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METHODS FOR PRICING AMERICAN OPTIONS UNDER REGIME
SWITCHING∗

Y. HUANG† , P. A. FORSYTH‡ , AND G. LABAHN‡

Abstract. We analyze a number of techniques for pricing American options under a regime
switching stochastic process. The techniques analyzed include both explicit and implicit discretiza-
tions with the focus being on methods which are unconditionally stable. In the case of implicit
methods we also compare a number of iterative procedures for solving the associated nonlinear al-
gebraic equations. Numerical tests indicate that a fixed point policy iteration, coupled with a direct
control formulation, is a reliable general purpose method. Finally, we remark that we formulate the
American problem as an abstract optimal control problem; hence our results are applicable to more
general problems as well.
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1. Introduction. The standard approach to valuation of contingent claims (also
known as derivatives) is to specify a stochastic process for the underlying asset and
then construct a dynamic, self-financing hedging portfolio to minimize risk. The
initial cost of constructing the portfolio is then considered to be the fair value of the
contingent claim. This has been used with great success in the case of stochastic
processes having constant volatility in the case of both European and (the more
difficult) American options.

However, it is well known that a financial model which follows a stochastic process
having constant volatility is not consistent with market prices. Recent research has
shown that models based on stochastic volatility, jump diffusion, and regime switching
processes produce better fits to market data. A nonexhaustive list of regime switching
applications includes insurance [22], electricity markets [21, 40], natural gas [12, 2],
optimal forestry management [11], trading strategies [15], valuation of stock loans [44],
convertible bond pricing [3], and interest rate dynamics [27]. Regime switching models
are intuitively appealing, and computationally inexpensive compared to a stochastic
volatility jump diffusion model.

In this paper we study numerical techniques for the solution of American option
contracts under regime switching. While our examples focus on problems with con-
stant properties in each regime, the numerical methods developed can easily be applied
to cases where the properties in each regime are more complex. An example would
be the use of price-dependent regime switching (i.e., default hazard rates) in convert-
ible bond pricing [4]. A number of different methods has been proposed for handling
American options under regime switching models. Semianalytic approaches have been
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suggested in, for example, [26, 9]. Numerical methods include lattice methods [25],
penalty methods using explicit forms for the penalty term [29], and a Crank–Nicolson
method suggested in [42]. However, in each case such methods have fundamental
limitations. For example, while the semianalytic methods can be very efficient for
certain classes of models, they are difficult to apply, in general, to problems with
time- and asset-dependent coefficients, as would be typical of commodity applications
[12, 2]. Lattice methods are popular with practitioners because they are easy to un-
derstand and to implement. However, they are essentially explicit finite difference
techniques and as such have timestep limitations due to stability considerations. The
penalty method of [29] uses an explicit coupling of the penalty term and the regime
coupling terms. This avoids expensive iteration at each timestep, but at the cost of
also incurring timestep limitations due to stability considerations.

We will focus exclusively on methods which are unconditionally stable and which
can be easily generalized to handle a variety of stochastic price models. We model
our American option under regime switching as a set of coupled partial differential
equations (PDEs) variational inequalities (VIs). As a base case, we discretize these
PDE-VIs and use an explicit method for the regime coupling terms and the American
constraint. In order to develop more efficient methods, we formulate the discretized
PDE-VIs using both a penalty method [20] and a direct control approach [8]. In these
cases we use implicit methods for the regime coupling and the American constraint.
This requires a solution of a system of nonlinear algebraic equations.

While implicit coupling methods are more expensive per step than explicit cou-
pling methods, one also needs to consider the rate of convergence in order to compare
various methods. In addition, there are a number of iterative methods available for
solving the nonlinear algebraic equations. We carry out a convergence analysis of the
iterative method used to solve the nonlinear discretized algebraic equations. It is con-
venient to consider these equations as a special case of the general form of discretized
Hamilton–Jacobi–Bellman (HJB) equations, as discussed in [19, 23]. The previously
mentioned numeric approaches (for regime switching) are all simply special cases of
this general form. This allows us to use a single framework to analyze the convergence
of various iterative methods. These include full policy iteration [30], fixed point policy
iteration [23], and a method whereby the regime coupling terms are lagged at each
iteration, but the American option problem is solved to high accuracy within each
regime [37]. In addition, using the same framework, we also analyze a global-in-time
iteration procedure suggested in [31] (see also [5, 6]) whereby a sequence of optimal
stopping problems is solved. We include numerical tests that compare uncondition-
ally stable methods which do not require the solution of discretized equations at each
timestep with the approaches described above.

One significant advantage of our general approach is that our convergence results
can be immediately applied to any type of optimal control problem (not just an
American constraint) based on regime switching or Markov modulated jump diffusions
[18]. We should also mention that these methods can also be applied to switching
problems [34], which arise, for example, in optimal operation of power plants. Our
methods also make no assumptions about the form of the American constraint. The
numerical experiments indicate that use of Crank–Nicolson timestepping and direct
control formulation, coupled with a fixed point policy iteration, is a very effective
and general purpose method. At the other end of the spectrum we show that the
theoretical upper bound on the rate of convergence of the global-in-time method
coupled with its significant storage requirements makes this uncompetitive with the
other methods.
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Fig. 2.1. Examples of two state regime switching models. Left: parameters selected to simulate
price spikes, typical of electricity prices. Right: parameters selected to simulate a bubble in asset
prices.

The remainder of the paper is organized as follows. The regime switching model
is formulated in the next section with the no-arbitrage price of an American option
given as a system of HJB equations. Section 3 details the three types of discretizations
(explicit, implicit-direct control, and the implicit-penalty method) used for approxi-
mating the resulting optimal control equations. Section 4 describes the general form
of the algebraic system of equations which occur for the two implicit discretizations.
Section 5 considers the four distinct iterative methods used for solving the algebraic
system of equations. The following section gives a numerical comparison of the various
methods.

2. Regime switching: Formulation. Let σj , j = 1, . . . ,K be a finite set of
discrete volatilities for our model. Shifts between these states are controlled by a
continuous Markov chain. Under the real world measure, the stochastic process for
the underlying asset S is

dS = μP
j S dt+ σj S dZ +

K∑
k=1

(ξjk − 1) S dXjk, j = 1, . . . ,K,(2.1)

where dZ is the increment of a Wiener process, and μP
j is the drift in regime j. In

addition,

dXjk =

{
1 with probability, λP

jk dt+ δjk,

0 with probability, 1− λP
jk dt− δjk,

λP
jk ≥ 0, j �= k,

λP
jj = −

K∑
k=1
k �=j

λP
jk.(2.2)

It is understood that there can be only one transition over any infinitesimal time
interval, and that λP

jk ≥ 0, j �= k. When a transition from j → k occurs, then the
asset price jumps S → ξjkS. For notational completeness, ξjj = 1. The superscript
P refers to the objective probability measure. We assume that ξjk are deterministic
functions of (S, t).

Regime switching processes are simple yet rich models of realistic stochastic phe-
nomena observed in the economy. It is well known, for example, that a two state
regime switching model with constant parameters can reproduce a volatility smile
[43]. Figure 2.1 shows a single stochastic path for a two regime model, using different
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parameters. The left plot shows spike effects that would be typical of electricity prices
[21]. The right plot shows a stochastic path typical of an asset price bubble [38].

