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A PROOF OF EQUIVALENCE BETWEEN LEVEL LINES SHORTENING

AND CURVATURE MOTION IN IMAGE PROCESSING
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Abstract. In this paper we define the continuous Level Lines Shortening evolution of a

two-dimensional image as the Curve Shortening operator acting simultaneously and inde-

pendently on all the level lines of the initial data, and show that it computes a viscosity

solution for the mean curvature motion. This provides an exact analytical framework for

its numerical implementation, which runs on line on any image at http://www.ipol.im/.

Analogous results hold for its affine variant version, the Level Lines Affine Shortening.
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1. Introduction

In [8], [9] there were introduced two new image processing algorithms, Level Lines Short-

ening and its affine variant Level Lines Affine Shortening simulating a contrast invariant and

scale invariant evolution of an image by mean curvature motion, respectively affine curvature

motion. The aim of this work is to rigorously justify that the Level Lines Shortening algo-

rithm proposed in these works computes explicitly a viscosity solution for theMean Curvature

Motion

(1.1)
∂u

∂t
= |Du|curv(u),

respectively that the Level Lines Affine Shortening algorithm provides a viscosity solution for

the Affine Curvature Motion

(1.2)
∂u

∂t
= |Du|

(

curv(u)
)1/3

.

These equations are particularly interesting since they can be axiomatically obtained from

the image multiscale theories, as the unique partial differential equations satisfying the most

desired invariance properties in computer vision. This axiomatic characterization was given

by Alvarez, Guichard, Lions and Morel in [1]. Caselles et al. [4] realized the potential of

processing directly the image level lines. They proposed to perform a contrast invariant image

analysis directly on the set of level lines, or topographic map. A fast algorithm computing the

topographic map was developed by Monasse and Guichard in [21].
1
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The Level Lines Shortening numerical chain stands for the simultaneous and independent

curvature evolution of all the level lines for a given function. Curve smoothing by the intrinsic

heat equation, also called Curve Shortening

(1.3)
∂x

∂t
= k(x).

was one of the first versions of curve analysis proposed by Mackworth and Mokhtarian in

[18]. Here k(x) denotes the curvature vector at x, defined as the second derivative x′′(s) with

respect to any length parameter s. By this (nonlinear) evolution a curve instantly becomes

smooth, shrinks asymptotically to a circle and develops no singularities or self-crossings.

Rigorous proofs were given by Gage and Hamilton for convex Jordan curves [13] and later

extended to embedded curves by Grayson [14]. The Affine Shortening equation

(1.4)
∂x

∂t
=
(

|k|−2/3k
)

(x)

is a surprising variant of curve shortening introduced by Sapiro and Tannenbaum in [23], [24].

Angenent, Sapiro and Tannenbaum [25] gave the existence and uniqueness proofs for affine

shortening and showed a result similar to Grayson’s theorem: a shape eventually becomes

convex and thereafter evolves towards an ellipse before collapsing. A remarkably fast and

geometric algorithm for affine shortening was given by Moisan in [20].

On the other hand, Osher-Sethian defined and studied in [22] the level set method for the

motion of fronts by (mean) curvature, for which Chen-Giga-Goto [6] and Evans-Spruck [11]

provided rigorous justifications. In this setting, the initial curve Σ0 is considered as the zero

level set of some function u0. The basic result asserts that the zero level set of the evolved

function

Σt = {u(·, t) = 0}

does not depend on the choice of the initial data and therefore the evolution is purely geomet-

rical. Their arguments are based on the notion of viscosity solution of Crandall and Lions,

that allows one to give a suitable meaning to the (MCM) and (ACM) equations, in the class

of uniformly continuous functions. We refer to the ’user’s guide’ of Crandall, Ishii and Lions

[10] for further details about viscosity solutions. A mathematical link between the median

filter and the motion by mean curvature was conjectured by Merriman, Bence and Osher [19]

and later proved by Barles and Georgelin in [2] using viscosity methods and by Evans in [12]

using a nonlinear semigroup approach.

Evans and Spruck checked in [11] the consistency of the level set approach with the classical

motion by mean curvature. More precisely, they showed that the mean curvature motion

agrees with the classical motion, if and as long as the latter exists. The results applies

for a smooth hypersurface, given as the connected boundary of a bounded open set. Their

arguments are based on comparison techniques with lower barriers for the approximated

mean curvature motion and strongly use the fact that the hypersurface is the zero level

set of its (signed) distance function. However, the result does not describe the complete

behavior of all the level lines of a Lipschitz function. Namely, if we are given a Lipschitz
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function u0 which evolves by mean curvature in the viscosity sense, are all of its level lines

evolving independently by curve shortening? For dimension n ≥ 3 the result is not true, since

hypersurfaces can develop singularities and possible change topology. Thanks to Grayson’s

theorem, the 2D case has a very peculiar structure which we will take advantage of and show

that evolving independently and simultaneously by curve shortening all the level lines of a

function is equivalent to applying directly a mean curvature motion to the functions itself.

The Level Lines Shortening builds on the above mentioned contributions and connects

explicitly the geometric approach for curve shortening evolutions and the viscosity framework

for curvature motions. More precisely, this operator first extracts all the level lines of an image,

then it independently and simultaneously smooths all of its level lines by curve shortening

(CS) (respectively affine shortening (AS)) and eventually reconstructs, at each step, a new

image from the evolved level lines. The chains are based on a topological structure, the

inclusion tree of level lines as a full and non-redundant representation of an image [5], and

on a topological property, the monotonicity of curve shortening with respect to inclusion.

