
1

µ′e(ρ
π
e )

≤
∑

0≤v<n

αv
∑
e∈E+v

Aeple

≤ l

1− α
,

(3.8)

where the third inequality follows from the fact that, thanks to Assumption 1 on the
acyclicity of the network, each path p ∈ P passes through at most one link e ∈ E+

v .
Therefore,

2l

1− α
≥

∑
p

Fhp (f)

∣∣∣∣ ∂∂πpW (ρ, π)

∣∣∣∣+
∑
p

πp

∣∣∣∣ ∂∂πpW (ρ, π)

∣∣∣∣
≥

∑
p

Fhp (f)
∂

∂πp
W (ρ, π)−

∑
p

πp
∂

∂πp
W (ρ, π)

= ∇̃πW (ρ, π)′(Fh(f)− π) ,

where the first inequality follows upon recalling that both Fh(f), and π are probability
vectors over the path set P, and by using (3.8).

We can now combine Lemmas 3.3 and 3.7, in order to get the following estimate
of the behavior in time of W (ρ(t), π(t)).

Lemma 3.8. There exist l > 0, L > 0, η∗ > 0 and t0 ≥ 0 such that, for every
initial condition π(0) ∈ int (S(P)), ρ(0) ∈ (0,+∞)E ,

W (ρ(t), π(t))

≤ 2ηlL

(1− α)2
+

(
W (ρ(t0), π(t0))− 2ηlL

(1− α)2

)
e−

1−α
L (t−t0) ∀t ≥ t0, ∀ η > η∗.

Proof. Define x(t) := W (ρ(t), π(t)). Notice that, thanks to Lemmas 3.4 and
3.5, there exist L > 0, η∗ > 0 and t0 ≥ 0, such that, for any η < η∗, |ρe(t) −
ρπe (t)| ≤ L|fe(t) − fπe (t)| for every e ∈ E , t ≥ t0. This in particular implies that
V (f(t), π(t)) ≥ W (ρ(t), π(t))/L = x(t)/L, for all η < η∗ and t ≥ t0. Observe that
W (ρ, π) is a Lipschitz function of ρ and π, while both ρ(t) and π(t) are Lipschitz
on every compact time interval. Therefore, x(t) is Lipschitz on every compact time
interval, and thus differentiable for almost every t ≥ t0. For every t at which x(t) is
differentiable, Lemmas 3.3 and 3.7 imply that

d

dt
x(t) ≤ ∇ρW (ρ, π)′H(f, π) + η∇̃πW (ρ, π)′(Fh(f)− π)

≤ −(1− α)V (f, π) +
2ηl

1− α

≤ − (1− α)

L
x(t) +

2ηl

1− α
.
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Then, the claim follows from Gronwall’s inequality.

3.4. Proof of Theorem 2.4. We now proceed to proving Theorem 2.4. Con-
sider the following candidate Lyapunov function:

ψh(π) :=
∑
e∈E

∫ fπe

0

Te (s) ds+ h(π) . (3.9)

Since Te(fe) is increasing, one has that each term
∫ fπe

0
Te (fe) dfe is convex in fπe .

Hence, the composition with the linear map π 7→ fπe =
∑
p∈P Aepπp is convex in π.

Since h(π) is strictly convex by assumption, one gets that ψh(π) is strictly convex as
well. Therefore, ψh(π) admits a unique minimizer

πh := argmin
{
ψh(π) : π ∈ Πh

}
. (3.10)

Let fh := Aπh. Then, we have the following:
Lemma 3.9. Let {hk : k ∈ N} be any sequence of admissible perturbation func-

tions such that lim
k
||hk||∞ = 0, lim

k
Πhk = Π. Then,

lim
k→+∞

fhk = fW .

