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A centennial of the Zaremba–Hopf–Oleinik Lemma

A.I. Nazarov∗,
Saint-Petersburg University,

e-mail: al.il.nazarov@gmail.com

We consider the Hopf–Oleinik normal derivative lemma for elliptic and parabolic equations under

minimal restrictions on lower-order coefficients. Boundary gradient estimates for solutions are also

established.

1 Introduction

Qualitative theory of partial differential equations is in intensive development over last half of
century. In this paper we discuss the Hopf–Oleinik Lemma, one of the most important tools in
studying solutions to elliptic and parabolic equations, in particular, the key argument in the
proof of uniqueness theorems.

For the Laplace operator this property is well known for one hundred years, starting from
a pioneer paper of Zaremba [Z], and reads as follows. Let ∂Ω ∈ C2 and let L = −∆. Then, if
0 ∈ ∂Ω, we have

Lu = f ≥ 0 in Ω; u(x) > u(0) in Ω =⇒
∂u

∂n
(0) < 0. (ZHO)

For general operators of non-divergence type with bounded measurable coefficients this
result was established in elliptic case independently by E. Hopf [Ho] and O.A. Oleinik [O] and
in parabolic case by L. Nirenberg [Ni]. Later the efforts of many mathematicians were aimed
at the reduction of the boundary smoothness1. They established that the sharp condition for
(ZHO) to fulfil is the Dini condition for the boundary normal, see, e.g., [Hi]. In a weakened
form (the existence a boundary point x0 in any neighborhood of the origin and a direction
ℓ such that ∂u

∂ℓ
(x0) < 0) this fact holds true for a much wider class of domains including all

Lipschitz ones, see [Na] for elliptic equations and [K] for parabolic ones. Note that all these
results are related to classical solutions, i.e. u ∈ C2(Ω) in elliptic case and u ∈ C2,1(Q) in
parabolic case.

Now let us consider generalized (strong) solutions for non-divergence type equations

Lu ≡ −aij(x)DiDju+ bi(x)Diu = f(x); (NDE)

Mu ≡ ∂tu− aij(x; t)DiDju+ bi(x; t)Diu = f(x; t), (NDP)

i.e. we assume D(Du) ∈ Ln,loc(Ω) in (NDE) and ∂tu, D(Du) ∈ Ln+1,loc(Q) in (NDP) (in the
parabolic case also some anisotropic spaces are admissible).

∗Partially supported by RFBR grant 09-01-00729 and by grant NSh.4210.2010.1.
1See also an earlier paper [G] for equations with Hölder continuous leading coefficients.
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We always suppose that operators under consideration are uniformly elliptic (parabolic),
i.e. for all values of arguments

ν|ξ|2 ≤ aij(·)ξiξj ≤ ν−1|ξ|2, ξ ∈ R
n, (1)

where ν is a positive constant. Note that we can also assume aij ≡ aji without loss of generality.

The properties of generalized solutions to the equations (NDE)-(NDP), under assumption
that leading coefficients aij are only measurable, were investigated in a number of papers2. The
problem of our interest is how “bad” may be lower-order coefficients bi to ensure the Hopf–
Oleinik Lemma to hold true. We provide sharp conditions for this. We also touch the topic
closely related to (ZHO), especially in idea of proof, namely, the gradient estimates at the
boundary.

Note that for divergence type equations

−Di

(
aij(x)Dju

)
+ bi(x)Diu = 0; (DE)

∂tu−Di

(
aij(x; t)Dju

)
+ bi(x; t)Diu = 0. (DP)

(ZHO) does not hold. The simplest counterexample is the function u(x) = x2
2 + 2x2|x1| which

is positive in the upper half-plane, satisfies the equation (DE) with

(aij) =

[
1 −sign(x1)

−sign(x1) 2

]
; bi ≡ 0; f ≡ 0,

but u(0, 0) = 0 and D2u(0, 0) = 0.
Moreover, even continuity of aij does not improve the situation. Let us describe correspond-

ing counterexample3.
Let Ω be a convex domain, and let 0 ∈ ∂Ω. Assume that at the neighborhood of the origin

∂Ω is the graph of a function xn = φ(x′). Finally, suppose that φ ∈ C1 but D′φ is not Dini
continuous at the origin.

As it was mentioned the Hopf–Oleinik lemma for the Laplacian fails in such domain. Now we
rectify the boundary near the origin and obtain an operator of the form (DE) with continuous
leading coefficients and bi ≡ 0 for which (ZHO) fails in smooth domain. Considering functions
depending only on spatial variables we see that this example works also for the parabolic
operator (DP).

The paper is organized as follows. In Section 2 we deal with elliptic equations, Section
3 is devoted to parabolic equations. In both sections we use the “composite” variant of the
A.D. Aleksandrov maximum estimate ([Li00]; see also [AN95] for a weaker version) and slightly
modify classical techniques due to Ladyzhenskaya–Ural’tseva [LU88], see also [S10].

Let us recall some notation. x = (x1, . . . , xn−1, xn) = (x′, xn) is a vector in R
n, n ≥ 2, with

the Euclidean norm |x|; (x; t) is a point in R
n+1.

Ω is a domain in R
n and ∂Ω is its boundary; n = (ni(x)) is the unit vector of the outward

normal to ∂Ω at the point x.
For a cylinder Q = Ω×]0, T [ we denote by ∂′′Q = ∂Ω×]0, T [ its lateral surface and by

∂′Q = ∂′′Q ∪ {Ω × {0}} its parabolic boundary.

2We mention in this connection a quite recent paper [A-Z] discussing some degenerate elliptic equations.
3See also [GT, Problem 3.9].
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We define

Br(x
0) = {x ∈ R

n : |x− x0| < r}, Br = Br(0);
Br,h(x

0′) = {x ∈ R
n : |x′ − x0′| < r, 0 < xn < h}; Br,h = Br,h(0);

Qr(x
0; t0) = Br(x

0)×]t0 − r2; t0[, Qr = Qr(0; 0);
Qr,h(x

0′; t0) = Br,h(x
0′)×]t0 − r2; t0[, Qr,h = Qr,h(0; 0).

The indices i, j vary from 1 to n. Repeated indices indicate summation.
The symbol Di denotes the operator of differentiation with respect to xi; in particular,

Du = (D1u, . . . , Dnu) = (D′u,Dnu) is the gradient of u. ∂tu stands for the derivative of u with
respect to t.

