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Abstract

In this paper we investigate the approximation properties of kernel interpolants on manifolds. The
kernels we consider will be obtained by the restriction of positive definite kernels on Rd, such as radial
basis functions (RBFs), to a smooth, compact embedded submanifold M ⊂ Rd. For restricted kernels
having finite smoothness, we provide a complete characterization of the native space on M. After this
and some preliminary setup, we present Sobolev-type error estimates for the interpolation problem.
Numerical results verifying the theory are also presented for a one-dimensional curve embedded in R3

and a two-dimensional torus.

1 Introduction

Kernels have proven to be quite useful in the approximation of multivariate functions given scattered data,
and perhaps the most rudimentary problem of this type is that of interpolation. Let Ω be a metric space,
and let φ : Ω×Ω→ R be a function (which we will refer to as a kernel). Given a target function f : Ω→ R
and a finite set of distinct nodes X = {x1, x2, . . . , xN} ⊂ Ω, one can seek an interpolant IX,φf via shifts of
φ, i.e. IX,φf takes the form

IX,φf =
∑
j

cjφ(· , xj),

and satisfies IX,φf |X = f |X . Finding the appropriate coefficients cj is a matter of inverting the Gram matrix
with entries Ai,j = φ(xi, xj), which is always theoretically possible if φ is positive definite. The kernel φ can
also be used to construct more general interpolants, such as those where the data is generated from various
types of linear functionals (integral data, derivative data, etc.) [31, 45]. However, in this paper we will focus
on the traditional interpolation problem.

Although kernel approximants were initially considered with the domain being a Euclidean space or a
sphere [43], the ideas have since been generalized enough to handle functions defined on other mathematical
objects. Kernels have been studied that are positive definite on various Riemannian manifolds [18, 27, 22],
and there are also kernels that exploit the group structure of their underlying manifold, with domains such
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Lie groups, projective spaces, and motion groups [12, 14, 47]. These kernels are obtained in various ways in
the literature. Some are defined through manifold charts, some are acquired via a special expansion in terms
of eigenfunctions of the Laplace-Beltrami operator, and others are assumed to be the Green’s function for
some pseudo-differential operator. Here the kernels can be highly dependent on the underlying manifold.

In all of the cases discussed above, the domains involved are finite-dimensional smooth manifolds and,
according to the Whitney embedding theorem, any such manifold M can be embedded into some Rd (in fact,
Nash’s embedding theorem guarantees that this can be done isometrically). Positive definite kernels on Rd
are easy to come by, so another, seemingly naive, way of obtaining a positive definite kernel on M is simply
by the restriction of a kernel defined on the ambient space. More precisely, given a kernel φ : Rd × Rd → R
and an embedded manifold M ⊂ Rd, we define

ψ(· , ·) := φ(· , ·)|M×M.

If φ is positive definite, so is its restriction to M, making ψ well-suited for interpolation problems. Although
the practical value of using such a kernel is not clear in all of the aforementioned situations, in this paper
we will see that it is theoretically and numerically possible to approximate functions defined on manifolds
with simple kernels defined on the ambient space.

While the benefits of approximating with a kernel intrinsic to the manifold cannot be questioned, there
are many applications for which an incomplete knowledge or manageable mathematical description of the
underlying manifold may prevent the construction of the intrinsic kernel. For example, in problems from
computer aided design, graphics and imaging, and computer aided engineering the manifold may be a physi-
cally relevant geometric object (such as an airplane wing) and a scalar field (such as pressure or temperature)
may need to be interpolated at arbitrary locations over the object [3, 4, 5, 10, 16, 34]. Additionally, in prob-
lems from learning theory, data samples are from a very high dimensional space, but are usually assumed to
lie on a relatively low dimensional embedded submanifold that is virtually unknown [6]. Finally, there has
been much recent interest in approximating derivatives of scalar and vector valued quantities on manifolds in
both the graphics (cf. [9, 11, 42]) and computational fluid dynamics (cf. [1, 8, 35, 37, 41]) communities. These
approximations are typically used for numerically solving partial differential equations defined on manifolds
(such as the surface of a biological cell or membrane) for modeling processes like advection-reaction-diffusion
of chemicals or fluid flows on the surfaces. Reconstruction of a function on the underlying manifold is
typically first required to then approximate its derivative.

In all the applications referenced above, the manifold could be represented by a triangular mesh, points
on an implicit function (level set), or more generally by a point cloud in R3. Since the restricted kernel
method under consideration in this study is mesh-free, it applies easily to all of these cases. Additionally,
the kernel’s smoothness can be increased so that derivatives of the interpolant are well-defined everywhere on
the surface. Finally, the method is based on extrinsic coordinates, which naturally bypasses any coordinate
singularities inherent to a manifold-based coordinate system, as shown for the unit sphere S2 in [15].

To the authors’ knowledge, these restricted kernels have only been studied in the special case of M =
Sd−1 ⊂ Rd [29, 46]. The kernels considered in these papers are radial on Rd, i.e. φ(x, y) = φ(‖x − y‖),
and it just so happens that the restriction of a radial function on Rd to the sphere is zonal, meaning that
it depends only on the geodesic distance between its arguments. Even on more general manifolds, when
the kernel possesses such a property there are powerful tools at one’s disposal - most notably one has a
convenient Fourier expansion of the kernel in terms of eigenfunctions of the Laplace-Beltrami operator [36].
Of course, in the setting we consider here the restricted kernel will not necessarily be zonal. To circumvent
this and other issues, we will appeal to the variational theory of Madych and Nelson, and also to the error
analysis of Narcowich et. al. [24, 33].

The paper is organized as follows. In the next section we introduce the necessary preliminaries, notation
for manifolds, Sobolev spaces, and other essential tools. After that, we will characterize the native space,
in terms of concrete function spaces, for a large class of kernels that have been restricted to embedded
submanifolds. We will then make a brief detour into measuring the distribution of sample points on embedded
submanifolds. This will poise us to present interpolation error estimates for both smooth and rough target
functions, which are the main results of the paper. We conclude with numerical results verifying the two
main error estimates from the paper.
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2 Notation and Preliminaries

We will restrict our study to smooth, connected, compact manifolds with no boundary. For the reader
unfamiliar with manifolds, an excellent reference is Lee’s book [21]. A k-dimensional manifold M is defined
as a topological space M which is locally identified with Rk via a collection of smoothly compatible coordinate
charts. More specifically, there is an atlas A = {(Uj ,Ψj)} of open sets Uj ⊂ M whose union covers M, and
associated smooth one-to-one maps Ψj : Uj → Rk such that any transition map Ψj ◦Ψ−1

k is a smooth map
where it is defined. By refining the charts as necessary, one may assume that the image of any chart is equal
to an open ball around the origin. Also, since the manifolds we consider are compact, we can obviously
assume that any atlas encountered has finitely many charts.

