Yy
er

The Universit
of Manchest

MANCHESTER

1824
dqds with aggressive early deflation
Nakatsukasa, Yuji and Aishima, Kensuke and Yamazaki,
Ichitaro
2011

MIMS EPrint: 2011.84

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

dqds WITH AGGRESSIVE EARLY DEFLATION

YUJI NAKATSUKASA*, KENSUKE AISHIMAT, AND ICHITARO YAMAZAKI ¥

Abstract. The dqds algorithm computes all the singular values of an n-by-n bidiagonal matrix
to high relative accuracy in O(n?) cost. Its efficient implementation is now available as a LAPACK
subroutine and is the preferred algorithm for this purpose. In this paper we incorporate into dqds a
technique called aggressive early deflation, which has been applied successfully to the Hessenberg QR
algorithm. Extensive numerical experiments show that aggressive early deflation often reduces the
dqds runtime significantly. In addition, our theoretical analysis suggests that with aggressive early
deflation, the performance of dqds is largely independent of the shift strategy. We confirm through
experiments that the zero-shift version is often as fast as the shifted version. We give a detailed error
analysis to prove that with our proposed deflation strategy, dqds computes all the singular values to
high relative accuracy.

Key words. aggressive early deflation, dqds, singular values, bidiagonal matrix

AMS subject classifications. 65F15, 15A18

1. Introduction. The differential quotient difference with shifts (dqds) algo-
rithm computes all the singular values of an n-by-n bidiagonal matrix to high relative
accuracy in O(n?) cost [11]. Its efficient implementation has been developed and is
now available as a LAPACK subroutine DLASQ [30]. Because of its guaranteed rela-
tive accuracy and efficiency, dqds has now replaced the QR algorithm [7], which had
been the default algorithm to compute the singular values of a bidiagonal matrix. The
standard way of computing the singular values of a general matrix is to first apply
suitable orthogonal transformations to reduce the matrix to bidiagonal form, then
use dqds [6]. dqds is also a major computational kernel in the MRRR algorithm for
computing orthogonal eigenvectors of a symmetric tridiagonal matrix [8, 9, 10] and
the singular value decomposition of a bidiagonal matrix [35] in O(n?) cost.

The aggressive early deflation strategy, introduced in [5], is known to greatly
improve the performance of the Hessenberg QR algorithm for computing the eigen-
values of a general square matrix by deflating converged eigenvalues long before a
conventional deflation strategy does. The primary contribution of this paper is the
proposal of two deflation strategies for dqds based on aggressive early deflation. The
first strategy is a direct specialization of aggressive early deflation to dqds. The sec-
ond strategy, which takes full advantage of the bidiagonal structure of the matrix,
is computationally more efficient. We present a detailed mixed forward-backward
stability analysis that proves the second strategy guarantees high relative accuracy
of all the computed singular values. The results of extensive numerical experiments
demonstrate that performing aggressive early deflation significantly reduces the solu-
tion time of dqds in many cases. We observed speedups of up to a factor 50, and in
all our experiments the second strategy was at least as fast as DLASQ for any matrix
larger than 3000.

* Department of Mathematics, University of California, Davis, CA 95616, USA. Current
address, School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK.
(yuji.nakatsukasa@manchester.ac.uk).

T Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,
Japan (kensuke_aishima@mist.i.u-tokyo.ac.jp). Supported in part by the Global 21 Center of
Excellence “The research and training center for new development in mathematics”.

¥ Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA (ic.yamazaki@gmail.com).

2 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

With a conventional deflation strategy, the zero-shift version dqd is too slow to
be practical. Hence, DLASQ adopts a sophisticated shift strategy to improve the con-
vergence of the bottom off-diagonal element [30]. We demonstrate both theoretically
and experimentally that when aggressive early deflation is incorporated, dqd is often
as fast as dqds. Besides making it unnecessary to compute a shift, this observation
provides a potential to parallelize our algorithm by running multiple dqd iterations in
a pipelined fashion, which has been successfully done in the QR algorithm [3, 24, 34].

The structure of the paper is as follows. In section 2, we briefly review dqds and
aggressive early deflation. Sections 3 and 4 describe our two aggressive early deflation
strategies for dqds. Then in section 5 we present convergence analysis of dqds with
aggressive early deflation, which explains its speedup and motivates the use of dqd.
Numerical results are presented in section 6 to illustrate the efficiency and accuracy
of our algorithms.

Notations: For a general matrix X, o;(X) is its ith largest singular value, omin(X)
and omax(X) are X’s smallest and largest singular values respectively, and \;(X) is
X’s ith eigenvalue, arranged in descending order of magnitude. When the matrix is
clear we just write o; or A;. We use MATLAB notation, in which V'(i,j : k) denotes
the jth to kth elements of the ¢th row of V', and V(:,end) is the last column of V.
v(k) denotes the kth element of a vector v. € denotes the machine precision, and ¢,
with any subscript represents a number such that |e,| < e.

2. Backgrounds. In this section we briefly summarize the two key components
of the paper, the dqds algorithm and aggressive early deflation.

2.1. The dqds algorithm. The dqds algorithm introduced in [11] computes
the singular values of a bidiagonal matrix B of the following form:

EEENET \/a . . €n—2 €n—1
B b1d1ag< Ja . . . T om) ,
which denotes a bidiagonal matrix whose diagonal elements are ,/q1,...,/¢, and
the off-diagonal elements are (/e1, ..., /é,—1. dqds is mathematically equivalent to
the Cholesky LR algorithm on BT B with shifts, expressed as (B(m+1)Tpim+1) —
BM)(Bm)T — 5" [where B(™) is the bidiagonal matrix of the form (2.1) obtained
after m dqds iterations.
It is known [1] that if the shifts s(™) are taken such that 0 < 5™ < (Gyin(B(™))?
at each iteration, then as m — oo, B("™) converges to the diagonal matrix

hmB(m):bidiag(= SO -0 — 5)’
1™ — . . n-

m— 00

(2.1)

where S = Y s(™) is the sum of the previously applied shifts. Moreover, the

asymptotic convergence rate of the off-diagonal elements is described by

(m+1) 2
e R) o B
mlgrclx) T 02=3 <1l for i=1,...,n—-1 (2.2)

Therefore, the convergence of el(.m) for 1 < i < n — 2 is linear, while the bottom
off-diagonal 657,@1 converges superlinearly if 02 — >°°°_s(™) = 0. In view of this,
practical deflation strategies, such as that adopted in DLASQ), check if any of the off-
diagonal elements, particularly the bottom one, is small enough to be deflated [30, 2].
For detailed descriptions and analyses of dqds, see [1, 11, 30].

For notational simplicity, in the following we omit the superscript m.

dgds WITH AGGRESSIVE DEFLATION 3

2.2. Aggressive early deflation. Aggressive early deflation [5] aims to deflate
eigenvalues long before conventional deflating strategies do by looking for converged
eigenvalues in a k x k deflation window. This is in contrast to conventional deflat-
ing strategies, which typically look only at the bottom off-diagonal element (or two
consecutive off-diagonals as described in [12, 13]). In this section, we briefly review
aggressive early deflation, and discuss its specialization to the symmetric tridiagonal
case.

2.2.1. Nonsymmetric case. Let H be an irreducible n x n Hessenberg matrix
obtained after several Hessenberg QR iterations. H can be partitioned as

n—k—1 1 k

n—k—1 Hii Hi2 His
H= 1 Hsy Hae Has |,
k 0 Hs> Hss

(2.3)

where k > 1 is the window size for aggressive early deflation. To perform aggressive
early deflation, one computes a Schur decomposition Hzz = VIV and consider the
unitary transformation

I 0 0 " H11 H12 H13 I 0 0 H11 H12 HISV
0 1 0 H21 H22 H23 0 1 0 = H21 H22 H23V s (24)
0 0 V 0 Hs, Hsz| [0 0 V 0 t T

where t is a kx 1 vector, referred to as the spike vector. In practice, many of the trailing
elements of ¢ are negligibly small so that they can be set to zero. If k; elements of ¢ are
set to zero, then the corresponding k, eigenvalues are effectively deflated. In practice,
more deflatable eigenvalues may be found by recomputing the Schur decomposition
with a different eigenvalue ordering.

The leading (n — k¢) x (n — k¢) submatrix of (2.4) is then reduced to a Hessenberg
form, then the process is repeated of applying multiple QR iterations and executing
aggressive early deflation.

This process of aggressive early deflation often drastically improves the perfor-
mance of the QR algorithm. In [19] it is shown that the process can be regarded as
extracting converged Ritz vectors by the Krylov-Schur algorithm.

In [5] it is shown that |t,], the fth element of ¢, has the expression

n—1
’Hi:nfk hi-l—lﬂi

‘Hi#(ﬂi - Me)‘ |Zk. ¢

[te| = (2.5)

where p; (1 < i < k) is the ith diagonal of T and xj, is the last element of the
eigenvector x corresponding to uy. The expression (2.5) partially explains why |¢]
can be negligibly small even when none of the subdiagonal elements h;1 ; is.

2.2.2. Symmetric case. Since aggressive early deflation is so effective for the
Hessenberg QR algorithm, a similar improvement can be expected in the symmetric
tridiagonal case. Here we consider aggressive early deflation applied to the symmetric
tridiagonal QR algorithm. Let A be a symmetric tridiagonal matrix, defined by

by bo . bp—2 bn_1
A = tridiag{ a1 as . . Gn—1 an ¢, (2.6)
by bo . bp—2 bpn_1

4 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

whose diagonals are aq,...,a, and the off-diagonals are by,...,b,_1. We assume
without loss of generality that b; are positive.

Let Ay = VDV be an eigendecomposition of A’s lower-right k x k submatrix A,
where the diagonals of D are in decreasing order of magnitude. Then, we have

R] e

where A; is the upper-left (n — k) x (n — k) submatrix of A, u,_x = [0,0,...,1]7 €
R(=F)*1 and the spike vector ¢ = [t1,...,tx]T is given by t = b,V (1,:)T. If ky
elements of ¢ are smaller than a tolerance 7, for example 7 = €||A||2, then Weyl’s
theorem [27] ensures that the k; corresponding diagonal elements of D approximate
the eigenvalues of A with errors bounded by 7. Hence, we deflate these elements as
converged eigenvalues and obtain the symmetric matrix of size n — k; of the form

A1 U,n_k'ET
tul D ’

where & = [ty,--- ,tp_1,]T and D = diag(dy,--- ,dr_x,). Now, the bottom-right
(k—ke+1) x (k— ke + 1) arrowhead matrix needs to be tridiagonalized before we
proceed to the next QR iteration. This tridiagonalization can be done in O(k?) flops
by the algorithms in [25, 36].