We denote by ‖ · ‖q,Ω the norm in Lq(Ω). We introduce two scales of anisotropic spaces:
Lq,ℓ(Q) = Lℓ

(
]0, T [→ Lq(Ω)

)
with the norm ‖f‖q,ℓ,Q =

∥∥‖f(·; t)‖q,Ω
∥∥
ℓ,]0,T [

;

L̃q,ℓ(Q) = Lq

(
Ω → Lℓ( ]0, T [ )

)
with the norm ‖f‖∼q,ℓ,Q =

∥∥‖f(x; ·)‖ℓ,]0,T [

∥∥
q,Ω

.

Obviously, Lq,q(Q) = L̃q,q(Q) = Lq(Q). Further, by the Minkowskii inequality,

‖f‖∼q,ℓ,Q ≤ ‖f‖q,ℓ,Q for q ≥ ℓ; ‖f‖q,ℓ,Q ≤ ‖f‖∼q,ℓ,Q for q ≤ ℓ.

We denote by L̂q,ℓ(Q) the space

Lq,ℓ(Q) ∩ L̃q,ℓ(Q) =

{
Lq,ℓ(Q), q ≥ ℓ;

L̃q,ℓ(Q), q ≤ ℓ

with the norm |||f |||q,ℓ,Q = max{‖f‖q,ℓ,Q, ‖f‖
∼
q,ℓ,Q}.

Remark 1. Note that we always deal with the space L̂q,ℓ(Q) i.e. take the more strong
of two norms. The reason is that up to now anisotropic versions of the Aleksandrov–Krylov
maximum principle (see [N87], [N01]) are proved only in terms of stronger norm.

We set f+ = max{f, 0}, f− = max{−f, 0}.
Following [Li00], we say that ω : [0, 1] → R+ belongs to the class D1 if ω(1) = 1, ω is

continuous and increasing while ω(σ)/σ is summable and decreasing. In this case we define

Iω(s) =
∫ s

0
ω(σ)
σ

dσ.
We use letters M , N , C (with or without indices) to denote various constants. To indicate

that, say, N depends on some parameters, we list them in the parentheses: N(. . . ).

2 Elliptic case

Recall that in this section we assume D(Du) ∈ Ln,loc(Ω).
The next statement is a particular case of [Li00, Theorem 3.2].

Proposition 2.1. Let L be an operator of the form (NDE) in a bounded, strictly Lipschitz
domain Ω, and let the condition (1) be satisfied. Suppose also that the vector function b = (bi)
can be written as follows:

b = b(1) + b(2); |b(1)| ∈ Ln(Ω); (2)

|b(2)| ≤ B
ω(d/diam(Ω))

d
, ω ∈ D1,

where d = d(x) = dist(x, ∂Ω).
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Then for any solution of Lu = f in Ω satisfying u
∣∣
∂Ω

≤ 0, the following estimate holds:

u ≤ N0 ·
diam(Ω)

ν
· ‖f+‖n,{u>0},

provided ‖b(1)‖n,Ω ≤ B0, where N0 and B0 depend only on n, ν, B and the Lipschitz constant
of ∂Ω.

Now we prove a quantitative version of tne maximum principle, the so-called “boundary
growth lemma” (its versions for |b| ∈ Ln are proved, e.g., in [LU85, Lemma 2.5’] and [S10,
Lemma 2.6]).

Lemma 2.2. Let L be an operator of the form (NDE) in Bρ,ρ, ρ ≤ R, and let the conditions
(1), (2) and

|b(2)(x)| ≤ B
ω(xn/R)

xn
, ω ∈ D1, (3)

be satisfied. Suppose also that ‖b(1)‖n,Bρ,ρ ≤ B0 where B0 = B0(n, ν,B) is the constant from
Proposition 2.1. If u is a nonnegative solution of Lu = f ≥ 0 in Bρ,ρ satisfying u ≥ k on
∂Bρ,ρ ∩ {xn = 0} for some k > 0 then for ξ ≤ 1

2
the inequality

u ≥ k ·
(
β(n, ν,B, ω, ξ)−N1(n, ν,B, ω, ξ) · (‖b(1)‖n,Bρ,ρ +Bω(ρ/R))

)
(4)

holds in B(1−ξ)ρ,(1−ξ)ρ with some positive constants β and N1.

Proof. Consider the barrier function

w(x) =
(
1− A

xn

ρ

)2

+ 2(1 + A)
(
ϕ(xn/ρ)− ϕ(1/A)

)
−

|x′|2

ρ2
, (5)

where (cf. [Li00])

ϕ(s) =

s∫

0

(
exp

(
B

ν
Iω(σ)

)
− 1

)
dσ,

while A ≥
√
n−1
ν

is a constant to be defined later.

Direct calculation shows that for x ∈ Bρ, ρ
A

−aijDiDjw ≤
2

ρ2
·
[
− νA2 − ν(1 + A)ϕ′′(τ) + (n− 1)ν−1

]
≤ −

2ν

ρ2
(1 + A)ϕ′′(τ);

b
(1)
i Diw ≤ |b(1)| ·

2

ρ
·
[
A
(
1− Aτ

)
+ (1 + A)ϕ′(τ) + 1

]
≤ |b(1)| ·

2

ρ
(1 + A)(1 + ϕ′(τ));

b
(2)
i Diw ≤

2

ρ2
·
[
A
(
1−Aτ

)
+ (1 + A)ϕ′(τ) + 1

]
·B

ω(τ)

τ
≤

2B

ρ2
(1 + A)

ω(τ)

τ
(1 + ϕ′(τ))

(here τ = xn/R). Since ϕ′′(τ) = B

ν
ω(τ)
τ

(1 + ϕ′(τ)), we have Lw ≤ C1(A, ν,B)|b(1)|ρ−1.

Further, w(x) ≤ 0 for |x′| = ρ, 0 < xn < ρ
A
and for |x′| ≤ ρ, xn = ρ

A
. Finally, w(x) ≤ 1 for

|x′| ≤ ρ, xn = 0. This gives kw − u ≤ 0 on ∂Bρ, ρ
A
.