2.1 Embedded Submanifolds in Rd

In addition to the features described previously, the manifolds we consider throughout the paper will be
embedded submanifolds of Rd. However, we warn that authors use the term “embedding” to mean different
things in similar situations. This topic can be subtle, so a precise statement of what we consider to be an
“embedded submanifold” is in order. We will follow the definition used in [21, Chapter 7], although we state
it in less generality. This will require a few preliminary terms.

Let M ⊂ Rd be a smooth manifold endowed with the subspace topology. Given x ∈ M, we will denote
the tangent space of M at x by TxM. If F : M→ Rd is a smooth map, the rank of F at x ∈ M is the rank
of the Jacobian map F∗ : TxM → TF (x)Rd. A smooth map is called an immersion if F∗ is injective at each

point, i.e. the rank of F is equal to dim (M). We say that a manifold M is an embedded submanifold of Rd if
the inclusion map ı : M ↪→ Rd is also an immersion. Some authors call such manifolds regular submanifolds.

2.1.1 Slice Charts

There is an equivalent, local characterization of embedded submanifolds, which uses charts that utilize the
ambient space [21, Chapter 8]. Given an embedded k-dimensional submanifold M ⊂ Rd, there is an atlas

Ã = {(Ũj , Ψ̃j)}, where the sets Ũj are open in Rd and cover M, and each Ψ̃j is a 1− 1 smooth map from Ũj
to some ball around the origin, say B(0, rj), that “straightens” the manifold. By this we mean that

Ψ̃j(M ∩ Ũj) ⊂ B′(0, rj),

where B′(0, rj) = {y ∈ B(0, rj) | yk+1 = yk+2 = . . . = yd = 0} can be viewed as a copy of an open ball in Rk.

The charts (Ũj , Ψ̃j) are sometimes referred to as slice charts. If we define Uj := M ∩ Ũj and Ψj := Ψ̃j |Uj ,
then A = {(Ψj , Uj)} is an atlas for M in the usual sense. As before, one can assume that Ψj : Uj → B′(0, rj)
and Ψ̃j : Ũj → B(0, rj) are bijections without any loss of generality.

2.1.2 Distances on Embedded Submanifolds

If M is an embedded submanifold of Rd, its topology is naturally induced by the Euclidean metric. This
being the case, M automatically inherits a distance function dM : M ×M → R. Assuming M is connected,
given x, y ∈M we can define the distance between x and y to be

dM(x, y) := inf
γ:[0,1]→M
γ(0)=x
γ(1)=y

∫ 1

0

‖γ′(t)‖ dt,

where γ is any piecewise smooth curve in M beginning at x and ending at y, and ‖γ′(t)‖ is the Euclidean
length of the tangent vector γ′(t). Given an x ∈M, we denote by BM(x, r) the open ball of radius r centered
at x, i.e. BM(x, r) = {y ∈ M | dM(y, x) < r}. In the case where the underlying manifold is Rd we omit the
subscript and simply write B(x, r).

3



2.1.3 Tubular Neighborhoods

It is well known that any embedded submanifold of Rd has a tubular neighborhood, which is a neighborhood
of M in Rd analogous to a tube around a curve in 3-space. A precise definition of a tubular neighborhood
would require much more notation than we need here, so we omit these details and instead present a
useful consequence of its existence. The interested reader can find a full discussion of the subject in most
introductory books on smooth manifolds [21].

Proposition 1. Let M be a compact, smooth embedded submanifold of Rd. Then there exists a neighborhood
Uε(M) := {y ∈ Rd |dist(y,M) < ε} and a canonical smooth map R : Uε(M) → M such that R|M is the
identity map on M.

In this case we call ε the radius of the tubular neighborhood Uε(M), and the map R is called a retraction. We
remark that by restricting the radius of the tubular neighborhood slightly we can assume that the domain
of R is compact.

2.2 Sobolev Spaces

The class of functions we will be interested in approximating are from the Sobolev spaces, which are spaces
that consist of all f ∈ Lp that have distributional derivatives Dαf in Lp for all multi-indices up to some
order. For Sobolev spaces on Rd, we will follow the notation of Adams [2]. Let Ω be a neighborhood in Rd,
1 ≤ p <∞, and m be a nonnegative integer. The associated Sobolev norms are defined via

‖f‖Wm
p (Ω) :=

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

.

For the case p =∞ we have
‖f‖Wm

∞(Ω) := max
|α|≤m

‖Dαf‖L∞(Ω).

It is also possible to have Sobolev spaces of fractional order. Let 1 ≤ p < ∞, m be a non-negative integer,
and 0 < t < 1. We define the Sobolev space Wm+t

p (Ω) to be all f such that the following norm is finite:

‖f‖Wm+t
p (Ω) :=

‖f‖pWm
p (Ω) +

∑
|α|=k

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|p

‖x− y‖d+pt
2

dxdy

1/p

.

We define the Sobolev spaces on embedded submanifolds as follows. Let M ⊂ Rd be a compact sub-
manifold of dimension k. Let Ã = {(Ũj , Ψ̃j)} be an atlas of slice charts for M, and let A = {(Uj ,Ψj)} be

the associated intrinsic atlas. Now let {χj} be a partition of unity subordinate to {Ũj}. If f is a function
defined on M, we have the projections πj(f) : Rk → R by

πj(f)(y) =

{
χjf(Ψ−1

j (y)) y ∈ B′(0, rj)
0 otherwise.