Let Vj(S, τ) be the no-arbitrage value of our contingent claim in regime j where
as usual we have τ = T − t, so we are working backwards in time, with T being the
expiry time of the contingent claim. Suppose we construct a hedging portfolio P such
that

P = −Vj + e S +

K−1∑
k=1

wkFk,(2.3)

where e is the number of units of the underlying asset with price S, and wk is the
number of units of the additional hedging instruments with price Fk. Assuming that
the set of assets with prices {S, F1, . . . , FK−1} forms a nonredundant set [28], it is
possible to set up a perfect hedge. The existence of the perfect hedge allows us to
define risk neutral transition probabilities λjk and the quantities

λjj = −
K∑

k=1
k �=j

λjk, ρj =

K∑
k=1
k �=j

λjk(ξjk − 1), λj =

K∑
k=1
k �=j

λjk.(2.4)

In practical applications, the quantities λij , ξij are determined by calibration to mar-
ket prices [3].

Define the differential operators

LjVj =
σ2
jS

2

2
Vj,SS + (r − ρj)SVj,S − (r + λj)Vj

=
σ2
jS

2

2
DSSVj + (r − ρj)SDSVj − (r + λj)Vj

JjV =

K∑
k=1
k �=j

λjk

λj
Vk(ξjkS, τ),(2.5)

with DS and DSS denoting the usual partial derivative operators and r the risk-free
rate. The no-arbitrage price of an American option is then given by [28]

min

[
Vj,τ − LjVj − λjJjV , Vj − V∗

]
= 0, j = 1, . . . ,K,(2.6)

where V∗ is the payoff.
For computational purposes, (2.6) will be posed on the localized domain

(S, τ) ∈ [0, Smax]× [0, T ].(2.7)

No boundary condition is required at S = 0, while at S = Smax a Dirichlet condition
is imposed (in this paper we use the payoff). The payoff condition when τ = 0 is
given by

V(S, 0) = V∗(S).(2.8)

We truncate any jumps which would require data outside the computational do-
main. The error in this approximation is small in regions of interest if Smax is
sufficiently large [28]. More precisely, the term Vk(ξjkS, τ) in (2.5) is replaced by
Vk(min(Smax, ξjkS), τ).
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3. Discretization. In this section we describe three different discretizations of
(2.6). The first method is a partially explicit method which makes use of (2.6) directly,
while the other two are implicit methods. The implicit methods work with optimal
control formulations, one being a direct control and the other using a penalty method.

Define a set of nodes {S1, S2, . . . , Simax}, and denote the nth timestep by τn =
nΔτ . Let V n

i,j be the approximate solution of (2.6) at (Si, τ
n), regime j, and define

vectors V n

V n = [V n
1,1, . . . , V

n
imax,1, . . . , V

n
1,K , . . . , V n

imax,K ]′(3.1)

of size N = K × imax. It will sometimes be convenient to use a single or double
subscript when referring to an entry in V n,

V n
� = V n

i,j , � = (j − 1)imax + i,(3.2)

which will be clear from the context. In addition, we use the notation

V n
∗,j = [V n

1,j , V
n
2,j , . . . , V

n
imax,j ]

′(3.3)

to denote an approximate solution for a given regime j. Let Lh
j ,J h

j be the discrete
form of the operators Lj ,Jj . Our discretization can be represented as

(Lh
j V

n)ij = αi,jV
n
i−1,j + βi,jV

n
i+1,j − (αi,j + βi,j + r + λj)V

n
i,j ,(3.4)

with three point finite difference operators. A weighted average of central, forward,
and backward differencing is used as described in Appendix A.

Remark 3.1 (positive coefficient discretization). Algorithm A.1 in Appendix A
guarantees that the positive coefficient condition

αi,j ≥ 0, βi,j ≥ 0(3.5)

holds, with central weighting used as much as possible.
In the case of J h

j , we use linear interpolation for the discretization,

[J h
j V

n]i,j =

K∑
k=1
k �=j

λjk

λj
Ihi,j,kV

n,(3.6)

where

Ihi,j,kV
n = wV n

m,k + (1− w)V n
m+1,k, w ∈ [0, 1],

� Vk(min(Smax, ξjkSi), τ
n).(3.7)

Let (ΔS)max = maxi(Si+1 − Si), (Δτ)max = max(τn+1 − τn). The mesh and
timesteps are parameterized by a discretization parameter h such that

(ΔS)max = C1h, (Δτ)max = C2h,(3.8)

with C1, C2 being positive constants. We will carry out tests letting h → 0.
Observe that the discretization method is at least first order correct, and taking

into account (3.6) and (3.7), note the following results. Let e be the imax length vector
[1, 1, . . . , 1]′. Then, we have[Lh

j e
]
i
= −(r + λj), i < imax,[J h

j e
]
i
= 1, i < imax.(3.9)

Based on these discrete operators, we consider the following three approaches.
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3.1. Explicit American constraint and regime coupling. A first order in
time method can be constructed using the discretization

(
1

Δτ
− Lh

j

)
V̂ n+1
i,j =

V n
i,j

Δτ
+ λj [J h

j V
n]i,j , i < imax,

V̂ n+1
i,j = V∗

i , i = imax,

V n+1
i,j = max(V̂ n+1

i,j ,V∗
i ).(3.10)

Proposition 3.1. If a positive coefficient method is used to form Lh
j , and linear

interpolation is used in J h
j , then scheme (3.10) is unconditionally stable.

Proof. Writing out (3.10) for i < imax, noting (3.4) gives

(
1

Δτ
+ αi,j + βi,j + r + λj

)
V̂ n+1
i,j = αi,j V̂

n+1
i−1,j + βi,j V̂

n+1
i+1,j +

V n
i,j

Δτ
+ λj [J h

j V
n]i,j .

Noting (3.5), (3.6), and (3.9), this then implies

(
1

Δτ
+ αi,j + βi,j + r + λj

)
|V̂ n+1

i,j | ≤ (αi,j + βi,j)‖V̂ n+1
i,j ‖∞ +

(
1

Δτ
+ λj

)
‖V n‖∞.

(3.11)

From ‖V 0‖∞ = ‖V∗‖∞, a straightforward maximum analysis gives

‖V n+1‖∞ ≤ ‖V n‖∞.(3.12)

Remark 3.2. Note that the regime coupling terms J h
j in scheme (3.10) are han-

dled explicitly; hence method (3.10) requires only solution of K decoupled tridiagonal
systems in each timestep, and consequently is very inexpensive. However, we can
expect that convergence as h → 0 will be at most at a first order rate.

3.2. Direct control discretization. Rewrite (2.6) in control form [8]

max
ϕ∈{0,1}

[
Ω ϕ(V∗ − Vj)− (1− ϕ)(Vj,τ − LjVj − λjJjV)

]
= 0,(3.13)

where we have introduced a scaling factor Ω > 0 into (3.13). Mathematically, of
course, the scaling factor does not affect the solution of (3.13). However, any iterative
method will require comparing the two (in general) nonzero terms in the max(·)
expression. We can see that a scaling factor is required since the two terms in the
max(·) expression have different units.

Discretizing (3.13) gives

(1− ϕn+1
i,j )

(
V n+1
i,j

Δτ
− θLh

j V
n+1
i,j

)
+Ω ϕn+1

i,j V n+1
i,j

= (1− ϕn+1
i,j )

V n
i,j

Δτ
+Ω ϕn+1

i,j V∗
i + (1− ϕn+1

i,j )λjθ[J h
j V

n+1]i,j

+ (1− ϕn+1
i,j )(1− θ)

[Lh
j V

n
i,j + λj [J h

j V
n]i,j

]
, i < imax,

V n+1
i,j = V∗

i , i = imax,(3.14)
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where

{ϕn+1
i,j } ∈ argmax

ϕ∈{0,1}

{
Ω ϕ(V∗

i − V n+1
i,j )− (1 − ϕ)

(
V n+1
i,j − V n

i,j

Δτ

− θ
(Lh

j V
n+1
i,j + λj [J h

j V
n+1]i,j

)− (1− θ)
(Lh

j V
n
i,j + λj [J h

j V
n]i,j

))}
,

(3.15)

and our timestepping method is fully implicit (θ = 1) or Crank–Nicolson (θ = 1/2).