Contrary to the nonsymmetric case, in the symmetric case there is no need to con-
sider another eigendecomposition of A, with a different eigenvalue ordering, because
it does not change the number of deflatable eigenvalues. The QR algorithm is known
to be backward stable, although it can be forward unstable [29]. In the symmetric
case the backward stability of the QR algorithm implies the computed eigenvalues are
correct to €|| A||2, so they are accurate in the absolute sense. For bidiagonal matrices
the dqds algorithm computes singular values with high relative accuracy, so in our
algorithm development in this paper we ensure relative accuracy is maintained when
aggressive early deflation is incorporated into dqds.

3. Aggressive early deflation for dqds - version 1: Aggdef(1). In this
section, we describe our first aggressive early deflation strategy for dqds, which is
referred to as Aggdef(1), and is more or less a direct application of aggressive early
deflation to the bidiagonal case.

3.1. Algorithm. Let By = UXVT be the SVD of the lower-right k x k sub-
matrix By of a bidiagonal matrix B as in (2.1), where the singular values appear in
decreasing order of magnitude. Then, we compute the orthogonal transformation

U R B A

where By is the top-left (n — k) x (n — k) submatrix of B, and the right-hand side
matrix has the nonzero pattern

* ok ok ok . (3.2)

dgds WITH AGGRESSIVE DEFLATION 5

We now look for elements of the spike vector t7 = Ven—%V(1,:) that are small enough
to be neglected, and deflate the corresponding diagonals of ¥ to obtain the reduced
(n — k¢) X (n — k¢) matrix, where k; is the number of negligible elements in ¢. This
matrix needs to be re-bidiagonalized in order to return to the dqds iterations. Al-
gorithm 1 shows the pseudocode of this aggressive deflation strategy, which we call
Aggdef(1).

Algorithm 1 Aggressive early deflation - version 1: Aggdef(1)

Inputs: Bidiagonal B, window size k, sum of previous shifts S
1: compute the singular values of By, the lower-right k& x k& submatrix of B
2: compute the spike vector ¢ in (3.1)
3: find negligible elements in ¢ and deflate converged singular values
4: bidiagonalize matrix of form (3.2)

Below we discuss the details of each step of Aggdef(1).

Computing the singular values of Ba. On line 1 of Aggdef(1), we use standard
dgds (without aggressive early deflation) to compute the singular values of By. This
generally requires O(k?) flops.

Computing the spike vector. To compute the spike vector ¢ on line 2, the first
elements of the right singular vectors V' of Bs need to be computed. This can be
done by computing the full SVD of Bs, which requires at least O(k?) flops. We
can reduce the cost by noting that only the first element of each singular vector is
needed to compute t. This corresponds to the Gauss quadrature, whose computational
algorithms are discussed in [15, 14]. However this approach generally still requires
O(k?) flops.

When to neglect elements of the spike vector. Basic singular value perturbation
theory [33, p.69] tells us that the perturbation on the computed singular values caused
by neglecting the ¢th element ¢, of ¢ is bounded by |t¢]. Since the unconverged singular
values are greater than /S where S is the sum of previous shifts, we can safely neglect
elements of ¢ that are smaller than v/Se (e is the machine precision) without causing
loss of relative accuracy of any singular value.

Rebidiagonalization process. Since the upper-left part of the matrix is already
bidiagonal, we only need to bidiagonalize the bottom-right (ko + 1) x (ko + 1) part of
the matrix of the form (3.2), where ko = k — k.

We use a 4 x4 (kg = 3) example to illustrate our bidiagonalization process, which
is based on a sequence of Givens rotations:

* ok k% * x x 0 * ok ok * *x 0
* Gr(3,4) * Gr(3,4) * Gr(2,3) x4
* L + x 0] L *
[% % 1 (%
Gr(2,3) * x +| Gr(3,4) * Gr(3,4) ok
— 0 x =x * — * %
L * | L 0 =

Here, Gr(i,5) (or GRr(i,j)) above the arrow indicates the application of a Givens
rotation from the left (or right) to the ith and jth rows (or columns). “0” indicates
an element that was zeroed out by the rotation, and “+” is a nonzero that was
newly created. By counting the number of rotations, we can show that the total flops

6 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

required for this process is at most 18k, which is generally O(k?). We note that this
process can be regarded as a bidiagonal version of the tridiagonalization algorithm of
an arrowhead matrix discussed in [25, 36].

Maintaining high relative accuracy. The computation of the spike vector t and the
bidiagonalization process described above can cause errors of order €||Bsl|2 in finite
precision arithmetic. This may result in loss of relative accuracy for small singular
values. To avoid this, we dynamically adjust the deflation window size (shrink from
input size k) so that By does not contain elements that are larger than ¢v/S, where
S is the sum of previous shifts and ¢ is a modest constant. In our experiments we let
c=1.0.

4. Aggressive early deflation for dqds - version 2: Aggdef(2). Numerical
experiments in section 6 illustrate that Aggdef(1) described above significantly reduces
the number of dqds iterations in many cases. However, computing the spike vector ¢
and rebidiagonalizing the matrix generally require at least O(k?) flops, which can be
expensive. Furthermore, Aggdef(1) requires the computation of the square roots of
¢; and e;, and it needs to consider a safe window size to guarantee the high relative
accuracy. In this section, we discuss an alternative deflation strategy, Aggdef(2),
which addresses these issues by seeking one deflatable singular value at a time.

4.1. Process to deflate one singular value. To introduce Aggdef(2) we first
describe Aggdef(2)-1, a simplified process to deflate one smallest singular value. As
before, Bs is the lower-right k x k submatrix of B.

Algorithm 2 Aggdef(2)-1, process for deflating one singular value

Inputs: Bidiagonal B, window size k, sum of previous shifts S

1: compute s = (O’min(BQ))2

2: compute Eg such that g;ég = BT B, — sI by dstqds. Set §2 (end,end) « 0 if it
is negligible (see (4.7)), otherwise exit

3: compute By = By 2021 Gr(k —i,k) for ip = 1,...,k — 2 until w as in (4.1)
becomes negligible (see (4.9)), then w « 0. Exit if w never becomes negligible

4: compute Eg such that EQTEQ = BQTBQ + sI by dstqds and update B by replacing
B2 with EQ

On the first line of Aggdef(2)-1, only the smallest singular value of Bs is computed
using dqds, which requires O(k) flops.

On lines 2 and 4, we use the dstqds algorithm [9, 10], which was originally devel-
oped to obtain the LDLT decomposition of a shifted tridiagonal matrix in a mixed
forward-backward stable manner in the relative sense. We slightly modify this al-
gorithm to reflect the bidiagonal structure. This allows us to compute the k-by-k
bidiagonal By with @, x+i = (B2(i,i))? and €,_j4; = (Ba(i,i + 1))? from By such
that §§§2 = BT B, — sI in about 5k flops, without losing relative accuracy of the
computed singular values. Algorithm 3 shows the pseudocode of our dstqds algorithm.

The bottom diagonal element of By is 0 in exact arithmetic. However in practice
its computed value is nonzero, and we safely set it to 0 when it is small enough, as
detailed below in (4.7). In exact arithmetic, the bidiagonal elements of By are all
positive except for the bottom zero element. However in finite precision arithmetic,
negative elements could appear. When negative elements exist other than at the
bottom diagonal, this indicates a breakdown of the Cholesky factorization. When
this happens, we exit Aggdef(2)-1 and return to the dqds iterations.

dgds WITH AGGRESSIVE DEFLATION 7

Algorithm 3 differential stationary qds (dstqds)
Inputs: s,q; = (B(i,i))? (i =n—k+1,...,n),e; = (B(i,i +1))? (i = n—k +
1,...,n—1)
cd=—s
D k1 = Gn-k+1 +d
:fori:=n—-k+1,--- ,n—1do
€ = qiei/q;
d=de;/q — s
Gi+1 = Gi+1 +d
end for

N RN

On line 3 of Aggdef(2)-1, to determine if v/s+ S can be deflated as a con-
verged singular value, we apply a sequence of i (< k — 2) Givens transformations
(note that they are not strictly Givens rotations: we apply matrices of the form

[z _SC] to specified columns, where ¢? + s> = 1) to Eg on the right to compute

By, = B, H;;l Gr(k —i,k), where Gg(k — i,k) is the Givens transformation acting

on the (k —i)th and kth columns. Below we describe this process for the case k =5
and i = 3:

O O O * % w
* * w 0

* % — * w| — *x % 0| — * o+ 0]. (4.1)
* ok * 0 * 0 * 0

Here, “0” represents the element that was zeroed out and “w” is the nonzero that was
newly created by the transformation. The Givens transformations are applied so that
all but the bottom diagonals of the matrices in (4.1) are positive. We stop applying
the transformations once w becomes negligibly small so that (4.9) is satisfied.

Let us denote z = \/w and express the effects of the ith Givens transformation
in (4.1) as follows:

%k kK
* Ve ‘ x P VE
/ Grlk —i,k /€
Vi * VT & .) VG o+ 0], (4.2)
* 0 * 0
where j =n —i— 1. The triplet (gj41,€;,Z) can be computed from (gj+1,€;,2) by
o ~ o Z]\j.;.lé\j o x€j
dj+1 = Qjy1 +x, €j=<—""—, T=_—_—"—. 4.3
’ a TGt Gj+1+x (4.3)

Hence, Aggdef(2)-1 can be executed without computing square roots. Note that (4.3)

€j

provides a decreasing factor of the element x, i.e., T < x Now, since By converges

qj+1°
to a diagonal matrix, the diagonal element gj41 is typically larger than the off-diagonal
element €;. This suggests that the size of & tends to decrease as it is chased up, i.e.,
0 < & < x if gj+1 > €;. In practice, we observed that & often becomes negligible

long before it reaches the top, that is, ig < k — 2.
4.2. Theoretical justifications. Here we express the key steps of Aggdef(2)-1

in matrix notations when it deflates a singular value. We denote by B and B the
input and output n-by-n bidiagonals of Aggdef(2)-1 respectively.

