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A SELF-LEARNING ALGEBRAIC MULTIGRID METHOD FOR

EXTREMAL SINGULAR TRIPLETS AND EIGENPAIRS

HANS DE STERCK∗§

Abstract. A self-learning algebraic multigrid method for dominant and minimal singular triplets
and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative
phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of
interpolation operators that approximately fit the tentative singular vectors in a collective and self-
learning manner, using multiplicative update formulas. In the second, additive phase (solve phase),
the tentative singular triplets are improved up to the desired accuracy by using an additive correction
scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of
the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles.
The proposed algorithm combines and extends two existing multigrid approaches for symmetric
positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical
tests on model problems from different areas show that the algorithm converges to high accuracy in
a modest number of iterations, and is flexible enough to deal with a variety of problems due to its
self-learning properties.

Key words. multilevel method, algebraic multigrid, singular values, singular vectors, eigenval-
ues, eigenvectors
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1. Introduction. In this paper we present an algebraic multigrid (AMG) method
for accurately computing a few of the largest or smallest singular values and associ-
ated singular vectors of a sparse rectangular matrix A ∈ IRm×n. Let the singular
value decomposition (SVD) of A be given by

A = U ΣV t. (1.1)

Here, U ∈ IRm×m and V ∈ IRn×n, with U tU = Im and V t V = In, where Im and
In are the unit matrices of sizes m ×m and n × n, respectively. Matrix Σ ∈ IRm×n

has the l = min(m,n) singular values σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0 of A on its diagonal.
In what follows we will normally assume that m ≥ n, except where noted otherwise.
The columns uj of U are called the left singular vectors of A, and the columns vj of V
are its right singular vectors. The n singular triplets (σj , uj, vj), j = 1, . . . , n, satisfy

Avj = σj uj ,

At uj = σj vj . (1.2)

For the special case that A is square and symmetric positive definite (SPD), the SVD
of A coincides with the eigendecomposition of A, and a suitably simplified version
of the AMG method we propose in this paper will be applicable to the problem of
computing a few of the largest or smallest eigenvalues and associated eigenvectors of
an SPD matrix A.

For definiteness, we will frame the presentation in most of the paper in terms of
calculating a few of the singular triplets with largest singular values (which we call
dominant triplets), and we will comment on the case of the singular triplets with the
smallest singular values (which we call minimal triplets) at the end of the algorithm
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presentation. So we assume we seek the nb dominant singular triplets (σj , uj , vj),
j = 1, . . . , nb, of A, with singular values σ1 ≥ σ2 ≥ . . . ≥ σnb

.
There are many applications in scientific computing where dominant or mini-

mal singular triplets of large sparse matrices need to be computed, see, for example,
the discussion and references in [26, 2]. We mention a few examples. Latent se-
mantic indexing determines concepts in documents by calculating dominant singular
triplets of term-document matrices [16]. Similarly, principal component analysis is
used in exploratory data analysis to identify orthogonal components with maximal
variance, which correspond to dominant singular triplets of the data matrix [24]. In
[13], a smoothed aggregation method is described for nonsymmetric linear systems
that arise from partial differential equation (PDE) discretization, and which requires
approximate calculation of the minimal singular triplet of the problem matrix in a
setup phase of the solver. Similarly, calculating dominant or minimal eigenpairs of
SPD matrices also has many applications, see, e.g., [25, 4, 22, 27, 5].

The computation of a few extremal singular triplets of large sparse matrices has
been the focus of many research efforts, see, for example, [26, 2] and the numerous
references therein. In recent times, Lanczos bidiagonalization methods and subspace
iteration methods have received significant attention. Singular triplets can also be
computed by applying symmetric eigenvalue solvers to At A or the augmented oper-
ator

X =

[

0 A
At 0

]

, (1.3)

but the first approach can lead to poor accuracy of the computed singular values when
A is ill-conditioned. For the second approach the amount of storage and work required
can be prohibitive, the number of iterations required to compute a given number of
singular values increases, and the indefiniteness of operator X has to be dealt with
[28]. For these reasons, methods are being pursued that avoid working on operators
At A and X [28, 26, 2], and we do the same in this paper. It appears that multilevel
methods have not been explored yet for the calculation of singular triplets working
directly on Eqs. (1.2). This is, perhaps, not surprising, since AMG methods for the
SPD eigenproblem are also still quite a young area [8, 7, 4, 22, 27]. It can be expected
that AMG methods for extremal singular triplets will be competitive for problems
in which the extremal singular values are highly clustered and the extremal singular
vectors are similar to each other such that they can be represented well collectively by
an interpolation operator that interpolates coarse-grid representations of the singular
vectors to the fine grid. Nonsymmetric discretized elliptic PDE operators are expected
to have this kind of spectral decomposition. We will investigate such a problem in
the numerical results section of our paper, but we think that it is also interesting to
investigate the applicability and performance of our algorithm for other, more general
SVD problems, and we do so in the numerical results section as well. Numerical
results will also be presented for SPD eigenproblems, since our algorithm offers a new
extension of previous approaches for this type of problems as well.

Algebraic multigrid was originally developed for solving sparse systems of linear
equations (see [6] and references in [34] and [15]). Over the years, its applicability
has been extended in several ways, including to SPD eigenvalue problems [8, 7, 4,
22, 27]. The AMG method we propose belongs to the class of self-learning AMG
methods (we borrow this term from [30]). In these methods, a multigrid hierarchy is
built with interpolation operators that are determined adaptively and iteratively over
several multilevel cycles, to match approximately the vectors that are of interest in
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the problem at hand. For linear system solvers, these are the vectors that lie close
to the null-space of the matrix, and for eigenvalue problems, they are the desired
eigenvectors. In our new method for singular triplets, they will be the desired singular
vectors. Self-learning AMG solvers are an active area of research and have been
developed for solving linear equation systems, SPD eigenproblems, and Markov chain
problems, see, for example, [6, 8, 11, 12, 7, 18, 19, 3, 38, 20, 29, 30, 13, 10]. Our AMG
method is also collective, in that it strives to represent several singular vectors by a
single interpolation matrix for efficiency.

The AMG method we propose for computing dominant singular triplets consists
of two multilevel phases. It combines and extends two existing AMG approaches for
the SPD eigenproblem, that were proposed by Borzi and Borzi in [4] and by Kushnir,
Galun and Brandt in [27]. In the first, multiplicative phase (setup phase), we calculate
tentative singular triplets and a multigrid hierarchy with interpolation operators that
approximately fit the tentative singular vectors in a collective and self-learning man-
ner. This phase uses power method relaxation and multiplicative coarse-grid update
formulas for the tentative singular vectors. We use the bootstrap framework [8] in this
phase with least-squares fitting and random initial singular vectors, in a way similar to
the approach described by Kushnir, Galun and Brandt in [27] for calculating minimal
eigenpairs of an SPD matrix. In other related work, the setup phase of the algorithm
described in [13] calculates an approximation of the singular vectors that correspond
to the smallest singular value of a square nonsymmetric matrix, in a way that is less
general than but similar to our multiplicative phase. In [27], great care is taken to
try to make the interpolation operators highly accurate for all eigenvectors, in the
spirit of the exact interpolation scheme (EIS) [7], leading to an eigenvalue solver that
only employs this first, multiplicative phase, with accuracy limited to the accuracy
by which the single interpolation operator represents each eigenvector. In our ap-
proach, however, we use generic interpolation that fits the tentative singular vectors
only approximately, and we employ a second, additive phase (solve phase), in which
the tentative singular triplets are improved up to the desired accuracy by using an
additive correction scheme with fixed interpolation operators, combined with a Ritz
update. Our additive phase is similar to the approach described by Borzi and Borzi in
[4] for calculating minimal eigenpairs of an SPD matrix (which itself is an extension of
[5]), but in [4] standard AMG interpolation is used, and there is no initial multiplica-
tive self-learning phase. Our hybrid multiplicative-additive approach results in a new
AMG method for extremal singular triplets that combines two desirable properties:
it allows for high-accuracy convergence when desired, and it is flexible enough to deal
efficiently with a variety of problems due to its self-learning properties. The special-
ization of our algorithm to the SPD eigenpair case also leads to a new extension of
the AMG eigenvalue algorithms of [4] and [27] that has the same desirable properties.

The remainder of this paper is structured as follows. In the next section we
give a brief description of multiplicative and additive two-level schemes for solving
(A−λI)x = 0, with A a square SPD matrix and λ an assumed given, fixed eigenvalue.
This will serve to elucidate under which circumstances multiplicative and additive
update formulations can be equivalent for calculating eigenvectors, and to illustrate
when it may be beneficial for accuracy and computational cost reasons to append a
phase with additive cycles to an initial multiplicative, self-learning phase. This will
set the stage for the description of the multiplicative (setup) phase of our singular
triplet algorithm in Section 3. This section also introduces a suitable generalization
of the SVD for formulating the coarse-level problems. Section 4 then describes the
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additive (solve) phase of the algorithm. Section 5 describes how it can be extended
and specialized to the case of square matrices, minimal singular triplets and extremal
eigenpairs of SPD matrices. Section 6 contains extensive numerical evaluation of our
algorithm, and Section 7 concludes.