Therefore, the hierarchy of the level lines is maintained while performing the smoothing.

We show in this paper that the image reconstructed from the evolved level lines is a viscosity

solution of the mean curvature motion (MCM) (resp. affine curvature motion (ACM)). The

initial image will be considered as an element of a particular space of functions VS(Ω) that

we term space of very simple functions. This corresponds to bilinearly interpolated images

defined on a rectangle Ω whose topographic maps contain only Jordan curves. The set of

very simple functions arises naturally in image processing, since level lines corresponding to

noncritical levels are sufficient to grant an exact reconstruction of the digital image.

In this way, the described algorithm corresponds exactly to its numerical implementation

[7] and has the advantage of satisfying both numerically and analytically all the invariance

properties required by the scale space in question.

The paper is organized as follows. In section §2 we define the class of very simple functions

as approximations for Lipschitz functions. Section §3 is devoted to the definition of the Level

Lines Shortening evolution, as an operator acting both on crowns of Jordan curves and flat

areas, and on very simple functions. In the last section §4 we give the equivalence result. The

result is then extended to general Lipschitz functions, by first approximating the initial data

by very simple functions and then using standard stability properties of viscosity solutions.

2. Modeling Level Lines Shortening

2.1. Crowns of Jordan Curves. A Jordan curve is a one to one continuous map from the

unit circle S1 into R
2. A Jordan curve Σ splits the plane in two connected components.

We denote by Int(Σ) the open bounded component and by Ext(Σ) the open unbounded

component.

Definition 2.1 (Partial order). Let Σ1 and Σ2 be two Jordan curves. We say that Σ1

surrounds (strictly) Σ2 and we write Σ1 � Σ2 (Σ1 ≺ Σ2) if Int(Σ1) ⊆ Int(Σ2) (respectively

Int(Σ1) ⊂ Int(Σ2)).
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This defines a partial order on the set of planar Jordan curves.

Definition 2.2. We say that a Jordan Σ curve is piecewise C1, or in C0,1
p (S1) if it has

finite length l(Σ) ≥ 0, any length parametrization is piecewise C1 and if at each discontinuity

point for the tangent there are left and right tangent vectors, which are not collinear.

Definition 2.3. We say that a sequence of curves Σn converges in C0,1
p (S1) to a curve

Σ if, denoting by s ∈ [0, l(Σ)] → x(s) a length parameterization of Σ, there are Lipschitz

parameterizations s ∈ [0, l(Σ)] → xn(s) for Σn such that xn(s) tends uniformly to x(s), and

the left and right unit tangent vectors of xn(s) tend uniformly to the left and right tangent

vectors of x(s).

Remark 2.1. When l(Σ) = 0, these conditions are reduced to the uniform convergence of

xn(s) toward x(s). This convergence can be defined by a family of neighborhoods around

each element of C0,1
p (S1), which therefore is a topological space.

Definition 2.4. A crown Σ : (λ, µ) → C0,1
p (S1) is a continuous and monotone map Σ from

the interval (λ, µ) into C0,1
p (S1) endowed with the partial order �. If the map is defined on

the closed/open interval we talk about closed/open crown.

Definition 2.5. When the crown is closed and increasing, Σ(λ) = Σλ is called the interior

curve of the crown and Σ(µ) = Σµ its exterior curve of the crown. If the crown is

decreasing, these names exchange. The range of the open/closed crown is denoted by Σ(]λ, µ[),

Σ([λ, µ]), respectively. The crown itself as an ordered family of curves will also be denoted by

Σ[λ,µ] or (Σν)ν∈(λ,µ).

Remark 2.2. A(closed) crown is a homeomorphism from a closed interval [λ, µ] to Σ[λ, µ],

since the map Σ is continuous, and the interval [λ, µ] is compact.

Definition 2.6. Let A ⊂ Ω be a bounded, connected set, whose boundary consists of a finite

number of disjoint Jordan curves. We call exterior curve of A the unique Jordan curve

Σe whose interior contains A and interior curve(s) the other Jordan curves Σi, i ∈ I.

2.2. The class of Very Simple Functions. A digital image is usually known by its samples

{u(i, j)}0≤i≤M,0≤j≤N on a rectangular grid of Ω = [0,M ] × [0, N ]. We assume that the

underlying image 0 ≤ u(x) ≤ 1 whose samples are the u(i, j) is a Lipschitz function defined

on Ω, the continuous image domain. We shall always assume that u(x) = 0 on the boundary

of the domain ∂Ω and that u(x) > 0 in the interior of Ω.