8 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

Line 2 of Aggdef(2)-1 computes B, such that §2T§2 = BJ By — sI. Then, line 3

1

post-multiplies B, by the unitary matrix Hzozl Grk—1i,k) = where @ is a

' qf
(k—1) x (k—1) unitary matrix. Once w in (4.1) becomes negligible it is set to 0, and
we thus obtain the bidiagonal matrix By such that

gg:@%lé—[“DT@%lﬂ‘:wD

5[1 QT}BQTBQF Q]—SI-I—E. (4.4)

We will carefully examine the “error matrix” F later in section 4.3.
Finally, line 4 computes By such that

BIBy = BT By + 51

:{1 QT]BQTBQ[l Q]+E.

Since denoting u; = [1,0,0,---,0]7 € R**! and u,,_ = [0,0,0,---,1]7 € R*=Fx1
we have

BTB _ BfBl iV Qn—ken—kun—kuip
Van—k€n—rurul_, BI By + en_puiui |’

noting that u! [1 Q] = u!" we obtain

T T T
VOn—kCn—ku1t, ;. B3 Ba + e,_puiuy

I, I,
k 1 B?Bl RV qnfkenfkunfku,{ k 1
Q" Q

BTE _ [BT By VI —k€n—kUn_kul]

VIn—ken—ruiul_, BT B+ e, pujul
+[4 (4.5)

_ [InkJrl QT} BTH |:Ink+1 Q] +[E] (4.6)

Later in section 4.3 we show that the condition (4.9) implies ||E|2 is small enough
to ensure |\ (BT B4 SI)— X\ (BT B+S1)| < 2¢Se for a modest constant ¢, from which
we conclude that high relative accuracy of the computed singular values is maintained.

The above arguments tell us that the entire process of Aggdef(2)-1 (which is to
peel off the submatrix By, “shift” it by s/, multiply a unitary matrix, shift it back,
then copy it back to the original Bs) is a valid process only because the unitary matrix
12, Gr(k — i, k) we right-multiply to B, preserves the first column: multiplying a

. . . . 1 .
general unitary matrix destroys the crucial equality u? { Q} = u¥, and is not
allowed here.

4.3. When to neglect elements. In this section, we derive conditions that
ensure neglecting the bottom diagonal element /g, of By and the error matrix E in
(4.4) does not cause loss of relative accuracy of the computed singular values.

dgds WITH AGGRESSIVE DEFLATION 9

We first examine when it is safe to neglect a nonzero computed @,

First suppose that g, is positive. Since setting g, to zero only changes the bottom
diagonal of BT By + (s+5)I by @y, Weyl’s theorem ensures that high relative accuracy
of the unconverged singular values is maintained if ¢, < ¢Se for a modest constant c.

Next consider the case ¢, < 0. dstqds of Algorithm 3 computes @, as ¢, = g, +d,
where d does not depend on ¢,. Hence, setting ¢, to 0 is equivalent to replacing ¢,
of the original matrix B By with ¢, — g,. Weyl’s theorem applied to BeBI + ST
guarantees that high relative accuracy of the singular values is preserved if |g,| < c¢Se.

In summary, we can safely neglect g, if

1G] < cSe. (4.7)

We next examine when to neglect w = /z (or equivalently E) when applying the
Givens transformatlons After setting @, to zero and applying 7o Givens transforma-
tions to Bg, we have B2 Bg + sl = B2 Bs, where Bg is of the form

* ok

_ Vi V&V

By = * * , (4.8)
*

0

2

where j = n —ig — 1 is the row index of x. Then, recalling z = w*, we see that E as

1 (4.4), (4.6) is

Tqj
FE = — l‘é]'

—\/xq; —+\/xé; x
Hence, Weyl’s theorem ensures that the perturbation to the eigenvalues of §2 By+
(S+3)I caused by setting x to zero is bounded by ||E||2 < \/x(G; + é;)+x. Therefore,
it is safe to neglect « when /x(q; + €;) < cSe and z < ¢Sk, or equivalently

z(q; +¢é;) < (cSe)* and z < cSe. (4.9)

In our numerical experiments, we set ¢ = 1.0 in both (4.7) and (4.9).

We note that as the dqds iterations proceed, the sum of the previous shifts S
typically becomes larger than g,,q; and é;, so that the three inequalities all become
more likely to hold. As a result, more singular values are expected to be deflated.

In the discussion here and in section 3 we use only the Weyl bound. If some
information on the gap between singular values is available, a sharper, quadratic
perturbation bound can be used [20, 23]. We do not use such bounds here because
estimating the gap is a nontrivial task, involving the whole matrix B instead of just
Bs or B, and experiments suggest that the improvement we get is marginal.

Let us give more details. In practice we are unwilling to spend O(n) flops for
estimating the gap, so instead we estimate the gap using only Bs. One choice is to
estimate a lower bound for the smallest singular value oy, of the top-left (k — 1)-by-
(k — 1) submatrix of Bs, and apply the bound in [20] to obtain the bound

2x

2 3
Omin + V Omin + dx

|o3(Ba) — U¢(§2,o)| < (4.10)

10 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

where Eg}o is the matrix obtained by setting « to 0 in (4.8). We emphasize that (4.10)
is not a bound in terms of the entire matrix B, which is what we need to guarantee
the desired accuracy. In practice estimating o, can be also costly, so we attempt to
estimate it simply by \/¢n—1. Combining this with (4.10), we tried neglecting the x
values when

2z -
\/anfl + \/anfl + 4x N

cSe. (4.11)

We observed through experiments that using this criterion sometimes results in loss of
relative accuracy. Moreover, there was no performance gain on average, no particular
case giving more than 5% speedup. To guarantee relative accuracy while using a
quadratic perturbation bound we need a more complicated and restrictive criterion
than (4.11), which is unlikely to provide a faster implementation. Therefore we decide
to use the simple and safe criterion (4.9) using Wey!’s theorem.

4.4. High relative accuracy of Aggdef(2)-1 in floating point arithmetic.
Here we show that Aggdef(2)-1 preserves high relative accuracy of singular values.
We use the standard model of floating point arithmetic

fllzoy) = (zoy)(1+46) = (zoy)/(1+n),

where o € {4, —, X, +} and J, 7 satisfy
(146 Hzoy) < fllzoy) < (1 +e)(zoy).

For the error analysis below, we need to define Bg clearly In this subsection, we let Bg
be the first bidiagonal matrix in (4.1). In other words, Bg is obtained by computing
the dstqds transform from B, in floating point arithmetic, then setting the bottom
element @, to 0, supposing that (4.7) is satisfied.

First we show that high relative accuracy of singular values of the lower right
submatrices Bs is preserved. We do this by using direct mixed stability analysis with
respect to Ba, Bg, Bg, Bs, using an argument similar to that in [11, sec. 7.2].

Let us ﬁl"bt analyze the transformatlon from B> to Bg We introduce two ideal

matrices B, Bg satisfying B2 Bg = B2 By — sI for all but the bottom element ¢ qn
of Bg, which is set to 0 (note that this is equivalent to setting g, to 0). We seek

such Bg and Eg so that Bg is a small relative fntry—wise perturbation of By and Eg
is a small relative entry-wise perturbation of Bs. In this subsection, we use a dot to
denote backward type ideal matrices, and a double dot to denote forward type ideal
matrices. The ith main and off-diagonals of Bg are ¢; and ¢é;, and those of Eg are @
and é}

All the results in this subsection state errors in terms of the relative error, and we
use the statement “g; differs from ¢; by ae” to mean (14 ¢€)~%¢; < ¢; < (14 €)%¢; (~
(1 + ae€)g;). Below we specify the values of d as in Algorithm 3 and z as in (4.3) by
denoting them with subscripts d; and x;.

LEMMA 4.1. Concerning the mized stability analysis in the transformation from
By to B, q; differs from q; by € and é; differs from e; by 3¢, and q; differs from q;
by 2¢ and €; differs from €; by 2e.

dgds WITH AGGRESSIVE DEFLATION 11

PROOF. From the dstqds transform, we have

e = (giei/qi)(1 + €i51) (1 + €),
div1 = ((diei/Gi) (1 + €ix1,22) (1 + € /) — 8) (1 + €41,),
Git1 = (qit1 +dip1)(1 + €41, 1)

From these equalities for d;11 and @41, we have

diyi diei(Lte€i102)(1 + 6)
14 €41,— (¢ +di)1+e4)

This tells us how to define Bg. We let them be

dit1 =dit1/(1 + €it1,-), (4.12)
Giv1 = qip1/(1 +€i41,-), (4.13)
éi=ei(l+eq12)(l+e41,)/(1+e). (4.14)

Then we see that
di-{—l = dvez/(% + dv) — S,

so the recurrence for cZi_H of the dstqds transformation is satisfied. We then define

the elements of the ideal Eg as

Qi1 = Qi1 /(L + €1, 0) (1 + €41,-), (4.15)
€ = 8i(1+ €ip142)/(1+ €ie1). (4.16)
. BY BYAES
Then the dstqds transformation from Bs to Bj, expressed in matrix form as B, By =
BT By + sl is satisfied. O

We next prove two lemmas regarding the connections between E/g\ , By and Eg, and
their corresponding ideal matrices denoted with dots. Similarly to B, the bidiagonal
matrix B, is here defined as the (k — 1) x (k — 1) deflated matrix obtained after
applying the Givens transformations and setting x to 0.

_ LemmA 4.2, Concerning the mized stability analysis in the transformation from
Bs to Bs, we have ; = q;, and €; differs from €; by 3¢, ¢; differs from g; by € and &;
differs from €; by 2e.

PROOF. Recalling (4.3) we have

dit1 = (@1 + 2ip1) (L + €41,4),
G+ eiga) (I A+ €41)
(G i) (L€ 4)

v — Tig16i(1 4 €i41,42) (1 + 67:+1,/).

(@ir1 +@ip1) (L + €ig1,4)
Hence, we define the variables for the ideal matrix Eg as

:ti = Ty,

a\i—"-l = ai-l-la

€ = ei(1+e€ir142)(1+€ip1,))/ (L4 €ip14)-

12 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

Step (1) 5 m oy man Step (D) 5 s ipan Step () =
By P (2) By (Bg) (B2)B2 e (b) By (B3) (B2)B2 ep (¢) By

computed computed computed
change change change change change change
qn—k+i é\nfk+7l Z]\nfk+i qvn7k+i gn7k+i an7k+i
by € by 2e by 0 by € by € by 2e
€n—kti Cn—k-+i Cn—k+i En—k+ti En—kti Cn—kti
by 3e by 2e by 3e by 2e by 3e by 2e
By B (Bg) (Bg)B Bs (B2) (B2)Bs B
exact exact exact
Fia. 4.1. Effect of roundoff
Then it follows that
. i 1€;
@ = #
Qit1 + Tig1
so the recurrence for ; is satisfied.)
Similarly, we define the variables for the ideal matrix Bs as
Git1 = div1/ (L + €it1,4),
éi =& (14 €iqr1,42) /(1 + €ig1,41)-
Then the transformation from Eg to BQ is realized in exact arithmetic.]