2. Two-level Methods for (A − λ I)x = 0. In this section, we consider mul-
tiplicative and additive two-level methods for calculating an eigenvector of a square
SPD matrix A ∈ IRm×m, assuming, for now, that the eigenvalue λ is known. This
academic discussion serves to highlight the principles behind the multiplicative and
additive approaches, and how they are related and can be combined for calculating
eigenvectors. The insights gained will motivate the approach of our multilevel algo-
rithm for calculating dominant singular triplets. Assuming eigenvalue λ is known, we
seek a nontrivial solution x to equation

(A− λ I)x = 0, (2.1)

with I generically denoting the unit matrix. For definiteness, we can simply assume
that dim(ker(A − λ I)) = 1, and that we seek a solution with ‖x‖2 = 1. We will
consider two-level iterative schemes with relaxations on the fine level (or fine grid)
combined with coarse-grid corrections that are obtained via solving a smaller problem
on a coarse grid.

2.1. Multiplicative Correction Scheme. Let x(i) be the current fine-grid

approximation and e
(i)
mult be its multiplicative error, such that

x = diag(x(i)) e
(i)
mult, (2.2)

where x is the exact solution of the problem, and diag(x(i)) is a diagonal matrix with
x(i) on its diagonal. Note that, at convergence, when x(i) = x, the multiplicative

error satisfies e
(i)
mult = 1, with 1 the vector of all ones. The problem at hand can be

rewritten as

(A− λ I) diag(x(i)) e
(i)
mult = 0, (2.3)

in which we seek the unknown multiplicative error e
(i)
mult. We consider a coarse grid

with mc unknowns (which may be a subset of the fine-grid unknowns), and, instead of

the fine-level multiplicative error, e
(i)
mult, we seek to compute a coarse-grid multiplica-

tive error emult,c, which, when interpolated up to the fine grid, would approximately
equal the unknown fine-level multiplicative error. This may be an inexpensive way
to improve the fine-level error, since emult,c can be computed inexpensively on the
coarse grid. So we seek emult,c such that

Qemult,c ≈ e
(i)
mult, (2.4)

with Q ∈ IRm×mc a coarse-to-fine interpolation matrix for the error, which we require
to satisfy Q 1c = 1 (with 1c the coarse-level vector of all ones). Combining Eqs. (2.3)
and (2.4) and with the help of a restriction operator, R ∈ IRmc×m, we arrive at the
following mc ×mc system of equations for emult,c:

R (A− λ I) diag(x(i))Qemult,c = 0. (2.5)
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Eqs. (2.2) and (2.4) then lead to the multiplicative coarse-grid correction formula for
the fine-grid approximation:

x(i+1) = diag(x(i))Qemult,c. (2.6)

It is also useful to define the interpolation matrix P ∈ IRm×mc , given by

P = diag(x(i))Q, (2.7)

which has the property that the current fine-grid approximation, x(i), lies exactly in
its range, namely,

x(i) = P 1c. (2.8)

More generally, we have that there exists a coarse-level vector e
(i)
mult,c (and we know

which one) such that

x(i) = P e
(i)
mult,c. (2.9)

Using interpolation operator P , the coarse-grid equation becomes

R (A− λ I)P emult,c = 0, (2.10)

and the multiplicative coarse-grid correction formula

x(i+1) = P emult,c. (2.11)

Considering a two-level method with coarse-grid correction according to Eq. (2.11),
we note that, for the exact solution x to be a fixed point of such a two-level method,
x indeed needs to lie exactly in the range of P at convergence, and the multiplicative
correction scheme described above assures this by having x(i) lie exactly in the range of
P in each iteration. It is important to realize that this is required for the multiplicative
scheme to converge to the exact solution. Since P (and possibly R) change in every
iteration to adapt to the solution sought, we call this multiplicative two-level scheme
self-learning.

Note also, that one can always consider a rescaled coarse-level unknown quantity,
say xc, using a diagonal scaling matrix W ,

emult,c = W xc, (2.12)

and formulate the multiplicative scheme in terms of xc. For example, defining P̂ =
P W , one solves coarse-level problem RA P̂ xc = 0 and corrects with multiplicative
coarse-grid correction formula x(i+1) = P̂ xc. Such an xc is generally not a multi-
plicative error anymore (since it does not hold that xc = 1c at convergence), but can
be some kind of coarse-level representation of the fine-level exact solution x. The
current iterate, x(i), still lies exactly in the range of P̂ in each iteration. This view-
point is adopted in the derivation of the multiplicative correction scheme as an Exact
Interpolation Scheme [7], while our derivation is the more common viewpoint in the
context of Markov chains [23, 18, 19]. We take this viewpoint here to highlight the
similarity between the multiplicative and additive error correction formalisms, as will
be discussed now.
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2.2. Additive Correction Scheme. Multigrid for linear systems of equations
is normally formulated in an additive-correction framework [15]. Define residual r(i)

of current approximation x(i) as

r(i) = −(A− λ I)x(i). (2.13)

The additive error, e
(i)
add, satisfies

x = e
(i)
add + x(i), (2.14)

and the problem at hand can be rewritten as error equation

(A− λ I) e
(i)
add = r(i). (2.15)

We seek to compute a coarse-grid additive error, eadd,c, which, when interpolated up
to the fine grid, would approximately equal the unknown fine-level additive error. So
we seek eadd,c such that

P eadd,c ≈ e
(i)
add, (2.16)

for some coarse-to-fine interpolation operator P ∈ IRm×mc . Combining Eqs. (2.15)
and (2.16) and with the help of a restriction operator, R ∈ IRmc×m, we arrive at the
following mc ×mc system of equations for eadd,c:

R (A− λ I)P eadd,c = Rr(i). (2.17)

Eqs. (2.14) and (2.16) then lead to the additive coarse-grid correction formula for the
fine-grid approximation:

x(i+1) = x(i) + P eadd,c. (2.18)

Fast convergence of the two-level process requires that additive error components that
are not significantly reduced by fine-level relaxation lie approximately in the range of P
(and can thus be removed by coarse-grid correction). First consider P = diag(x(i))Q
as above, see Eq. (2.7). This means that x(i) lies exactly in the range of P , and, close
to convergence, x will lie approximately in the range of P as well. This means that

e
(i)
add = x− x(i) also lies approximately in the range of P , so the ‘self-learning’ P from
Eq. (2.7) is expected to give a suitable interpolation operator also for the additive
correction scheme.

In fact, if the same P is used as in the multiplicative method (with x(i) lying
exactly in the range of P , Eq. (2.9)) in every iteration of the additive scheme, and
if R is also taken the same as in the multiplicative scheme, then the additive and
multiplicative schemes are exactly equivalent. This can easily be seen as follows.
First, using Eq. (2.13) and Eq. (2.8), additive coarse-level equation Eq. (2.17) can be
rewritten as

R (A− λ I)P eadd,c = Rr(i) = −R (A− λ I)x(i) = −R (A− λ I)P 1c, (2.19)

R (A− λ I)P (eadd,c + 1c) = 0, (2.20)

and by identifying

eadd,c + 1c = emult,c, (2.21)
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one obtains the multiplicative coarse-grid equation,

RAP emult,c = 0. (2.22)

Eq. (2.21) has the nice interpretation that at convergence, on the coarse grid, the ad-
ditive error, eadd,c, vanishes, and the multiplicative error, emult,c, equals 1c. Similarly,
using Eq. (2.9), the multiplicative coarse-grid correction formula can be obtained from
the additive coarse-grid correction formula:

x(i+1) = x(i) + P eadd,c = P (1c + eadd,c),

x(i+1) = P emult,c. (2.23)

This shows that the additive scheme with R and P chosen (in every iteration) as in
the multiplicative scheme (with current iterate x(i) exactly in the range of P ), is fully
equivalent with the multiplicative scheme (in exact arithmetic).