Using this construction, one can now define Sobolev spaces for 1 ≤ p <∞ and s ≥ 0 via the norms

‖f‖W s
p (M) :=

 N∑
j=2

‖πj(f)‖2W s
p (Rk)

1/2

,

where N is obviously the number of charts in the atlas. The norm for W s
p (M) obviously depends on the

particular choice of atlas Ã and the partition of unity. However, if one uses different collections of these
objects, the same space arises and the norms are equivalent (the details for the case d = k− 1 can be found
in Lions and Magenes [23]; for general k < d the argument is similar). Also, as is customary in the case
p = 2 we define Hs(M) := W s

2 (M).
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2.3 Traces

Given any subset Ω ⊂ Rd, one has a continuous trace operator TΩ : C(Rd) → C(Ω) that acts on functions
by restricting them to Ω, i.e. TΩ(f) = f |Ω. Extending the trace operator to other classes of functions is a
well-studied subject (see [2, Chapter VII] or [7, Chapter 5]). In the case when Ω is a submanifold of Rd, the
basic idea is that restricting a function f ∈W τ

p (Rd) to the submanifold “costs” 1/p units of smoothness for

each dimension, e.g. if M is a smooth submanifold of dimension k, then f |M ∈ W τ−(d−k)/p
p (M). However,

there are restrictions. For example, when p > 2 the imbeddings do not necessarily hold when τ − (d− k)/p
is a nonnegative integer [2, Theorem 7.58]. One can get around this and other subtle issues by instead
considering Besov spaces. Nevertheless, in the case we will be interested in, i.e. p = 2, we will not have to
shift our focus to these spaces. The following is the trace result we require (see, for example [7, Section 25]).

Proposition 2. Let τ > 0 and 1 ≤ k ≤ d. Let M be a smooth k-dimensional compact embedded submanifold
of Rd. Then the trace operator TM extends to a continuous operator mapping Hτ (Rd) onto Hτ−(d−k)/2(M).
Further, there is a reverse imbedding, i.e. there is a bounded linear map EM : Hτ−(d−k)/2(M) → Hτ (Rd)
such that EMu|M = u for all u ∈ Hτ−(d−k)/2(M).

We emphasize that the extension EM is independent of τ .

2.4 Positive Definite Kernels and Native Spaces

Let Ω ⊂ Rd, and recall that an N×N matrix A is positive definite if given any nonzero c ∈ RN , the quadratic
form cTAc is strictly positive. We say that a kernel φ : Ω × Ω → R is positive definite on Ω if given any
finite set of distinct nodes {x1, x2, . . . , xN} ⊂ Ω, the N × N Gram matrix with entries Ai,j = φ(xi, xj) is
positive definite (and hence invertible). All of the kernels we consider in this paper have this property, so we
will take “kernel” to mean “positive definite kernel.” A kernel that depends only on the distance between
its arguments, i.e. φ(x, y) = φ(‖x − y‖), is called a radial basis function (RBF). This subclass of kernels is
of particular importance; they are essentially one-dimensional.

Typically approximation is well understood for target functions coming from the so-called native space of
the kernel, which is a reproducing kernel Hilbert space generated by the kernel. We define the native space
of a given kernel φ on Ω in the usual way, that is by taking the closure of the pre-Hilbert space

Fφ =

f
∣∣∣∣∣∣ f =

N∑
j=1

cjφ(· , xj), xj ∈ Ω, cj ∈ R


in the inner-product 〈

N∑
j=1

cjφ(· , xj),
M∑
k=1

dkφ(· , yk)

〉
Fφ

=

M∑
k=1

N∑
j=1

dkψ(yk, xj)cj .

We will denote the native space of φ by Nφ.
Defined in this way the native space can seem quite abstract, and characterizing it in terms of more

well-known function spaces is helpful in finding classes of functions that can be approximated by shifts of φ.
The structure of the native space for kernels of finite smoothness on Euclidean spaces is well-known. To be
more specific, if φ is a kernel on Rd whose Fourier transform, denoted by φ̂, has algebraic decay, i.e.

φ̂(ξ) ∼ (1 + ‖ξ‖22)−τ , τ > d/2, (1)

then Nφ = Hτ (Rd) with equivalent norms.
We end this section by stating a well-known, indispensable property of kernel interpolants. If f ∈ Nφ,

then IX,φf is the orthogonal projection (in Nφ) of f onto the subspace span
xj∈X

φ(·, xj). This immediately gives

one
‖f − IX,φf‖Nφ ≤ ‖f‖Nφ and ‖IX,φf‖Nφ ≤ ‖f‖Nφ .
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3 Native Spaces for Restricted Kernels

As mentioned previously, one approach to finding functions that can be approximated by a given kernel is
to determine the native space of that kernel. In this section we characterize the native space for positive
definite kernels that have been restricted to an embedded manifold. Let φ(x, y) be a positive definite kernel
on Rd satisfying (1). Given an embedded submanifold M ⊂ Rd, we define the kernel ψ on M by restricting
φ to the manifold, i.e.

ψ(· , ·) := φ(· , ·)|M×M.

As stated in the introduction, it is clear that ψ inherits the positive definiteness of φ. Thus ψ generates a
native space on M, which we denote by Nψ.

In the case of M = Sd−1 ⊂ Rd, the native spaces of restricted RBFs have been historically studied by
investigating the decay of the kernel’s Fourier-Legendre coefficients [29, 46]. However, the methods used
in these papers are difficult to apply when the manifold is more general, e.g. the connection between the
intrinsic Fourier coefficients and Fourier transform of the extrinsic kernel might be unclear, so we need to take
a different perspective. The arguments we use ultimately rely on the variational approach due to Madych
and Nelson, which completely avoids the use of the Fourier transform [24]. The following is from Section 8
of that paper.

Proposition 3. Let Ω ⊂ Rd and let κ : Ω × Ω → R be a positive definite kernel. Finally, let L(Ω) the set
of linear functionals given by finite linear combinations of point evaluations, i.e.,

L(Ω) :=

λ =

N∑
j=1

αjδxj
∣∣ N ∈ N, α ∈ Rd, xj ∈ Ω

 .

Then we have f ∈ Nκ if and only if there is a constant Cf so that

|λ(f)| ≤ Cf‖λ‖N∗κ .

Further,

‖f‖Nκ = sup
λ∈L(Ω),λ 6=0

λ(f)

‖λ‖N∗κ
.

Before we can prove our results, we need a lemma. The following is due to Schaback [39, Section 9],
and can also be found in Wendland’s book [44, Theorems 10.46 and 10.47]. We include the proof here to
illustrate the role Proposition 3 in our study.

Lemma 4. Let φ and ψ be related as above. Then we have the following

1. There is a natural linear operator E : Nψ → Nφ such that Ef |M = f and

‖Ef‖Nφ = ‖f‖Nψ

2. The native spaces of φ and ψ are related via

Nψ = TM (Nφ) .

3. The trace operator TM : Nφ → Nψ is continuous with ‖TM‖ ≤ 1.

Proof. First we define the extension operator E : Fψ → Fφ by

E

 N∑
j=1

cjψ(·, xj)

 =

N∑
j=1

cjφ(·, xj).