Proof. Write πk for πhk , F k for Fhk , and Πk for Πhk . Since {Aπk} ⊆ AΠ, and AΠ
is compact, there exists a converging sub-sequence {Aπkj : j ∈ N}. Let us denote by
f∗ := limj Aπ

kj ∈ AΠ its limit, and choose some π∗ ∈ Π such that f∗ = Aπ∗. Notice
that, since sup{Te(fπe ) : π ∈ Πh} < +∞, Assumption 4 implies that the minimizer
in (3.10) has to be in the interior of Πh. As a consequence, one finds that necessarily
∇̃πh(πkj ) = −ΦA′T (Aπkj ), which in turn implies that F kj (Aπkj ) = πkj . Then, using
(2.4), one finds that

(Aπkj )′T (Aπkj ) + hkj (π
kj ) ≤ (Aπ)′T (Aπkj ) + hkj (π) , (3.11)

for all π ∈ Πkj . Now, fix any π ∈ Π. Since Πk
k→ Π, one has that π ∈ Πkj for all

sufficiently large values of j. Hence, passing to the limit as j → +∞ in (3.11), one
finds that

(π∗)′A′T (Aπ∗) ≤ π′A′T (Aπ∗) , ∀π ∈ Π .

In turn, the above can be easily shown to be equivalent to the condition (2.12) char-
acterizing Wardrop equilibria. From the uniqueness of the Wardrop equilibrium, it
follows that necessarily f∗ = fW . Then the claim follows from the arbitrariness of
the accumulation point f∗, and the compactness of AΠ.

We shall now estimate the time derivative of ψh(π) along trajectories of our
dynamical system. For this, define

Γ(t) := ψh(π(t)).

Then, one has

d

dt
Γ(t) = ∇̃πψh(π(t))′

d

dt
π

= ηa′
(
Fh(f(t))− π(t)

)
= ηa′

(
Fh(Aπ(t))− π(t)

)
+ ηa′

(
Fh(f(t))− Fh(Aπ(t))

)
.

(3.12)
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where a := ΦA′T (Aπ(t)) + ∇̃πh(π(t)).
Lemma 3.8 implies that there exists t2 ≥ 0, η∗ > 0 and M1 > 0 such that, for any

η < η∗, W (ρ(t), π(t)) ≤ ηM1 for all t ≥ t2. From the definition of W , it also follows
that W (ρ, π) ≥ αn−1‖ρ − ρπ‖1 for all ρ, π. Moreover, following Assumption 2, with
L := maxe∈E

dµe
dρe

(0), we also have that ‖f −Aπ‖1 ≤ L‖ρ− ρπ‖1 for all f = µ(ρ) and
π. Combining all these relationships, one can see that there exists a M > 0 such that,
for any η < η∗,

||f(t)−Aπ(t)|| ≤ ηM, ∀ t ≥ t2. (3.13)

Moreover, recall that Fh is differentiable on F , and that, thanks to Lemmas 3.4 and
3.5, for η < η∗, both f(t) and Aπ(t) are eventually confined in a compact K ⊆ F .
This implies that

||Fh(f(t))− Fh(Aπ(t))|| ≤ K1η

for some positive constant K1, η < η∗ and sufficiently large values of t. On the
other hand, Lemma 3.4 and Proposition 3.6 imply that both T (Aπ(t)) and ∇̃πh(π(t))
are eventually bounded, so that ||a|| ≤ K2, for some positive constant K2 and large
enough t. It follows that the second addend in the last line of (3.12) can be bounded
as

ηa′
(
Fh(f(t))− Fh(Aπ(t))

)
≤ Kη2 , ∀η < η∗, ∀ t ≥ t3 , (3.14)

for some sufficiently large but finite value of t3, where K = K1K2. Now, observe that,
for every π,

ΦA′T (Aπ) = −∇̃πh
(
Fh(Aπ)

)
,

so that the first addend in the last line of (3.12) may be rewritten as

a′
(
Fh(Aπ(t))− π(t)

)
= −Υ(π(t)) , (3.15)

where

Υ(π) :=
(
∇̃πh(Fh(Aπ))− ∇̃πh(π)

)′ (
Fh(Aπ)− π

)
.