The bilinear interpolation in Ω is the simplest continuous interpolation from the discrete

samples u(i, j). This interpolate, still denoted u, is defined as the unique function coinciding

with the digital image u on the samples which is bilinear in each dual pixel (the square formed

by the centers of four adjacent pixels). This means that u has the form

u(x1, x2) = αx1 + βx2 + γx1x2 + δ

on each square with vertices (i, j), (i+1, j), (i, j+1), (i+1, j+1). This bilinear interpolation is

therefore positive on the interior of the domain and zero on ∂Ω. The set of bilinear interpolates

of digital images on Ω will be denoted by BL(Ω). The next result is a sane consistency property

of the bilinear interpolation.
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(a) (b) (c)

Figure 1. Topological structure of the family of level lines, for a bilinear interpo-
lated image. For every level 0 ≤ λ ≤ 1, except for a finite set, the iso-level sets
{u = λ} are made of a finite set of piecewise C1 Jordan curves. At critical levels
λk, they can have a rather complicated form: they can have T-junctions or reduce
to segments (a), contain square pixels (thus being flat areas) or have self-crossings
at saddle points (b). However, by fattening the iso-level sets corresponding to the
critical levels, the topology of level sets becomes very simple: only Jordan curves or
flat sets (c).

Proposition 2.1. If u defined on Ω is Lipschitz and only known by its samples, its bilinear

interpolate converges uniformly to u when the grid mesh tends to zero.

The references [17], [16], [5] show that the bilinear interpolation brings a long list of nu-

merically useful topological properties.

Proposition 2.2. (Properties of level lines of bilinear interpolates)

(L1) For every level 0 ≤ λ ≤ 1 except for a finite set of levels λ1, . . . , λn called critical,

the iso-level set {u = λ} is the disjoint union of a finite set of piecewise-C1 Jordan

curves, denoted by (Σλ,i)i∈Iλ where Iλ is a finite set of indices;

(L2) The open set Ω\u−1({λ1, . . . , λn}) has a finite number of connected components. Each

connected component is the range of an open crown Σ]µ,ν[ where µ, ν ∈ {λ1, . . . , λn}.

As a consequence, Ω is partitioned in open crowns and in the closed iso-level sets

{u = λi} corresponding to the critical levels.

Sketch of proof. A dual pixel will contain a critical level either if it is flat, or if it contains a

saddle point. In both cases there is only one critical level in the pixel. Since there is a finite

number of pixels, there is a finite number of critical levels. At any other level, the restriction

of an iso-level set to a given pixel is either empty, or is a single piece of hyperbola. Since

the bilinear interpolate is continuous, these pieces of hyperbolae concatenate at each pixel

boundary to form one or several disjoint Jordan curves. �

The above structure is quite simple, but it does not describe the structure of level lines

at the critical levels λk, which can take a rather complicated form as illustrated in Figure 1.
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To define a curvature evolution for these sets would be cumbersome. We shall overcome this

drawback, both numerically and analytically, by building a still simpler approximation. This

approximation of the image is obtained by fattening all critical iso-level sets into open sets

whose boundary is a finite set of Jordan level curves. Their curvature evolution will simply

be defined by the curvature evolution of their boundary. Thus, we define a still simpler

approximation for Lipschitz functions, deduced from the bilinear interpolation.

Definition 2.7. We say that a Lipschitz function u on Ω is very simple and we denote by

u ∈ VS(Ω) if it satisfies properties (L1), (L2) and

(L3) Each crown Σ]µ,ν[ can be completed into a closed crown by adding its interior and

exterior curves Σµ and Σν, which are limits in the C0,1
p (S1) topology of the level lines

of the crown.

Remark 2.3. The construction of the partition goes as follows. The domain Ω is the union of

all its isolevel sets {u = λ}. By the property (L1), these sets are disjoint unions of (smooth)

Jordan curves, except for a finite number. Property (L2) further tell us that these Jordan

curves are organized in a finite number of open crowns. At this level, Ω is the union between a

finite number of open crowns and the finite number of iso-level sets leftover (which in turn can

be split in a finite number of connected components, since we lay on a compact). The third

property (L3) tells us that the boundaries of these flat areas, which are not necessarily Jordan

curves, can be shifted to the crowns, such that the crowns become closed. As a consequence,

for very simple functions, Ω is the disjoint union of the ranges of a finite number of compact

crowns, and of a finite number of flat open connected components, each belonging to some

critical level λk,

(2.5) Ω =

(

⋃

k∈K

Σ[µk,νk],k

)

∪









⋃

j∈{1,··· ,n},
l∈Jj

F λj ,l









where K is the finite set of all crown indexes, µk, νk ∈ {λ1, · · · , λn} are critical levels, and

Jj is the finite set of indexes of open connected components of the iso-level set of u at the

critical level λj .

Definition 2.8. We call flat regions of u0 ∈ VS(Ω) the open sets F λj ,l, whose boundaries

are unions of a finite number of piecewise-C1 Jordan level curves, and on which the function

is constant:

u(x) = λj , ∀x ∈ F λj ,l, l ∈ Jj .

Lemma 2.1. Every Lipschitz function can be approximated uniformly by a sequence of very

simple functions.

Proof. For all u ∈ Lip(Ω) and ε > 0 we build a function v ∈ VS(Ω) such that

sup
x∈Ω

|u(x) − v(x)| < ε.
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By Proposition 2.1, we can assume that u ∈ BL(Ω). We can order the set of its critical levels

λ1 < λ2 < ... < λn. Then define, for 0 < ε < 1
2 minj |λj+1−λj |, the function v(x) = fε(u(x)),

where f is the 1-Lipschitz nondecreasing function

(2.6) fε(t) =















t, t ≤ λ1 − ε

λk − kε λk − ε ≤ t ≤ λk + ε, k = 1, n

t− kε λk + ε ≤ t ≤ λk+1 − ε, k = 1, n − 1

t− nε, t ≥ λn + ε

We have |f(t)− t| ≤ nε, thus maxΩ |u− v| ≤ nε which proves the convergence claim.