Clearly we have that ‖Ef‖Nφ = ‖f‖Nψ for all f ∈ Fψ. Now using a density argument we can extend E to
map Nψ to Nφ. Since E preserves norms for the dense subsets, we conclude that E is an isometry.
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For 2, it is clear from 1 that Nψ ⊆ TM (Nφ). Focusing now on the reverse inclusion, let f ∈ TM (Nφ).
Then there is a g ∈ Nφ such that TMg = f . By Proposition 3, we need to find a constant Cf such that

|λ(f)| ≤ Cf‖λ‖N∗ψ

for all λ ∈ L(M). First, we have λ(f) = λ(g) and ‖λ‖N∗ψ = ‖λ‖N∗φ for all λ ∈ L(M), giving

|λ(f)| = |λ(g)| ≤ Cg‖λ‖N∗φ = Cg‖λ‖N∗ψ .

Thus f ∈ Nψ. Further, note that since L(M) ⊂ L(Rd) we have

‖f‖Nψ = sup
λ∈L(M),λ 6=0

λ(f)

‖λ‖N∗ψ
= sup
λ∈L(M),λ6=0

λ(g)

‖λ‖N∗φ

≤ sup
λ∈L(Rd),λ 6=0

λ(g)

‖λ‖N∗φ
= ‖g‖Nφ .

This shows that the trace operator is continuous with norm less than one, and this completes the proof.

Now we are ready to present a characterization for the native space of the restricted kernel.

Theorem 5. If φ satisfies (1), then Nψ = Hτ−(d−k)/2(M) with equivalent norms.

Proof. Our choice of φ gives Nφ = Hτ (Rd) with equivalent norms. By Proposition 2 and Lemma 4 we have

Nψ = TM(Nφ) = TM(Hτ (Rd)) = Hτ−(d−k)/2(M).

Next we show that the native space norm dominates the Sobolev norm by a constant factor. Note that
f = TMEf and that the trace operator is continuous on the appropriate Sobolev spaces. Now we have

‖f‖Hτ−(d−k)/2(M) = ‖TMEf‖Hτ−(d−k)/2(M) ≤ C‖Ef‖Hτ (Rd)

≤ C‖Ef‖Nφ = C‖f‖Nψ .

It is a well-known consequence of the Interior Mapping Theorem that in such situations the norms must be
equivalent.

4 Interpolation via Restricted Kernels

We are ready to shift our focus to the approximation of functions within certain Sobolev spaces using
restricted kernels. The methods we use are related to those used by Narcowich et. al. [33], although the
present situation is different enough so that there is still work to be done before we can successfully apply
their methods.

4.1 Node Measures on Submanifolds of Rd

Given a finite node set X from a metric space Θ, error estimates are typically given in terms of the fill
distance, or mesh norm of the points, which is defined to be

hX,Θ := sup
x∈Θ

min
xj∈X

dΘ(x, xj),

where dΘ is the distance metric between x and y intrinsic to Θ. Another important measure is the separation
radius, given by

qX,Θ := min
xj,xk∈X
xj 6=xk

1

2
dΘ(xj , xk).

Since we wish to study approximation on a manifold, it is important that our results be stated in terms
of the mesh norm and separation radius intrinsic to the manifold. Note that our node sets simultaneously
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reside in several different metric spaces, namely Rd, M, and Rk (through chart mappings). We will need the
“node measures” on all three of these spaces, and it will be convenient to put them on equal footing. This
is not a difficult task, but it is a detail that must be dealt with nonetheless.

First we show that qX,M ∼ qX,Rd .

Theorem 6. Let M ⊂ Rd be a smooth compact embedded submanifold of dimension k < d. Then dM(x, y) ∼
‖x− y‖ for all x, y ∈M. In particular, we have qX,M ∼ qX,Rd for all finite node sets X ⊂M.

Proof. Clearly we have ‖x− y‖ ≤ dM(x, y). Now we find a bound in the other direction. Since M is smooth
and compact, we know from Proposition 1 that there is a compact tubular neighborhood Uε(M) with normal
radius ε and smooth retraction R : Uε(M) → M. Given x, y ∈ M, we consider two cases: ‖x − y‖ ≥ ε and
‖x− y‖ < ε. If ‖x− y‖ ≥ ε, we have

dM(x, y) =
dM(x, y)

‖x− y‖
‖x− y‖ ≤ diam(M)

ε
‖x− y‖.

Now assume 0 < ‖x− y‖ < ε. Notice that y ∈ B(x, ε) ⊂ Uε(M), so the parameterized line l : [0, 1]→ Rd
starting at x and ending at y is completely contained in Uε(M). Thus R ◦ l is a smooth parameterized curve
in M starting at x and ending at y. Now we use the arclength definition of the distance metric and the fact
that l′(t) = y − x to get

dM(x, y) = inf
γ:[0,1]→M
γ(0)=x
γ(1)=y

∫ 1

0

∥∥∥∥dγdt
∥∥∥∥ dt ≤ ∫ 1

0

∥∥∥∥ ddt (R ◦ l)
∥∥∥∥ dt

=

∫ 1

0

‖(DR)|l(t)l′(t)‖ dt ≤
∫ 1

0

‖DR‖∞‖x− y‖ dt

= ‖DR‖∞‖x− y‖,

where ‖DR‖∞ denotes a bound on the matrix norm of the Jacobian matrix DR, which we know to be
bounded since R is smooth and its domain is compact. The result now follows.

The reader should note that the discrepancy between qX,M and qX,Rd could be quite large, e.g. consider
nodes taken at the poles of a flattened ball. However, if the node set is sufficiently dense this will not be an
issue.

Now we shift our focus to the mesh norm. The first step is to show that distances are preserved under
chart mappings. This has been taken care of in the case of homogeneous manifolds in [22, Proposition 3.3],
and we cite its proof to deal with our situation.

Proposition 7. Let M be a compact smooth manifold of dimension k. Then there exists an atlas A =
{(Ψj , Uj)} for M and associated positive constants c1, c2 such that for all x, y ∈ M, if x, y ∈ Uj for some j
we have

c1‖Ψj(x)−Ψj(y)‖ ≤ dM(x, y) ≤ c2‖Ψj(x)−Ψj(y)‖.