3.3. Penalty method. The penalized form of (2.6) [20] is

Vε
j,τ = LjVε

j + λjJjVε + max
ϕ∈{0,1}

[
ϕ
(V∗ − Vε

j )

ε

]
.(3.16)

We remind the reader that the basic idea of the penalty method is to discretize (3.16)
and let ε → 0 as the mesh tends to zero.

Using fully implicit (θ = 1) or Crank–Nicolson (θ = 1/2) timestepping, the dis-
crete form of (3.16) is then

V n+1
i,j

Δτ
− θLh

j V
n+1
i,j +

ϕn+1
i,j

ε
V n+1
i,j =

V n
i,j

Δτ
+

ϕn+1
i,j

ε
V∗
i + λjθ[J h

j V
n+1]i,j

+ (1− θ)
[Lh

j V
n
i,j + λj [J h

j V
n]i,j

]
, i < imax,

V n+1
i,j = V∗

i , i = imax,(3.17)

where

ϕn+1
i,j ∈ argmax

ϕ∈{0,1}

{
ϕ

ε
(V n+1

i,j − V∗
i )

}
.(3.18)

In order to ensure that this discretization is consistent, we choose

ε = C3 Δτ.(3.19)

Remark 3.3. Equation (2.6) is a special case of the more general systems of VIs
considered in [13], where it is shown that VIs such as (2.6) have unique, continuous
viscosity solutions. Note that the definition of a viscosity solution must be generalized
for systems of PDEs [13]. It is straightforward to show, using the methods in [19], that
schemes (3.10), (3.14), and (3.17) are unconditionally l∞ stable (θ = 1), monotone,
and consistent, and hence converge to the viscosity solution. Of course, if V∗ has
certain smoothness properties, then smooth solutions can be expected in some cases.
However, this is not the main focus of this work. We are primarily interested in
efficiently solving the discretized equations.

4. Form of the discretized equations. For the explicit American method
(3.10), each timestep requires only the solution of a set of linear tridiagonal systems,
with no nonlinear iteration being required. However, in the case of both the direct
control method (section 3.2) and the penalty method (section 3.3) we require the
solution of nonlinear equations at each timestep. In these cases the nonlinear algebraic
equations are of the form

A∗(Q) U = C(Q)

with Q� = argmax
Q∈Z

[
−A∗(Q)U + C(Q)

]
�

,(4.1)
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where A∗ is of size N ×N , and U, C are vectors of size N . Z is the set of admissible
controls. Here A∗ and C denote the coefficients of the associated linear systems,
while Q� is the control for the �th node. For many of the methods that we use, it is
convenient to separate A∗(Q) as

A∗(Q) = A(Q)− B(Q),(4.2)

with A(Q) providing the terms which couple only nodes within the same regime, and
B(Q) containing all the terms which couple different regimes. The explicit formulae
for A(Q),B(Q), C(Q) (and hence for A∗(Q)) are defined in Appendix B.

Remark 4.1. It is important to note that [A]�,m, [B]�,m, [C]� (and hence also
[A∗]�,m) depend only on Q�.

When we separate the regime coupling terms, the following properties of A,B
become important.

Proposition 4.1. Assuming that Algorithm A.1 is used, discretizations (3.14)
and (3.17) result in matrices A,B having the following properties:

(a) B(Q) ≥ 0.
(b) Suppose row � corresponds to grid node (i, j). Then the �th row sums for

A(Qk) and B(Qk) are as follows:
Direct control:

Row Sum � ( A(Q) ) =

{
(1 − ϕ�)

(
1

Δτ + θ(r + λj)
)
+ ϕ�Ω, i < imax,

1, i = imax,

Row Sum � ( B(Q) ) =

{
(1 − ϕ�)λjθ, i < imax,

0, i = imax.
(4.3)

Penalty method:

Row Sum � ( A(Q) ) =

{
1

Δτ + θ(r + λj) +
ϕ�

ε , i < imax,

1, i = imax,

Row Sum � ( B(Q) ) =

{
θλj , i < imax,

0, i = imax.
(4.4)

(c) The matrices A∗(Q) and A(Q) in (B.6) are strictly diagonally dominant M
matrices [39].

Proof. (a) follows from (3.6)–(3.7) and the definition of B(Q) in Appendix
B. (b) follows from properties (3.9), equations (3.14) and (3.17), and Appendix
B. Since a positive coefficient discretization is used, A∗(Q) and A(Q) have non-
positive offdiagonals and strictly positive rowsums, and hence they are M matrices
[39].

The following proposition will be useful [23].
Proposition 4.2. Suppose A,B are N × N matrices, with A being a strictly

diagonally dominant M matrix, and B ≥ 0. Then

‖A−1B‖∞ ≤ max
�

{∑
u B�,u∑
u A�,u

}
.(4.5)
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5. Solution of the discretized equations. We consider several techniques for
solution of (4.1) (often split as in (4.2)) at each timestep.

5.1. Policy iteration. Policy iteration is a standard procedure used in dynamic
programming applications, and is given in Algorithm 5.1. Various options are available
for solving the system

[A∗(Qk)
]
Uk+1 = C(Qk) on line 4. For example, a direct sparse

matrix method can be used (based on, e.g., minimum degree ordering), or we can
use a preconditioned GMRES technique [36], or even a simple iteration based on the
obvious splitting A∗(Q) = A(Q) − B(Q). If (Uk+1)m is the mth estimate for Uk+1,
then simple iteration is

A(Qk)(Uk+1)m+1 = B(Qk)(Uk+1)m + C(Qk).(5.1)

Algorithm 5.1 Policy iteration.

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do
3: Qk

� = argmaxQ�∈Z

{−A∗(Q)Uk + C(Q)
}
�

4: Solve A∗(Qk)Uk+1 = C(Qk)

5: if k > 0 and max�
|Uk+1

� −Uk
� |

max[scale,|Uk+1
� |] < tolerance then

6: break from the iteration
7: end if
8: end for

With respect to convergence of Algorithm 5.1, it is straightforward to prove the
following [19].

Theorem 5.1 (convergence of policy iteration). If
(a) the matrix A∗(Qk) is an M matrix, and
(b) the vector C(Q) and the matrices A∗(Qk) and A∗(Qk)−1 are bounded inde-

pendent of Qk,
then Algorithm 5.1 converges to the unique solution of (4.1).

Proof. For the convenience of the reader, we give a brief outline here, and refer
the reader to [19] for details. Rearrange Algorithm 5.1 in the form

A∗(Qk)(Uk+1 − Uk) =

[
−A∗(Qk)Uk + C(Qk)

]
−
[
−A∗(Qk−1)Uk + C(Qk−1)

]
(5.2)

and note that since Qk maximizes −A∗(Q)Uk + C(Q), the right-hand side of
(5.2) is nonnegative, and since A∗(Qk) is an M matrix, (Uk+1 − Uk) ≥ 0. Uk is
bounded independent of k, and hence the iterates form a bounded nondecreasing
sequence.

Corollary 5.2. Policy iteration converges unconditionally for both the direct
control (3.14) and penalty (3.17) discretizations.