LEMMA 4.3. Concerning the mized stability analysis in the transformation from
By to Bs, §; differs from §; by €, & differs from & by 3¢, §; differs from q; by 2¢ and
e; differs from € by 2e.

PROOF. The proof is the same as in Lemma 4.1. O

The above results are summarized in Figure 4.1. We will discuss the matrices Bg,
B shortly.

Combining Lemma 4.1, (4.7) and a result by Demmel and Kahan [7, Corollary
2] that shows that the relative perturbation of bidiagonal elements produces only
small relative perturbation in the singular values, we see that relative accuracy of the
deflated singular value is preserved. We next show that Aggdef(2)-1 preserves high
relative accuracy of all singular values of the whole bidiagonal matrix B.

The key 1dea of the proof below 15 to deﬁne bldlagonal matrices By and Bs
satisfying BI By = 32 By + sI and BTBy = BT By + sI in exact arithmetic, so
that we can discuss solely in terms of matrices that are not shifted by —sI. We

first consider the bidiagonal matrices Bg and Bg satisfying Bg BQ = §2T §2 + s and
[P EYASS
B¥By = B, By + sI. We have the following lemma.

LEMMA 4.4. Concerning the relative errors between By and Bs, Gn—k+i differs
from qn_p+i by 4die and &é,—gyi differs from en—_gy; by 4(i + V)e fori=1,... k.
PRrROOF. The dstqds transformation from By to By gives

& = i€/, di1 = di€i/di +5, Qi1 = Qipr + it (4.17)
Hence
; d;é; €;
dipy = € - ¢ (4.18)

_ps=—" 4
qi +d; gi/di +1

dgds WITH AGGRESSIVE DEFLATION 13

Regarding the variables of B, by Lemma 4.1 the relative perturbation of g;, €; from
d;, €; are both 2¢, that is,

(1+6)7%G <q; < (1+6)°G (4.19)
(14672 <e < (1+¢)%. (4.20)

Moreover, similarly to (4.18) we have

X

N €;

dit1 = - - + s.
(’]\i/di +1

Note that in the computation of di, di, subtraction is not involved and dn,kﬂ =
cZn_,m = 5. We claim that the relative perturbation of dn_k+i of Eg from dn_kH of

Eg is less than 4ie:

(1 + 6)_4ic\ln,—k+i S CZn—k—i—i S (1 + 6)4idn,—k+i (421)

for i = 1,...,k. We can prove (4.21) by backward induction on i. For i = k it is
obvious. Next, if (4.21) holds for ¢ = j — 1, then for i = j we have

¥ €n—k+j—1

dnkarj = + s

é\n—k-i-j—l/dn—k-i-j—l +1
Cnhrjo1(1 +¢€)?
Gn—krj—1(1+ 6)72/dn7k+j71(1 +e)40-1 +1
s j—18n—psj—1 (L + €)%
an—k-l—j—l/czn—k-i-j—l + (1 +e)t—2
- Czn—k+j—15n—]cﬂ—1(1 + €)Y
C Qn—ktj—1/dn—kyjo1 + 1
= (14)Ydy 4.
The first inequality in (4.21) can be shown similarly. Using (4.17), (4.20) and (4.21)
we get

IN

+s

IA

+ (14 e)Ys

(146 qnnri = (146 (Gr—rsi + dniops)

< Gppri + Ao iri(Z dnoiti)
< (]- + 6)4i(a\n7k+i + dnkari)
(14)" Gn—rpi-

Therefore,
(1 + 6)74iQn—k+i < 5n—k+i < (1 + 6)4iQn—k+i (422)

for i = 1,...,k. Therefore the relative error between ¢,_+; and ('jn,kﬂ is 4ie.
Similarly, we estimate the relative error between é,_jy; and é,_r+;. We see that

(14620 e = (146 G, ey iri/dnhri
< én—kJriénkari/énkari(: En—koti)
< (14 "G Bt/ Gn—kti
= (1+ o)t e,y

14 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

B, By B
exact
change change
Tn—k+i Gn—k+i perturbation of
by 2e by 4ie singular values are
2
Cr—rti En—hti less than (2k* + 4k)e
by 2¢ by 4(i + 1)e
B, By B
exact

Fic. 4.2. Effect of roundoff for singular values of B and B

where we used (4.17), (4.20), (4.21) and (4.22). Therefore the relative error between
Cn—tti and ep_piq s 4(i + Defori=1,... k— 1. O

Now, from the n x n bidiagonal matrix B we define a new n x n bidiagonal matrix
B obtained by replacing the lower right k x k part by Bs, and let ¢; be its ith singular
value. In general, in this subsection we denote by B (in which — represents any
accent) an n X n bidiagonal matrix obtained by replacing the lower right k x k part
of B by ég, and denote by &; the singular values of B.

By Lemma 4.1 and Demmel-Kahan’s result [7, Corollary 2], we have

k —

H (I+¢€)~ H (I+¢) 1az<az<H\/1+e3H\/1—|—eaz,

1=1 =1

where ; denotes the ith singular value of B. Here the square roots come from the facts

Bii= /G and Biiy1 = /&. Using [1_, VO + 3 [112) VO +¢) <TIF,(1+¢)?

exp(2ke) and an analogous inequality for the lower bound we get

exp(2ke) to; < 6y < exp(2ke)o;. for i=1,...,n, (4.23)

Similarly, regarding B and B (whose lower right submatrix is replaced by By and

By), by Lemma 4.4 and Demmel-Kahan’s result we have
exp((2k? + 4k)e) 16y < &y < exp((2k? + 4k)e)o; for i=1,...,n, (4.24)

where 07 and ¢; are the singular values of B and B. This analysis is summarized in
Figure 4.2. }
Recall that assuming (4 7) is satisfied, we set ¢, and ¢, to 0. We next bound

the effect of the operation qn — 0 on the singular values of By and Bg Noting that

the bounds in Lemma 4.1 hold for the bottom elements ¢,, and qn even before setting
them to 0, by the argument leading to (4.7) we obtain (recall that \/o? + S are the
singular values to be computed)

(1—c(1+6)%)(6248) <62+8 < (1+c(14+€)2)(62+S) for i=1,...,n. (4.25)

For simplicity we rewrite (4.25) as

exp(c’e)_l\/di2 +5< \/022 + S <exp(cde)\/6?+ S for i=1,...,n, (4.26)

dgds WITH AGGRESSIVE DEFLATION 15

where ¢/(~ ¢/2) is a suitable constant such that the original inequality (4.25) is
satisfied.

Since S > 0, we see that (4.23) implies exp(2ke)~'\/0o2+S < /62 + S <
exp(2ke)y/o? + S, and an analogous inequality holds for (4.24). Combining the three
bounds we obtain a bound for the relative error in Step (a) in Figure 4.1

exp((2K” + 6k +¢)e) "1 /o? +5 < /62 + 5 < exp((2K + 6k +)y Jo? + 5 (4.27)
fori=1,...,n.
We next discuss Step (b) in Figure 4.1. Similarly to the above discussion, we

define a bidiagonal matrix B, satisfying Bng = §2 Bs + sl in exact arithmetic.
LEMMA 4.5. Gn_p+q differs from qn_pyi by 3ie and e,_j4; differs from é,_jy;
by 3(i + 1)e fori=1,....k.
PROOF. Similarly to (4.19) and (4.20), by Lemma 4.2 we have
q; = qi (4.28)
(146 7% <e < (1+4¢€)°%; (4.29)

Therefore, similarly to (4.21), we have

(1 + 6)_3idn,—k+i S Czn—k—i—i S (1 + G)Bidn—k—i-i; (430)
so the proof is completed as in Lemma 4.4. O
Therefore, we have
exp((3k2/2 + 3k)e) 1oy < &5 < exp((3k%/2 + 3k)e)o; for i=1,...,n. (4.31)
We next define and compare the bidiagonal matrices By and Bs satisfying Bg By =
BT By + sI and BY By = BT By + s in exact arithmetic.)
LEMMA 4.6. ¢n—p+i differs from ¢n—pyi by 3ie and é,_j4; differs from é,_jyi

by 3(i+ 1)e fori=1,... k.
Proor. By Lemma 4.2 we have

Therefore, similarly to (4.21), we have

(14 €)' dp_prs < C'l;n—k—i-i <1+ €)% dnpsi- (4.32)

The same argument as in Lemma 4.4 completes the proof. O
Therefore, we have

exp((3k2/2 + 3k)e)~16; < 65 < exp((3k%/2 + 3k)e)é; for i=1,...,n. (4.33)

Recall that the kth column of By is set to the zero vector when (4.9) is satisfied,
and hence by Lemma 4.2 we see that

(1-2c1+6)e) (52 +8) < (62+8) < (1+2¢(1+€)e)(62+S) for i=1,...,n.

16 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI
For simplicity, we rewrite the inequalities using a suitable constant ¢’ (= ¢) as

exp(c”e)*l\/@2 +5< \/af + S <exp(c’e)y/62+S for i=1,...,n. (4.34)
Combining (4.31), (4.33) and (4.34) we get

exp((3k2—|—6k+c")e)71\/&l2 +5< \/622 + S < exp((3k* +6k+c")e)\/o? + S (4.35)

fori=1,...,n. .
Finally, we bound the relative error caused in Step (c). Let Bs be a bidiagonal
matrix satisfying BQT By = Bg Bs + sI in exact arithmetic (note that we have exactly

Bg = Bg) We have the following lemma comparing BQ and Bg. '
LEMMA 4.7. ¢n_p+s differs from ¢n_pyi by 4die and é,_p4; differs from é,_jyi
by 4(i + 1)e fori=1,... k.
PrOOF. By Lemma 4.3 we have

(1+6) 76 < ¢ < (1+)d;
(1+6)73% <& < 1+
Therefore, similarly to (4.21), we have
(14 e) ¥ dy gy < Cin—k+7: < (1+)dy_ppi- (4.36)
The same argument as in Lemma 4.4 completes the proof. O

From this lemma, we get
exp((2k2 + 4k)e) 16, < &y < exp((2k? + 4k)e)6; for i=1,...,n,
with the aid of Demmel-Kahan’s result. Moreover, using Lemma 4.3 we get
exp(2ke)71('§i <g; < exp(le)&i for i=1,...,n.
Therefore, we obtain
exp((2k% + 6k)e) 16, < 7y < exp(2k? + 6k)e)d, (4.37)

fori=1,...,n.