Proof. Since M is a smooth and compact manifold, we get a smooth atlas A = {(Ψj , Uj)} containing finitely
many charts for M. By refining our charts as necessary, we may assume that the images of these charts is
equal to a ball in Rk centered around the origin. Since our manifold is smooth and the images of our charts
are convex, the arguments in the proof of [22, Proposition 3.3] follow to find positive constants c1,j and c2,j
such that

c1,j‖Ψj(x)−Ψj(y)‖ ≤ dM(x, y) ≤ c2,j‖Ψj(x)−Ψj(y)‖ ∀ x, y ∈ Uj .
Now simply set c1 := minj c1,j and c2 := maxj c2,j , and the proof is complete.

From here on out, we let A = {(Ψj , Uj)} be such an atlas for M, with each Ψj being a bijection from Uj
to some ball B′(0, rj) ⊂ Rk. In the next section we will be able to easily obtain error bounds on each chart
in terms of the mesh norm in Rk, hΨj(X),B′(0,rj). In an effort to use a mesh norm intrinsic to the manifold,
consider the following. With the result above, we have:

hX∩Uj ,Uj ∼ hΨj(X),B′(0,rj),
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which gives us in particular that
hΨj(X),B′(0,rj) ≤ ChX∩Uj ,Uj . (2)

Using this, a useful global density of X on M is h∗ := maxj hX∩Uj ,Uj , but this is not as strong as the mesh
norm hX,M. Indeed, it is not hard to show that hX,M ≤ h∗. However, for node sets yielding a mesh norm
hX,M small enough, h∗ and hX,M are equivalent.

Theorem 8. Let M be a compact smooth manifold of dimension k, and let A = {(Ψj , Uj)} be an atlas for
M satisfying Proposition 7. Then there exists constants h0, C > 0 so that for any finite node set X ⊂ M
with hX,M < h0, we have

hX∩Uj ,Uj ≤ C hX,M for all Uj .

Proof. Recall that we may assume that every map Ψj is a smooth bijection onto a ball of radius rj > 0.
Define r = minj rj . We will exploit geometry of the situation by using the fact that balls satisfy an interior
cone condition. Given a point x ∈ Rk, unit vector ξ, radius R, and angle θ ∈ (0, π/2), we define the cone

C(x, ξ,R, θ) := {x+ λy | y ∈ Rk, ‖y‖ = 1, yT ξ ≥ cos(θ), λ ∈ [0, R]}.

Below are the geometric facts we require [44, Lemma 3.7, Lemma 3.10]:

1. Let C(x, ξ,R, θ) be a cone of radius R and angle θ. If h < R/(1 + sin(θ)), then the cone contains a
closed ball of radius h sin(θ) centered a distance h away from x.

2. Every ball with radius R > 0 satisfies an interior cone condition with radius R and angle θ = π/3, i.e.
for every x in the ball, a unit vector ξ(x) exists such that C(x, ξ(x), R, θ) is contained in the ball.

With this insight, we choose h0 := rc1 sin(θ)/(1 + sin(θ)), where θ = π/3 and c1 is the constant from the
lower bound in Proposition 7. Assuming hX,M ≤ h0, we will show that given x ∈ Uj , there is a point within
X ∩ Uj whose distance from x is comparable to hX,M.

Let x ∈ Uj and consider the ball Ψj(Uj). Since the ball satisfies an interior cone condition with radius
rj ≥ r, by the remarks above we can find a closed ball of radius hX,M/c1 centered at some Ψj(y) satisfying
‖Ψj(x) − Ψj(y)‖ = hX,M/(c1 sin(θ)). We denote this ball by B1, and note that we have Ψ−1

j (B1) ⊂ Uj .

Further, since Ψj and its inverse are open topologically, Ψ−1
j (B1) is a neighborhood of y and there is some

closed ball centered at y completely contained in Ψ−1
j (B1).

Let ρ be the maximum radius of such a ball, i.e. B(y, ρ) ⊂ Ψ−1
j (B1) and given any ρ′ > ρ there

is a z′ ∈ B(y, ρ′) such that z′ /∈ Ψ−1
j (B1). Note that this maximum radius must be attained at some

z ∈ ∂Ψ−1
j (B1). Also note that z must map to the boundary of B1 through Ψj : if not, then because Ψ−1

j

is open, we could find a neighborhood of z completely contained in Ψ−1
j (B1), contradicting the fact that it

was chosen on the boundary. Thus we have:

ρ = dM(y, z) ≥ c1‖Ψj(y)−Ψj(z)‖ = c1

(
hX,M
c1

)
= hX,M.

Since ρ ≥ hX,M, it follows that there must be a point xk ∈ X ∩B(y, ρ) ⊂ Ψ−1
j (B1) ⊂ Uj . Now we have:

dM(x, xk) ≤ dM(x, y) + dM(y, xk)

≤ c2‖Ψj(x)−Ψj(y)‖+ c2‖Ψj(xk)−Ψj(y)‖

≤ c2
hX,M

c1 sin(θ)
+ c2

hX,M
c1
≤ c2
c1

(
2 +
√

3√
3

)
hX,M = ChX,M.

Since x and Uj were arbitrary, this proves that hX∩Uj ,Uj ≤ ChX,M.
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4.2 Interpolation Error Estimates

We now have the tools necessary to provide error bounds. First we present estimates that apply to target
functions coming from the native space of the approximating kernel. After this, we will give estimates for
target functions that are not smooth enough to be within the native space.

To derive our estimates, we will first make use of the “many zeros” Sobolev sampling inequality of
Narcowich, Ward and Wendland, which allows one to extract the appropriate powers of the mesh norm from
the error function [32]. Here is a statement of that result, stated in slightly stronger form as in [33].

Proposition 9. Let Ω be a compact subset of Rn satisfying an interior cone condition. Let s > 0, 1 ≤ p <∞,
1 ≤ q ≤ ∞, and let µ be an integer satisfying bsc > µ+ n/p, or p = 1 and bsc ≥ µ+ n. Also, let X ⊂ Ω be
a discrete set with mesh norm hX,Ω. Then there is a constant depending only on Ω such that if hX,Ω ≤ CΩ

and if u ∈W s
p (Ω) satisfies u|X = 0, then

|u|Wµ
q (Ω) ≤ Ch

s−µ−n(1/p−1/q)+
X,Ω |u|W s

p (Ω), (3)

where (x)+ = x if x ≥ 0 and is 0 otherwise. Here the constant C is independent of hX,Ω and u.

Recall our notation for kernel interpolants: given a finite node set X, kernel ψ and target function f ,
we let IX,ψf denote the interpolant to f on X found via shifts of ψ. Now we are ready to state our first
approximation result.