Proof. A∗(Qk) is an M matrix from Proposition 4.1. The vector C(Q) and matrix
A∗(Q) are easily bounded independent of Q (for fixed grid and timesteps); see the
definitions of these quantities in Appendix B. From Proposition 4.2, we have that

‖A∗(Q)−1‖∞ ≤ max
�

{
1∑

u A
∗
�,u

}
= max

�

1

Row Sum � (A(Q) − B(Q))
.(5.3)
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Hence, from Proposition 4.1, we have that

max
�

1

Row Sum � (A∗(Q))
≤

{
max(1,Δτ, 1/Ω) direct control,

max(1,Δτ) penalty method,
(5.4)

and hence ‖A∗(Q)−1‖∞ is bounded for fixed Δτ and fixed Ω.

5.2. Fixed point policy iteration. In an effort to minimize the work required
to solve the linear system at each iteration, a fixed point policy iteration was suggested
in [23]. The approach makes use of the splitting (4.2) and is given in Algorithm 5.2.

Algorithm 5.2 Fixed point policy iteration.

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do
3: Qk

� = argmaxQ�∈Z

{− [A(Q)− B(Q)
]
Uk + C(Q)

}
�

4: Solve A(Qk)Uk+1 = B(Qk)Uk + C(Qk)

5: if k > 0 and max�
|Uk+1

� −Uk
� |

max[scale,|Uk+1
� |] < tolerance then

6: break from the iteration
7: end if
8: end for

Theorem 5.3 (convergence of fixed point policy iteration). If the conditions
required for Theorem 5.1 are satisfied, and, in addition,

(a) the matrices A(Q) and ‖[A(Q)]−1‖∞ are bounded, and
(b) there is a constant C4 < 1 such that

‖A(Qk)−1B(Qk−1)‖∞ ≤ C4 and ‖A(Qk)−1B(Qk)‖∞ ≤ C4,(5.5)

then the fixed point policy iteration in Algorithm 5.2 converges.
Proof. See [23].
Corollary 5.4. The fixed point policy iteration converges unconditionally for

the penalty discretization (3.17) and converges for the direct control discretization
(3.14) if

Ω > θ · λ̂, where λ̂ = max
j

λj .(5.6)

Proof. Our discretization satisfies the conditions for Theorem 5.1 from Corol-
lary 5.2. (a) can be shown using the same steps as used to bound A∗(Q) and
‖[A∗(Q)]−1‖∞ in the proof of Corollary 5.2. To prove (b), consider first the direct
control method. From Propositions 4.1 and 4.2,

‖A−1(Qk)B(Qp)‖∞ ≤ max
�

∑
u B(Qp)�,u∑
u A(Q

k)�,u

= max
i,j

(1− ϕp
i,j)λjθ

(1 − ϕk
i,j)

(
1

Δτ + θ(r + λj)
)
+ ϕk

i,jΩ
.(5.7)

Consequently,

max
p∈{k,k−1}

‖A−1(Qk)B(Qp)‖∞ ≤ max
i,j

p∈{k,k−1}

(1− ϕp
i,j)λjθ

(1− ϕk
i,j)

(
1
Δτ + θ(r + λj)

)
+ ϕk

i,jΩ

≤ max

[
max

j

λjθΔτ

1 + θ(r + λj)Δτ
, max

j

λjθ

Ω

]
.(5.8)
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Consider the penalty method case. Again, recalling Propositions 4.1 and 4.2, we have

‖A−1(Qk)B(Qp)‖∞ ≤ max
�

∑
u B(Qp)�,u∑
u A(Q

k)�,u

= max
i,j

θλj

1
Δτ + θ(r + λj) +

ϕk
i,j

ε

.(5.9)

As a result (penalty case),

max
p∈{k,k−1}

‖A−1(Qk)B(Qp)‖∞ ≤ max
i,j

p∈{k,k−1}

θλj

1
Δτ + θ(r + λj) +

ϕk
i,j

ε

≤ max
j

θλjΔτ

1 + θ(r + λj)Δτ
< 1.(5.10)

5.3. Local policy iteration. In [37], Salmi and Toivanen solve a single regime
American pricing problem with jump diffusion by lagging the jump terms and then
solving the American linear complementarity problem (LCP) (with the frozen jump
terms) at each iteration. In [42], a block LCP method was suggested, with lagged
regime coupling terms.

Based on the above idea, we can formulate a type of local policy iteration, as
given in Algorithm 5.3. Note that line 3 of this algorithm requires the solution of the
nonlinear local control problem with the regime coupling terms (that is, BUk) lagged
one iteration.

Algorithm 5.3 Local policy iteration.

1: U0 = Initial solution vector of size N
2: for k = 0, 1, 2, . . . until converge do
3: Solve: maxQ∈Z

{−A(Q)Uk+1 + B(Q)Uk + C(Q)
}
= 0

4: if converged then
5: break from the iteration
6: end if
7: end for

Convergence of this method was proved in [37], in the context of jump diffusions,
based on special properties of the LCP form of the American pricing problem. Here
we can give a more general proof of this result, one which can be applied to any
control problem of the form (4.1).

Theorem 5.5. If A(Q) is an M matrix, B(Q) ≥ 0, and

max
Q∈Z

‖A(Q)−1B(Q)‖∞ ≤ C5 < 1,(5.11)

then the local policy iteration (5.3) converges. Furthermore, if U∗ is the solution to
(4.1), and Ek = Uk − U∗, then

‖Ek+1‖∞ ≤ C5‖Ek‖∞.(5.12)

Proof. If U∗ is a solution to (4.1), then

max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}
= 0,(5.13)



PRICING AMERICAN OPTIONS UNDER REGIME SWITCHING 2155

while from Algorithm 5.3, we have

max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}
= 0.(5.14)

Subtracting (5.13) from (5.14), we obtain

0 = max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}

− max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}

≤ max
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
.(5.15)

If Q̂ satisfies

Q̂ ∈ argmax
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
,(5.16)

then, from (5.15), we have

A(Q̂)Ek+1 ≤ B(Q̂)Ek,(5.17)

or, since A(Q) is an M matrix,

Ek+1 ≤ A(Q̂)−1B(Q̂)Ek ≤ C5‖Ek‖∞e,(5.18)

where e = [1, 1, . . . , 1]′. Similarly,

0 = max
Q∈Z

{
−A(Q)Uk+1 + B(Q)Uk + C(Q)

}

− max
Q′∈Z

{
−A(Q′)U∗ + B(Q′)U∗ + C(Q′)

}

≥ min
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
.(5.19)

Hence if

Q̄ ∈ argmin
Q∈Z

{
−A(Q)(Uk+1 − U∗) + B(Q)(Uk − U∗)

}
,(5.20)

then

Ek+1 ≥ A(Q̄)−1B(Q̄)Ek ≥ −C5‖Ek‖∞e.(5.21)

Equations (5.18) and (5.21) then give result (5.12).
Corollary 5.6. Local policy iteration for (3.14) and (3.17) converges at the rate

‖Ek+1‖∞
‖Ek‖∞ ≤ θλ̂Δτ

1 + θ(r + λ̂)Δτ
, where λ̂ = max

j
λj .(5.22)

Proof. From Proposition 4.1, discretizations (3.14) and (3.17) ensure that A(Q)
is an M matrix and that B(Q) ≥ 0.
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For the direct control method, setting p = k in (5.7),

‖A−1(Qk)B(Qk)‖∞ ≤ max
j

θλjΔτ

1 + θ(r + λj)Δτ
.(5.23)

For the penalty method, from (5.9),

‖A−1(Qk)B(Qk)‖∞ ≤ max
j

θλjΔτ

1 + θ(r + λj)Δτ
.(5.24)

Remark 5.1. Note that a sufficient condition for the convergence of simple iter-
ation (5.1) is ‖A(Qk)−1B(Qk)‖∞ < 1. Consequently, since ‖A(Qk)−1B(Qk)‖∞ < 1
unconditionally for both the penalty and direct control methods, then simple iteration
always converges.