Now we present the main result of this subsection. Note that B is the output of
Aggdef(2) (recall that B is obtained by replacing the lower right k& x k part of B by
Bs).

THEOREM 4.8. Aggdef(2)-1 preserves high relative accuracy. The singular values
o1 >--->0,0f Bandaoy > -+ >0, ofg and the sum of previous shifts S satisfy

exp((TR*+18K+C)e) /07 +5 < (/52 + 5 < exp((Th> +18k+C)e)Jo? + 5 (4.38)

fori=1,...,n, where C = ¢ + ", where /(= ¢/2) and ¢'(~ ¢) are constants as
defined in (4.26) and (4.34).
ProoOF. Combine (4.27), (4.35) and (4.37). O

We note that in practice we always let the window size k be k < \/n (see section
6.2), so the bound (4.38) gives an relative error bound of order O(ne), which has the

dqds WITH AGGRESSIVE DEFLATION 17

same order as the bound for one dqds iteration derived in [11]. Also note that in our
experiments we let ¢ = 1.0 so C' ~ 1.5. We conclude that executing Aggdef(2)-1 does
not affect the relative accuracy of dqds.

As discussed below, in Aggdef(2) we execute Aggdef(2)-1 repeatedly to deflate
£(> 1) singular values. In this case we have

exp((Tk? + 18k + C’)Ee)fl\/af +5< \/512 + S < exp((Tk? + 18k + C)le)y/o? + S

fori =1,...,n, where £ is the number of deflated singular values by Aggdef(2).

4.5. Overall algorithm Aggdef(2). As mentioned above, Aggdef(2)-1 deflates
only one singular value. To deflate £(> 1) singular values we execute Aggdef(2), which
is mathematically equivalent to £ runs of Aggdef(2)-1, but is cheaper saving ¢ calls of
dstqds. Algorithm 4 is its pseudocode.

Algorithm 4 Aggressive early deflation - version 2: Aggdef(2)

Inputs: Bidiagonal B, window size k, sum of previous shifts S

1: C = Bs, =0

2: compute g1 = (O'min(C))2

3: compute ﬁg such that §2T§2 = COTC — 54411 by dstqds. Set ﬁg(end,end) «— 0if
(4.7) holds, otherwise go to line 6

4: compute By = B, [1%, Gr(k —i,k) for ip = 1,...,k — 2 until (4.9) holds. Go to
line 6 if (4.9) never holds

5: C::ég(l:end—l,l:end—l),€<—€+1,k<—k—1, go to line 2

6: compute B, such that EQTEQ =CTC + Zle s;I by dstqds and update B by

replacing By with diag(Bg, diag(\/2§:1 Sjye, \/2521 5j,/51))-

4.6. Relation between Aggdef(2) and other methods. In this subsection,
we examine the relation between Aggdef(2) and previously-proposed methods includ-
ing Aggdef(1).

4.6.1. Comparison with Aggdef(1). First, it should be stressed that Ag-
gdef(2) is computationally more efficient than Aggdef(1). Specifically, in contrast to
Aggdef(1), which always needs O(k?) flops, Aggdef(2) requires O(k¢) flops when it
deflates ¢ singular values. Hence, even when only a small number of singular values
are deflated (when ¢ < k), Aggdef(2) wastes very little work. In addition, as we saw
above, unlike Aggdef(1), Aggdef(2) preserves high relative accuracy of the computed
singular values, regardless of the window size k.

However, it is important to note that Aggdef(1) and Aggdef(2) are not mathe-
matically equivalent, although closely related. To see the relation between the two,
let us define the k-by-k unitary matrices Q; = H;Zl Grk—j,k)fori=1,... . k—2.
After i Givens transformations are applied on line 4 of Aggdef(2), Q;(k —i : k, k)
(the i + 1 bottom part of the last column) is parallel to the corresponding part of
v = [vg,.. .,vk]T, the null vector of Eg. This can be seen by recalling that §2 is
upper-bidiagonal and the bottom i+ 1 elements of EgQi(:, k) are all zeros. Note that
v is also the right-singular vector corresponding to oyin(B2).

Hence in particular, after k — 2 (the largest possible number) Givens transforma-
tions have been applied we have Qr_2(2 : k, k) = v(2 : k)/y/1 — v?. Tt follows that

18 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

win (4.1) is w = \/En_pr102/\/1 — 0% = —\/G_r+1v1//1 — v}, where we used the
fact \/@n_k+1v1 + \/€n—k+1v2 = 0. Hence recalling (4.9) and z = w?, we conclude
that Aggdef(2) deflates v/S + s as a converged singular value if

\/% < min{Se/\/qAn,kH(qAn,kH + Cn—kt1)s \/Se/qAn,kH}. On the other hand,

as we discussed in section 3.1, Aggdef(1) deflates /.S + s if |v1] < \/ge/\/m. We
conclude that Aggdef(1) and Aggdef(2) are similar in the sense that both deflate the
smallest singular value of Bs when the first element of its right singular vector vy is
small enough, albeit with different tolerances.

The fundamental difference between Aggdef(1) and Aggdef(2) is that Aggdef(1)
deflates all the deflatable singular values at once, while Aggdef(2) attempts to deflate
singular values one by one from the smallest ones. As a result, Aggdef(2) deflates only
the smallest singular values of Bs, while Aggdef(1) can detect the converged singular
values that are not among the smallest. Consequently, sometimes fewer singular values
are deflated by Aggdef(2). However this is not a serious defect of Aggdef(2), since
as we show in section 5.1, smaller singular values are more likely to be deflated via
aggressive early deflation. The numerical results in section 6 also show that the total
numbers of singular values deflated by the two strategies are typically about the same.

4.6.2. Relation with Sorensen’s deflation strategy. A deflation strategy
closely related to Aggdef(2) is that proposed by Sorensen ([32], [4, Sec.4.5.7]) for
restarting the Arnoldi or Lanczos algorithm. Just like Aggdef(2), the strategy at-
tempts to deflate one converged eigenvalue at a time. Its idea can be readily applied
for deflating a converged eigenvalue in a k-by-k bottom-right submatrix A, of an
n-by-n symmetric tridiagonal matrix A as in (2.6). An outline of the process is as
follows: Let (A,v) be an eigenpair of Ay with v(k) # 0. Sorensen defines the spe-
cial k-by-k orthogonal matrix Qg = L + vul, where uy = [0,...,1] and L is lower
triangular with nonnegative diagonals except L(k,k) = 0 (see [32, 4] for a precise
formulation of L). L also has the property that for ¢ = 1,...,k — 1, the below-
diagonal part of the ith column L(i 4+ 1 : k,7) is parallel to v(i + 1 : k). In [32] it

Ay T ~
is shown that diag(l,,—x, Q%)Adiag(l,—x, Qs) = { tl i] for Ay = diag(7, A) and
2

t = [En_k,O, ooy 0,6 pv(D)]T, where T is a (k — 1)-by-(k — 1) tridiagonal matrix.
Therefore A can be deflated if b,,_xv(1) is negligibly small.

Now we discuss the close connection between Sorensen’s deflation strategy and
Aggdef(2). Recall the definition @; = H;:l Gr(n — j,n). We shall see that Qr_2
and Qg are closely related. To do so, we first claim that a unitary matrix with the
properties of g is uniquely determined by the vector v. To see this, note that [16]
shows that for any vector v there exists a unique unitary upper Hessenberg matrix
expressed as a product of n — 1 Givens transformations, whose last column is v.
We also note that such unitary Hessenberg matrices is discussed in [26]. Now, by
permuting the columns of Qg by right-multiplying the permutation matrix P such
that P(i,i+1)=1fori=1,...,k—1and P(k,1) = 1, and taking the transpose we
get a unitary upper Hessenberg matrix P7QL whose last column is v. Therefore we
conclude that such Qg is unique. Recalling that for i = 1,...,k — 2 the last column
of Q; is parallel to [0,...,0,v(k —i : k)T]T, and noting that the irreducibility of By
ensures v(k) # 0 and that the diagonals of @); are positive (because the diagonals of
(4.1) are positive), we conclude that Qg = Qr—2 - Gr(n —k + 1,n). Here, the Givens
transformation Gr(n — k + 1,n) zeros the top-right w if applied to the last matrix

dqds WITH AGGRESSIVE DEFLATION 19

in (4.1)'. Conversely, Q; can be obtained in the same way as Qg, by replacing v
with a unit vector parallel to [0,0,...,0,v5_,...,vx]T. Therefore recalling (4.6), we
see that performing Aggdef(2) can be regarded as successively and implicitly forming
diag(I,,—, Q?)BTB diag(I,—k, Q) where @; is a truncated version of Qg.

Table 4.1 summarizes the relation between aggressive early deflation (AED) as in
[5], Sorensen’s strategy, Aggdef(1) and Aggdef(2).

TABLE 4.1
Summary of deflation strategies.

| | Hessenberg | bidiagonal |

deflate all at once AED [5] Aggdef(1)
deflate one at a time | Sorensen [32] | [18], Aggdef(2)

While being mathematically nearly equivalent to Sorensen’s strategy, Aggdef(2)
achieves significant improvements in both efficiency and stability. To emphasize
this point, we compare Aggdef(2) with another, more straightforward extension of
Sorensen’s deflation strategy for the bidiagonal case, described in [18]. The authors
in [18] use both the left and right singular vectors of a target singular value to form
two unitary matrices Qg and Ps (determined by letting y be the singular vectors
that determines the unitary matrix) such that diag(l,,—g, Pg) - B -diag(l,—x,Qg) is
bidiagonal except for the nonzero (n — k,n)th element, and its bottom diagonal is
“isolated”. Computing this orthogonal transformation requires at least O(k?) flops.
It can also cause loss of relative accuracy of the computed singular values. In contrast,
Aggdef(2) completely bypasses Ps (whose effect is implicitly “taken care of” by the
two dstqds transformations) and applies the truncated version of Qg without forming
it. The resulting rewards are immense: the cost is reduced to O(k) and high relative
accuracy is guaranteed.