It remains to check that the function v ∈ VS(Ω). The critical levels of v are inherited from

u and consist of {λk − kε}k=1,...,n. By construction, all the level lines of v at noncritical levels

are level lines of u at noncritical levels and hence Jordan level curves, grouped in crowns.

Consider now the flat regions of v, which are the open connected components of the sets

{λk − ε < u < λk + ε}, k = 1, n.

Since ε < 1
2 mink(λk+1 − λk), the boundary of each one of these flat regions is contained in

the union of the level sets {u = λk − ε} and u = {λk + ε} which are a finite number of Jordan

curves. Each one of these Jordan curves belongs to a crown Σ]λk,λk′ [ of u which is truncated

into a crown Σ]λk−kε,λk′−k′ε[ of v. �

3. Level Lines Shortening operator

3.1. LLS semigroup operator. Given a very simple function u0 ∈ VS(Ω), its Level Lines

Shortening evolution consists in evolving independently and simultaneously by Curve Short-

ening each of its level lines, denoted by Σλ,i
0 , and eventually reconstructing, for each time

t > 0, a new function u(·, t) whose level lines are the evolutions Σλ,i
t , where the subscript t

denotes the time t. This definition, will have to be proven consistent. Our goal is therefore

to prove the commutative diagram:

u0(·)

MCM/LLS

��

level lines extraction
// {Σλ,i

0 }λ,i

CS
��

u(·, t) {Σλ,i
t }λ,i.

reconstruction
oo

To this end, we shall use several fine properties of curve shortening evolution [14], [13], which

is given in terms of a nonlinear geometric partial differential equation

(3.7)
∂x

∂t
(s, t) = k(s, t)

where x(s, t) is a family of smooth Jordan curves parameterized for each t by a length pa-

rameter. The vector k is the acceleration which is normal to the curve, points towards its

concavity, and whose norm is the inverse of the radius of the osculating circle.

Theorem 1. The curve shortening evolution has the following properties:
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(P1) For any Jordan C0,1(S1) curve Σ0, there exists a collapsing time T (Σ0) > 0 such that

the Cauchy problem (3.7) has a unique solution Σt in

C0,1
(

S1 × [0, T (Σ0))
)

∩ C∞
(

S1 × (0, T (Σ0))
)

which still is a Jordan curve. We set Σt = ∅ for t > T (Σ0).

(P2) The map Σ0 7→ Σt is continuous for the C0,1
p (S1) topology of Definition 2.2. For

t = T (Σ0) the curve collapses to a point x(Σ0).

(P3) Before collapsing at time T (Σ0), the curve Σt - rescaled at constant area equal to π

- converges in the C0,1
p (S1) topology to the unit circle centered at the collapsing point

x(Σ0).

(P4) Inclusion Principle:

• if Σ1 � Σ2, then Σ1
t � Σ2

t for all t > 0.

• if Σ1 ≺ Σ2, then Σ1
t ≺ Σ2

t for all t > 0.

(P5) The min-distance of any two disjoint curves increases with time until one of the curve

collapses

dist(Σ1
s,Σ

2
s) < dist(Σ1

t ,Σ
2
t ),∀s ≤ t.

(P6) Convex curves remain convex and shrink in time: Σt � Σ0.

Theorem 2. Properties (P1)− (P6) hold for affine shortening:

(3.8)
∂x

∂t
(s, t) = |k|−2/3k(s, t)

except for (P3) which is replaced by

(P3)′ Before collapsing at time T (Σ0), the curve Σt converges in the C0,1
p (S1) topology to

an ellipse centered at the collapsing point x(Σ0).

Let u0 ∈ VS(Ω) be a very simple function and {Σλ,i
0 }λ,i∈Iλ its level lines. Denote by Σλ,i

t

the evolution of Σλ,i
0 at time t

Σλ,i
0

CS
−−→ Σλ,i

t .

Our first purpose is to show that the family of smooth Jordan curves {Σλ,i
t }λ,i∈Iλ is actually

the set of level lines of a very simple image u(·, t).

Definition 3.1. Let Σ
[ζ,µ]
0 =

(

Σλ
0

)

λ∈[ζ,µ]
be a closed crown. We call level lines shortening

of the crown Σ
[ζ,µ]
0 the family of curves

LLS(t)
(

Σ
[ζ,µ]
0

)

:= (Σλ
t )λ∈[ζ,µ].

where Σλ
t are the curve (affine) shortening evolutions of Σλ

0 for all λ ∈ [ζ, µ].

To fix ideas we refer in the following to increasing crowns. Analogous results hold for

decreasing crowns.
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Proposition 3.1. Consider a closed increasing crown Σ[ζ,µ]. Then the collapsing time T (λ) =

T (Σλ) of the curves of the crown is a continuous increasing function of λ ∈ [ζ, µ]. The level

lines shortening at time t < T (Σµ) transforms Σ[ζ,µ] into a closed crown

LLS(t)
(

Σ
[ζ,µ]
0

)

= Σ
[max(ζ,T−1(t)),µ]
t .