It follows from (3.12), (3.14), and (3.15), that, for η < η∗ and t ≥ t3,

d

dt
Γ(t) ≤ −ηΥ(π(t)) +Mη2 . (3.16)

From the strict convexity of h(π) on the simplex Π, one finds that Υ(π) ≥ 0 for all
π, with equality iff π = πh. Now, let

δ(x) :=

{
sup{||Aπ − fh|| : Υ(π) ≤Mx}+Mx if 0 ≤ x < η∗

C̃
√
|E| if x ≥ η∗ ,

where C̃ := max{C̃e : e ∈ E}, with C̃e as defined in Lemma 3.5. It can be verified
that δ(x) is right-continuous, nondecreasing, and such that δ(0) = 0. Then, (3.13)
and (3.16) imply that, for η < η∗,

lim sup
t→+∞

||f(t)− fh|| ≤ δ(η) .

For η ≥ η∗, the above is clearly true since f(t) ∈ [0, C̃]E by Lemma 3.5 and fh ∈
AΠ ⊆ [0, 1]E . Together with Lemma 3.9, this completes the proof of Theorem 2.4.
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Fig. 4.1. The graph topology used in simulations.

4. Simulations. In this section, we present results from numerical experiments.
We performed several experiments with different graph topologies and for values of
η ranging from 0.01 to 100. In all the cases, we found that the trajectories con-
verge exactly to the perturbed Wardrop equilibrium, i.e., δ(η) in Theorem 2.4 was
estimated to be uniformly zero. We suspect that this might be because of the expo-
nential convergence also of the slow scale dynamics. Additionally, we compared the
convergence of the trajectories corresponding to local decision function from Example
3 with trajectories corresponding to local decision function of the form

Gve

(
fE+v , π

)
= fπe /

∑
j∈E+v

fπj , ∀fE+v ∈ Fv, ∀e ∈ E
+
v . (4.1)

The latter corresponds to the case when the drivers do not take into account the local
observation on the currently observed flow, and always act in a way that is consistent
with their aggregate path preference. We found that the trajectories corresponding
to local decision function in (4.1) converged faster than the trajectories corresponding
to the local decision function in Example 3.

We demonstrate these findings through an illustrative example. For this example,
the parameters were selected as follows:

• graph topology G as shown in Figure 4.1,
• link-wise flow functions as given by (2.3) with C1 = 2 and θe = 1, for all
e ∈ E ;

• Fh as in (2.6) with β = 1,
• G as in (2.9) with γ = 1,
• initial conditions: πe(0) = 1/15 for all e ∈ E , ρe1(0) = ρe12(0) = 5, ρe2(0) =
ρe6(0) = ρe8(0) = 7, ρe3(0) = ρe7(0) = 3, ρe4(0) = 6, ρe5(0) = 1, ρe9(0) = 9,
ρe10(0) = 10, ρe13(0) = 12, ρe14(0) = 4, ρe15(0) = 8.

• η = 0.1.
For these values, ρh := µ−1(fh) was numerically calculated by implementing a gradi-
ent descent algorithm for the potential function as given in (3.9). The evolution of the
1-norm distance of ρ from ρh is plotted on a log-linear scale in Figure 4.2 for two cases:
(i) local route choice decision function of Example 3, and (ii) local decision function
given in (4.1). Figure 4.2 also shows that there is no significant difference between
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Fig. 4.2. Log-linear plot for comparison of the evolution of ‖ρ(t)− ρh‖1 for the local decision
function of Example 3 versus the local decision function of (4.1).

the convergence of trajectory corresponding to local decision function in (4.1) and the
trajectory corresponding to the local decision function of Example 3. However, as we
increase η, we observed that the trajectory corresponding to the local decision func-
tion in (4.1) converge faster than the trajectory corresponding to the local decision
function of Example 3.