5.4. Global-in-time iteration. In [31] a method was suggested whereby the
regime coupling terms are frozen and the entire solution is obtained (over all timesteps)
with these frozen terms. The regime coupling terms are then updated, and the entire
solution (for all timesteps) is generated again. This is repeated until convergence is
obtained. A similar idea was suggested for American options with jump diffusion
[5] and for Asian options under jump diffusion [6]. Effectively, a sequence of opti-
mal stopping problems is solved. This approach is also popular for impulse control
problems [33].

Let (V n)k be the kth iterate for the solution at timestep n. The global-in-time
iteration can then be described as in Algorithm 5.4.

Algorithm 5.4 Global-in-time iteration.

1: (V n)0 = payoff; n = 0, . . . , L; j = 1, . . . ,K; i = 1, . . . , imax; Δτ = T/L
2: for k = 0, 1, 2, . . . until converge do
3: for n = 1, 2, . . . , L do
4: Solve: maxQ∈Z

[−A(Q)(V n)k+1 +B(Q)(V n)k + C(Q)
]
= 0

5: end for
6: if converged then
7: break from the iteration
8: end if
9: end for

We can rewrite Algorithm 5.4 into a form which resembles Algorithm 5.3 (local
policy iteration) as follows. Define the N(L+ 1) length vectors

V = [(V 0)′, . . . , (V L)′]′,(5.25)

so that V contains the solution at each node and regime for all timesteps. Similarly, Q
contains the controls at each node and regime for all timesteps. It will be convenient
to refer to the entries in V using a single or triple index, depending on the context:

V� = Vi,j,n, � = n imaxK + (j − 1)imax + i,

= V n
i,j .(5.26)

We will also use the notation

V∗,∗,n = V n(5.27)
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to refer to the N length subvector of V which refers to nodes and regimes associated
with a single time τn.

Define N(L + 1) × N(L + 1) matrices A,B and N(L + 1) length vector C as in
Appendix C. Let Vk be the kth iterate for V. Algorithm 5.4 can now be rewritten as
in Algorithm 5.5.

Algorithm 5.5 Global-in-time iteration: rewritten.

1: V0 = payoff; n = 0, . . . , L; j = 1, . . . ,K; i = 1, . . . , imax; Δτ = T/L
2: for k = 0, 1, 2, . . . until converge do
3: Solve: maxQ∈Z

[− A(Q)Vk+1 + B(Q)Vk + C(Q)
]
= 0

4: if converged then
5: break from the iteration
6: end if
7: end for

Algorithm 5.5 is now identical to Algorithm 5.3, and hence we can apply Theorem
5.5 to obtain

‖Vk+1 − V∞‖∞
‖Vk − V∞‖∞ ≤ ‖A−1B‖∞.(5.28)

In Appendix C we obtain the bound for the direct control formulation (θ = 1, fully
implicit case)

‖A−1B‖∞ ≤
[
1− 1

[1 + Δτ(λ̂ + r)]L

](
λ̂

λ̂+ r

)
,(5.29)

with λ̂ = max λj . Note that since LΔτ = T , we have

λ̂Δτ

1 + (r + λ̂)Δτ
≤ λ̂LΔτ

1 + (r + λ̂)LΔτ

=
λ̂T

1 + (r + λ̂)T

≤
[
1− 1

[1 + Δτ(λ̂ + r)]L

](
λ̂

λ̂+ r

)
.(5.30)

Consequently, in terms of provable bounds, the convergence rate of the global-in-time
iteration is considerably worse than that for local policy iteration (5.22).

If kmax iterations of the global-in-time algorithm is required to meet the conver-
gence tolerance, then this is equivalent to the same work as required to determine
a complete solution with local policy iteration, where on average kmax local policy
iterations are required in each step. The larger bound on the convergence rate for
global-in-time iteration suggests that we can expect the total cost of the global-in-
time iteration to be larger than local policy iteration. Indeed, note that the number
of iterations per timestep for the local policy iteration must tend to unity as Δτ → 0,
independent of the mesh size (from (5.23)–(5.24)). It is, of course, not possible to do
better than this.

Assuming that L = O(N), the global-in-time method requires O(N2) storage,
since we have to store the entire solution for all timesteps, at each iteration, compared
to O(N) storage for local policy iteration.
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As a result of the convergence bounds and storage inefficiencies, we will not study
this method further.

6. Numerical results. For our example in this section we use a three regime
model, shown in (6.1). The numerical tests use the transition probability array λ,
jump amplitudes ξ, and volatilities σ given in (6.1). Other data are given in Table 6.1.

λ =

⎡
⎣ −3.2 0.2 3.0

1.0 −1.08 .08
3.0 0.2 −3.2

⎤
⎦ , ξ =

⎡
⎣ 1.0 0.90 1.1

1.2 1.0 1.3
0.95 0.8 1.0

⎤
⎦ , σ =

⎡
⎣ .2

.15

.30

⎤
⎦ .(6.1)

We consider two payoffs: a put option with payoff V ∗ = max(K − S, 0), and an
American butterfly with payoff

(6.2) V ∗ = max(S −K1, 0)− 2max(S − (K1 +K2)/2, 0) + max(S −K2, 0).

We assume the existence of an American contract with payoff (6.2), which can only
be early exercised as a unit. This contract has been used as a severe test case by
several authors [1, 41, 32].

The variable timestep selector described in [16] is used. This problem is solved on
a sequence of (unequally spaced) grids. At each grid refinement, a new fine grid node
is inserted between each two coarse grid nodes, and the timestep control parameter
is halved. Table 6.2 shows the number of nodes, variables, and timesteps, for various
levels of grid refinement, for both American put and American butterfly examples.

6.1. Explicit American constraint and regime coupling. We first compare
the explicit coupling scheme (3.10) with a fully implicit method (θ = 1) and a Crank–
Nicolson method (θ = 1/2), using the fixed point policy iteration of section 5.2. The

Table 6.1

Data for the regime switching, American problem.

Expiry time .50
Exercise American
Strike (put) K 100
Butterfly parameters K1,K2 90, 110
Risk-free rate r .02
Penalty parameter ε 10−6Δτ
Scale factor Ω 1/ε
Smax 5000
Convergence tolerance (e.g., (5.1)) 10−8

Table 6.2

Grid/timestep data for convergence study, regime switching example. On each grid refinement,
new fine grids are inserted between each two coarse grid nodes, and the timestep control parameter
is halved.

Refine S nodes Timesteps Timesteps Unknowns
(put) (butterfly)

0 51 34 34 153
1 101 66 67 303
2 201 130 132 603
3 401 256 261 1203
4 801 507 519 2403
5 1601 1010 1033 4803
6 3201 2015 2062 9603
7 6401 4023 4118 19203
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Table 6.3

Comparison of various timestepping methods. Value at t = 0, S = 100, regime 1. Data in
Table 6.1 and in (6.1). Grid data in Table 6.2. Explicit coupling refers to scheme (3.10). Ratio is
the ratio of successive changes as the grid is refined. Put payoff.

Explicit coupling Fully implicit Crank–Nicolson
Refine Value Ratio Value Ratio Value Ratio

0 7.255090541 N/A 7.554014817 N/A 7.618940039 N/A
1 7.431866668 N/A 7.586363330 N/A 7.618460248 N/A
2 7.524864056 2.0 7.602663717 1.98 7.618359301 4.7
3 7.571017345 1.97 7.610447983 2.1 7.618341970 5.28
4 7.594451442 1.95 7.614390087 2.0 7.618334755 2.4
5 7.606402700 2.0 7.616354573 1.95 7.618333108 4.4
6 7.612363761 2.0 7.617344461 2.02 7.618332684 3.9
7 7.615345680 2.0 7.617838205 2.0 7.618332568 3.7

Table 6.4

Comparison of various timestepping methods. Value at t = 0, S = 93, regime 2. Data in
Table 6.1 and in (6.1). Grid data in Table 6.2. Explicit coupling refers to scheme (3.10). Ratio is
the ratio of successive changes as the grid is refined. Butterfly payoff.