Proposition 2.1 gives for x ∈ Bρ, ρ
A

u(x) ≥ kw(x)− kC2ρ · ‖(Lw)+‖n,Bρ,
ρ
A

≥ kw(x)− kC3‖(b
(1)‖n,Bρ,

ρ
A

,
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where C2 depends only on n, ν and B while C3 depends on the same quantities and on A.

Now we observe that ϕ(s) = o(s) as s → 0. Thus, we can choose A = A(n, ν,B, ω, ξ) ≥
√
n−1
ν

so large that 2(1 + A)ϕ(1/A) ≤ ξ
2
. Since (1− ξ

2
)2 − ξ

2
− (1− ξ)2 = ξ(1− 3ξ

4
) ≥ 5ξ

8
, this gives

u ≥ k ·
(5ξ
8

− C4(n, ν,B, ω, ξ)‖b(1)‖n,Bρ,ρ

)
+
≡ k1 in B(1−ξ)ρ, ξρ

2A
. (6)

Now we consider the set Kρ = Bρ,ρ \ Bρ, ξρ
4A
. Note that coefficients b

(2)
i are bounded on this

set, and

‖b(2)‖n,Kρ ≤ C5(n)B
( 1∫

ξ
4A

(ω(sρ/R)

s

)n

ds
) 1

n

≤ C6(n, ν,B, ω, ξ)Bω(ρ/R). (7)

We apply “the ink-spot expansion lemma” ([LU85, Lemma 2.2]) and obtain

u ≥ k1 ·
(
κ(n, ν,B, ω, ξ)− C7(n, ν,B, ω, ξ)‖b(1) + b(2)‖n,Kρ

)
in B(1−ξ)ρ,(1−ξ)ρ \ B(1−ξ)ρ, ξρ

2A
.

By (6) and (7) we arrive at (4). �

Lemma 2.2’. Let L be as in Lemma 2.2. If u is a nonnegative solution of Lu = f ≥ 0
in Bρ,ρ satisfying u ≥ k on ∂Bρ,ρ ∩ {xn = ρ} for some k > 0 then for ξ ≤ 1

2
the inequality (4)

holds in B(1−ξ)ρ,ρ \ B(1−ξ)ρ,ξρ.

Proof. This statement is more simple than Lemma 2.2. Consider the set K̃ρ = Bρ,ρ \Bρ, ξρ
2

.

Since coefficients b
(2)
i are bounded on this set and ‖b(2)‖n,K̃ρ

is under control, we can apply
standard boundary growth lemma, and the statement follows. �

Remark 2. If we replace the assumption f ≥ 0 by f− ∈ Ln(Bρ,ρ), the estimate (4) holds
true with additional term −N2(n, ν,B, ω, ξ)ρ · ‖f−‖n,Bρ,ρ in the right-hand side. The proof runs
without changes.

Now we prove the main result of this Section.

Theorem 2.3. Let L be an operator of the form (NDE) in BR,R, and let the conditions
(1), (2) and (3) be satisfied. Suppose also that for ρ ≤ R

‖b(1)n ‖n,Bρ,ρ ≤ B1ω(ρ/R). (8)

Then

1. Any solution of Lu = f ≤ 0 in BR,R such that u|xn=0 ≤ 0 and u(0) = 0 satisfies

sup
0<xn<R/2

u(0, xn)

xn

≤
N+

3

R
· sup
BR/2,R/2

u,

Consequently, if Dnu(0) exists then (Dnu)+(0) is finite.

2. Any positive solution of Lu = f ≥ 0 in BR,R such that u(0) = 0 satisfies inf
0<xn<R/2

u(0,xn)
xn

>

0. Consequently, if Dnu(0) exists, it is positive. If, in addition, f ≡ 0, the following estimate
holds:

inf
0<xn<R/2

u(0, xn)

xn
≥ N−

3 ·
u(0, R/2)

R/2
.
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The constants N±
3 depend on n, ν, B, B1, ω and the the moduli of continuity of |b| in

Ln(BR,R).

Proof. We introduce the sequence of cylinders Bρk,hk
, k ≥ 0, where ρk = 2−kρ0, hk = ζkρk,

while ρ0 ≤ R and the sequence ζk ↓ 0 will be chosen later.
Denote by M±

k , k ≥ 1, the quantities

M+
k = sup

Bρk,hk−1

u(x)

max{xn, hk}
≥ sup

Bρk,hk−1
\Bρk,hk

u(x)

xn
; M−

k = inf
Bρk,hk−1

\Bρk,hk

u(x)

xn
.

Note that in the case 2 M−
k > 0.

We define two function sequences

v1k = u−M+
k hk

ϕ+(xn/R)

ϕ+(hk/R)
; v2k = M−

k hk
ϕ−(xn/R)

ϕ−(hk/R)
− u,

where, similarly to Lemma 2.2,

ϕ±(s) =

s∫

0

exp
(
∓

B

ν
Iω(σ)

)
dσ, (9)

and denote
Vk = v1k; Mk = M+

k ; Φ = ϕ+ in the case 1;

Vk = v2k; Mk = M−
k ; Φ = ϕ− in the case 2.

It is easy to see that Vk

∣∣
xn=0

≤ 0 while the definition of Mk gives Vk ≤ 0 on the top of the
cylinder Bρk,hk

.
To estimate Vk, we refine a trick from [S10]. Let x0 ∈ Bρk−hk,hk

. Assume first that x0
n ≤ hk

2
.

Then we apply Lemma 2.24 to the (positive) function Mkhk − Vk in Bhk ,hk
(x0′) (with regard to

Remark 2). This gives for x ∈ Bhk
2
,
hk
2

(x0′)

Mkhk − Vk(x) ≥ Mkhk ·
[
β(n, ν,B, ω, 1/2)−

−N1(n, ν,B, ω, 1/2) · (‖b(1)‖n,Bρk,ρk
+Bω(ρk/R))

]
−

−N2(n, ν,B, 1/2)hk · ‖(LVk)+‖n,Bhk,hk
(x0′). (10)

We suppose that ρ0/R is so small that the quantity in the square brackets is greater that β
2
.

Further, direct calculation similar to Lemma 2.2 shows that the assumptions of theorem imply

LVk ≤ Mk|b
(1)
n |Φ′(xn/R)

hk/R

Φ(hk/R)
in Bρk ,hk

.