Theorem 10. Let M be a k-dimensional submanifold of Rd, φ be a positive definite kernel satisfying (1),
and define ψ by restricting φ to M. Let s = τ − (d−k)/2, and let µ, and q be as in Proposition 9 with n = k
and p = 2. Then there is a constant hM such that if a finite node set X ⊂ M satisfies hX,M ≤ hM, then for
all f ∈ Hs(M) we have

‖f − IXf‖Wµ
q (M) ≤ Ch

s−µ−k(1/2−1/q)+
X,M ‖f‖Hs(M).

Proof. Let A = {(Uj ,Ψj)} be an atlas for M satisfying Proposition 7. We will choose hM small enough so
that Theorem 8 holds, and so that Proposition 9 can be applied to the images of all patches in Rk. The
norm of the error is given by

‖f − IXf‖Wµ
q (M) =

 N∑
j=1

‖πj(f − IXf)‖2Wµ
q (Rk)

1/2

.

Any function projected under πj is supported on Ψj(Uj), so we have

‖πj(f − IXf)‖2Wµ
q (Rk) = ‖πj(f − IXf)‖2Wµ

q (Ψj(Uj))
.

Note that πj(f − IXf) is a Sobolev function with many zeros on the set Ψj(X ∩ Uj). Applying Proposition
9 and using (2) with Theorem 8 gives us

‖πj(f − IXf)‖Wµ
q (Ψj(Uj)) ≤ Ch

s−µ−k(1/2−1/q)+
X,M ‖πj(f − IXf)‖Hs(Ψj(Uj)),

where the constant is independent of X and f . Applying this estimate to all patches gives us

‖f − IXf‖Wµ
q (M) ≤ Ch

s−µ−k(1/2−1/q)+
X,M ‖f − IXf‖Hs(M).

Now recall that since we chose φ to satisfy (1), the native space of ψ is equal to Hs(M) with equivalent
norms. Now use this and the fact that the kernel interpolants have a best approximation property to get

‖f − IXf‖Hs(M) ≤ C‖f − IXf‖Nψ ≤ C‖f‖Nψ ≤ C‖f‖Hs(M).

This completes the proof.
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When the target function is very smooth, there is a “doubling trick” from spline theory that can be
used to increase the order of hX,M in the error estimates. This was first commented on for RBFs in Rd by
Schaback in [38] and has also been observed in other RBF-related contexts [17, 26]. The error doubling on
more general domains, including Riemannian manifolds, was considered in [40], and Theorem 5.1 of that
paper gives pointwise error estimates for very smooth functions in terms of the so-called Power Function.
Using similar methods along with Theorem 10, we get Sobolev error estimates doubling the order of hX,M.

A main ingredient for the doubling trick is to rewrite the native space inner product in terms of an
L2 inner product of functions that have been acted upon by a pseudodifferential operator depending on
the kernel. This is achieved in Rd using the Fourier transform, and in the case of the sphere by using
eigenfunction expansions of the Laplace-Beltrami operator ∆. For more general domains, one can use a
well-known result of Mercer to find the appropriate native space machinery. The tools outlined below can
be found in [40].

We define the integral operator T : L2(M)→ L2(M) by

Tf(x) :=

∫
M
ψ(x, y)f(y) dy

Since our kernel is continuous and M is compact, we may invoke Mercer’s theorem (see [13, Theorem 1.1],
for example). Mercer’s theorem guarantees a countable set of positive eigenvalues λ1 ≥ λ2 ≥ · · · > 0 and
continuous eigenfunctions {ϕn}n∈N such that Tϕn = λnϕn. Further, {ϕn}n∈N provides an orthonormal basis
for L2(M), and ψ(x, y) has the expansion

ψ(x, y) =

∞∑
n=1

λnϕn(x)ϕn(y).

Lastly, with these tools one has the following characterization of the native space. A proof can be found in
[40, Sections 7,8].

Proposition 11. Let ψ be a positive definte kernel on M. Then its native space is given by

Nψ =

{
f ∈ L2(M)

∣∣∣∣∣
∞∑
n=1

1

λn
(f, ϕn)2

L2(M)

}
.

Also, for f, g ∈ Nψ the inner product has the representation

〈f, g〉Nψ =

∞∑
n=1

1

λn
(f, ϕn)L2(M)(g, ϕn)L2(M).

Along with the integral operator T comes pseudodifferential operators T−r, r > 0, defined formally by

T−rf(x) :=

∞∑
n=1

1

λrn
(f, ϕn)L2(M)ϕn(x).

The above proposition tells us that a function f resides in the native space if and only if T−1/2f ∈ L2(M).
Thus we expect functions such that T−1f ∈ L2(M) to be at least twice as smooth. Below we show that
these smoother functions enjoy faster convergence rates.

Corollary 12. Let ψ and s be as in Theorem 10, and let f ∈ Nψ be such that T−1f ∈ L2(M). Then we
have

‖f − IXf‖L2(M) ≤ Ch2s
X,M‖T−1f‖L2(M).

Proof. First, the arguments in Theorem 10 give us that

‖f − IXf‖2L2(M) ≤ Ch
2s
X,M‖f − IXf‖2Nψ . (4)
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Recall that the error g := f − IXf and IXf are orthogonal in Nψ. Using this, the above proposition, and a
Cauchy-Schwartz inequality gives us

‖f − IXf‖2Nψ = 〈g, f〉Nψ =

∞∑
n=1

1

λn
(f, ϕn)L2(M)(g, ϕn)L2(M)

≤

( ∞∑
n=1

1

λ2
n

(f, ϕn)2
L2(M)

)1/2( ∞∑
n=1

(g, ϕn)2
L2(M)

)1/2

= ‖T−1f‖L2(M)‖g‖L2(M).

This along with (4) finishes the proof.

Now we shift our attention to functions less smooth than those in the native space. Finding error estimates
for functions outside the native space, sometimes called “escaping” the native space, has only recently been
made possible through the use of “band-limited” functions, which are functions with compactly supported
Fourier transforms. Estimates for the escape when using radial basis functions restricted to the sphere were
given in [30], where the authors used tools intrinsic to the sphere. To deal with more general manifolds, we
will lift the problem from the manifold to Rd.

The results that lead to the escape can be quite deep; to be brief we merely list the properties of the
band-limited functions needed for our proof. For the interested reader, more details and a complete reference
list can be found in the survey paper [28]. The following are consequences of Theorem 3.4 in [33] and the
remarks thereafter.