Explicit coupling Fully implicit Crank–Nicolson
Refine Value Ratio Value Ratio Value Ratio

0 3.916837172 N/A 4.408997074 N/A 4.444203298 N/A
1 4.159434148 N/A 4.435239516 N/A 4.452662566 N/A
2 4.281954975 1.98 4.435239516 1.8 4.458280993 1.5
3 4.351246652 1.8 4.455493332 2.4 4.459866276 3.5
4 4.391669077 1.7 4.458045879 2.3 4.460228635 4.4
5 4.415803618 1.7 4.459228339 2.2 4.460321583 3.9
6 4.430834006 1.6 4.459799179 2.1 4.460345221 3.9
7 4.440487206 1.55 4.460078178 2.04 4.460351242 3.9

Crank–Nicolson method uses the standard Rannacher timestepping [35] modification;
that is, two fully implicit steps are used at the beginning, and Crank–Nicolson is used
thereafter.

The put payoff results are shown in Table 6.3, and the butterfly results are given
in Table 6.4. Figure 6.1 shows the value of the American butterfly at t = 0. The
Crank–Nicolson method requires 3− 5 iterations per timestep (more details are given
in later sections), and hence a Crank–Nicolson solution is about 3 − 5 times more
expensive than the explicit coupling method (3.10) at the same grid refinement level.
Taking into account accuracy requirements, one can see that the implicit coupling
methods are much more efficient than scheme (3.10), unless the requirements are very
low. In these tables, ratio refers to the ratio of successive changes in the solution as
the grid/timesteps are refined. A ratio of four would indicate quadratic convergence,
and a ratio of two would indicate linear convergence. Note that Table 6.4 indicates
sublinear convergence for the explicit coupling method (butterfly payoff).

6.2. Full policy iteration. In the case of regime switching, an obvious candi-
date method is policy iteration as in Algorithm 5.1. Each iteration requires solution
of the sparse matrix (A−B). This matrix has a block tridiagonal structure with extra
nonzero entries due to the regime coupling terms in B. Note that the incidence ma-
trix is no longer symmetric. However, one might imagine that modern sparse matrix
solvers would be able to efficiently solve this linear system.

Table 6.5 shows the number of nonzeros in the factors of (A − B) at level five
grid refinement. Since the structure of A − B is nonsymmetric, we use a minimum
degree ordering based on the structure of (A − B) + (A − B)′. The actual symbolic
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Fig. 6.1. American butterfly, regime switching. Data in Table 6.1 and in (6.1).

Table 6.5

Nonzeros in factors, direct solve of (A −B), level five. Minimum degree ordering used.

ξ in ξi,j = 1.0 Number of
(6.1) ∀i, j unknowns
282860 33609 4803

Table 6.6

Comparison of full policy iteration, Algorithm 5.1, using a direct solve, full policy iteration
with an iterative solution (GMRES), full policy iteration with simple iteration (5.1), and fixed point
policy iteration, Algorithm 5.2, grid refinement level five. Regime switching, American option,
penalty formulation, put payoff. All methods used the same number of timesteps. Crank–Nicolson
timestepping used. Data in Table 6.1 and in (6.1).

Linear solution Outer iterations Inner iterations CPU time
method per step per outer iteration (normalized)

Full policy iteration, Algorithm 5.1
Direct (min degree) 2.4 N/A 48.50
GMRES (ILU(0))[36] 2.4 1.91 4.85
Simple iteration (5.1) 2.4 2.06 1.53

Fixed point policy iteration, Algorithm 5.2
Direct

(tridiagonal) 3.22 N/A 1.0

factorization is carried out using the structure of (A−B). The number of nonzeros in
the factors is highly sensitive to the data in the jump size matrix ξ. For comparison,
we also computed the number of nonzeros in (A−B) for the case when we set all the
jump sizes to one (see Table 6.5).

Table 6.6 gives the normalized CPU time for a complete solution (grid refinement
level five) using various methods for solution of the sparse matrix (full policy iteration)
compared with a fixed point policy iteration solution. In the case that an iterative
method was used to solve the full policy matrix, the inner convergence tolerance was
as given in Table 6.1. It is clear that use of full policy iteration for this problem is
not efficient, primarily due to the cost of the matrix solve.
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Table 6.7

Number of fixed point policy iterations per timestep. Penalty refers to (3.17). Direct control
refers to (3.14). All methods used the same total number of timesteps. Crank–Nicolson timestepping
used. Data in Table 6.1 and in (6.1). Grid data in Table 6.2. American put. Fixed point policy
iteration as in Algorithm 5.2.

Refinement Direct control (section 3.2) Penalty
Ω = 100 Ω = 104 Ω = 106/(Δτ) (section 3.3)

0 5.40 5.40 5.40 5.40
1 4.75 4.75 4.75 4.75
2 4.25 4.25 4.25 4.25
3 3.99 3.75 3.75 3.75
4 3.97 3.70 3.50 3.55
5 4.12 3.75 3.17 3.22
6 4.65 4.26 3.00 3.04
7 6.48 5.19 3.00 3.03

6.3. Fixed point policy iteration. In this section, we will examine some of the
issues arising in the use of fixed point policy iteration, as described in Algorithm 5.2.
Both the direct control method (section 3.2) and the penalty formulation (section 3.3)
will be considered.

Table 6.7 shows a comparison of the penalty formulation (3.17) with the direct
control formulation (3.14) for various choices of the scaling factor Ω. The penalty
parameter was ε = 10−6Δτ . All methods used the same timestep sequence, and
the solutions agreed to eight digits. All choices of the scaling factor satisfied the
convergence condition (5.6).

Examination of the iterates for the direct control method showed that at small
grid sizes, the iteration appeared to have difficulty determining where the exercise
boundary was located. This was due to the fact that there were many nodes which
had values very close to the payoff value. Consequently, it appeared to be desirable
to increase the size of Ω as the grid is refined.

As a result, a natural choice for Ω is the same form as used for 1/ε, that is,

Ω =
1

ε
=

C

Δτ
.(6.3)

In this case C is a dimensionless constant. With this form for Ω, both terms in the
max(·) expression in (3.13) have the same units.

Table 6.7 shows that form (6.3) is a good choice for the direct control formula-
tion for very fine grids. Note that the form (6.3) for the penalty method was sug-
gested in [20]. This form of the penalty term guarantees that the discretization of the
penalty formulation (3.16) is consistent as h → 0. Note that consistency holds for any
C > 0 [7].

Table 6.8 shows the effect of the choice of the dimensionless constant C in (6.3).
An American put was used, with grid refinement level five. For large values of the
scaling factor Ω (or equivalently, 1/ε), one might suspect that the iteration may no
longer converge, due to floating point precision problems. This will be a result of
subtracting two nearly equal floating point values in both algorithms.

Using the methods in [24], we can estimate the largest values of C which can
be used before round off prevents convergence. For both penalty and direct control
formulations, the estimate for this maximum value of C (designated by Cmax) which
can be used in finite precision arithmetic is

Cmax � tolerance

2δ
,(6.4)
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Table 6.8

Value of the American put, t = 0, S = 100. Penalty refers to (3.17). Direct control refers
to (3.14). All methods used the same total number of timesteps. Crank–Nicolson timestepping
used. Data in Table 6.1 and in (6.1). Grid data in Table 6.2. Fixed point policy iteration as in
Algorithm 5.2. ∗∗∗ indicates algorithm failed to converge after 300 iterations in any timestep. Level
five grid refinement.