Note that ϕ+ is concave, ϕ− is convex, and both of them are increasing. Therefore,

Φ′(xn/R)
hk/R

Φ(hk/R)
≤

max{1,Φ′(1)}

Φ(1)
.

Substituting these inequalities into (10) we arrive at

Vk(x) ≤ Mkhk ·
[
1− β/2 + C8(n, ν,B, ω)‖b(1)n ‖n,Bhk,hk

(x0′)

]
for x ∈ Bhk

2
,
hk
2

(x0′).

4To proceed we suppose that ρ0/R is so small that ‖b‖n,Bρ0,ρ0
≤ B0.
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In particular, this estimate is valid for x = x0. If x0
n ≥ hk

2
, we get the same estimate using

Lemma 2.2’ instead of Lemma 2.2.
Taking supremum w.r.t x0, we obtain

sup
Bρk−hk,hk

Vk ≤ Mkhk ·
(
1− β/2 + C8B1ω(ρk/R)

)
.

Repeating previous arguments provides for m ≤ ρk
hk

sup
Bρk−mhk,hk

Vk ≤ Mkhk ·
(
(1− β/2)m + C8B1

ω(ρk/R)

β/2

)
.

Setting m = ⌊
ρk+1

hk
⌋, we arrive at

sup
Bρk+1,hk

Vk ≤
Mkhk

1− β/2
·
(
exp

(
− λ

ρk+1

hk

)
+ C8B1

ω(ρk/R)

β/2

)
,

where λ = − ln(1− β/2) > 0.
Therefore, for x ∈ Bρk+1,hk

Vk(x)

max{xn, hk+1}
≤ Mkγk, (11)

where γk =
1

1−β/2
ζk

2ζk+1
·
(
exp

(
− λ

2ζk

)
+ C8B1

ω(ρk/R)
β/2

)
.

Estimate (11) implies in the cases 1 and 2, respectively,

M±
k+1 ≶ M±

k (δ
±
k ± γk), (12)

where

δ+k =
hk

ϕ+(hk/R)
· sup
0≤xn≤hk

ϕ+(xn/R)

max{xn, hk+1}
=

hk

ϕ+(hk/R)
·
ϕ+(hk+1/R)

hk+1
;

δ−k =
hk

ϕ−(hk/R)
· inf
hk+1≤xn≤hk

ϕ−(xn/R)

xn
=

hk

ϕ−(hk/R)
·
ϕ−(hk+1/R)

hk+1
.

(13)

Since lim
s→0+

Φ(s)
s

= 1, we have

∏

k

δ±k =
h1/R

Φ(h1/R)
≶

1

Φ(1)
.

Thus, (12) gives in the cases 1 and 2, respectively,

M±
k+1 ≶

M±
1

Φ(1)
·

k∏

j=1

(
1±

γj
δ±j

)
≶

M±
1

Φ(1)
·

k∏

j=1

(1± γj ·max{1,Φ(1)}).

We set ζk = 1
k+k0

and choose k0 so large and ρ0/R so small that γ1 · max{1,Φ(1)} ≤ 1
2
. Note

that k0 and ρ0/R satisfying all the conditions imposed depend only on n, ν, ω, B and B1.
Now we observe that the first terms in γk form a convergent series. The same is true for

the second terms, since

∞∑

k=1

ω
(
2−kρ0/R

)
≍

∞∫

0

ω
(
2−sρ0/R

)
ds ≍ Iω(ρ0/R).

7



Thus, the series
∑

k γk converges. Therefore, the infinite products Π
± =

∏
k

(1±γk·max{1,Φ(1)})

also converge, and we obtain in the cases 1 and 2, respectively,

M±
k ≶

Π±M±
1

Φ(1)
, k > 1.

Thus, all M+
k are bounded in the case 1, and all M−

k are separated from zero in the case 2.

Further, we note that M+
1 ≤ 1

h1
sup

BR/2,R/2

u. This completes the proof of the statement 1.

If f ≡ 0, then we set K = BR,R \ BR,h1/2. Similarly to Lemma 2.2, ‖b(1) + b(2)‖n,K is

bounded. Therefore, by the Harnack inequality ([S10, Theorem 3.3]), M−
1 ≍ u(0,R/2)

R/2
. This

completes the proof of the statement 2. �

Remark 3. If we replace in the case 1 the assumption f ≤ 0 by f = f (1) + f (2) with

‖f
(1)
+ ‖n,Bρ,ρ ≤ F1ω(ρ/R), f

(2)
+ ≤ F2

ω(xn/R)

xn
,

the estimate

sup
0<xn<R/2

u(0, xn)

xn

≤ N+
3 ·

( 1

R
sup

BR/2,R/2

u+ F1 + F2

)

remains valid. The proof runs with minor changes.

Let us compare Theorem 2.3 with results known earlier. Surely, the proof of (ZHO) for
classical solutions works also for strong solutions if we apply the Aleksandrov maximum princi-
ple ([Al]; see also a survey [N05], where the history of this topic is presented). So, it was known
long ago for bi ∈ L∞.

In [Li85] the Hopf–Oleinik Lemma was proved for classical solutions of (NDE) in C1+D

domains. Note that in this case one can locally rectify ∂Ω using the regularized distance
([Li85, Theorem 2.1]). After this Theorem 4.1 [Li85] follows from a particular case b(1) ≡ 0
of Theorem 2.3, part 2. Similarly, the boundary gradient estimates obtained in [Li86] can be
reduced to the same particular case of Theorem 2.3, part 1.

The boundary gradient estimates for solution to (NDE) were established in [LU88] provided
b ∈ Lq, q > n; the Hopf–Oleinik Lemma under the same condition was announced in [NU]. In
[S10] the second part of Theorem 2.3 is proved for (NDE) under assumption b ∈ Ln, bn ∈ Lq,
q > n. In [AN95] the first part of Theorem 2.3 was proved for composite coefficients with
ω(σ) = σα, α ∈ ]0, 1[.

To compare our result with [S08], we need an auxiliary statement.

Lemma 2.4. Let Ψ : [0, σ0] → R+ be a nondecreasing function. Then there exist nonde-
creasing C1 functions Ψ± : [0, σ0] → R+ such that Ψ− ≤ Ψ ≤ Ψ+, and

1) if Ψ(σ)/σ2 is summable then (Ψ+)′(σ)/σ is summable;
2) if Ψ(σ)/σ2 is nonsummable then (Ψ−)′(σ)/σ is nonsummable.