However, unlike the multiplicative scheme, the additive scheme can still converge

if x(i) (and thus e
(i)
add) lies only approximately in the range of P . Therefore, one ap-

proach to obtaining a convergent additive method is to first (adaptively) determine
P (and R) in a few multiplicative cycles, and then freeze R and P for subsequent ad-
ditive cycles. Additive cycles with frozen R and P are much cheaper computationally
than cycles in which P (and possibly R) are modified in each iteration, often with-
out sacrificing convergence speed too much, and the resulting hybrid method may
be significantly cheaper than a fully adaptive method, since all coarse-level opera-
tors are kept constant in the additive phase. This is one reason to consider hybrid
multiplicative-additive methods for eigenvalues (see also [3, 38, 20] for application
of this approach in the Markov chain context). The original multigrid method for
solving linear equation systems is formulated in the additive framework, with fixed
R and P that are determined using a-priori knowledge of the problem. Self-learning
methods for linear systems of equations first perform some multiplicative, self-learning
setup cycles to determine suitable interpolation operators, before proceeding with ad-
ditive cycles with fixed interpolation [6, 8, 11, 12, 7, 30, 13, 10]. In the context of
self-learning solvers for linear equation systems, the first, multiplicative self-learning
phase is often called the setup phase, because it is merely used for setting up the
solver, and no approximation to the solution of the linear system Ax = b is sought
in the multiplicative phase. When computing eigenpairs, however, the multiplicative
phase is not merely a setup phase, since it also iterates on approximations for the
eigenpairs, and it can be used as an eigensolver by itself, as in [23, 7, 18, 19, 27].
For this reason, we more generally refer to it as a multiplicative phase, in the present
context of eigenvalue and singular value problems.

In this paper we consider methods to compute a few dominant singular triplets or
eigenpairs that are hybrid multiplicative-additive, not only for performance reasons,
but mainly for the following reason: we will seek to formulate multilevel methods in
which, for efficiency, the same interpolation matrix P can be used to approximate
several singular vectors or eigenvectors at the same time. This interpolation matrix
will not contain all of these singular vectors or eigenvectors in its range exactly, so
a multiplicative scheme will only converge up to the accuracy by which the vectors
are collectively represented by the interpolation matrix. A multiplicative scheme will
be used to initiate the calculations and approximately identify the dominant singular
vectors or eigenvectors, determining suitable interpolation operators in the process.
Rather than attempting to construct interpolation operators that are very accurate
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for all vectors sought (as is done in [27] for eigenvalue calculation), we will switch to
an additive scheme in our singular triplet method, mainly because it can converge
with high accuracy for all vectors sought, and with the added benefit that it will be
inexpensive per cycle.

3. AMG SVD Algorithm: Multiplicative Phase. We now go back to the
general setting of our paper in which we want to compute dominant singular triplets
(σ, u, v) of rectangular matrix A ∈ IRm×n, satisfying

Av = σ u,

At u = σ v. (3.1)

In this section, we formulate the multiplicative phase of the algorithm. (Note that we
will redefine the interpolation and restriction matrices P, Q, R, etc.)

3.1. Coarse-level Equations. Consider interpolation matrices P for u and Q
for v, with P ∈ IRm×mc and Q ∈ IRn×nc , and P and Q of full rank. First assume
that u lies exactly in the range of P , and v in the range of Q, so

u = P uc,

v = Qvc, (3.2)

for some coarse-level vectors uc and vc. We define coarse-level equations

P tAQvc = σ P t B P uc,

Qt At P uc = σQt C Qvc, (3.3)

and coarse-level operators

Ac = P t AQ,

Bc = P t B P, (3.4)

Cc = Qt C Q,

with, for the finest-level operators, B = Im and C = In. The coarse-level version of
fine-level equations (3.1) is then given by

Ac vc = σ Bc uc,

At
c uc = σ Cc vc. (3.5)

The intuition behind this approach is as follows: the coarse-level equations can be
expected to be useful for finding triplet (σ, u, v), since, if (σ, u, v) is a singular triplet
of A and Eqs. (3.2) are assumed, then (σ, uc, vc) is a singular triplet of Ac. So one
can see that, if P and Q can be constructed such that u and v lie exactly in their
respective ranges (Eqs. (3.2)), then a coarse-level solve can give us (σ, u, v) exactly.
The same reasoning applies when coarsening is repeated recursively. Note that the
Bc and Cc on all recursive levels are symmetric positive definite (SPD) since the P
and Q are chosen of full rank. We will now consider methods to build P and Q such
that u and v lie in their respective ranges approximately.
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3.2. Generalization of Singular Value Problem. Coarse-level equations
(3.5) are of the form

Av = σ B u,

At u = σ C v, (3.6)

with B and C SPD. The coarse-level equations motivate the following generalization
of the singular value decomposition.

Definition 3.1 (Generalized singular value decomposition). The generalized
singular value decomposition of A ∈ IRm×n with respect to B ∈ IRm×m and C ∈
IRn×n, with B and C SPD, is given by

A = B U ΣV t C, (3.7)

with U ∈ IRm×m, V ∈ IRn×n and Σ ∈ IRm×n. The columns of U are called the
left generalized singular vectors, and the columns of V are called the right generalized
singular vectors. They satisfy the orthogonality relations U tB U = Im = U B U t and
V t C V = In = V C V t. Matrix Σ has the l = min(m,n) real nonnegative generalized
singular values σ1 ≥ σ2 ≥ . . . ≥ σl ≥ 0 on its diagonal. Eqs. (3.6) are called the
generalized singular value problem for matrix A with respect to matrices B and C.

It is easy to see that the generalized singular triplets (σ, u, v) of generalized SVD
(3.7) satisfy Eqs. (3.6). When B = Im and C = In, generalized SVD (3.7) reduces to
the standard SVD.

It has to be remarked that the notion of generalized SVD as defined above is
different from the more commonly used generalized SVD of A ∈ IRm×n with respect
to B ∈ IRp×n (with m ≥ n), as, for example, defined in [21], p. 471. Definition 3.1 is
the sense of generalized SVD that we need in this paper. While Eq. (3.7) is a natural
generalization of the singular value decomposition and relates to it in the same way
the generalized eigenvalue problem (as it is commonly defined) relates to the standard
eigenvalue problem, we have not been able to find it in the literature yet. In what
follows, we formulate the properties of the generalized SVD that are useful for the
calculations to be done in our multilevel cycles. We discuss existence and uniqueness,
which is important for the well-posedness of our multilevel cycles, and we explain how
the generalized SVD can be calculated, which we will need to do on the coarsest level
of our multilevel cycles.

Theorem 3.2. Generalized SVD (3.7) has the same existence and uniqueness
properties as the standard SVD.

Proof. This follows from a simple change of variables: with

T = B1/2 U,

W = C1/2 V, (3.8)

D = B−1/2 AC−1/2,

generalized SVD (3.7) can be rewritten as a standard SVD

D = T ΣW t. (3.9)

This change of variables provides a first manner of computing generalized SVD
(3.7) using standard SVD algorithms. An alternative way of computing generalized
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SVD (3.7) proceeds as follows. Let

X =

[

0 A
At 0

]

, (3.10)

Y =

[

B 0
0 C

]

. (3.11)

It is clear that X is symmetric and Y is SPD, and

(X − σ Y ) z = 0, (3.12)

is a symmetric generalized eigenvalue problem of size (m+n)×(m+n), with m+n real
eigenvalues σj and associated eigenvectors [ut

j vtj ]
t, which can be chosen orthonormal

with respect to Y . The following theorem indicates how the solutions of this gener-
alized eigenvalue problem can be used to compute the generalized singular triplets of
generalized SVD (3.7).

Theorem 3.3. Let A ∈ IRm×n, B ∈ IRm×m and C ∈ IRn×n, with B and C SPD.
Let l = min(m,n). Then generalized eigenvalue problem

([

0 A
At 0

]

− σ

[

B 0
0 C

]) [

u
v

]

= 0, (3.13)

has m+n solution triplets (σ, u, v) with linearly independent eigenvectors [ut vt]t 6= 0.
There are l independent solutions with σj ≥ 0 and vectors uj and vj satisfying orthogo-
nality relations ut

j B ui = δi,j and vtj C vi = δi,j (j = 1, . . . , l). The triplets (σj , uj , vj)
are the generalized singular triplets of A with respect to B and C. Furthermore, there
are l independent solutions (−σj , uj ,−vj). Finally, there are abs(m−n) = m+n−2 l
independent solutions with σ = 0 and either u = 0 or v = 0.

Proof. This follows directly from the variable transformations Eqs. (3.9), which
transform generalized eigenvalue problem Eq. (3.13) into eigenvalue problem

([

0 D
Dt 0

]

− σ

[

Im 0
0 In

]) [

t
w

]

= 0, (3.14)

which has the properties listed in the theorem, see, for example, [21], p. 427.
A third possible way to calculate generalized SVD (3.7) is by solving for the left

and right generalized singular vectors separately, using

(At B−1 A) v = σ2 C v,

(AC−1 At)u = σ2 B u. (3.15)

3.3. Bootstrap AMG V-cycles. In this section, we describe how we use the
bootstrap AMG approach [8] to find approximations of the desired nb dominant sin-
gular vectors and values, and adaptively determine interpolation operators that ap-
proximately fit the singular vectors. We follow the approach described in [27]. For
completeness and definiteness, we briefly describe all steps in the process, with some
details filled in in subsequent sections.