Ω or 1/ε Direct control Penalty

109/(Δτ) *** ***
108/(Δτ) 7.618333108 7.618333108
107/(Δτ) 7.618333108 7.618333108
106/(Δτ) 7.618333108 7.618333107
105/(Δτ) 7.618333108 7.618333106
104/(Δτ) 7.618333108 7.618333088
103/(Δτ) 7.618333108 7.618332912
102/(Δτ) 7.618333108 7.618331174
101/(Δτ) 7.618333108 7.618314664
1/(Δτ) 7.618333108 7.618144290
. . . . . . . . .

10−6/(Δτ) 7.618333108
10−7/(Δτ) ***

where tolerance is the convergence tolerance in Algorithms 5.1 and 5.2, and δ is the
unit roundoff. In our case, we have tolerance = 10−8 and in double precision δ �
10−16, hence Cmax � 108. This is a conservative estimate, as can be seen in Table 6.8.

On the other hand, from (5.6), we can see that if C is too small, then the direct
control fixed point policy iteration is not guaranteed to converge. Equation (5.6)
suggests that (for this problem) Cmin � 10−3. Again, this would appear to be a
conservative estimate (see Table 6.8).

We remind the reader that the penalty method will converge for any C > 0 as
h → 0. However, if C is too small, then this will affect the number of correct digits
for any finite h. From Table 6.3, we can see that about six digits are correct for level
five grid refinement. This indicates that for the penalty method, the usable range
of C = [102, 108] (see Table 6.8). Based on many years of experience with penalty
methods [45], we have found that it is safe to use a penalty constant C two orders
of magnitude less than Cmax estimated from (6.4). This value also minimizes errors
at any finite value of h. Defining a practical range of C to be values which give
accuracy at about the level of the discretization error, and which are two orders of
magnitude less than Cmax, means that for this problem, we have a practical range of
C = [102, 106], which is much smaller than the practical range for C for the direct
control formulation.

6.4. Local policy iteration. Table 6.9 compares the statistics for a solution
of the American butterfly and American put, obtained using both the fixed point
policy iteration (Algorithm 5.2) and local policy iteration (Algorithm 5.3). The local
American problem was formulated with the penalty approach.

Note that the average number of outer iterations per timestep for the local policy
iteration is almost the same as the average number of fixed point policy iterations
per timestep. This suggests that there is not much point in solving the local policy
iteration to convergence at each outer iteration. The main source of error in the
iteration appears to be the regime coupling, which requires about three iterations to
resolve, which is roughly what one would expect in this case from estimate (5.22).

In general, even for a tridiagonal LCP, an iterative method is required [14] for
the local American problem (line 3 in Algorithm 5.3). In the special case of a sim-
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Table 6.9

Comparison of local policy iteration (Algorithm 5.3) and fixed point-policy iteration (Algo-
rithm 5.2). Inner iterations refers to the average number of iterations required to solve the local
American problems. Outer iteration refers to the number of iterations required to resolve the regime
coupling. All methods used the same total number of timesteps. Crank–Nicolson timestepping used.
Data in Table 6.1 and in (6.1). Grid data in Table 6.2. Refinement level five.

Method Outer iterations Inner iterations Normalized
per timestep per outer iteration CPU time

American butterfly
Fixed point policy 3.23 N/A 1.0

Local policy 3.20 1.75 1.44
American put

Fixed point policy 3.17 N/A 1.0
Local policy 3.16 1.73 1.41

ple put or call, only a single iteration is necessary [10], since the exercise region is
simply connected to the boundary. Consequently, for a simple put or call, it would
always be more efficient to use the direct Brennan–Schwartz method [10] to solve the
local American problem, as in [37], for the local policy iteration. However, the stan-
dard Brennan–Schwartz algorithm [10] cannot be directly applied to the American
butterfly.

Since the number of outer iterations for the local policy iteration is almost identi-
cal to the number of fixed point-policy iterations, use of local policy iteration coupled
with the Brennan–Schwartz [10] (for the put case) method would not result in signifi-
cant savings compared to the fixed point policy iteration. Since the fixed point policy
iteration makes no assumptions about the form of the payoff, this would appear to
indicate that the fixed point policy iteration is a good general purpose method.

Note that one might expect that the ratio of CPU times in Table 6.9 would be
roughly the same as the average number of inner iterations per timestep (1.75–1.73).
The actual CPU time ratio (1.44–1.41) is somewhat less. This is simply because each
inner penalty iteration is extremely efficient (a tridiagonal solve, followed by a simple
comparison test). The outer iteration requires more complex data structure manipu-
lation. Consequently, the actual ratios of CPU times will be highly implementation
specific.

7. Conclusions. We have analyzed several methods for pricing American op-
tions under a regime switching stochastic process. By formulating this problem as an
abstract optimal control problem, we can obtain some previously known results, for
some special cases, very simply. However, using our general framework, it is trivial to
extend these results to other control problems and stochastic processes. For example,
all the analysis presented here can be applied to Markov modulated jump diffusions
[18], provided that the integral terms are discretized in the usual fashion [17]. In
addition, these techniques can also be applied to switching problems [34].

Our analysis and numerical tests indicate that Crank–Nicolson timestepping, com-
bined with a fixed point policy iteration, using a direct control formulation, is an
effective and robust method for solution of American option problems in a regime
switching context.

Appendix A. Discrete equation coefficients. The discrete coefficients in
equation (3.4) are given in the following. We use standard three point operators for
the first and second derivatives.
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Central differencing:

αcent
i,j =

[
(σj)2S2

i

(Si − Si−1)(Si+1 − Si−1)
− (r − ρj)Si

Si+1 − Si−1

]
,

βcent
i,j =

[
(σj)2S2

i

(Si+1 − Si)(Si+1 − Si−1)
+

(r − ρj)Si

Si+1 − Si−1

]
.(A.1)

Forward/backward differencing (upstream):

αups
i,j =

[
(σj)2S2

i

(Si − Si−1)(Si+1 − Si−1)
+ max

(
0,

−(r − ρj)Si

Si − Si−1

)]
,

βups
i,j =

[
(σj)2S2

i

(Si+1 − Si)(Si+1 − Si−1)
+ max

(
0,

(r − ρj)Si

Si+1 − Si

)]
.(A.2)

A weighted average of central and upstream differencing is used (see Algorithm A.1).
The weighting is determined on a node by node basis. This guarantees that central
differencing is used as much as possible, while guaranteeing that the condition (3.5)
holds.

Algorithm A.1 Differencing method.

1: for i = 1, 2, . . . do
2: ω = 1
3: if αcent

i,j < 0 then

4: ω =
αups

i,j

αups
i,j −αcent

i,j

5: else
6: if βcent

i,j < 0 then

7: ω =
βups
i,j

βups
i,j −βcent

i,j

8: end if
9: end if

10: αi,j = ω · αcent
i,j + (1− ω) · αups

i,j , βi,j = ω · βcent
i,j + (1 − ω) · βups

i,j

11: end for

In order to get some idea of when upstream differencing would be used, it is
instructive to consider a simple case. Suppose that constant grid spacing is used with
Si+1 − Si = Si − Si−1 = ΔS, with Si = iΔS. Then, the condition

(σj)2 ≥ |r − ρj |
i

(A.3)

is required to ensure that αcent
i,j ≥ 0, βcent

i,j ≥ 0. For the examples used in this paper,

|r − ρj | < 0.3 and σ2 > 0.0225. This suggests that upstream weighting would be
used for nodes i = 1, . . . , i∗, with i∗ < 15. Note that this means that the upstream
nodes are confined to a region near S = 0, which shrinks as the mesh is refined (since
condition (A.3) is independent of the mesh spacing). In addition, since Algorithm
A.1 uses a weighted average of central and upstream differencing, the first order error
term will generally have a coefficient less than unity. Since upstream weighting is
used for points remote from the areas of the mesh normally of interest, we can expect
close to second order convergence at the interesting nodes, which is what we see in
practice.
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Appendix B. Matrix form: Discrete equations. In this section we define
matrices A,B and vector C to represent the discrete equations in sections 3.2 and 3.3.