5. Convergence analysis. In this section we develop convergence analyses of
dqds with aggressive early deflation. Specifically, we derive convergence factors of
the = elements in (4.2), which explain why aggressive early deflation improves the
performance of dqds. Our analyses also show that aggressive early deflation makes
a sophisticated shift strategy less vital for convergence speed, making the zero-shift
variant dqd a competitive alternative to dqds.

Our analysis focuses on Aggdef(2), because it is more efficient and always stable,
and outperforms Aggdef(1) in all our experiments. In addition, as we discussed in
section 4.6.1, the two strategies are mathematically closely related. We start by
estimating the value of the x elements as in (4.2) in Aggdef(2). Then in section 5.2
we study the impact on x of one dqds iteration.

5.1. Bound for = elements. As reviewed in section 2.1, in the dqds algorithm
the diagonals /g; of B converge to the singular values in descending order of mag-
nitude, and the ith off-diagonal element ,/e; converge to zero with the convergence

i 27 . . .
factor U::é_ SS [1]. In view of this, here we assume that ¢; are roughly ordered in de-

scending order of magnitude, and that the off-diagonals e; are small so that e; < g;.
Under these assumptions we claim that the dstqds step changes the matrix By
only slightly, except for the bottom element /g, which is mapped to 0. To see this,

1We do not allow applying the transformation Gr(n — k + 1,n) in Aggdef(2) for the reason
mentioned in section 4.2.

20 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

note that since s < ¢, we have ¢n_k+1 = Gn_k+1 — S =~ qn_k+1, which also implies
€n—kt1 =~ en_k+1. Now since by assumption we have e; < ¢; ~ ¢, so d ~ —s
throughout the dstqds transformation. Therefore the claim follows.

Now consider the size of the x element in Aggdef(2)-1 when it is chased up to the
top, (n — k4 1,n) element. For definiteness here we denote by x; the value of x after
1 transformations are applied. Initially we have 29 = ¢€,,_1 ~ e,,_1. Then the Givens
transformations are applied, and as seen in (4.3), the ¢th transformation reduces x by

a factor ~n—=L

qn—itx;’

Therefore after the application of k — 2 transformations x becomes

k-2 ~ k—2 ~

k—2
~ €n—i—1 ~ €n—i—1 En—i—1
T =en—1 — < éeyp-1 H — X eén-1 H —_—. (5.1)
i i—1 qn—i i=1 gn—i

This is easily seen to be small when ¢,—; > e,_;—1 for ¢ = 1,...,k — 2, which nec-
essarily holds in the asymptotic stage of dqds convergence. Note that asymptotically
we have x; < @4, so that ¢,_; +2; ~ ¢n—; for i = 1,...,k — 2, and so all the
inequalities and approximations in (5.1) become an equality.

Now we consider deflating the ¢(> 2)th smallest singular value of By via the fth
run of Aggdef(2)-1 in Aggdef(2), assuming that the smallest £ — 1 singular values have
been deflated. Here we denote by z, the = element after the Givens transformations.
Under the same asymptotic assumptions as above we see that after the maximum
(k — ¢ — 1) transformations the x; element is

k—0—1 e k—0—1 2 k—0—1 e
~ n—i—~¢ ~ n—i—~{ n—i—~{
Ty =En—t = < & e,y || /. (6:2)
i—1 n—i—0+1 +x; i—1 n—i—~0+1 i—1 n—i—04+1

Several remarks regarding (5.2) are in order.

e While the analyses in [5, 19] are applicable to the more general Hessenberg
matrix, our result exhibits several useful simplifications by specializing in the
bidiagonal case. Our bound (5.2) on =z, involves only the elements of Bs.
On the other hand, the bound (2.5) in [5], which bound the spike vector
elements in Aggdef(1) (after interpreting the problem in terms of computing
the eigenvalues of BT B), is difficult to use in practice because it requires
information about the eigenvector.

e By (5.2) we see that xy is typically larger for large £. This is because for large
¢, fewer Givens transformations are applied, and e,y tends to be smaller
for small ¢, because as can be seen by (2.2), e,,_; typically converges via the
dqds iterations with a smaller convergence factor for small i. This suggests
that Aggdef(2) detects most of the deflatable singular values of B, because it
looks for deflatable singular values from the smallest ones. Together with the
discussion in section 4.6.1, we argue that the number of singular values de-
flated by Aggdef(1) and Aggdef(2) are expected to be similar. Our numerical
experiments confirm that this is true in most cases.

e (5.2) indicates that 24 can be regarded as converged when e,, s Hf:_f -t ﬁ
is small. This is essentially proportional to the product of the oﬁ—diagonal
elements e,,_;_¢ for i =0,1,...,k — ¢ — 1, because once convergence reaches
the asymptotic stage the denominators ¢,—;_¢t+1 converge to the constants
On—i—e4+1. Hence, (5.2) shows that z;, can be deflated when the product
Hi:oe*l en—i—¢ 1s negligibly small, which can be true even if none of e,,_; ¢

1S.

dqds WITH AGGRESSIVE DEFLATION 21

5.2. Impact of one dqd iteration. Here we study the convergence factor of z,
when one dqd (without shift, we discuss the effect of shifts shortly) iteration is run.
As we reviewed in the introduction, in the asymptotic stage we have ¢; ~ o2, and
e; — 0 with the convergence factor o7, /o7 [1]. This is an appropriate measure for
the convergence factor of the dqd(s) algorithm with a conventional deflation strategy.
On the other hand, when Aggdef(2) is employed, the convergence factor of z; is a
more natural way to measure convergence. In this section, we discuss the impact of
running one dqd iteration on xy. _

In this subsection we denote by B the bidiagonal matrix obtained by running one
dqd step on B, and let g;,¢; be the bidiagonal elements of B. Similarly denote by
Z the value of x when Aggdef(2) is applied to B. Then, in the asymptotic stage we

2

have g; ~ ¢; ~ 02 and ¢; ~ 0;51 e;. Then by the estimate (5.2) we have

It follows that
~ k—6—1~ k—t—1 ~
Te Hi:o En—i—t Hi:l Qn—i—0+1
= Tqk—(—1 k—0—1 ~
Te 20 en—ime Ilisy Gn—i—t41

k—¢—1 k—0—1 ~
Hi:o en,—i—é(‘77217¢74+1/‘77217¢74) [Gni—e1

~

- k—0—1 SR —i—1 ~
[Tico en—i—e [Gni—e1
k—£—1 2 0_2
Op—i— (+1 _ Yn—l+1
H = . (5.3)
i=0 n i—0 0n—k+1

The estimate (5.3) suggests that asymptotically one dqd iteration reduces the mag-

2
o
nitude of xy by an approximate factor ;;ZH This is generally much smaller than
Jn—k—i—l
2
o
";7“1, the asymptotic convergence factor of e,_, (which needs to be small to de-
On—t

flate ¢ smallest singular values by a conventional deflation strategy). We note that
the estimate (5.3) is still sharp in the asymptotic sense.

Simple example. The following example illustrates the sharpness of the conver-
gence estimate (5.3). Consider the bidiagonal matrix B of size n = 1000, defined by
¢G=n+1—i,e,=01fori=1,...,n—1, that is,

B = bidiag (/1000 . . . 2 i) . (5.4)

To see the sharpness of the estimate (5.3), we set the window size to k = 30, and
ran a dqd iteration (Without shifts, an experiment with shifts will appear shortly) on

B, then computed — / n—t+l We observed that?
n k+1

=~ 2
14679 x 1073 < - /% < 145996 x 1072 (5.5)
Lo 0n—k+1

2Assuming S = 1, about ten singular values were deflated by Aggdef(2), so only £ < 10 will
appear in actual computation. To fully investigate the convergence behavior of x here we kept
running Aggdef(2) regardless of whether (4.9) was satisfied.

22 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

for ¢ =1,...,k — 2. This suggests that (5.3) is a sharp estimate of the convergence
factor Zy/xp. This behavior is not specific to the particular choice of B, and simi-
lar results were obtained generally with any graded diagonally-dominant bidiagonal
matrix.

5.3. Effect of shifts and motivations for dqd. The estimate of Z,;/z; in
(5.3) suggests that the introduction of shifts may have little effect on the number
of deflatable eigenvalues in dqds with aggressive early deflation. Specifically, when
a shift s (< o2) is applied to dqds, the convergence factor estimate (5.3) becomes

2
o -5
;’_“71. When a conventional deflation strategy is used, we can regard k = 2
Unkarl - S
and ¢ = 1, in which case this factor is greatly reduced with an appropriate shift
s ~ o2. In fact, the zero-shift strategy dqd results in prohibitively slow convergence
of the bottom off-diagonal element, so a sophisticated shift strategy is imperative.
However, when aggressive early deflation is adopted so that k > 2, we see that the

estimate (5.3) is close to that of dqd, that is,

2 2
Op—t+1 — S ~ Op—rt+1 (5 6)
o2 -5 o2 '
n—k+1 n—k+1

for £ =2,3,...,k—2, because during a typical run of dqds we have o,,_yp11 > 0, > s
for such /. Hence, when dqds is equipped with aggressive early deflation, shifts may
not be essential for the performance. This observation motivates the usage of dqd
instead of dqds.

Using dqd instead of dqds has many advantages: dqd has a smaller chance of an
overflow or underflow [30] and smaller computational cost per iteration, not to mention
the obvious fact that computing the shifts is unnecessary®. Furthermore, because the
shifts are prescribed to be zero, dqd can be parallelized by running multiple dqd in
a pipelined manner, just as multiple steps of the QR algorithm can be executed in
parallel when multiple shifts are chosen in advance [3, 34, 24]. We note that it has
been difficult to parallelize dqds in such a way, since an effective shift usually cannot
be determined until the previous dqds iteration is completed.

Simple example. To justify the above observation, we again use our example
matrix (5.4), and run five dqds iterations with the Johnson shift [17] to obtain B,
and compute the values Zy by running Aggdef(2). Similarly we obtain B by running
five dqd iterations and compute Z,. Figure 5.1 shows plots of x4, 7, and Z, for £ =
1,...,15.

We make two remarks on Figure 5.1. First, running Aggdef(2) on the original
B already lets us deflate about nine singular values (since we need z, ~ 1072° to
satisfy (4.9)). This is because B has a graded and diagonally dominant structure that
typically arises in the asymptotic stage of dqds convergence, which is favorable for
Aggdef(2). Running dqd (or dqds) iterations generally reduces the magnitude of xy,
and for B and B we can deflate one more singular value by Aggdef(2).