Proof. Without loss of generality we can assume σ0 = 1. Consider the function Ψ1(τ) =
Ψ(τ−1) and note that Ψ1 is summable on [1,+∞[ iff Ψ(σ)/σ2 is summable on ]0, 1].

Now we define Ψ2(τ) = Ψ1(⌊τ⌋)·(⌈τ⌉−τ)+Ψ1(⌈τ⌉)·(τ−⌊τ⌋). Using the Cauchy convergence
criterion, it is easy to check that τΨ′

2(τ) is summable iff Ψ1 is summable. Also it is evident
that Ψ2(τ + 2) < Ψ1(τ) < Ψ2(τ − 2).

Finally, we mollify Ψ2 so that Ψ̃2(τ +2) < Ψ1(τ) < Ψ̃2(τ −2) and set Ψ±(σ) = Ψ̃2(σ
−1∓2),

expanding Ψ+ to ]1
3
, 1] in a proper way. �
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In [S08, Theorem 1.8] the Hopf–Oleinik Lemma was proved for solution to (NDE) with
b ≡ 0 under assumption 0 ∈ ∂Ω and Ω ⊃ QΨ, where

QΨ = {x ∈ R
n : |x′| ≤ σ0, Ψ(|x′|) < xn < σ0},

while Ψ(σ)/σ2 is summable.
By Lemma 2.4, this case can be reduced to Ω = QΨ+ . Then we again rectify the boundary

and use part 2 of Theorem 2.3. In the same manner, [S08, Theorem 1.9] follows from part 1 of
Theorem 2.3.

Remark 4. Note that the assumption (8) cannot be removed. Let us describe corresponding
counterexample (see also [NU] and [S10]).

Let u(x) = xn · ln
α(|x|−1) in BR,R. Then direct calculation shows that u satisfies an equation

−∆u+ bn(x)Dnu = 0 with |bn| ≤
C(α)

|x| ln(|x|−1)
∈ Ln(BR,R),

if R is small enough, and u > 0 = u|xn=0 in BR,R. However, it is easy to see that Dnu(0) = 0
for α < 0 and Dnu(0) = +∞ for α > 0.

The condition (3) is also sharp. A simple one-dimensional counterexample is given in [A-Z]:

the function φ(s) =
s∫
0

exp
(
−

1∫
t

ω(τ)
τ

dτ
)
dt (cf. (9)) is positive on ]0, 1], vanishes at zero and

satisfies the equation

−φ′′(s) +
ω(s)

s
φ′(s) = 0.

However, if ω is not Dini continuous at zero then φ′(0) = 0.

We describe also a more rich family of counterexamples generalizing [S08, Theorem 1.11].

Let Ω be a convex domain. Suppose that ∂Ω = {x : xn = φ(x′)} at a neighborhood of the
origin, φ ∈ C1, D′φ(0) = 0, and ω(ρ) = sup

|x′|≤ρ

|D′φ(x′)| is not Dini continuous at zero. Let L be

an operator of the form (NDE) in Ω with b = 0, and let the condition (1) be satisfied.
It is shown in [AN11] that any solution of Lu = 0 positive in Ω and vanishing on ∂Ω at a

neighborhood of the origin satisfies sup
|x|<ρ

u(x)
ρ

→ 0 as ρ → 0.

Now we rectify ∂Ω at a neighborhood of the origin using the regularized distance and obtain
a uniformly elliptic operator of the form (NDE) in BR,R with |b(x)| ≤ B

ω(xn/R)
xn

for which the
Hopf–Oleinik lemma fails.

3 Parabolic case

In this section we assume ∂tu, D(Du) ∈ L̂q,ℓ,loc(Q) with some q, ℓ < ∞ such that n
q
+ 1

ℓ
= 1.

We recall an estimate which is a particular case of the statement in [N87, Sec.3]. For the
isotropic case it was proved in [Kr86].

Proposition 3.1. Let M be an operator of the form (NDP) in a cylinder Q ⊂ BR× ]0, T [,
and let the condition (1) be satisfied. Suppose that b ∈ L∞(Q), and a function B such that
∂tB, D(DB) ∈ L∞(Q) satisfies MB ≥ |b| a.e. in Q. Then for any solution of Mu = f in Q
satisfying u

∣∣
∂′Q

≤ 0, the following estimate holds:

u ≤ N(n) ·
(‖B‖∞,Q +R

ν

)n
q
· |||f+|||q,ℓ,{u>0}.

9



The next statement generalizes [AN95, Theorem 2]. For the isotropic case it was proved in
[Li00, Theorem 5.2].

Lemma 3.1. Let M be an operator of the form (NDP) in a cylinder QR,R, R ≤ 1, and let
the condition (1) be satisfied. Suppose also that the vector function b can be written as follows:

b = b(1) + b(2); |b(1)| ∈ L̂q,ℓ(QR,R),
n

q
+

1

ℓ
= 1, q, ℓ < ∞, (14)

|b(2)(x; t)| ≤ B
ω(xn/R)

xn
, ω ∈ D1. (15)

Then for any solution of Mu = f in QR,R satisfying u
∣∣
∂′QR,R

≤ 0, the following estimate

holds:
u ≤ N4 ·

(
|||b(1)|||ℓq,ℓ,QR,R

+R
)n

q · |||f+|||q,ℓ,{u>0}, (16)

where N4 depends only on n, ν, ℓ, B and ω.
Proof. We consider a sequence of operators

Mε ≡ ∂t − aijε(x; t)DiDj + [b
(1)
iε (x; t) + b

(2)
iε (x; t)]Di.

Here aijε are smooth functions satisfying (1) uniformly w.r.t. ε and tending to aij a.e. in QR,R

as ε → 0. Further,
b
(1)
iε (x; t) = max{|b

(1)
i (x; t)|; ε−1} · sign(b

(1)
i (x; t));

b
(2)
iε (x; t) =

{
b
(2)
i (x; t), xn > ε;

b
(2)
i (x′, ε; t), xn ≤ ε.