Proof. Since the composition of two continuous maps is continuous, and the composition

of two strictly monotone maps is strictly monotone, this is an immediate consequence of

Theorem 1 and of the definition of crowns. By property (P1) level lines shortening preserves

space-time continuity, whereas by (P4) preserves strict monotonicity.

�

In short, a crown remains a crown by level lines shortening, and is made of all curves of

the initial crown which have not collapsed yet. It is convenient to also define the evolution of

a flat region.

Definition 3.2. Let F
λj ,l
0 , l ∈ Jj be a flat region of u0 ∈ VS(Ω) at level λj , of exterior curve

Σe
0 and interior curves Σm

0 , m ∈ M . We call the level lines shortening of the flat region

F
λj ,l
0 , l ∈ Jj the set defined by

LLS(t)(F
λj ,l
0 ) = F

λj ,l
t := Int(Σe

t) ∩

(

⋂

m

Ext(Σm
t )

)

, ∀t < T (Σe)

where Σe
t and Σm

t , m ∈ M are the curve shortening evolutions of Σe
0 and Σm

0 , m ∈ M .

The initial flat region remains a region whose boundary is made of all Jordan curves of

its initial boundary which have not collapsed. By the inclusion principle the last curve to

disappear is the external boundary. When it collapses, the region disappears.

Theorem 3 (Definition of LLS for very simple functions). Let u0 be a very simple Lipschitz

function, with critical levels {λk}k=1,··· ,n, Jordan curves Σλ,i
0 indexed by their level λ and

i ∈ Iλ, and of flat regions F
λj ,l
0 at critical levels λj, indexed by l ∈ Jj . The level lines

shortening evolution of the function u0 is the function LLS(t)(u0) = u(·, t) defined by

(3.9) u(x, t) =











λ, if x ∈ Σλ,i
t

λj , if x ∈ F
λj ,l
t

0, if x ∈ Ω \Ωt

where Ωt is the domain surrounded by the curve shortening evolution (∂Ω)t of the domain

boundary ∂Ω0 (which is the only zero-level curve of u0). Then this definition is complete,

consistent, the evolved function is a very simple function u(·, t) ∈ VS(Ω) whose Lipschitz

constant is smaller than or equal to the initial one.

Proof. The initial domain Ω is partitioned in crowns and flat regions whose boundaries are

either interior or exterior curves of crowns, or ∂Ω. By the min-distance property (P5) in

Theorem 1, when time increases the evolved level curves of u0 fall apart from each other and

so do the boundary curves of the flat regions. Thus, by Proposition 1 and Definition 3.2

the crowns never meet and the flat regions are at all times the connected components of the
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(a) Image associated to a very simple function and its corresponding level lines.

(b) The LLS operator maps very simple functions onto very simple functions.

Figure 2. The Level Lines Shortening (LLS) numerical chain: from the original
image (top-left), the family of all its simple level lines is extracted at quantized non-
degenerate levels (top-right). Simultaneously and independently, each level line is
evolved (bottom-right) and the evolved image having these level lines is reconstructed
(bottom-left). Both the images and their families of level lines satisfy the topological
properties (L1), (L2), (L3). Performing the LLS evolution, digitization artifacts due
to noise, compression and under-sampling are attenuated.

complement in Ωt of the union of crowns. In other terms the evolved crowns and evolved flat

regions form a partition of Ωt given by

(3.10) Ωt =

(

⋃

k∈K

Σ
[µk,νk],k
t

)

∪









⋃

j∈{1,··· ,n},
l∈Jj

F
λj ,l
t
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On the other hand, the boundary of Ω is convex and remains convex by curve shortening

(property (P6) in Theorem 1). Hence if points x initially belonging to Ω have been crossed

by the evolving boundary, we have u(x, t) = 0. This renders the definition complete and

consistent.

Let us show that u(·, t) is Lipschitz. A function is L-Lipschitz if and only if the min-distance

between any two of its level sets with levels λ and µ is larger than |λ−µ|
L . More precisely, since

the min distance between a flat region and another, or between a flat region and a level line,

is always attained on the level lines which bound the flat regions, we have

Lip(u0) = max{
|ζ − µ|

dist(Σζ
0,Σ

µ
0 )

}.

Since all min-distances between level lines increase (property (P5), Theorem 1), we have

|ζ − µ|

dist(Σζ
0,Σ

µ
0 )

≥
|ζ − µ|

dist(Σζ
t ,Σ

µ
t )

and hence the Lipschitz constant of u(·, t) is smaller than or equal to the Lipschitz constant

of u0. �

Definition 3.3. We call Level Lines Shortening operator, shortly LLS, the above oper-

ator acting on the class of very simple functions,

LLS(t) : VS(Ω) 7→ VS(Ω)

u0 7→ u(·, t).

Since the curve shortening itself is a semigroup, LLS(t) also is a semigroup, namely

LLS(t+ s)u0 = LLS(t)(LLS(s)u0).

Corollary 3.1. The level lines affine shortening evolution of a very simple function

(3.11) LLAS(t)(u0)(x) :=











λ, if x ∈ Σλ,i
t

λj, if x ∈ F
λj ,l
t

0, if x ∈ Ω \ Ωt

where Σλ,i
t and F

λj ,l
t are the affine shortening evolutions of the initial level lines, respectively

flat areas, is well defined and maps VS(Ω) onto itself, preserving the semigroup property.