Let U and Q be the vectors

U = [U1,1, . . . , Uimax,1, . . . , U1,jmax , . . . , Uimax,jmax ]
′,

Q = [ϕ1,1, . . . , ϕimax,1, . . . , ϕ1,jmax , . . . , ϕimax,jmax ]
′,(B.1)

and let � be a row index corresponding to grid node (i, j), i.e., � = (j − 1) ∗ imax + i.
Then we can write discrete equations (3.14) as follows.

B.1. Direct control. The discretized equations (3.14) can then be written in
terms of matrices A,B and vector C defined as (i < imax)

[A(Q)U ]� = [AU ]� = (1 − ϕ�)

(
U�

Δτ
− θLh

jU�

)
+ ϕ�Ω U�,

[B(Q)U ]� = [BU ]� = (1− ϕ�)λjθ[J h
j U ]�,

[C(Q)]� = C� = (1− ϕ�)
V n
�

Δτ
+ ϕ�Ω V∗

i

+(1− ϕ�)(1 − θ)
[Lh

j V
n
� + λj [J h

j V
n]�

]
.(B.2)

B.2. Penalty method. Equation (3.17) can be written in terms of A,B and
vector C defined as (i < imax)

[A(Q)U ]� = [AU ]� =
U�

Δτ
− θLh

jU� +
ϕ�

ε
U�,

[B(Q)U ]� = [BU ]� = λjθ[J h
j U ]�,

[C(Q)]� = C� = V n
�

Δτ
+

ϕ�

ε
V∗
i

+(1− θ)
[Lh

j V
n
� + λj [J h

j V
n]�

]
.(B.3)

B.3. Dirichlet condition. At i = imax, we define (for both discretizations)

[AU ]� = Uimax,j , [BU ]� = 0, C� = V∗
imax

, � = (j − 1)imax + imax.(B.4)

B.4. General form. Define a vector of controls Q as in (B.1), with q� = ϕ�,
with admissible controls Z,

Z =
{
ϕ | ϕ ∈ {0, 1} }

.(B.5)

The final discretized equations (3.14) and (3.17) can then be written as

sup
Q∈Z

{
−A(Q)V n+1 + B(Q)V n+1 + C(Q)

}
= 0.(B.6)

Appendix C. Matrix form of global-in-time equations (in Algorithm 5.5).
We restrict our attention to the case of fully implicit timestepping θ = 1 and a di-
rect control formulation. Bearing in mind the subscripting conventions in (5.26), the
discretized equations in Algorithm 5.5 can be written in terms of A,B of the direct
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control discretization (B.2),

[A(Q)V]� = [AV]� =

{
[A(Q∗,∗,n)V∗,∗,n]� − (1− ϕi,j,n)

Vi,j,n−1

Δτ , i < imax, n > 0,

Vi,j,n, i = imax or n = 0,

[B(Q)V]� = [BV]� =

{
[B(Q∗,∗,n)V∗,∗,n]�, i < imax, n > 0,

0, i = imax or n = 0,

[C(Q)]� = C� =

{
ϕi,j,nΩ V ∗

i , i < imax, n > 0,

V∗
i , i = imax or n = 0.

(C.1)

It follows from Propositions 4.1 and 4.2 that B ≥ 0, A is an M matrix, and that

‖A−1B‖∞ ≤ λ̂

λ̂+ r
.(C.2)

However, we can obtain a sharper bound. Let Y, Z be N(L+ 1) length vectors, with
Z arbitrary, and AY = BZ. Then

‖Y ‖∞
‖Z‖∞ = ‖A−1B‖∞.(C.3)

From (C.1), noting Proposition 4.1 and using the facts that B ≥ 0 and A is an M
matrix give

[(1− ϕi,j,n)(1 + (r + λj)Δτ) + Ωϕi,j,n] ‖Y∗,j,n‖∞ ≤ ‖Y∗,∗,n−1‖∞(1 − ϕi,j,n)

+ (1− ϕi,j,n)λjΔτ‖Z‖∞.

(C.4)

Noting that when ϕi,j,n = 1, |Yi,j,n| = 0, we need only consider the case ϕi,j,n = 0,
so that (C.4) becomes

(1 + (r + λj)Δτ)‖Y∗,j,n‖∞ ≤ ‖Y∗,∗,n−1‖∞ + λjΔτ‖Z‖∞.(C.5)

Suppose ‖Y∗,∗,n‖∞ = ‖Y∗,ĵ,n‖∞, and let λ̂(n) = λĵ . Then (C.5) becomes

(1 + Δτ(r + λ̂(n)))‖Y∗,∗,n‖∞ ≤ ‖Y∗,∗,n−1‖∞ + λ̂(n)Δτ‖Z‖∞.(C.6)

Since AY = BZ, note from (C.1) that Y∗,∗,0 = 0. Consequently,

‖Y∗,∗,1‖∞ ≤ λ̂(1)Δτ‖Z‖∞
[1 + Δτ(r + λ̂(1))]

≤ λ̂Δτ‖Z‖∞
[1 + Δτ(r + λ̂)]

,

‖Y∗,∗,2‖∞ ≤ λ̂(2)Δτ‖Z‖∞
[1 + Δτ(r + λ̂(2))]

+
1

[1 + Δτ(λ̂(2) + r)]

[
λ̂Δτ‖Z‖∞

[1 + Δτ(r + λ̂)]

]

≤ λ̂Δτ‖Z‖∞
[1 + Δτ(r + λ̂)]

+
1

[1 + Δτ(λ̂ + r)]

[
λ̂Δτ‖Z‖∞

[1 + Δτ(r + λ̂)]

]
.(C.7)
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Continuing in this way, we obtain

‖Y ‖∞ ≤ ‖Z‖∞ λ̂Δτ

[1 + Δτ(λ̂ + r)]

[
1 +

1

[1 + Δτ(λ̂ + r)]
+ · · ·+ 1

[1 + Δτ(λ̂ + r)]L−1

]

= ‖Z‖∞
[
1− 1

[1 + Δτ(λ̂ + r)]L

](
λ̂

λ̂+ r

)
,(C.8)

which gives

‖A−1B‖∞ ≤
[
1− 1

[1 + Δτ(λ̂ + r)]L

](
λ̂

λ̂+ r

)
.(C.9)

Remark C.1 (Crank–Nicolson timestepping). Note that the above bound is ob-
tained only for fully implicit timestepping. If Crank–Nicolson timestepping is used,
then in order to ensure that A is an M matrix, we would require the usual severe
timestep condition (i.e., twice the maximum explicit timestep size).

Remark C.2 (previous work). A bound similar to that in (C.9) was obtained
in [5] in the context of a global-in-time method for American options under jump
diffusion. The bound (C.2) was obtained for a global-in-time method for American
options under regime switching in [31]. The bound in [31] was obtained based on a
functional iteration approach, and does not appear to be as sharp as bound (C.9), in
the context of a numerical algorithm.
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