We first describe the initial BAMG V-cycle. We start out on the finest level
by choosing nt random test vectors for each of u and v, and we place them in the
columns of Ut and Vt, respectively. We relax on the test vectors (using a few iterations
of the SVD power method for Eq. (3.1), see below) such that components with small
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σ are damped and components with large σ become dominant in the test vectors. We
coarsen the finest grid (see below) and determine interpolation operators P , Q, where
P fits the vectors in Ut (in a least-squares sense), such that they lie approximately in
the range of P , and Q fits the vectors in Vt, such that they lie approximately in the
range of Q. We also build coarse-level operators Ac, Bc, and Cc according to Eqs.
(3.4). We then restrict the fine-level Ut and Vt (by injection) to the first coarse level,
and obtain coarse versions of the test vectors, stored in the columns of Uc,t and Vc,t.
We relax on Uc,t and Vc,t with the power method applied to Eqs. (3.5). The whole
process of building new, coarser interpolation operators P and Q and operators Ac,
Bc, Cc, by restricting Uc,t and Vc,t is then repeated recursively, up to some coarse
level where the problem is small enough for a direct generalized SVD calculation.

On the coarsest level, we compute nb dominant singular triplets by a direct de-
composition, and store them in vector σb and matrices Ub and Vb. These singular
triplets are the starting approximations for our desired dominant singular triplets,
and will be improved in this cycle and subsequent cycles. We call the singular vectors
of these triplets the boot (singular) vectors, and use the subscript b to refer to them.
(We distinguish these from the initially random test vectors in Ut and Vt, which are
used to get the process going and sustain it, but do not directly lead to the desired nb

singular triplets themselves.) Note that we denote by σb a vector with nb components
that holds approximations for the dominant singular values sought.

In the upward phase of the first BAMG V-cycle, starting from the coarsest level,
we recursively interpolate the boot singular vectors Ub and Vb up to the next finer
level, using the interpolation operators P and Q of the current level, according to
multiplicative update formulas Eqs. (3.2). On each finer level, we first relax on the
boot vectors using Eqs. (3.5) with the singular values in σb fixed, and then update
the elements of σb by recalculating the Rayleigh quotient for each pair of boot vectors
(see below). Note that the test vectors Ut and Vt are not used in the upward phase
of the V-cycle.

This initial BAMG multiplicative V-cycle can be followed by several additional
multiplicative V-cycles. In the downward sweep of each of these additional cycles,
one relaxes Ut and Vt as in the first V-cycle. In addition, one also relaxes the Ub and
Vb, and improves the σb on each level, as in the upward sweep of the first cycle. At
each level, the vectors in both Ut and Ub are used to fit P , and the vectors in both
Vt and Vb to fit Q. Then Ac, Bc and Cc are also rebuilt using the new P and Q. The
upward sweeps of the additional multiplicative cycles are the same as in the initial
multiplicative cycle. At the end of every V-cycle, we optionally also apply a collective
Ritz projection step (see below) to improve the boot vectors Ub, Vb and singular value
approximations σb. We do so for the numerical tests reported in Sec. 6.

Note that in this paper we use only the simplest type of multilevel cycles, namely,
V-cycles. More sophisticated cycles including W-cycles and full multigrid (FMG)
cycles [15, 4, 22, 27] can be considered and may lead to improved results, but for
simplicity we only use V-cycles here. In the following sections we will give the details
of the relaxation schemes, coarsest-level solve, coarsening and interpolation used in
our BAMG cycles.

3.4. Relaxation Scheme for the Test Vectors. Seeking dominant singular
triplets, we base relaxation for the initially random test vectors on the power method
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applied to Eq. (3.6). On any level, given an initial uj , we solve for vj from

At uj = C v̄j ,

vj = v̄j/(v̄
t
jCv̄j)

1/2, (3.16)

and then for uj from

Avj = B ūj,

uj = ūj/(ū
t
jBūj)

1/2. (3.17)

This can be repeated µt times on each level. In practice, we solve for the new v̄j and
ūj in an inexact way, by performing µt,J inner iteration steps of weighted Jacobi with
weight ωJ . For example, for Eq. (3.16) we iterate on:

v̄
(i+1)
j = v̄

(i)
j − ωJ D

−1
C (C v̄

(i)
j −At uj) (3.18)

with v̄
(0)
j = vj initially and with the iteration index of the weighted Jacobi procedure

indicated in superscript. Here, DC is a diagonal matrix with the diagonal of the SPD
matrix C on its diagonal. In the numerical results reported in Sec. 6, we use ωJ = 0.7
and µt,J = 1.

3.5. Relaxation Scheme for the Boot Vectors and Update Formulas for

the Singular Values. For the boot vectors, we relax on

Av = σ B u+ κ, (3.19)

At u = σ C v + τ. (3.20)

(Note that in the multiplicative phase κ = 0 and τ = 0 on all levels, but the additive
phase will require nonvanishing κ and τ , so we already include them in the formulation
here.) On any level, given an initial σj , uj and vj , we solve for a new uj from Eq.
(3.19), and then for a new vj from Eq. (3.20). This amounts to a block Gauss-Seidel
(GS) scheme for equation system (3.19)-(3.20). For dominant σs, Eqs. (3.19)-(3.20)

(X − σ Y ) [ut vt]t = [κt τ t]t, (3.21)

may be close to diagonally dominant, so this will work well in many cases. For some
problems or on coarser levels, the block GS approach may not converge well, and
Kaczmarz relaxation [36, 27] (see also below) on Eq. (3.21) or its blocks may be
preferable. In our block GS approach, we again approximate the solutions of Eqs.
(3.19)-(3.20) in an inexact way, by performing µb,J inner iteration steps of weighted
Jacobi. For example, for Eq. (3.19) we iterate on:

u
(i+1)
j = u

(i)
j − ωJ D

−1
B (B u

(i)
j − (Avj − κ)/σj). (3.22)

In the numerical results reported in Sec. 6, we use µb,J = 1. In the multiplicative
phase, with κ = 0, τ = 0 on all levels, we also update the σs after every outer
relaxation iteration on each level. The easiest way to do this is to use Rayleigh
quotient formula

σ =
utAv

(utBu)1/2 (vtCv)1/2
(3.23)

for each boot singular triplet, which is what we do in the numerical results presented
in Sec. 6.
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3.6. Coarsest-grid Solution. Each time the coarsest level is reached, we de-
termine new approximations for the nb coarsest-level boot triplets by direct compu-
tation of the coarsest-level generalized SVD, Eq. (3.7). The nb singular triplets with
the largest singular values are selected as the new boot singular triplets. In our imple-
mentation, we choose to solve generalized eigenproblem (3.13) of Theorem 3.3 using
a direct eigendecomposition algorithm.

3.7. Building P and Q: Coarsening and Sparsity Patterns. In order to
build interpolation operators P and Q, at each level, we first coarsen the sets of
unknowns in u ∈ IRm and v ∈ IRn by choosing a set of mc coarse-grid variables,
Cu, out of the m fine-level variables for u, and by choosing a set of nc coarse-grid
variables, Cv, out of the n fine-level variables for v. The coarse variables are called
coarse-grid points or C-points. The fine-level u-variables that are not selected as C-
points are called F-points and are denoted by the set Fu. Similarly, the F-points of
the fine-level v-variables are denoted by Fv. Well-known algorithms from AMG are
used to determine Cu and Cv and the sparsity patterns of P and Q on each level,
based on the idea of strength of connection in the operator matrices A. After this
coarsening process, the matrix elements of P and Q are determined using a least-
squares approach in such a way that the test vectors Ut and Vt (and, after the initial
cycle, also the boot vectors Ub and Vb) lie approximately in the ranges of P and Q,
respectively.

For the coarsening process for the u-variables, we propose to apply standard AMG
coarsening methods to matrix AAt, and we base coarsening of the v-variables on AtA.
(If A is square or square and symmetric, other choices can be made, see below.)

Algorithm 1: one-pass Ruge-Stueben coarsening algorithm

set U ← all fine-level points; C ← empty; F ← empty;
for all fine-level points i, set λi ← number of points strongly influenced by i;
while U not empty do

select one of the i ∈ U that has a maximal λi;
make i a C-point (C = C ∪ i, U = U \ i);
make all j ∈ U that are strongly influenced by i, new F-points (F = F ∪ j,
U = U \ j);
increment λk for all k ∈ U that strongly influence the new F-points j;

end

We implement coarsening as follows. For the u-variables we employ the standard
one-pass Ruge-Stueben coarsening algorithm [32] (see Algorithm 1) onN = AAt using
strength of connection condition

variable i is strongly influenced by variable j

m (3.24)

|ni,j | ≥ θ
∑

k

|ni,k|

with 0 < θ < 1 a fixed strength parameter that may be chosen dependent on the
problem. (The (i, j) matrix element of N is denoted by ni,j .) For diagonally dominant
PDE discretizations, strength is often determined relative to the largest off-diagonal
element in row i, using condition |ni,j | ≥ θ maxk 6=i |ni,k|. We, however, target a
broader class of problem matrices, and opt for strength condition (3.24), which is
somewhat more general. Note, however, that the magnitude of strength parameter θ



14

typically needs to be chosen differently in the two approaches. For the v-variables,
we determine strong connections in the same way, for matrix AtA. Once the strong
connections are determined, coarsening can be performed: Algorithm 1 is executed
to determine sets of C-points and F-points for the u-variables and the v-variables.