Proposition 13. Let ν > d/2, and let X be a finite subset of Rd. If f ∈ Hν(Rd) then there is an fσ : Rd → R
such that

1. fσ|X = f |X ,

2. The Fourier transform of fσ is supported within B(0, σ) with σ = C/qX,Rd ,

3. ‖f − fσ‖Hν(Rd) ≤ C‖f‖Hν(Rd),

4. ‖fσ‖ ≤ C‖f‖Hν(Rd),

where each C represents a constant independent of X and f .

As the reader will see below, there is apparently a penalty paid for approximating a rough function, given
by the introduction of so-called mesh ratio, which we denote by ρX,M := hX,M/qX,M.

Theorem 14. Let M, ψ, s and q be as above. Let β be such that s > β > k/2, and suppose µ is an
integer satisfying bβc > µ+ k/2. Then there is a constant hM such that if a finite node set X ⊂M satisfies
hX,M ≤ hM, then for all f ∈ Hβ(M) we have

‖f − IX,ψf‖Wµ
q (M) ≤ Ch

β−µ−k(1/2−1/q)+
X,M ρs−βX,M‖f‖Hβ(M).

Proof. We choose hM as before. If f ∈ Hβ(M), the Trace theorem lets us continuously extend f to Hν(Rd)
via the map EM, where ν = β + (d − k)/2. Since β > k/2 we have ν > d/2, thus allowing us to find a
band-limited interpolant fσ to EMf with the approximation properties listed in Proposition 13.

To get the appropriate orders of the mesh norm, we again use the many zeros result as in the proof of
Theorem 10 to get

‖f − IX,ψf‖Wµ
q (M) ≤ Ch

β−µ−k(1/2−1/q)+
X,M ‖f − IX,ψf‖Hβ(M).

The rest of the proof will follow after bounding ‖f − IX,ψf‖Hβ(M). Note that since TMfσ|X = f |X , we have

IX,ψf = IX,ψTMfσ

12



Using this and the fact that all functions involved can be considered traces of function on Rd gives us

‖f − IX,ψf‖Hβ(M) ≤ ‖f − TMfσ‖Hβ(M) + ‖TMfσ − IX,ψf‖Hβ(M)

= ‖TMEMf − TMfσ‖Hβ(M) + ‖TMfσ − IX,ψTMfσ‖Hβ(M)

≤ C‖EMf − fσ‖Hν(Rd) + ‖TMfσ − IX,ψTMfσ‖Hβ(M).

First we concentrate on the leftmost term on the right-hand side. We can use Proposition 13 and the fact
that f was continuously extended to get

‖EMf − fσ‖Hν(Rd) ≤ C‖EMf‖Hν(Rd) ≤ C‖f‖Hβ(M).

With bounding the other term in mind, note that since fσ is bandlimited, we have fσ ∈ Nφ, so its restriction
to M is in Nψ = Hs(M). Thus we can apply Theorem 14 to get

‖TMfσ − IX,ψTMfσ‖Hβ(M) ≤ Ch
s−β
X,M‖TMfσ‖Hs(M).

The Trace operator is continuous, so we have

‖TMfσ‖Hs(M) ≤ C‖fσ‖Hτ (Rd),

and the fact that fσ is band-limited with bandwidth σ ∼ 1/qX,Rd allows us to apply a Bernstein inequality,
giving us

‖TMfσ‖Hs(M) ≤ C‖fσ‖Hτ (Rd) ≤ Cqν−τX,Rd‖fσ‖Hν(Rd)

≤ Cqν−τX,M‖fσ‖Hν(Rd) = Cqβ−sX,M‖fσ‖Hν(Rd),

where in the second to last inequality we have invoked Theorem 6. Continuing with the estimate, Proposition
13 and the fact that f was continuously extended from M to Rd gives us

‖fσ‖Hν(Rd) ≤ C‖EMf‖Hν(Rd) ≤ C‖f‖Hβ(M).

Stringing these inequalities together, we obtain

‖f − IX,ψf‖Hβ(M) ≤ C‖f‖Hβ(M) + Chs−βX,M‖TMfσ‖Hs(M)

≤ C‖f‖Hβ(M) + Chs−βX,Mq
β−s
X,M‖f‖Hβ(M)

≤ Cρs−βX,M‖f‖Hβ(M).

This completes the proof.

If the nodes are chosen in a non-uniform way, we see that the error bound above might be quite large.
However, if the node sets one is dealing with are more or less uniform, ρX,M can be bounded by a constant,
and one would obtain the typical approximation rates for target functions of a certain smoothness.

5 Numerical results

We provide numerical results verifying Theorems 10 and 14 for target functions inside and outside of the
native space, respectively. Two different compact embedded smooth submanifolds in R3 are considered. The
first is a one-dimensional submanifold with the parametric representation

M1 =

{
(u, v, w) ∈ R3

∣∣∣∣ u =

(
1 +

1

3
cos 6θ

)
cos θ, v =

(
1 +

1

3
cos 6θ

)
sin θ, w =

1

3
sin 2θ, 0 ≤ θ < 2π

}
.

(5)
This curve is displayed in Figure 1(a). The second submanifold is a two-dimensional torus with parametric
representation

M2 =

{
(u, v, w) ∈ R3

∣∣∣∣ u =

(
1 +

1

3
cosλ

)
cos θ, v =

(
1 +

1

3
cosλ

)
sin θ, w =

1

3
sinλ, 0 ≤ θ, λ < 2π

}
.

(6)
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(a) (b)

Figure 1: Compact embedded smooth submanifolds used for the numerical experiments. (a) One-dimensional
curve M1 described parametrically by (5). (b) Two-dimensional torus M2 described parametrically by (6).
Solid spheres mark the locations of the near-minimum Reisz energy interpolation nodes for (a) N = 100 and
(b) N = 1000.

This torus is displayed in Figure 1(b).
To discretize M1 and M2, we use a hierarchy of node sets with increasing cardinalities. For M1 we use

cardinalities of N = 50, 100, 200, 300, 400, and 500, while for M2 we use N = 500, 750, 1000, 2000, 3000, and
4000. The node sets for both manifolds are obtained by arranging the nodes so that their Reisz energy (with
a power of 2) is near minimal as described in Hardin and Saff’s seminal article [19]. For M1, this results in
node sets with mesh norms hX,M1

that decrease like 1/N , while the mesh norms hX,M2
for M2 decrease like

1/
√
N . Additionally, the mesh ratios ρX,M1 and ρX,M2 remain roughly constant. The small solid spheres on

the curve in Figure 1(a) display the node locations for the N = 100 node set, while the small spheres on the
torus in Figure 1(b) display the N = 1000 node set. It is obvious from the latter plot that the nodes are not
oriented along any vertices or lines emphasizing the ability of the proposed kernel interpolation technique to
handle arbitrary node layouts on a submanifold.