Now we consider the boundary value problem

Mεv =
(2B

ν
Iω(1) + 1

)
|b(1)

ε |+B
ω(ρ/R)

ρ
·
(2B

ν
Iω(1)− 1

)
+

in QR,R; v
∣∣
∂′QR,R

= 0,

where ρ ≤ R will be chosen later. Denote by B
(1)
ε a unique solution of this BVP. By the

maximum principle ([Kr76]), B
(1)
ε ≥ 0. Define

Bε(x; t) = B
(1)
ε (x; t) +

2B

ν
R

1∫

xn/R

Iω(s) ds.

Then

MεBε = MεB
(1)
ε + 2B

annε
ν

ω(xn/R)

xn

− [b(1)nε + b(2)nε ] ·
2B

ν
Iω(xn/R) ≥ |b(1)

ε |+ |b(2)
ε |+ F (x),

where

F (x) = B
ω(xn/R)

xn
·
(
1−

2B

ν
Iω(xn/R)

)
+B

ω(ρ/R)

ρ
·
(2B

ν
Iω(1)− 1

)
+
.

We set ρ = min{1; ŝ}R, where ŝ is the root of Iω(s) =
ν
2B

. Then, for 0 < xn < ρ, we have

F (x) ≥ B
ω(xn/R)

xn
·
(
1−

2B

ν
Iω(ρ/R)

)
≥ 0.

10



If, otherwise, ρ ≤ xn ≤ R, then

F (x) ≥ B
ω(ρ/R)

ρ
·
(
1−

2B

ν
Iω(1)

)
+B

ω(ρ/R)

ρ
·
(2B

ν
Iω(1)− 1

)
+
≥ 0.

So, in any case MεBε ≥ |b
(1)
ε |+ |b

(2)
ε |.

Using Proposition 3.1, we obtain the estimate

u ≤ N(n) ·
(‖Bε‖∞,Q +R

ν

)n
q
· |||(Mεu)+|||q,ℓ,{u>0} (17)

for any function u satisfying the assumptions of Lemma.
Obviously,

‖Bε‖∞,Q ≤ ‖B(1)
ε ‖∞,Q +

2B

ν
RIω(1). (18)

Further, the function B
(1)
ε itself satisfies the assumptions of Lemma. Therefore, one can set

u = B
(1)
ε in (17) and use (18) arriving at

‖B(1)
ε ‖∞,Q ≤ N(n) ·

(‖B(1)
ε ‖∞,Q +R(1 + 2B

ν
Iω(1))

ν

)n
q
· |||(MεB

(1)
ε )+|||q,ℓ,QR,R

(19)

(we recall that B
(1)
ε ≥ 0).

If ‖B
(1)
ε ‖∞,Q > R(1 + 2B

ν
Iω(1)) then (19) gives

‖B
(1)
ε ‖∞,Q +R(1 + 2B

ν
Iω(1))

ν
≤

(2N(n)

ν
· |||(MεB

(1)
ε )+|||q,ℓ,QR,R

)ℓ

(here we used n
q
+ 1

ℓ
= 1). Thus, in any case we have

‖B
(1)
ε ‖∞,Q +R(1 + 2B

ν
Iω(1))

ν
≤

(2N(n)

ν
· |||(MεB

(1)
ε )+|||q,ℓ,QR,R

)ℓ

+
2R(1 + 2B

ν
Iω(1))

ν
.

Substituting this estimate into (17) and taking into account the definition of B
(1)
ε we obtain

(16) for Mε instead of M. Passage to the limit as ε → 0 completes the proof. �

The next Lemma is parabolic analog of Lemmas 2.2 and 2.2’.

Lemma 3.2. Let M be an operator of the form (NDP) in Qρ,ρ, ρ ≤ R, and let the
conditions (1), (14) and (15) be satisfied. Suppose in addition that

|||b(1)|||q,ℓ,Qρ,ρ ≤ Aρ
1

ℓ . (20)

Let u be a nonnegative solution of Mu = f ≥ 0 in Qρ,ρ.

1. If u ≥ k on ∂′Qρ,ρ ∩ {xn = 0} for some k > 0 then for ξ ≤ 1
2
the inequality

u ≥ k ·
(
β̂(n, ν, ℓ,B,A, ω, ξ)−N5(n, ν, ℓ,B,A, ω, ξ) ·

(
ρ−

1

ℓ |||b(1)|||q,ℓ,Qρ,ρ +Bω(ρ/R)
))

(21)

holds in Q(1−ξ)ρ,(1−ξ)ρ with some positive constants β̂ and N5.

2. If u ≥ k on ∂′Qρ,ρ ∩ {xn = ρ} for some k > 0 then for ξ ≤ 1
2
the inequality (21) holds in

Q(1−ξ)ρ,ρ \ Q(1−ξ)ρ,ξρ.
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Proof. We prove the first statement. The proof of the second one is more simple, and we
omit it.

First, let ξ = 1
2
. Consider the barrier function ŵ(x; t) = w(x) + t

ρ2
, where w is defined in

(5) with a constant A ≥
√
n−1
ν

+ 1
4
√
n−1

to be determined later.

Similarly to Lemma 2.2, direct calculation shows that Mŵ ≤ C9(A, ν,B)|b(1)|ρ−1 in Qρ, ρ
A
.

Further, ŵ(x; t) ≤ 0 on ∂′Qρ, ρ
A
\ {xn = 0}. Finally, ŵ(x; t) ≤ 1 on ∂′Qρ, ρ

A
∩ {xn = 0}. This

gives kŵ − u ≤ 0 on ∂′Qρ, ρ
A
.

Lemma 3.1, condition (20) and relation n
q
+ 1

ℓ
= 1 give for (x; t) ∈ Qρ, ρ

A

u(x; t) ≥ kŵ(x; t)− kN4 ·
(
Aℓ + 1

)n
q ρ

n
q · |||(Mŵ)+|||q,ℓ,Qρ,

ρ
A

≥ kŵ(x; t)− kC10ρ
− 1

ℓ |||b(1)|||q,ℓ,Qρ,ρ,

where N4 is the constant from Lemma 3.1 while C10 depends only on n, ν, ℓ, A, B and A.