Second, the values of T, and T, are remarkably similar for all £ but £ = 1. This
reflects our above estimates (5.3) and (5.6), which suggest shifts can help the conver-
gence only of the smallest singular value. Furthermore, as can be seen in Figure 5.1,

3Choosing the shift is a delicate task because a shift larger than the smallest singular value
results in breakdown of the Cholesky factorization that is implicitly computed by dqds. In DLASQ,
whenever a shift violates the positivity, the dqds iteration is rerun with a smaller shift.

dqds WITH AGGRESSIVE DEFLATION 23

-20 ; : s’f
Al
o~ ”a‘
~30f A’éwﬁ
ae”
A
—40 T o “A-z, 1
g el -
a0 A o 0Ty
5 s ~ |
=-sop Ke L
., Q\
s
J
—701 @
0 5 / 10 15

Fic. 5.1. £-logzy plots for matriz B in (5.4). T, and Ty are obtained from matrices after
running 5 dqd and dqds iterations respectively.

the smallest singular value tends to be already converged in the context of Aggdef(2),
so enhancing its convergence is not necessary. Therefore we conclude that shifts may
have little or no effect on the overall deflation efficiency of Aggdef(2), suggesting that
a zero shift is sufficient and preferred for parallelizability.

6. Numerical experiments. This section shows results of numerical experi-
ments to compare the performance of different versions of dqds.

6.1. Pseudocodes. Algorithm 5 shows the pseudocode of dqds with aggressive
early deflation.

Algorithm 5 dqds with aggressive early deflation

Inputs: Bidiagonal matrix B € R™*" deflation frequency p
1: while size of B is larger than /n do
2: run p iterations of dqds
3: perform aggressive early deflation
4: end while
5: run dqds until all singular values are computed

On the third line, either Aggdef(1) or Aggdef(2) may be invoked. After the
matrix size is reduced to smaller than \/n we simply use the standard dqds algorithm
because the remaining part needs only O(n) flops, the same as one dqds iteration for
the original matrix. Along with aggressive early deflation we invoke the conventional
deflation strategy after each dqds iteration, just like in the Hessenberg QR case [5].

As motivated in the previous section, we shall also examine the performance of the
zero-shift version, dqd with aggressive early deflation. Algorithm 6 is its pseudocode.

Note that on line 2 of Algorithm 6, one dqds iteration is run prior to the dqd
iterations. This can be done even if we run the p iterations (1 dqds and p — 1
dqd) parallely, because this requires only the first shift. The single dqds iteration is
important for efficiency because typically a large shift s can be taken after a significant
number of singular values are deflated by aggressive early deflation.

6.2. Choice of parameters. Two parameters need to be specified when exe-
cuting Aggdef in Algorithm 5 or 6: the frequency p with which we invoke Aggdef, and

24 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

Algorithm 6 dqd with aggressive early deflation

Inputs: Bidiagonal matrix B € R™"*" deflation frequency p
1: while size of B is larger than \/n do
2: run one iteration of dqds, followed by p — 1 iterations of dqd
3: perform aggressive early deflation
4: end while
5: run dqds until all singular values are computed

the window size k.

We first discuss our choice of the frequency p. It is preferable to set p small enough
to take full advantage of aggressive early deflation. This is the case especially for
Aggdef(2), because each execution requires only O(nf) flops, and experiments indicate
that the execution of Aggdef(2) typically takes less than 4% of the overall runtime.
In our experiments we let p = 16. This choice is based on the fact that when we run
dqd iterations in parallel, we need p > n, where n,, is the number of processors run
in a pipelined fashion. Experiments suggest that setting p too large (say p > 300) can
noticeably deteriorate the performance on a sequential implementation, especially for
Algorithm 6 (dqd with Aggdef). For example, for the twelve test matrices described in
the next subsection, the runtime of dqd with Aggdef(2) with p = 300 was on average
almost twice that of p = 16. When shifts are used (dqds) the performance depends
less on p; dqds with Aggdef(2) with p = 300 was about just 10% slower than choosing
p = 16. More study is needed for a good choice of p on a parallel implementation of
dqd with Aggdef(2).

In practice, when a significant number of singular values are deflated by Aggdef,
the performance can often be further improved by performing another aggressive early
deflation before starting the next dqds iteration. In our experiments we performed
another aggressive early deflation when three or more singular values were deflated
by Aggdef. A similar strategy is suggested in [5] for the Hessenberg QR algorithm.

We now discuss our choice of the window size k. The idea is to choose k flexibly,
using the information of the bottom-right part of B. From the estimate of z; in (5.1)
we see that increasing k reduces the size of x as long as e, 1 < ¢n—k+2 holds. Hence
we compare €,_;+1 and ¢,—;42 for i = 1,2, ..., and set k to be the largest i such that
en—it1 < Qn—it+2. When this results in k£ < 10, we skip Aggdef and go on to the next
dqds iteration to avoid wasting effort. The choice sometimes makes k too large (e.g.,
k = n when B is diagonally dominant), so we set a safeguard upper bound k < /n.
In addition, from (4.9) and (5.1) we see that a singular value can be deflated once

k=2 en_i—1 - k=2 en_i_1
L= === is negligible, so we compute the products L= —

- (we start taking
the product from ¢ = 11 because we want to deflate more than one singular value; in
view of (5.2), with ¢ = 11 we can expect ~ 10 deflations to occur) and decide to stop
increasing k once the product becomes smaller than €.

Through experiments we observed that the above choice of p and k is effective,
achieving speedups of on average about 25% for matrices n > 10000, compared with

any static choice such as p = k = \/n.

6.3. Experiment details. We compare the performance of the following four
algorithms®.

4dqd with Aggdef(1) can be implemented, but we do not present its results because dqd-+agg2
was faster in all our experiments.

dqds WITH AGGRESSIVE DEFLATION 25

1. DLASQ: dqds subroutine of LAPACK version 3.2.2.

2. dqds+aggl: Algorithm 5, call Aggdef(1) on line 3.

3. dqds+agg2: Algorithm 5, call Aggdef(2) on line 3.

4. dgd+agg2: Algorithm 6, call Aggdef(2) on line 3.
We implemented our algorithms in Fortran by incorporating our deflation strategies
into the LAPACK routines dlasgx.f (x ranges from 1 to 6). Hence, our codes per-
form the same shift and splitting strategies implemented in DLASQ®. When running
dqds+aggl, we used the LAPACK subroutine DBDSQR to compute the singular val-
ues of By and the spike vector ¢ in (3.1). All experiments were conducted on a single
core of a desktop machine with a quad core, Intel Core i7 2.67GHz Processor and 12GB
of main memory. For compilation we used the f95 compiler and the optimization flag
-03, and linked the codes to BLAS and LAPACK.

TABLE 6.1
Test bidiagonal matrices

| n Description of the bidiagonal matrix B Source |
130000 g=n+1-—i, ;=1
230000 \/qi—1 =BG, Vei =g, 8=101 [11]
3 30000 Toeplitz: \/g; =1, \/e; =2 [11]
430000 @mi=n+1—i, JGm =i, Ja=(n-i)/5 [28]
5 30000 \/Gix1=Bya (i >n/2), /G2 =1,

VBT =BV (i <n/2), V& =1,8=101

6 30000 Cholesky factor of tridiagonal (1,2, 1) matrix [22, 30]
7 30000 Cholesky factor of Laguerre matrix [22]
8 30000 Cholesky factor of Hermite recurrence matrix [22]
9 30000 Cholesky factor of Wilkinson matrix [22]
10 30000 Cholesky factor of Clement matrix [22]
11 13786 matrix from electronic structure calculations [31]
12 16023 matrix from electronic structure calculations [31]

Table 6.1 gives a brief description of our test matrices. Matrix 1 is “nearly diago-
nal”, for which aggressive early deflation is particularly effective. Matrix 2 is a “nicely
graded” matrix [11], for which DLASQ needs relatively few (< 4n) iterations. Matrix
3 is a Toeplitz matrix [11], which has uniform diagonals and off-diagonals. Matrix
4 has highly oscillatory diagonal entires. Matrix 5 is a perversely graded matrix,
designed to be difficult for DLASQ. Matrices 6-10 are the Cholesky factors of test
tridiagonal matrices taken from [22]. For matrices 8-10, we applied an appropriate
shift to make the tridiagonal matrix positive definite before computing the Cholesky
factor. Matrices 11 and 12 have the property that some of the singular values are
tightly clustered.

6.4. Results. Results are shown in Figures 6.1-6.4, which compare the total
runtime, number of dqds iterations, percentage of singular values deflated via aggres-
sive early deflation, and the percentage of the time spent performing aggressive early
deflation relative to the overall runtime. We executed ten runs and took the aver-
age. The numbers in parentheses show the performance of DLASQ for each matrix:
the runtime in seconds in Figure 6.1 and the iteration counts divided by the matrix

51t is possible that when equipped with aggressive early deflation, a different shift strategy for
dqds is more efficient than that used in DLASQ. This is a possible topic of future study.

26 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

size n in Figure 6.2. Although not shown in the figures, in all our experiments we
confirmed the singular values are computed to high relative accuracy. Specifically,
the maximum element-wise relative difference of the singular values computed by our
algorithms from those computed by DLASQ was smaller than both 1.5 x 1073 and
ne for each problem.

-dqu+aggl
-dqu+agg2
dgd+agg?2

T

Time ratio

0
NG

oA ® o S ~ v
Matrices (seconds)

.
NG

F1G. 6.1. Ratio of time/DLASQ time.

- dgds+aggl
- dgds+agg?2

[y

dgd+agg?2

Iteration ratio

S A
Matrices (Itcrations?n) K ™ ~

F1G. 6.2. Ratio of iteration/DLASQ iteration.

The results show that aggressive early deflation, particularly Aggdef(2), can signif-
icantly reduce both the runtime and iteration count of DLASQ. We obtained speedups
of up to a factor 50 with dqds+agg2 and dqd+agg?2.

dqds+agg2 was notably faster than DLASQ in most cases, and never slower.
There was no performance gain for the “difficult” Matrix 5, for which many dqds
iterations are needed before the iteration reaches the asymptotic stage where the
matrix is graded and diagonally dominant, after which Aggdef(2) becomes effective.
dqds+agg2 was also at least as fast as dqds+aggl in all our experiments. This is
because as discussed in section 4.1, Aggdef(1) requires at least O(k?) flops, while
Aggdef(2) needs only O(k¢) flops when it deflates ¢ < k singular values.