The positive definite kernel we use for constructing the interpolants in the experiments is Wendland’s
compactly supported RBF

φ3,2(x, y) = φ3,2(‖x− y‖) = φ3,2(r) =
(

1− r

δ

)6

+

(
3 + 18

r

δ
+ 35

(r
δ

)2
)
, (7)

which is positive definite in R3 and has 4 continuous derivatives [44, §9.4]. Furthermore, the native space
of this kernel is known to be H4(R3) [44, p.157], which means τ = 4 in Theorems 10 and 14. According
to Theorem 5, the native spaces on M1 and M2 for this kernel are thus H3(M1) and H3.5(M2). The free
parameter δ is referred to as the support radius and its optimal value depends on numerous factors which
are neither easy nor obvious to determine (cf. [44, Ch. 15] or [20, Ch. 5]). Since our intention in the present
study is only to provide verification of the error estimates presented above, we set δ = 8/3 (the maximum
distance of any two nodes on either M1 or M2) for all the numerical results and leave investigations of
selecting δ for interpolation on submanifolds to a separate study.

One difficulty with verifying error estimates of the type given in Theorems 10 and 14 is coming up with
explicit forms of target functions belonging to a desired Sobolev space. Fortunately, Sobolev spaces can be
defined in terms of decay rates of Fourier transforms [44, p. 133]. Using this definition, a straightforward
calculation shows any function κ ∈ Rd whose Fourier transform satisfies

κ̂(ξ) ∼ (1 + ‖ξ‖22)−ν (8)

belongs to every Sobolev space Hβ(Rd), with β < 2ν − d/2. Thus, we can use functions whose Fourier
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(a) (b)

Figure 2: Visualization of two of the target functions for the numerical experiments. (a) The target function
(9) for M1 with m = 25 and β = 4 displayed as the height above the submanifold (i.e. (u, v, w + f4(x)))
together with colors indicating the values of the function. (b) The target function for M2 with m = 100
and β = 4 with colors corresponding to the values of the target function on the submanifold and black lines
corresponding to contours of the function.

transforms satisfy (8) with ν = (β + d/2)/2 as target functions since they will then be in Hs(M) for all
s < β − (d− k)/2.

A well-known class of functions that satisfy (8) (with strict equality) are the Matérn kernels [25] or
Sobolev splines and are defined as

κν(x, y) = κν(‖x− y‖) = κν(r) =
21−(ν−d/2)

Γ(ν − d/2)
rν−d/2Kν−d/2(r), ν > d/2

where Kν−d/2 corresponds to the K-Bessel function of order ν−d/2. To generate interesting target functions
for verifying Theorems 10 and 14, we use linear combinations of these Matérn kernels as follows. Let
X = {x1, x2, . . . , xm} be some set of distinct points on the submanifold under consideration (either M1 or
M2), then the target function is given by

fβ(x) =

m∑
j=1

cjκ 1
2 (β+d/2)(‖x− xj‖). (9)

The coefficients c1, c2, . . . , cm are determined by the requiring fβ interpolate the following function at the
points in X:

p(x) =
1

8

(
u5 − 10u3v2 + 5uv4

) (
u2 + v2 − 60w2

)
, (10)

where u, v, and w are the components of x. For M1, we use m = 25 quasi-minimum Reisz energy points for
X, while for M2 we use n = 100 quasi-minimum Reisz energy points. Plots of the target function for β = 4
are displayed in Figure 2(a) and (b) for M1 and M2, respectively. Note that fβ is not the kernel interpolant
to be compared against the theoretical error estimates, rather it is the form of the target functions to be
interpolated.

In the results below, the errors are measured by evaluating the kernel interpolants and the target functions
at a much denser set of points that sufficiently cover the manifolds. For M1, P = 3000 evaluation points are
used, while P = 24, 300 points are used for M2. We approximate the (relative) L2(M)-norms of the errors
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by approximating the surface integrals over the manifolds using a midpoint-type rule. We use the following
abuse of notation to denote the approximate L2(M)-norm:

‖f‖L2(M) :=

(∫
M

[f(x)]2dx

)1/2

≈

(
P∑
i=1

wi[f(xi)]
2

)1/2

:= ‖f‖`2(M),

where {wi}Pi=1 are quadrature weights for the evaluation points {xi}Pi=1 on the manifold. We also meausure
the max-norm errors over the manifolds. We use the standard definition for this norm and denote it with
the standard notation of `∞(M).

For the first numerical experiment, we set set β = 4 in (9) for M1 and M2. Since the native space for
the kernel (7) is H4(R3), we expect the estimates from Theorem 10 to apply for these target functions.
According to this theorem, the `2 errors for M1 and M2 should decrease like h3

X,M1
and h3.5

X,M2
, while the `∞

errors should decrease like h2.5
X,M1

and h2.5
X,M2

. Figures 3(a) and (b) display the computed relative errors versus
the mesh norm for f4 together with the predicted estimates. The figures show good agreement between the
numerical and theoretical results.

In the second experiment, we set β = 3.5 in (9) for M1 and M2, which makes the target functions rougher
than the native space of the kernel and means the estimates from Theorem 14 will apply. Assuming the
mesh ratio is roughly constant (which is true for our experiments), this theorem predicts that the `2 errors
for M1 and M2 should decrease like h2.5

X,M1
and h3

X,M2
, while the `∞ errors should decrease like h2

X,M1
and

h2
X,M2

. Similar to the previous experiment, Figures 3(c) and (d) display the computed relative errors for
these target functions together with the predicted estimates. Good agreement between the numerical and
theoretical results is again displayed.

As a final numerical experiment, we verify the “doubling” estimates from Corollary 12. For the target
function we use (10) directly. This function is C∞(R3) and is thus much smoother than the native space of
the kernel (7). According to Corollary 12, the `2 errors for M1 and M2 should decrease like h6

X,M1
and h7

X,M2

for this target function and kernel. Figure 4(a) and (b) displays the results for M1 and M2, respectively. We
again find good agreement between the numerical and theoretical results. The results from the figure also
indicate that there does not appear to be a reduction in the estimates for the `∞ error for this case.

Acknowledgments. We wish to express our deep gratitude to Drs. Douglas Hardin and Edward Saff
and Ms. Ayla Gafni, all from Vanderbilt University, for providing us with the near-minimum Reisz energy
points for the torus used in the numerical experiments.
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