In a next step, first for the u-variables, we determine, for each F-point i in Fu, a
coarse interpolatory set Ci

u which contains all C-points (points in Cu) that strongly
influence point i according to condition (3.24) in AAt. The coarse interpolatory sets
Ci

v of the v-variable F-points are determined in the same way based on AtA. This
defines the sparsity patterns of the interpolation operators P and Q. We explain this
for P , and it is analogous for Q. For each C-point in Cu with fine-level index i, we
let α(i) be the index of point i on the coarse level. For all points i in Cu, row i in P
is zero, except for pi,α(i) = 1. For all F-points i in Fu , row i in P is zero, except for
matrix elements pi,α(j) where j is an element of i’s coarse interpolatory set Ci

u.

Basing coarsening of the u-variables and the v-variables on AAt and AtA, respec-
tively, can be motivated by the observation that, on the finest level, the left singular
vectors are eigenvectors of AAt, and the right singular vectors are eigenvectors of AtA.
Moreover, AAt and AtA are symmetric matrices, and AMG was built for that type
of matrices. In that sense, using AAt is a natural choice for measuring connection
strength between u-variables. Also, forming AAt can be done in O(m) (assuming
m ≥ n) time for large classes of sparse matrices, so it does not overly add to the cost
of our method. Note also that we only use AAt for coarsening, and not in the rest of
the algorithm, so there is no deterioration in terms of condition numbers, which is a
major reason to avoid calculating the left singular vectors as the eigenvectors of AAt,
and the right singular vectors from AtA). Note also that Eqs. (3.15) suggest basing
coarsening on At B−1 A and AC−1 At on coarser levels rather than AtA and AAt,
but we normally choose to ignore the B−1 and C−1 mass matrix factors to avoid the
extra matrix inversion and matrix product.

For some applications, however, it may be possible to devise good coarsening
schemes for u and v directly from the rectangular matrix A, by considering its rows
and columns. We expect, however, that the details and success of such strategies
may be highly dependent on the type of problem, and direct coarsening methods for
row-variables and column-variables of rectangular matrices is kept as an interesting
topic of further research.

3.8. Building P and Q: Least-Squares Determination of Interpolation

Weights. We use a least-squares (LS) process to determine the interpolation weights
in the rows of P and Q that correspond to F-points, following the approach in [8, 27].
Again, we explain the process for matrix P , and it is analogous for Q. We want to
fit the interpolation weights of P such that the nt current fine-level test vectors Ut

and the nb current boot vectors Ub (except in the first cycle) lie approximately in the
range of P . Let Uf hold in its columns the nf = nt+nb vectors to be fitted. Let uk be
the kth vector in Uf . Let uk,c be the coarse-level version of uk obtained by injection,

and let uj
k,c be its value in coarse-level point j. Also, let ui

k be the value of uk in
fine-level point i. The weights of each F-point row in P are determined consecutively
using independent LS fits. Consider a fixed F-point with fine-level index i (the row
index of P ). Its coarse interpolatory set is Ci

u, and we assume now that the points
in Ci

u are labeled by their coarse-level indices (the column indices of P ). Let nc,i be
the number of elements of Ci

u. For each F-point i we solve the following least-squares
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problem to determine the unknown interpolation weights pi,j :

ui
k =

∑

j∈Ci
u

pi,ju
j
k,c (k = 1, . . . , nf ). (3.25)

This is a system of nf equations in nc,i unknowns. We make this system overdeter-
mined in all cases by choosing the number of initially random test vectors, nt, larger
than the expected largest interpolation stencil size nc,i for any i on any level. (This
is one of the criteria guiding the choice of nt, and, in our implementation, estimating
nt too small initially may require a restart of the method with a larger nt). Since
we would like the dominant boot vectors to be fitted preferentially as soon as they
become reasonable approximations, we weight the kth equation in Eq. (3.25) by the
Rayleigh quotient, (3.23), of the pair (uk, vk), see also [27]. In our implementation,
we solve the LS problem using a standard normal equation approach. Finally, we
mention that we use a modification of Eq. (3.25) for the case of minimal singular
triplets or eigenpairs, as proposed in [30]. For these cases, interpolation weights and
convergence can be improved significantly by applying an extra fine-level Jacobi re-
laxation (using the operator we base strength on) to the F-point values ui

k in Eq.

(3.25) (but not the C-point values uj
k), see [30] for further details. We have found in

our numerical experiments that this modification is not useful when seeking dominant
singular triplets or eigenpairs.

4. AMG SVD Algorithm: Additive Phase. In the additive (solve) phase
of our algorithm, we use fixed interpolation and coarse-level operators, namely, the
operators P , Q, Ac, Bc and Cc as they were determined on all levels in the last
mutiplicative cycle, and use an additive correction scheme to improve the nb boot
singular triplets that came out of the multiplicative (setup) cycle at the finest level. In
each iteration of the additive phase, for each of the finest-level σj , uj, vj (1 ≤ j ≤ nb)
in σb, Ub, Vb, we first improve uj and vj in a classical-type additive AMG V-cycle
with σj fixed in the whole cycle. Then, after all the uj and vj have been updated
using one V-cycle for each pair, we collectively improve all the σj , uj and vj in σb,
Ub, Vb using a Ritz projection step on the finest level. These multigrid-Ritz iterations
are repeated until the desired accuracy is reached. Our solve phase is similar to the
approach described by Borzi and Borzi in [4] for calculating minimal eigenpairs of
an SPD matrix using standard AMG interpolation operators (it is also described in
[27], but not combined with a multiplicative phase). We now extend this approach
to the calculation of dominant SVD triplets using the self-learned operators from the
multiplicative phase of the algorithm.

4.1. Coarse-level Equations. In the additive correction scheme, the equations
for triplet (σj , uj, vj) on the current level are given by

Avj − σj B uj = κj ,

At uj − σj C vj = τj , (4.1)

where κj and τj are the residuals restricted down from the next finer level. (So κj = 0
and τj = 0 on the finest level.)

The equations on the next coarser level are then

Ac vj,c − σj Bc uj,c = P t rj ,

At
c uj,c − σj Cc vj,c = Qt sj , (4.2)
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where rj and sj are the residual vectors of the first and second fine-level equations,
respectively, and the coarse-grid correction equations are given by

u
(i+1)
j = u

(i)
j + P uj,c,

v
(i+1)
j = v

(i)
j +Qvj,c, (4.3)

where the superscript (i) means the ith iterate. Note that uj,c and vj,c now represent
coarse-level additive errors of the fine-level quantities uj and vj . Rather than using
new variable names to distinguish original variables an their coarse-level errors, we
follow the convention that is common in the multigrid literature [15] to refer to vari-
ables and their coarse-level errors with the same letter from the alphabet, which aids
in presenting the algorithm in a recursive way.

Note that for the eigenvalue solvers in [4, 27] the additive method is described in
the framework of the full approximation scheme (FAS), like in the paper in which the
general ideas of this approach were originally proposed [5], where the FAS framework
was required because eigenvalue approximations were modified on the coarsest level
of each cycle. However, in the additive methods in [4, 27], eigenvalues remain fixed
for the entire additive cycle, so there is no need to use the FAS, and the simpler error
equation formulation that is common in multigrid for linear operators can be used
instead, which is what we do in our discussion here.

4.2. Additive V-cycles to Improve the Left and Right Singular Vectors.

For each of the finest-level σj , uj , vj (1 ≤ j ≤ nb) in σb, Ub, Vb, we fix σj and perform
an additive V-cycle as follows. We relax the singular vectors uj and vj using Eq. (4.1)
on the finest level, with the relaxation method that was described in Sec. 3.5. We
calculate the residuals κj and τj , and restrict them to the next coarser level. We then
choose a zero initial guess for uj,c and vj,c and relax them using coarse equations (4.2),
we calculate the coarse residuals, restrict them to the next coarser level, etc. This is
repeated recursively up to some coarse level where the problem is small enough for
a direct solve. On the coarsest level, we solve Eq. (4.2) exactly for vector [ut

j,c v
t
j,c]

t

(as in Eq. (3.21)). To make the coarse-level solve somewhat more robust when the
operator is close to singular, one can optionally use the pseudo-inverse (calculated via
the SVD) of X − σ Y without including the component corresponding to its smallest
singular value, as suggested in [38]. We do so in the numerical results presented in
Sec. 6. We then interpolate the coarsest-grid solution up, correct using Eqs. (4.3),
relax the corrected vectors, interpolate up again, etc., recursively until the finest level.