5. Conclusion. In this paper, we analyzed the stability of Wardrop equilibria
in dynamical transportation networks characterized by dual temporal and spatial
scales of the drivers’ route choice behavior. We showed that, if the frequency of
updates of path preferences is sufficiently small, then the state of the transportation
network ultimately approaches a neighborhood of the Wardrop equilibrium. The
technical approach relied on establishing relevant properties for the resultant two
time-scale dynamics independently using tools from evolutionary game dynamics, and
cooperative dynamical systems, and then using singular perturbation techniques to
establish sufficient conditions for the stability of the Wardrop equilibrium for the
coupled system. Our results contribute to providing a stronger evidence in support of
the significance of Wardrop’s postulate of equilibrium for a transportation network.
They may be read as a sort of robustness of such equilibrium notion with respect to
non-persistent perturbations of the network.

There are several possible directions for future work. We plan to formally justify
our dynamical model as a macroscopic approximation of the underlying driver level
microscopic process. We also plan to extend our analysis to the case with multiple
origin-destination pairs and possibly cyclic topologies. We also plan to study the
effect of persistent, and possibly adversarial, perturbations on the traffic dynamics
under driver behavior model similar to the one considered in this paper, e.g., see [5].

20



REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, 1993.

[2] L. Ambrosio and P. Tilli, Topics on analysis in metric spaces, Cambridge University Press,
2004.

[3] M. Beckmann, C. B. McGuire, and C. B. Winsten, Studies in the Economics of Transporta-
tion, Yale University Press, 1956.

[4] V. S. Borkar and P. R. Kumar, Dynamic Cesaro-Wardrop equilibration in networks, IEEE
Transactions on Automatic Control, 48 (2003), pp. 382–396.

[5] G. Como, K. Savla, D. Acemoglu, M. A. Dahleh, and E. Frazzoli, On robustness analysis
of large-scale transportation networks, in Proc. of the Int. Symp. on Mathematical Theory
of Networks and Systems, 2010, pp. 2399–2406.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press, 2nd ed., 2001.

[7] D. Fudenberg and D. K. Levine, Learning-theoretic foundations for equilibrium analysis,
(2008). Working paper.

[8] M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical
Sciences, 2006.

[9] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. I: Limit
sets, SIAM Journal on Mathematical Analysis, 13 (1982), pp. 167–179.

[10] , Systems of differential equations that are competitive or cooperative II: Convergence
almost everywhere, SIAM Journal on Mathematical Analysis, 16 (1985), pp. 423–439.

[11] J. Hofbauer and W. H. Sandholm, Evolution in games with randomly disturbed payoffs,
Journal of Economic Theory, 132 (2007), pp. 47–69.

[12] J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the American Math-
ematical Society, 40 (2003), pp. 479–519.

[13] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2 ed., 1996.

[14] J. R. Marden, G. Arslan, and J. S. Shamma, Joint strategy fictitious play with inertia for
potential games, IEEE Transactions on Automatic Control, 54 (2009), pp. 208–220.

[15] M. Patriksson, The Traffic Assignment Problem: Models and Methods, V.S.P. Intl Science,
1994.

[16] A. Polydoropoulou, M. Ben-Akiva, A. Khattak, and G. Lauprete, Modeling revealed and
stated en-route travel response to advanced traveler information systems, Transportation
Research Record: Journal of the Transportation Research Board, 1537 (1996), pp. 38–45.

[17] R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria, International
Journal of Game Theory, 2 (1973), pp. 65–67.

[18] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT press, 2010.

[19] K. K. Srinivasan and H. S. Mahmassani, Modeling inertia and compliance mechanisms in
route choice behavior under real-time information, Transportation Research Record, 1725
(2000), pp. 45–53.

[20] J. G. Wardrop, Some theoretical aspects of road traffic research, ICE Proceedings: Engineering
Divisions, 1 (1952), pp. 325–362.

21