Proof. This comes immediately from Theorem 2, which ensures that all the topological prop-

erties of curve shortening hold as well for affine shortening. �

3.2. Properties of Level Lines Shortening.

Lemma 3.1. Let φ0 be a radial increasing function centered at x0, i.e. φ0(x) = ϕ(|x|) with

ϕ increasing. Then its level lines shortening evolution is given by

φ(x, t) = ϕ
(

√

|x|2 + 2(t− t0)
)
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and its affine shortening evolution is given by

φ(x, t) = ϕ

(

(

|x|
4

3 +
4

3
(t− t0)

)3/4
)

.

Lemma 3.2 (Local comparison). Let u0 be a very simple function, φ0 a radial increasing

function centered at x0, and denote by u(·, t) and φ(·, t) their LLS/LLAS evolutions. If in a

local neighborhood N (x0) of x0 the following holds

u0(x) ≤ φ0(x),∀x ∈ N (x0)

then there exists a short time t0 > 0 such that

u(x0, t) ≤ ϕ(x0, t),∀0 < t < t0.

Proof. We argue for LLS, the case LLAS being analogue. The level set {φ0 < λ} is the open

disk with radius φ−1
0 (λ) and satisfies the inclusion

{x ∈ N (x0);φ0(x) < λ} ⊂ {x ∈ N (x0);u0(x) < λ}

Then every level line Σλ,φ0 of φ0 surrounds no point belonging to a level set of the same level

of u0. By the inclusion principle and the topological structure of the level lines for a very

simple image, this property is preserved for all t ≤ t0 where t0 is the vanishing time for the

largest level line of φ in the neighborhood N (x0). Indeed if the level set of u(x, t) is a flat

part bounded by Jordan curves, by the min-distance property (P5) these Jordan curves never

cross in their evolution the circles corresponding to the level set for φ(x, t). If the level set

of u(x, t0) is a finite set of level lines, in the same way the evolved level lines of u(x, t) never

cross the circular level line of φ(x, t).

On the other hand x0 belongs to all the level lines of φ(·, t), for all times t < t0. Hence

the value of u(·, t) at x0 must necessarily be less than the minimum level of φ(·, t), which is

attained exactly at x0. Consequently

u(x0, t) ≤ φ(x0, t),∀t < t0.

�

Proposition 3.2 (Space-Time Continuity). Let u0 ∈ VS(Ω) be L-Lipschitz continuous and

consider its level lines (affine) shortening evolution u(·, t) = LL(A)S(t)(u0), for all t ∈ (0,∞).

Then u ∈ C0(Ω× [0,∞)).

Proof. We want to find a Lipschitz type estimate for the function u and we argue separately

in space and time:

|u(x, t) − u(x0, t0)| ≤ |u(x, t)− u(x0, t)|+ |u(x0, t)− u(x0, t0)|.

By Theorem 3 the LLS evolution u(·, t) at any time t > 0 of the initial function u0 remains

L− Lipschitz continuous and hence

|u(x, t) − u(x0, t)| ≤ L|x− x0|.

The time-continuity follows from comparisons with shrinking cones. More precisely, the Lip-

schitz continuity at time t0 tells us there exists φ(·, t0) a L-Lipschitz radial upper barrier
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u(x, t0) ≤ φ(x, t0), touching u at point x0,given by

φ(x, t0) = u(x0, t0) + L|x− x0|.

By Lemma 3.1, its LLS evolution is

φ(x, t) = u(x0, t0) + L
√

|x− x0|2 + 2(t− t0).

It follows from the local comparison with radial functions given in Lemma 3.2 that

u(x0, t) ≤ φ(x0, t) = u(x0, t0) + L
√

2(t− t0).

Consequently

|u(x, t)− u(x0, t0)| ≤ L
(

|x− x0|+
√

2(t− t0)
)

.

This proves that u(x, t) is uniformly continuous in t and x. Similar results hold for LLAS. �

The structure of very simple functions implies that there is only a finite number of possible

collapsing times, namely times tk∗ > 0 where some crown collapses to a point. At these

times t1∗ < t2∗ · · · < tm∗ there is one (or several) collapse pairs (tk∗ ,Σ
λk,ik). The next lemma

gives a stability property for flat regions.

Lemma 3.3 (Flatness). Let u0 be a very simple function and u(·, t) its LL(A)S evolution at

time t. Let x0 be a point in a flat region of u(·, t0) and suppose that it is not a collapsing

point. Then there exists δ0 > 0 such that x0 stays in a flat region of u(·, t), for all |t−t0| < δ0.

Proof. Since x0 belongs to a flat area of u(·, t0) there exists a small ball B(x0, r0) centered at

x0 meeting no other level line of u(·, t0):

(3.12) Σλ,i
t0 ∩B(x0, r0) = ∅.

The number of collapsing points being finite, we can also choose r0 small enough, so that

B(x0, r0) contains no collapsing point of the evolution of u. Let ∂B(x0, r(t)) be the circle

centered at x0 and evolving by Curve Shortening such that r(t0) = r0.

1. Fix δ1 = r20/4 such that ∂B(x0, r(t)) has not collapsed at time t = t0 + δ1. Then it

follows from (3.12) and from the inclusion principle that for all t < t0 + δ1 no level line of

u(·, t) meets the ball B(x0, r(t))

Σλ,i
t ∩B(x0, r(t)) = ∅,

where r(t) =
√

r20 − 2(t− t0).