4.3. Ritz Projection Step on the Finest Level to Improve the Boot

Singular Triplets. After carrying out one V-cycle for each of the nb boot singular
triplets, we perform a Ritz projection step, as in [4, 27]. An alternative would be to
update each σj in σb using Rayleigh quotient formula (3.23). However, a collective
Ritz step leads to faster overall convergence, and has other important advantages. For
singular values with multiplicity larger than one, it provides orthogonal singular vec-
tors, and it precludes convergence of some of the triplets in the finest-level σb, Ub and
Vb to spurious duplicate triplets, which may occur with the σs updated individually
according to Eq. (3.23).

The Ritz step proceeds as follows. We first orthogonalize the columns of Ub with
respect to B using the QR decomposition, and we orthogonalize the columns of Vb

with respect to C. (Note that B = Im and C = In on the finest level, but, in the
multiplicative phase, the Ritz procedure can in principle also be employed on coarser
levels, so we prefer to give the more general equations here.) Let Û and V̂ be the
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orthogonalizations of Ub and Vb, and let U = span(Û) and V = span(V̂ ). We seek
new uj ∈ U , vj ∈ V , and σj (1 ≤ j ≤ nb) such that

〈u,A vj − σj B uj〉B = 0 ∀u ∈ U ,
〈

v,At uj − σj C vj
〉

C
= 0 ∀v ∈ V . (4.4)

These equations express that the residuals are desired to be orthogonal (B-orthogonal
and C-orthogonal, respectively) to the spaces U and V in which we seek an improved
approximation. Eq. (4.4) can be expressed in terms of new variables y, yj ∈ IRmc and

z, zj ∈ IRnc with u = Û y, v = V̂ z, uj = Û yj and vj = V̂ zj , as
〈

y, Û tA V̂ zj − σj Û
t B Û yj

〉

= 0 ∀y ∈ IRmc ,
〈

z, V̂ t At Û yj − σj V̂
t C V̂ zj

〉

= 0 ∀z ∈ IRnc . (4.5)

The following generalized eigenvalue problem of size 2nb × 2nb results
([

0 Û tA V̂

V̂ t At Û 0

]

− σj

[

Û tB Û 0

0 V̂ t C V̂

]) [

yj
zj

]

= 0. (4.6)

According to Theorem 3.3, the eigenvalues of Eq. (4.6) occur in pairs symmetrically
about zero, and it is sufficient to consider the nb triplets (σj , yj, zj) with the largest

values for σj to generate new approximations (σj , Û yj, V̂ zj) for the dominant singular
triplets on the finest level.

Note finally that, unlike the multiplicative cycles, the multigrid-Ritz additive
iterations can converge to any required accuracy, even though, on each level, the
uj are not exactly in the range of the P s, and the vjs are not exactly in the range
of the Qs. In practice, as demonstrated in the numerical tests below, the hybrid
multiplicative-additive scheme converges up to machine accuracy if desired.

5. AMG SVD Algorithm: Specialization and Extension. In this section
we discuss the specialization of the dominant singular triplet algorithm for rectangular
matrices to the case of square matrices and symmetric matrices (dominant eigenpairs),
and its extension to the case of minimal singular triplets (and eigenpairs).

5.1. Singular Triplets of Square Matrices. A possible simplification for
square, nonsymmetric matrices is that interpolation operators P and Q could po-
tentially be based on A and/or At; it does not appear to be necessary to form AAt

and AtA, so that cost may be saved. Interestingly, if one wants to keep square matri-
ces on all levels, coarsening and sparsity patterns for P and Q should both be based
on either A or At, because coarsening of A and At may lead to different numbers of
coarse grid points (except if a coarsening method is used that is symmetric). If the
left and right singular vectors are expected to be very similar such that they can all
be fitted with reasonable accuracy by one interpolation operator, P and Q could even
be taken the same on all levels ; in that case it would also hold that Bc = Cc on all
levels, which can be exploited for further cost savings.

5.2. Eigenpairs of Symmetric Matrices. In the case of symmetric matrices,
the whole algorithm simplifies significantly, and becomes a combination of the minimal
SPD eigenpair algorithms of [4] and [27], extended to dominant eigenpairs. The
resulting algorithm can be formulated in terms of operators A, B and P on all levels.
This combination of a multiplicative and an additive scheme into a hybrid method
for eigenpairs has the advantages that it can converge up to machine accuracy for
multiple eigenvectors with one P , and that it is self-learning.
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5.3. Minimal Singular Triplets and Minimal Eigenpairs. With just a few
small modifications, the hybrid multiplicative-additive dominant singular triplet al-
gorithm described above can also be used to compute the nb singular triplets with
smallest singular values. All that is required is to modify the relaxation schemes, and
to select the smallest singular triplets as new boot singular triplets in the coarsest-
level solve of the multiplicative phase. The weights in the LS fitting of the test and
boot vectors is taken as the inverse of the Rayleigh quotient, see also [27, 10, 3]. For
the relaxation of the nt initially random test vectors in Ut and Vt, we iterate on Eqs.
(3.6) with σ = 0 using Kaczmarz relaxation (see [36, 27]). Richardson iteration as in
[13] can be considered as another option for relaxation. For the relaxation of the nb

boot vectors in Ub and Vb, we iterate on Eqs. (3.19)-(3.20) (with the small σs from σb)
in a block GS fashion using Kaczmarz relaxation [36, 27] for the blocks. Numerical
tests show that these Kaczmarz relaxations may sometimes result in singular vector
pairs that produce a negative Rayleigh quotient. We test for this and reverse the sign
of one of the singular vectors if this happens. In the case of minimal eigenpairs of
symmetric matrices, GS relaxation on Ax = 0 can be used, with Kaczmarz on coarser
levels, see [27]. In the numerical results reported below, we use Kaczmarz relaxation
on all levels when seeking minimal singular triplets or eigenpairs. Note also that,
since our method is self-learning, the minimal SPD eigenpair problem can in principle
also be solved simply by shifting the operator such that the spectrum ends up at the
other side of the origin, and then the algorithm for dominant eigenpairs can be used
(and vice versa).

6. Numerical results. In this section, we present numerical results illustrating
how our proposed method performs. We discuss four different test problems that
cover the different cases of rectangular matrices, square nonsymmetric matrices, and
symmetric matrices.

6.1. High-Order Finite Volume Element Laplacian on Unit Square. In
the first test problem, we seek a few extremal singular triplets of a square, nonsym-
metric matrix that results from a finite volume element (FVE) discretization with
quadratic polynomials of the standard Laplacian operator on the unit square with
Dirichlet boundary conditions, see [39, 1]. The operator is discretized on a structured
triangular grid. For this problem, the FVE method with linear polynomials gives a
discretization that is exactly the same as the Galerkin finite element discretization
with linear polynomials. For higher orders, however, the FVE discretization is slightly
non-symmetric.

Figs. 6.1 and 6.2 show convergence results for approximating the largest and
smallest singular values, respectively, for a matrix with m = n = 961 (31×31 internal
grid points). We show the base-10 logarithm of the relative error in the calculated
singular values

error =
|σexact − σapprox|

σexact
, (6.1)

as a function of the number of V-cycles. Here, the values σexact are high-accuracy
approximations obtained by Matlab’s built-in SVD algorithms. There are 10 mul-
tiplicative (setup) cycles followed by 30 additive (solve) cycles. We have calculated
nb = 8 dominant or minimal singular triplets, using nt = 5 initially random test
vectors. We used µt = 4 relaxations on the test vectors, and µb = 4 relaxations
on the boot vectors, on all levels. The coarsening strength parameter was chosen as
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Fig. 6.1. Largest Singular Values for High-Order Finite Volume Element Laplacian on Unit
Square (square, nonsymmetric matrix). Convergence plot for calculation of the eight largest singular
values (base-10 logarithm of relative error in singular values as a function of number of V-cycle
iterations). Singular values are labeled with decreasing magnitude (label 1 denotes the largest singular
value). The 10 V-cycles to the left of the vertical line are multiplicative, and the 30 V-cycles to the
right of the vertical line are additive.

θ = 0.05. Coarsening and sparsity patterns for both P and Q are determined using
A, thus guaranteeing square matrices A on all levels.

The figures show that the extremal singular triplet algorithm carries out the task
that is was designed for: it collectively calculates several singular values up to machine
accuracy in a modest number of multigrid V-cycles, and this both for the dominant
triplet and the minimal triplet case. The initial, multiplicative phase approximately
determines singular triplets starting from initially random test vectors, but conver-
gence stagnates after a few operations because it is limited by the accuracy by which
the singular vectors are represented collectively by single interpolation operators. A
second, additive phase succeeds in driving the error to machine accuracy, using the
(fixed) interpolation operators that were derived in the last multiplicative iteration.
This shows that the approach is able to fit interpolation to the relevant vectors both
for the cases of dominant and minimal triplets.