Similarly to Lemma 2.2, one can choose A = A(n, ν,B, ω) ≥
√
n−1
ν

+ 1
4
√
n−1

so large that

2(1 + A)ϕ(1/A) ≤ 1
100

. Then direct calculation gives

u ≥ k ·
( 1

20
− C11(n, ν, ℓ,B,A, ω)ρ−

1

ℓ |||b(1)|||q,ℓ,Qρ,ρ

)
+
≡ k2 in B ρ

2
, ρ
10A

× ]− ρ2/2, 0[. (22)

Now we consider the set K̂ρ = Q 3ρ
4
,ρ \ Q 3ρ

4
, ρ
20A

. Note that coefficients b
(2)
i are bounded on

this set, and

|||(b(2)|||q,ℓ,K̂ρ
≤ C12(n)Bρ

1

ℓ

( 1∫

1

20A

(ω(sρ/R)

s

)q

ds
) 1

q
≤ C13(n, ν, ℓ,B, ω)Bρ

1

ℓω(ρ/R). (23)

We proceed as [LU85, Lemma 3.2] (where the isotropic case was considered) and obtain

u ≥ k2 ·
(
κ̂(n, ν, ℓ,B,A, ω)− C14(n, ν, ℓ,B,A, ω)ρ−

1

ℓ |||b(1) + b(2)|||q,ℓ,K̂

)
in Q ρ

2
, ρ
2
\ Q ρ

2
, ρ
10A

.

By (22) and (23) the statement for ξ = 1
2
follows.

For arbitrary ξ < 1
2
we apply the obtained statement in cylinders Q2ξρ,2ξρ(x

0′; t0) with
|x0′| ≤ (1− 2ξ)ρ, (1− 4ξ2)ρ2 ≤ t0 ≤ 0. We arrive at

u ≥ k ·
(
κ̂

20
− C15(n, ν, ℓ,B,A, ω)

(
ρ−

1

ℓ |||b(1)|||q,ℓ,Qρ,ρ +Bω(ρ/R)
))

+
≡ k3

in B(1−ξ)ρ,ξρ× ]− (1− 3ξ2)ρ2, 0[.
Finally, as in the first step, one can proceed as [LU85, Lemma 3.2] in the set Qρ,ρ \ Qρ, ξρ

2

,

and (21) follows. �

Remark 5. If we replace the assumption f ≥ 0 by f− ∈ Lq,ℓ(Qρ,ρ), the estimate (21) holds

true with additional term −N6(n, ν, ℓ,B,A, ω, ξ)ρ
n
q · |||f−|||q,ℓ,Qρ,ρ in the right-hand side. The

proof runs without changes.

Theorem 3.3. Let M be an operator of the form (NDP) in QR,R, and let the condition
(1), (14) and (15) be satisfied. Suppose also that

A1(ρ) ≡ sup
Qρ(x0;t0)⊂QR,R

ρ−
1

ℓ |||b(1)|||q,ℓ,Qρ(x0;t0) → 0, ρ → 0, (24)

12



and for ρ ≤ R
sup

Qρ,ρ(x0′;t0)⊂QR,R

ρ−
1

ℓ |||b(1)n |||q,ℓ,Qρ,ρ(x0′;t0) ≤ B1ω(ρ/R). (25)

Then

1. Any solution of Mu = f ≤ 0 in QR,R such that u|xn=0 ≤ 0 and u(0; 0) = 0 satisfies

sup
0<xn<R/2

u(0, xn; 0)

xn

≤
N+

7

R
· sup
QR/2,R/2

u.

Consequently, if Dnu(0; 0) exists then (Dnu)+(0; 0) is finite.

2. Any positive solution of Mu = f ≥ 0 in QR,R such that u(0; 0) = 0 satisfies

inf
0<xn<R/2

u(0,xn;0)
xn

> 0. Consequently, if Dnu(0; 0) exists, it is positive. If, in addition, f ≡ 0,

the following estimate holds:

inf
0<xn<R/2

u(0, xn; 0)

xn

≥ N−
7 ·

u(0, R/2;−R2/2)

R/2
.

The constants N±
7 depend on n, ν, ℓ, B, B1, A1 and ω.

Remark 6. If |b(1)| ∈ L̂q,ℓ̃(QR,R) such that q, ℓ̃ < ∞ and n
q
+ 2

ℓ̃
= 1 then (24) is obviously

satisfied.

Proof. Similarly to Theorem 2.3, we introduce the sequence of cylinders Qρk,hk
, k ≥ 0,

where ρk = 2−kρ0, hk = ζkρk, while ρ0 ≤ R and the sequence ζk ↓ 0 will be chosen later.
Denote by M̂±

k , k ≥ 1, the quantities

M̂+
k = sup

Qρk,hk−1

u(x; t)

max{xn, hk}
≥ sup

Qρk,hk−1
\Qρk,hk

u(x; t)

xn

; M̂−
k = inf

Qρk,hk−1
\Qρk,hk

u(x; t)

xn

.

Note that in the case 2 M̂−
k > 0.

We define two function sequences

v̂1k = u− M̂+
k hk

ϕ+(xn/R)

ϕ+(hk/R)
; v̂2k = M̂−

k hk
ϕ−(xn/R)

ϕ−(hk/R)
− u,

where functions ϕ± are introduced in (9), and denote

V̂k = v̂1k; M̂k = M̂+
k ; Φ = ϕ+ in the case 1;

V̂k = v̂2k; M̂k = M̂−
k ; Φ = ϕ− in the case 2.

It is easy to see that V̂k

∣∣
xn=0

≤ 0 while the definition of M̂k gives V̂k

∣∣
xn=hk

≤ 0.

To estimate V̂k, we consider (x0; t0) ∈ Qρk−hk,hk
. Let x0

n ≤ hk

2
. Then we apply the first part

of Lemma 3.2 to the function M̂khk − V̂k in Qhk,hk
(x0′; t0) (with regard to Remark 5). This

gives for x ∈ Qhk
2
,
hk
2

(x0′; t0)

M̂khk − V̂k(x) ≥ M̂khk ·
[
β̂(n, ν, ℓ,B,A1(hk), ω, 1/2)−

−N5(n, ν, ℓ,B,A1(hk), ω, 1/2) · (A1(hk) +Bω(ρk/R))
]
−

−N6(n, ν, ℓ,B,A1(hk), ω, 1/2)h
n
q

k · |||(MV̂k)+|||q,ℓ,Qhk,hk
(x0′;t0).
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By (24), we can choose ρ0/R is so small that the quantity in the square brackets is greater

that β̂
2
. As in Theorem 2.3, for (x; t) ∈ Qhk

2
,
hk
2

(x0′; t0) we arrive at

V̂k(x; t) ≤ M̂khk ·
[
1− β̂/2 + C16(n, ν, ℓ,B,A1(hk), ω)h

− 1

ℓ
k |||b(1)n |||q,ℓ,Qhk,hk

(x0′;t0)

]
.