We see from Figures 6.2 and 6.3 that dqds+aggl and dqds+agg2 usually require
about the same number of iterations and deflate similar numbers of singular values

dqds WITH AGGRESSIVE DEFLATION 27

100

)

@
o

o
o

S
o

o; deflated by aggdef (%

N
o

- dads+aggl
- dgds+agg2|
l:ldqd+agg2

1 2 3 4 5 6 7 8 9 10 11 12
Matrices

F1G. 6.3. Percentage of singular values deflated by aggressive early deflation.

00
80 [~ -dqu+agg1 7
dgds+agg2
l:ldqd+agg2 —

S
o
T

1

Time spent running aggdef (%),
o
o
T

o

Matrices

F1G. 6.4. Percentage of time spent executing aggressive early deflation.

by Aggdef. The exception in Matrix 2 is due to the fact that the safe window size
enforced in Aggdef(1) (described in section 3.1) is often much smaller than & (de-
termined as in section 6.2), making Aggdef(1) less efficient. For dqd+agg2, usually
most of the singular values are deflated by Aggdef(2). This is because with zero-shifts
the bottom off-diagonal converges much slower, making the conventional deflation
strategy ineffective.

Finally, in many cases dqd+agg2 was the fastest algorithm requiring comparable
numbers of iterations to dqds-+agg2, except for problems that are difficult (iteration
> 5n) for DLASQ. As we mentioned earlier, this is in major contrast to dqd with a
conventional deflation strategy, which is impractical due to the slow convergence of
each off-diagonal element. Furthermore, as can be seen in Figure 6.4, with Aggdef(2)
the time spent executing aggressive early deflation is typically less than 4%°. This
observation makes the parallel implementation of dqd+agg2 particularly promising
since it is already the fastest of the tested algorithms in many cases, and its parallel
implementation is expected to speed up the dqd runs, which are essentially taking up
more than 95% of the time.

We also tested with more than 500 other bidiagonal matrices, including the 405
bidiagonal matrices from the tester in the development of DLASQ [21], 9 test matrices

SExceptions are in “easy” cases, such as matrices 1 and 2, where dqd-+agg2 requires much
fewer iterations than 4n. In such cases dqd+agg2 spends relatively more time executing Aggdef(2)
recursively. This is by no means a pathological case, because dqd+agg? is already very fast with a
sequential implementation.

28 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

from [30], and 6 matrices that arise in electronic structure calculations [31]. We show
in Figure 6.5 a scatter plot of the runtime ratio over DLASQ against the matrix size
for dqds+agg2 and dqd+agg2. To keep the plot simple we do not show dqds+aggl,
which was never faster than dqds+agg2. Also, to ensure that the computed time is
measured reliably, we show the results only for 285 matrices for which DLASQ needed
more than 0.01 second.

2 T
O
X dgds+agg?2
O dgd+agg2
1. |
.2 O
E o
qé O O
SR S—
FO XD, X o
X
X
0. b

2000 3000 4000 5000 6000 7000 8000 9000
Matrix size

FI1G. 6.5. Ratio of time/DLASQ time for test matrices.

We note that many of these matrices represent “difficult” cases (DLASQ needs
more than 5n iterations), as they were generated for checking the algorithm robust-
ness. In such cases, many dqd(s) iterations are needed for the matrix to reach the
asymptotic graded structure, during which using Aggdef(2) may not be of much help.
Nonetheless, dqds+agg?2 was always at least as fast as DLASQ for all matrices larger
than 3000. Moreover, dqds—+agg2 was never slower than DLASQ by more than 0.016
second, so we argue that in practice it is never slower. The speed of dqd+agg?2 varied
more depending on the matrices, taking up to 0.15 second more than or 1.9 times as
much time as DLASQ.

Conclusion. We proposed two algorithms dqds+aggl and dqds+agg2 to incor-
porate aggressive early deflation into dqds for computing the singular values of bidi-
agonal matrices to high relative accuracy. We presented numerical results to demon-
strate that aggressive early deflation can significantly speed up dqds. In particular,
dqds—+agg?2 is at least as fast as the LAPACK implementation of dqds, and is often
much faster. The zero-shifting strategy exhibits even more promising results with the
potential to be parallelized. We plan to report the implementation and performance
of a parallel version of dqd+agg2 in a future work.

Acknowledgments. We are extremely grateful to Professor Beresford Parlett
for his numerous and insightful comments. His suggestions inspired us to look into a
root-free deflation strategy (which led to Aggdef(2)), and let us realize the connection
between Aggdef(2) and Sorensen’s deflation strategy. We thank Dr. Osni Marques
and Matthias Petschow for providing the test matrices. We thank the referees for
their helpful suggestions, which helped us improve the paper considerably.

REFERENCES

(1]
(2]
(3]
[4]

dgds WITH AGGRESSIVE DEFLATION 29

K. AisHiMA, T. MATSUO, K. MUROTA, AND M. SUGIHARA, On convergence of the dqds algorithm
for singular value computation, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 522-537.

, Superquadratic convergence of DLASQ for computing matriz singular values, J. Com-
put. Appl. Math., 234 (2010), pp. 1179-1187.

Z. BAI AND J. DEMMEL, On a block implementation of Hessenberg multishift QR iteration, Int.
J. High Speed Comput., 1 (1989), pp. 97-112.

7. Ba1, J. DEMMEL, J. DONGARRA, A. RUHE, AND H. VAN DER VORST, Templates for the
solution of algebraic eigenvalue problems: a practical guide, SIAM, Philadelphia, USA,
2000.

K. BRAMAN, R. BYERS, AND R. MATHIAS, The multishift QR algorithm. II. Aggressive early
deflation, STAM J. Matrix Anal. Appl., 23 (2002), pp. 948-973.

J. DEMMEL, Applied Numerical Linear Algebra, STAM, Philadelphia, USA, 1997.

J. DEMMEL AND W. KAHAN, Accurate singular values of bidiagonal matrices, SIAM J. Sci.
Comp., 11 (1990), pp. 873-912.

I. S. DHILLON, A New O(n?) Algorithm for the Symmetric Tridiagonal Eigenvalue/Figenvector
Problem, PhD thesis, University of California, Berkeley, 1997.

I. S. DHILLON AND B. N. PARLETT, Multiple representations to compute orthogonal eigenvectors
of symmetric tridiagonal matrices, Linear Algebra Appl., 387 (2004), pp. 1-28.

, Orthogonal eigenvectors and relative gaps, SIAM J. Matrix Anal. Appl., 25 (2004),
pp- 858-899.

K. V. FERNANDO AND B. N. PARLETT, Accurate singular values and differential qd algorithms,
Numer. Math., 67 (1994), pp. 191-229.

J. FrRANCIS, QR transformation - A unitary analog to LR transformation 1, Computer Journal,
4 (1961), pp. 265-271.

, The QR transformation 2, Computer Journal, 4 (1962), pp. 332-345.

G. H. GoLUB AND G. MEURANT, Matrices, Moments and Quadrature with Applications, Prince-
ton Series in Applied Mathematics, 2009.

G. H. GoLuB AND J. H. WELSCH, Calculation of Gauss quadrature rules, Math. Comp., 23
(1969), pp. 221-230.

W. B. GRAGG, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math.,
16 (1986), pp. 1-8.

C. R. JOHNSON, A Gersgorin-type lower bound for the smallest singular value, Linear Algebra
Appl., 112 (1989), pp. 1-7.

E. KokiorouLou, C. BEKAS, AND E. GALLOPOULOS, Computing smallest singular triplets with
implicitly restarted Lanczos bidiagonalization, Appl. Numer. Math., 49 (2004), pp. 39-61.

D. KRESSNER, The effect of aggressive early deflation on the convergence of the QR algorithm,
SIAM J. Matrix Anal. Appl., 30 (2008), pp. 805-821.

C.-K. L1 AND R.-C. L1, A note on eigenvalues of perturbed Hermitian matrices, Linear Algebra
Appl., 395 (2005), pp. 183-190.

O. A. MARQUES. Private communication, 2010.

O. A. MARQUES, C. VOEMEL, J. W. DEMMEL, AND B. N. PARLETT, Algorithm 880: A testing
infrastructure for symmetric tridiagonal eigensolvers, ACM Trans. Math. Softw., 35 (2008).

R. MATHIAS, Quadratic residual bounds for the Hermitian eigenvalue problem, SIAM J. Matrix
Anal. Appl., 19 (1998), pp. 541-550.

T. MIYATA, Y. YAMAMOTO, AND S.-L. ZHANG, A fully pipelined multishift QR algorithm for
parallel solution of symmetric tridiagonal eigenproblems, IPSJ Trans. Advanced Comput-
ing Systems, (2008), pp. 14-27.

S. OLIVEIRA, A new parallel chasing algorithm for transforming arrowhead matrices to tridi-
agonal form, Math. Comp., 67 (1998), pp. 221-235.

B. PARLETT AND E. BARSzCz, Another orthogonal matriz, Linear Algebra Appl., 417 (2006),
pp. 342 — 346.

B. N. PARLETT, The Symmetric Eigenvalue Problem, STAM, Philadelphia, 1998.

. Private communication, 2010.

B. N. PARLETT AND J. LE, Forward instability of tridiagonal QR , SIAM J. Matrix Anal. Appl.,
14 (1993), pp. 279-316.

B. N. PARLETT AND O. A. MARQUES, An implementation of the dqds algorithm (positive case),
Linear Algebra Appl., 309 (2000), pp. 217-259.

M. PETSCHOW. Private communication, 2010.

D. SORENSEN, Deflation for implicitly restarted Arnoldi methods, Tech. Report 98-12, Rice
University, CAAM, 1998.

G. W. STEWART, Matriz Algorithms Volume I: Basic Decompositions, STAM, 1998.

R. A. VAN DE GEUN, Deferred shifting schemes for parallel QR methods, SIAM J. Matrix

30 YUJI NAKATSUKASA, KENSUKE AISHIMA and ICHITARO YAMAZAKI

Anal. Appl., 14 (1993), pp. 180-194.

[35] P. WiLLEMS, On M R®-type Algorithms for the Tridiagonal Symmetric Eigenproblem and the
Bidiagonal SVD, PhD thesis, University of Wuppertal, 2010.

[36] H. ZHA, A two-way chasing scheme for reducing a symmetric arrowhead matriz to tridiagonal
form, J. Numerical Linear Algebra, 1 (1993), pp. 494-499.