For conciseness, we will limit ourselves to plot the relative errors in singular
values or eigenvalues in this paper. Convergence of these properties goes along with
high-accuracy convergence of other quantities like residuals, angles between exact and
approximate singular vectors, orthogonality measures between singular vectors, etc.
All these quantities also converge with high accuracy in our numerical tests, but they
are not shown for conciseness. Since our code is implemented in Matlab and is not
optimized, we do not directly compare with other, optimized codes in terms of CPU
time, but instead focus on reporting convergence numbers as a function of numbers
of V-cycle iterations, which gives valuable insight in the effectiveness of our method,
since the cost of a V-cycle is approximately linear in the number of unknowns, m+n.

For the case of dominant singular triplets (Fig. 6.1), the calculation uses four
levels, with coarsest size 45× 45. For the case of minimal singular triplets, five levels
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were obtained, with a coarsest grid of size 51× 51. See Table 6.1 for approximations
of the singular values calculated. It can be seen that the singular values lie very close
to each other, which makes this a difficult type of problem for many iterative singular
value decomposition algorithms. Nevertheless, our algorithm converges to machine
accuracy in a moderate number of V-cycles. Note also that the non-symmetry of
the discrete operator has lifted the degeneracy of the continuous operator, which has
eigenvalues with multiplicity larger than one; no singular values with multiplicity
larger than one arise.
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Fig. 6.2. Smallest Singular Values for High-Order Finite Volume Element Laplacian on Unit
Square (square, nonsymmetric matrix). Convergence plot for calculation of the eight smallest singu-
lar values (base-10 logarithm of relative error in singular values as a function of number of V-cycle
iterations). Singular values are labeled with increasing magnitude (label 1 denotes the smallest sin-
gular value). The 10 V-cycles to the left of the vertical line are multiplicative, and the 30 V-cycles
to the right of the vertical line are additive.

FVE lge FVE sm FD lge FD sm Graph lge Graph sm Term-Doc
7.9791546 0.01924183 7.9818877 0.01811231 13.509036 0.01000000 84.148337
7.9491729 0.04794913 7.9548012 0.04519876 13.352613 0.03456116 64.707532
7.9468326 0.04801773 7.9548012 0.04519876 13.350454 0.03901593 55.976437
7.9172573 0.07655365 7.9277148 0.07228521 12.472837 0.07966567 50.265499
7.8965349 0.09557904 7.9099298 0.09007021 12.416200 0.09490793 49.265360
7.8960066 0.09558103 7.9099298 0.09007021 11.874669 0.09918138 45.242034
7.8692955 0.12359047 7.8828433 0.11715666 44.400811
7.8616683 0.12415144 7.8828433 0.11715666 41.772394

Table 6.1
Singular values and eigenvalues sought for each problem (high-accuracy approximations).

6.2. Finite Difference Laplacian on Unit Square. We now consider the
case of a simple finite-difference (FD) Laplacian with Dirichlet boundary conditions
discretized with a 5-point stencil on a unit square with a Cartesian grid. This leads to
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Fig. 6.3. Smallest Eigenvalues for Finite Difference Laplacian on Unit Square (square, sym-
metric matrix). Convergence plot for calculation of the eight smallest eigenvalues (base-10 logarithm
relative error in eigenvalues as a function of number of V-cycle iterations). Eigenvalues are labeled
with increasing magnitude (label 1 denotes the smallest eigenvalue). The 15 V-cycles to the left of
the vertical line are multiplicative, and the 30 V-cycles to the right of the vertical line are additive.

a symmetric matrix (it is SPD), and we seek minimal and dominant eigenpairs. We
use strength of connection θ = 0.06 and seek nb = 8 minimal or dominant eigenpairs,
using nt = 6 initially random test vectors. We used µt = 8 relaxations on the test
vectors, and µb = 4 relaxations on the boot vectors. We perform 15 multiplicative
cycles followed by 30 additive cycles. The problem size is m = n = 1024 (32 × 32
internal grid points). Table 6.1 shows that there are eigenvalues with multiplicity
larger than one for this symmetric discretization.

Fig. 6.3 shows convergence results for the case of minimal eigenpairs. Five levels
are used and the coarsest grid is of size 64× 64. These results can be compared with
the results of the additive-only eigenvalue method of Borzi and Borzi ([4]) and the
multiplicative-only eigenvalue method of Kushnir, Galun and Brandt ([27]). Our ad-
ditive phase is like the method in [4], but in that paper standard AMG interpolation
is used. We appear to get similar results, but our method is more general and can
also be applied to seeking dominant eigenpairs and to a wider set of problems due to
its self-learning capacity. Our multiplicative phase is like the method in [27]. We see
that convergence stagnates at the level of accuracy by which interpolation collectively
represents the desired eigenvectors. (Note that in our combined algorithm it would
have been sufficient to perform less than 15 multiplicative cycles.) In [27] interpo-
lation is made more accurate to improve the accuracy level at which the collective
multiplicative phase stagnates. As explained in that paper, the accuracy that can
be obtained in this way may be sufficient for some applications, for example, due to
unavoidable discretization errors in PDE problems, or due to data and model un-
certainties in data analysis tasks. In our approach, we show that, if desired, higher
accuracy can be obtained by combining the multiplicative and additive approaches,
resulting in a method that is flexible enough to deal efficiently with a variety of prob-
lems due to its self-learning capabilities. Fig. 6.4 gives convergence results for the case
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Fig. 6.4. Largest Eigenvalues for Finite Difference Laplacian on Unit Square (square, symmet-
ric matrix). Convergence plot for calculation of the eight largest eigenvalues (base-10 logarithm of
relative error in eigenvalues as a function of number of V-cycle iterations). Eigenvalues are labeled
with decreasing magnitude (label 1 denotes the largest eigenvalue). The 15 V-cycles to the left of
the vertical line are multiplicative, and the 30 V-cycles to the right of the vertical line are additive.

of dominant eigenpairs. Four levels are used and the coarsest grid is of size 52 × 52.
The results show that our hybrid multiplicative-additive method can also compute
dominant eigenpairs, extending the approaches for minimal eigenpairs from [4, 27]
to dominant eigenpairs. Convergence in the additive phase appears somewhat slower
than for the minimal eigenpairs case. This may be due to the fact that we employ
Kaczmarz relaxation for the minimal eigenpairs, which is more efficient but also more
expensive than the inexact power method relaxation used for the dominant eigenpairs
case (Sec. 3.5). It is interesting to note that the approach in [4] which uses standard
AMG interpolation, can also be extended to calculating dominant eigenpairs simply
by changing the signs of all off-diagonal interpolation weights. The resulting interpo-
lation operators turn out to be good fits for the most oscillatory modes, and can be
used in an additive scheme to approximate the dominant eigenpairs.

6.3. Planar Random Triangulation Graph Laplacian. The next test prob-
lem is the graph Laplacian operator of a planar random graph that is obtained by
placing points uniformly random in the unit square and determining their Delauney
triangulation graph. With Â the adjacency matrix of the graph, the graph Lapla-
cian, A, can be constructed by setting A = −Â and placing the row sums of Â on
the diagonal. This results in a symmetric semi-definite matrix (it has one vanishing
eigenvalue), and we seek dominant and minimal eigenpairs. This problem is interest-
ing as a test case because it is unstructured, contrary to the previous two problems
which derive from structured grids. Graph Laplacian matrices are of interest in data
analysis tasks [27]. We use strength of connection θ = 0.05 and seek nb = 6 dominant
or minimal eigenpairs, using nt = 6 initially random test vectors. We use µt = 1
relaxations on the test vectors, and µb = 8 relaxations on the boot vectors. We
perform 10 multiplicative cycles followed by 30 additive cycles. The problem size is
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Fig. 6.5. Smallest Eigenvalues for Planar Random Triangulation Graph Laplacian (square,
symmetric matrix). Convergence plot for calculation of the six smallest eigenvalues (base-10 loga-
rithm of relative error in eigenvalues as a function of number of V-cycle iterations). Eigenvalues
are labeled with increasing magnitude (label 1 denotes the smallest eigenvalue). The 10 V-cycles to
the left of the vertical line are multiplicative, and the 30 V-cycles to the right of the vertical line are
additive.
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Fig. 6.6. Largest Eigenvalues for Planar Random Triangulation Graph Laplacian (square,
symmetric matrix). Convergence plot for calculation of the six largest eigenvalues (base-10 logarithm
of relative error in eigenvalues as a function of number of V-cycle iterations). Eigenvalues are labeled
with decreasing magnitude (label 1 denotes the largest eigenvalue). The 10 V-cycles to the left of
the vertical line are multiplicative, and the 30 V-cycles to the right of the vertical line are additive.

m = n = 1024.