2. We now prove that there exists a time δ2 and a radius ρ > 0 such that for all t ∈

(t0 − δ2, t0) no level curve of u(·, t) meets B(x0, ρ). Assume by contradiction that there exist

tj, xj and curves Σ
λj

tj
of LLS evolution of u such that

(3.13) tj → t0, xj → x0 with xj ∈ Σ
λj

tj
.

Consider the corresponding initial curves Σ
λj

0 . Since the ball B(x0, r0) contains no collapsing

points of u, the evolutions Σ
λj

t will have uniformly bounded curvature, and thus stay uniformly

bounded in the C0,1
p (S1) topology. It is then possible to extract a converging subsequence to
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Σλ
0 . By the continuity property (P2) in Theorem 1, it follows that Σλ0

t0 contains x0, which

contradicts our initial assumption.

�

4. Equivalence with the curvature motions

4.1. Mean Curvature Motion. We rewrite the geometric curve shortening in the form

(CS)
∂x

∂t
= kν,

where k denotes the scalar curvature and ν the unit normal to the curve, with ν continuous

and the sign of k guaranteeing that kν points towards the interior of the domain surrounded

by the curve at convex points and towards the exterior at concave points. We are interested

in its equivalence with

(MCM)

{

ut = |Du|curv(u), in R
2 × [0,∞)

u(·, 0) = u0, on R
2.

where

|Du|curv(u) = |Du|div(
Du

|Du|
) =

2
∑

i,j=1

(δij −
uxi

uxj

|Du|2
)uxixj

.

We refer to a viscosity solution for the parabolic PDE, which is defined in terms of point-wise

behavior with respect to a smooth test function. We use herein the definition presented by

Morel and Guichard in [15], which was proven by Barles and Georgelin [2] to be equivalent

with the viscosity solutions given by Evans and Spruck in [11] and Chen, Giga and Goto in

[6].

Definition 4.1. A function u ∈ C(R2×[0,∞))∩L∞(R2×[0,∞)) is a viscosity sub-solution

of (MCM) iff for each φ ∈ C∞(R2 × [0,∞)) such that u− φ has a local maximum at (x0, t0)

we have

φt(x0, t0) ≤ |Dφ|curv(φ)(x0, t0) if Dφ(x0, t0) 6= 0

φt(x0, t0) ≤ 0 if Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

A function u ∈ C(R2 × [0,∞)) ∩L∞(R2 × [0,∞)) is a viscosity super-solution of (MCM)

iff for each φ ∈ C∞(R2 × [0,∞)) such that u− φ has a local minimum at (x0, t0) we have

φt(x0, t0) ≥ |Dφ|curv(φ)(x0, t0) if Dφ(x0, t0) 6= 0

φt(x0, t0) ≤ 0 if Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

Remark 4.1. The above definition can be further simplified [15]: replacing “local maximum

(minimum)“ with ”strict local maximum (minimum)“ one obtains an equivalent definition of

viscosity solutions. Furthermore, it is enough to consider test functions of the form φ(x, t) =

f(x) + g(t).
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Theorem 4. Let u0 ∈ VS(Ω). Then the Level Lines Shortening evolution of the function u0,

u(x, t) = LLS(t)u0(x),∀x ∈ R
2,∀t ∈ [0,∞)

is a viscosity solution for (MCM) with initial data u0,

Proof. It is sufficient to check that u(x, t) is a viscosity sub-solution. Analogous assertions

hold for viscosity super-solutions. Let φ ∈ C∞(R2 × [0,∞)) such that u− φ has a strict local

maximum at (x0, t0). Adding if necessary a constant, suppose that

(4.14)

{

u(x0, t0) = φ(x0, t0) = λ

u(x, t) < φ(x, t),∀(x, t) ∈ V

where V is a small neighborhood of (x0, t0). The proof is completed by the next three lemmas,

where we distinguish two situations: either the point x0 is inside a flat region of u(·, t0) (lemma

4.1), or it belongs to some level line, singular or not of this function (lemma 4.3 in the case

where Dφ(t0, x0) = 0, and lemma 4.2 when the gradient is not zero). �

Lemma 4.1. Let x0 be a point in a flat area of u(·, t0). Then

Dφ(x0, t0) = 0 and φt(x0, t0) = 0.

Proof. By Lemma 3.3, the function u is constant in a small neighborhood N (x0, t0). From

the local maximum condition we deduce that the point (x0, t0) is a local minimum for the

test function φ ∈ C∞, which yields the conclusion.

�

We consider now the case when x0 belongs to a level line Σλ,u
t0 of the function u(·, t0). By the

construction of LLS(t)u0 this level line is following the classical curve shortening.

Lemma 4.2. Let x0 belong to a level line Σλ,u
t0 of the function u(·, t0). Let φ be a smooth test

function such that at the maximum point (x0, t0) of u− φ

Dφ(x0, t0) 6= 0.

Then φ satisfies

φt ≤ |Dφ|div(
Dφ

|Dφ|
) at (x0, t0).

Proof. 1. The non-degeneracy condition Dφ(x0, t0) 6= 0 and the regularity of the test function

φ imply by the implicit function theorem that the iso-level set

Σλ,φ
t0 = {x ∈ Ω;φ(x, t0) = λ}

is a smooth graph in a neighborhood of x0. A unit normal vector of Σλ,φ
t0 at point x0 is

νφ(x0, t0) =
Dφ

|Dφ|
(x0, t0).