In particular, this estimate is valid for (x; t) = (x0; t0). If x0
n ≥ hk

2
, we get the same estimate

using the second part of Lemma 3.2.
Taking supremum w.r.t (x0; t0), we obtain

sup
Qρk−hk,hk

V̂k ≤ M̂khk ·
(
1− β̂/2 + C16B1ω(hk/R)

)
.

Repeating previous arguments provides for m ≤ ρk
hk

sup
Qρk−mhk,hk

V̂k ≤ M̂khk ·
(
(1− β̂/2)m + C16B1

ω(hk/R)

β̂/2

)
.

Setting m = ⌊ρk+1

hk
⌋, we arrive at

sup
Qρk+1,hk

V̂k ≤
M̂khk

1− β̂/2
·
(
exp

(
− λ̂

ρk+1

hk

)
+ C16B1

ω(hk/R)

β̂/2

)
,

where λ̂ = − ln(1− β̂/2) > 0.
Therefore, for (x; t) ∈ Qρk+1,hk

V̂k(x; t)

max{xn, hk+1}
≤ M̂kγ̂k, (26)

where γ̂k =
1

1−β̂/2

ζk
2ζk+1

·
(
exp

(
− λ̂

2ζk

)
+ C16B1

ω(hk/R)

β̂/2

)
.

Estimate (26) implies in the cases 1 and 2, respectively,

M̂±
k+1 ≶ M̂±

k (δ
±
k ± γ̂k),

where δ±k are defined in (13). Similarly to Theorem 2.3, we obtain

M̂±
k+1 ≶

M̂±
1

Φ(1)
·

k∏

j=1

(1± γ̂j ·max{1,Φ(1)}).

We set ζk = 1
k+k0

and choose k0 so large and ρ0/R so small that γ̂1 · max{1,Φ(1)} ≤ 1
2
. Note

that k0 and ρ0/R satisfying all the conditions imposed depend only on n, ν, B, B1, A1 and ω.
Now, as in Theorem 2.3, we observe that the series

∑
k γ̂k converges. Therefore, the infinite

products Π̂± =
∏
k

(1 ± γ̂k · max{1,Φ(1)}) also converge, and we obtain in the cases 1 and 2,

respectively,

M̂±
k ≶

Π̂±M̂±
1

Φ(1)
, k > 1.

Thus, all M̂+
k are bounded in the case 1, and all M̂−

k are separated from zero in the case 2.

Further, we note that M̂+
1 ≤ 1

h1
sup

QR/2,R/2

u. This completes the proof of the statement 1.
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If f ≡ 0 then we set K̂ = QR,R \ QR,h1/2. Similarly to Lemma 3.2,

sup
Qρ(x0,t0)⊂K̂

ρ−
1

ℓ |||b(1) + b(2)|||q,ℓ,Qρ(x0,t0) → 0, ρ → 0.

Therefore, we use the Harnack inequality which can be proved in a similar way as [S10, Theorem
3.3] (for bounded lower-order terms see [KrS]) and obtain

M−
1 ≥

C17

h1
· u(0, R/2;−R2/2),

where C17 depends on n, ν, ℓ, B, A1 and ω. This completes the proof of the statement 2. �

Remark 7. If we replace in the case 1 the assumption f ≤ 0 by f = f (1) + f (2) with

sup
Qρ,ρ(x0′;t0)⊂QR,R

ρ−
1

ℓ |||f
(1)
+ |||q,ℓ,Qρ,ρ(x0′;t0) ≤ F1ω(ρ/R), f

(2)
+ ≤ F2

ω(xn/R)

xn
,

the estimate

sup
0<xn<R/2

u(0, xn)

xn

≤ N+
7 ·

( 1

R
sup

QR/2,R/2

u+ F1 + F2

)

remains valid. The proof runs with minor changes.

Let us compare Theorem 3.3 with results known earlier. As in elliptic case, the proof of
Hopf–Oleinik Lemma for classical solutions to parabolic equations with bi ∈ L∞ works also for
strong solutions by the Aleksandrov–Krylov maximum principle ([Kr76]; see also [N05]).

In [KHi] the Hopf–Oleinik Lemma was proved for classical solutions of (NDP) in C1+D, 1
2
+D

domains. Using the parabolic regularized distance ([Li85, Theorem 3.1]) one can locally rectify
the boundary and reduce the result of [KHi] to a particular case b(1) ≡ 0 of Theorem 3.3.

The boundary gradient estimates for solutions to (NDP) were established in [LU88] pro-

vided |b| ∈ Lq+2, q > n; the Hopf–Oleinik Lemma under condition |b| ∈ L̂q,ℓ̃,
n
q
+ 2

ℓ̃
< 1,

q, ℓ̃ < ∞, was announced in [NU]. In [AN95] the first part of Theorem 3.3 was proved for
composite coefficients with b(1) ∈ Lq+2, q > n, and ω(σ) = σα, α ∈ ]0, 1[.

Remark 8. Note that the assumption (25) cannot be removed. Let us describe correspond-
ing counterexample (see [NU]).

Let u(x; t) = xn · ln
α((|x|2− t)−1) in QR,R. Then direct calculation shows that u satisfies an

equation

∂tu−∆u+ bn(x; t)Dnu = 0 with |bn| ≤
C(α)

(|x|2 − t)
1

2 ln((|x|2 − t)−1)
∈ L̂q,ℓ̃(QR,R),

for any q, ℓ̃ < ∞ such that n
q
+ 2

ℓ̃
= 1, if R is small enough. By Remark 6, the assumption (24)

is satisfied. Moreover, u > 0 = u|xn=0 in QR,R. However, it is easy to see that Dnu(0; 0) = 0
for α < 0 and Dnu(0; 0) = +∞ for α > 0.

The condition (15) is also sharp. Indeed, considering functions depending only on spatial
variables we see that the counterexample at the end of Section 2 works also for the parabolic
operator (NDP). A more rich family of counterexamples also can be extracted from [AN11].
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