Fig. 6.5 shows convergence results for the case of minimal eigenpairs. Three levels
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Fig. 6.7. Same as Fig. 6.6, but during the additive phase, whenever one or more of the eigen-
values reach a relative error converge tolerance of 1e-14, the interpolation operators are redetermined
and preferentially fitted to the unconverged eigenpairs. This improves the convergence of the eigen-
pair that is slow to converge in Fig. 6.6.

are used and the coarsest grid is of size 59×59. The operator is shifted by 0.01 to avoid
problems in representing the relative error in the smallest eigenvalue (which vanishes
for the unshifted operator). Fig. 6.5 shows satisfactory convergence behavior, but
convergence in the additive phase is not as good as for the finite difference Laplacian
on a structured grid (Fig. 6.3), even though we doubled µb to 8. This is most likely
due to the fact that the minimal eigenvectors of the unstructured problem are less
regular and less similar to each other, such that they are not represented as well by
the collective interpolation operators. For this reason, we only sought six eigenpairs
for this problem. We reduced the number of test vector relaxations because the
eigenvalues are less clustered for this problem, and too many test vector relaxations
quickly make the set of test vectors too linearly independent for the LS fits. Fig. 6.6
gives convergence results for the case of dominant eigenpairs. Three levels are used
and the coarsest grid is of size 77 × 77. It can be seen that the algorithm converges
slowly for the sixth eigenpair. When one or more of the eigenpairs sought converge
significantly more slowly than the others, the following strategy can be followed to
improve their convergence. In the additive phase, once some eigenpairs have converged
beyond a pre-specified tolerance, one can redetermine the interpolation operators in a
way to preferentially fit the eigenpairs that have not converged yet. Fig. 6.7 shows that
this can improve the convergence of lagging eigenpairs. For the convergence curves
shown in Fig. 6.7, whenever one or more of the singular values reach a relative error
converge tolerance of 1e-14, we redetermine the interpolation operators (basically, by
executing one downward sweep of the multiplicative phase), and reduce the weight
of the already converged boot vectors and the test vectors by a factor of 1 000 in the
LS fitting process. This can speed up the convergence of the remaining eigenpairs, as
shown in Fig. 6.7.
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6.4. Medline Term-document Matrix. The final test matrix is a real term-
document matrix, namely, the MEDLINE data set downloaded from the Text to
Matrix Generator website (http://scgroup20.ceid.upatras.gr:8000/tmg). The rows of
this matrix represent terms and the columns represent documents. Matrix element
(i, j) counts how many times term i occurs in document j. The matrix is sparse
(less than 1% nonzeros). Latent semantic indexing determines concepts in documents
by calculating dominant singular triplets of term-document matrices [16], so we seek
to compute dominant singular triplets. We consider a rectangular submatrix of size
m = 5 735, n = 1 033. We use strength of connection θ = 0.03 and seek nb = 8
dominant singular triplets, using nt = 14 initially random test vectors. We used
µt = 1 relaxations on the test vectors, and µb = 4 relaxations on the boot vectors.
We perform 3 multiplicative cycles followed by 30 additive cycles.

Fig. 6.8 shows convergence results for approximating the eight dominant singular
triplets. The calculation uses five levels, and the coarsest grid is of size 415×198. The
figure shows that our method is successful in calculating the eight dominant singular
triplets, with good convergence and high accuracy. The importance of this proof-of-
concept calculation is that it indicates that our approach is flexible enough to deal
with this kind of problem that is new to multigrid (as far as we are aware). The
self-learning feature of our method is able to adapt to the singular vectors that are
relevant in this application, which is interesting by itself, since our development is an
extension of algebraic multigrid concepts that were developed for PDEs, in which the
relevant vectors are of a different nature. Similarly, we have obtained the result in
Fig. 6.8 using a standard PDE-oriented AMG coarsening approach, and obtain results
that appear to converge quite satisfactorily. It has to be noted, though, that the
dominant singular values of term-document matrices may have larger gaps (see Table
6.1), especially for the very largest ones, which may make these problems somewhat
easier for iterative methods than, for example, the FVE problem of Sec. 6.1, which has
small gaps between the dominant (and minimal) singular values that decrease with
increasing problem size. While we expect our method to be competitive for the latter
type of problems, it remains to be investigated in future work how competitive our
general approach can be made for problems like term-document matrices. For one, it
would require to consider dedicated special-purpose coarsening methods. (We have
already developed such special-purpose coarsening mechanisms for certain scale-free
graphs, see [17], and see also [9, 31] for promising more general approaches.) In the
case of rectangular matrices, it may be possible to come up with methods to coarsen
the row and column variables based on A and At directly (rather than using AAt

and At A), which may be feasible for some applications, guided by the application-
dependent interpretation of the variables and operator matrix coefficients, and is kept
for future work. Nevertheless, the proof-of-concept results presented here already
show promise and illustrate the versatility of our general approach to calculating
singular triplets.

6.5. Discussion. The above numerical results show that the proposed combined
multiplicative-additive approach is successful in calculating extremal singular triplets
and eigenpairs, with high accuracy obtained in a modest number of V-cycles for a
variety of problems. However, more research needs to be done to make the method
more black-box and robust. There are quite a few parameters to be chosen, and suc-
cess is sometimes sensitive to careful choice of these parameters. This is not unlike
the situation that existed for AMG as a linear system solver early on in its devel-
opment for that purpose; it took many years of concerted effort for AMG to ripen

http://scgroup20.ceid.upatras.gr:8000/tmg
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Fig. 6.8. Largest Singular Values for Medline Term-document Matrix (rectangular). Conver-
gence plot for calculation of the eight largest singular values (base-10 logarithm of relative error
in singular values as a function of number of V-cycle iterations). Singular values are labeled with
decreasing magnitude (label 1 denotes the largest singular value). The 3 V-cycles to the left of the
vertical line are multiplicative, and the 30 V-cycles to the right of the vertical line are additive.

to the successful linear system solver technology that it is today, and self-learning
AMG eigensolvers and singular triplet solvers will require time and effort to mature
as well. In addition, new types of application problems often require at least some
modification in algorithmic components like coarsening schemes. In this sense, the
present paper is still an early step in the development of AMG methods for singular
triplets: it presents a framework and one particular way to implement the compo-
nents, but these components have to be further improved and there are alternative
candidates for some of them. For example, in the multiplicative phase, it is not al-
ways easy to find a good choice for the number of relaxations to be done on the
test vectors. Too many relaxations may lead to linear dependence (and how many
is too many depends on the a priori not necessarily known gaps in the extrema of
the spectrum), and not enough relaxations may lead to coarse-level problems that do
not identify the correct singular triplets. Similarly, the choice of the weight factors in
the LS fitting is also not straightforward and results may depend on it significantly.
These aspects need to be improved. Similarly, in the additive phase, the V-cycles
may not convergence for some of the tentative triplets, and there is no guarantee
that no triplets are missed (even though we have only rarely observed this). Also, it
would be interesting to consider special-purpose coarsening routines, for example, for
principal component analysis data sets. For some applications, one may need mutiple
P and Q interpolation operators to fit groups of (possibly overlapping) triplets, or
coarse grids with multiple degrees of freedom per coarse grid point may need to be
considered, especially if singular triplets have singular vectors that are very dissim-
ilar. In the mutiplicative phase, instead of using the BAMG approach, one could
consider building up interpolation operators that fit the relevant vectors by using the
so-called ‘adaptive’ approach from [11, 12], and possibly extending it to fit multiple
target vectors. Similarly, the current multigrid-Ritz additive phase could be replaced
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by methods of preconditioned inverse iteration, locally optimal block preconditioned
conjugate gradient, or Rayleigh quotient multigrid type [4, 25, 22]. Also, compatible
relaxation processes may be considered for coarsening [9, 31]. The results presented
in this paper show initial success and promise for our general approach, but improve-
ments and modifications of the components are possible and are a topic of continued
research.

7. Conclusion. We have described a new algebraic multilevel framework for
computing dominant and minimal singular triplets. As far as we are aware, this is
the first algebraic multigrid method that directly tackles the SVD problem, without
working on At A or the augmented symmetric system. We combine a multiplicative
phase with an additive phase to obtain a self-learning method that can converge to
machine accuracy for multiple singular vectors represented collectively using single
interpolation operators. The self-learning capability of the algorithm makes it appli-
cable to many types of problems, both for dominant and minimal triplets. We have
identified a generalized SVD decomposition of a matrix A relative to two SPD ma-
trices B and C of compatible dimensions as the problem to be solved on the coarse
levels of our multilevel method, and have stated its existence and uniqueness prop-
erties and discussed relevant solution methods. Our multiplicative phase follows the
BAMG framework, as in [27] for SPD eigenproblems, and our additive phase follows
a multigrid-Ritz strategy, as in [4] for SPD eigenproblems. The specialization of our
combined method to SPD matrices offers a new extension of those existing AMG
eigensolvers, that allows for highly accurate convergence and is flexible due to its self-
learning nature. Ongoing work is aimed at improving the parameter-independence
and robustness of components of the algorithm, and alternative building blocks can
be considered [11, 12, 4, 25, 22, 9, 31] for some of the components in the algorithmic
framework. Numerical tests using our current implementation showed that conver-
gence to high accuracy can be obtained in a modest number of V-cycles, and the
versatility of the approach was illustrated by applying it to problems from different
domains.
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