On the other hand, x0 belongs to the smooth Jordan level line Σλ,u
t0 of u. By the local

maximum condition at point (x0, t0) the two graphs Σλ,φ
t0 and Σλ,u

t0 are tangent at x0 and

do not intersect in a small neighborhood of the point. Therefore, the unit normal vectors of



16 A. CIOMAGA AND J.M. MOREL

u > λ

φ > λ

x0y(t) x(t) 

Figure 3. The level line Σλ,φ
t (in red) stays on the same side of the level line Σλ,u

t

(in blue). For t < t0, we consider the backwards locations x(t) of the point x0 on the

level lines Σλ,u
t as well as the intersections y(t) of the normal direction with the level

lines Σλ,φ
t of the test function.

these curves coincide up to their sign. We set

νu(x0, t0) =
Dφ

|Dφ|
(x0, t0).

Furthermore, for short times t ∈ (t0 − δ, t0 + δ) with δ > 0 small enough, the λ level set of

φ(·, t) denoted by

Σλ,φ
t = {x ∈ Ωt;φ(x, t) = λ}

remains a smooth graph in a neighborhood of x0. By the maximum condition (4.14), Σλ,φ
t

stays on the same side of Σλ,u
t (see Figure 4.1).

To fix ideas, suppose that for points x close enough to Σλ,u
t0 , u(x) > λ in the interior

domain bounded by the level line Σλ,u
t0 . Then the λ−level line of the test function Σλ,φ

t0 lies

locally outside the same domain. In addition, the normal vectors νu(x0, t0) and νφ(x0, t0)

point inwards the interior domain bounded by the level line Σλ,u
t0 .

2. We consider now the backwards locations x(t) on the curves Σλ,u
t of the point x0 ∈ Σλ,u

t0 ,

curves which represent the curve shortening evolutions of some level line Σλ,u
0 . Let ν(x(t), t)

be the unit inward vector at point x0 of the level line ∈ Σλ,u
t0 . The vector points in the

direction of x0 − x(t) and hence there exists d(x(t), t) such that

(4.15) x(t) = x0 − d(x(t), t)ν(x(t), t)

By the smoothness property (P1) of Theorem 1,

lim
tրt0

ν(x(t), t) = νu(x0, t0).

Let y(t) be the intersection point of the outward normal direction −ν(x(t), t) (we take here

into account that we have considered upper level sets, i.e. νφ points inwards) with the level
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curve Σλ,φ
t (situated outside Σλ,u

t0 ). Then there exists d(y(t), t) such that

(4.16) y(t) = x0 − d(y(t), t)ν(x(t), t)

and Dφ(y(t), t) 6= 0, since Σλ,ϕ
t remains a local graph for short times. From the implicit

function theorem we deduce that y(t) is uniquely defined and varies smoothly in time. Thus

the following limit exists:

lim
tրt0

y(t)− x0
t− t0

=
∂y

∂t
(t0).

Furthermore, since Σλ,φ
t stays on the same side of Σλ,u

t we have

d(x(t), t) ≤ d(y(t), t).

Taking the inner product with ν(x(t, )t) in equations (4.15) and (4.16) and dividing by t < t0,

the previous inequality implies that

〈
x(t)− x0
t− t0

, ν(x(t), t)〉 ≤ 〈
y(t)− x0
t− t0

, ν(x(t), t)〉.

Passing to the limits as t → t0 we have

(4.17) 〈
∂x

∂t
(t0), ν

u(x0, t0)〉 ≤ 〈
∂y

∂t
(t0), ν

u(x0, t0)〉

and taking into account that (CS) gives

(4.18) 〈
∂x

∂t
(t0), ν

u(x0, t0)〉 = ku(x0, t0)

we get

ku ≤ 〈
∂y

∂t
(t0), ν

u(x0, t0)〉.

But Σu
t0 and Σφ

t0 are ordered by inclusion and meet at point x0. Thus, their curvatures at x0
are ordered kφ(x0, t0) ≤ ku(x0, t0). On the other hand, from the regularity of the test function

and the fact that Dφ(x0, t0) 6= 0 the curvature at x0 can be expressed as

kφ(x0, t0) = −div(
Dφ

|Dφ|
)(x0, t0)

Consequently

(4.19) − div(
Dφ

|Dφ|
)(x0, t0) ≤ 〈

∂y

∂t
(t0), ν

u(x0, t0)〉.

3. The sequence of points y(t) found before belongs to the λ−level set of the test function,

thus we have

φ(y(t), t) = λ, for t ∈ (t0 − δ, t0].

Differentiating this identity with respect to t one gets for t = t0

〈
∂y

∂t
(t0),Dφ(x0, t0)〉+ φt(x0, t0) = 0.
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But at the touching point x0 the normal vector to Σλ,φ
t0 can be expressed as

Dφ

|Dφ|
(x0, t0) = νu(x0, t0).

Consequently the equality above at point (x0, t0) becomes

φt(x0, t0) = −|Dφ|(x0, t0)〈
∂y

∂t
(x0, t0), ν

u(x0, t0)〉

which by inequality (4.19) implies

φt(x0, t0) ≤ |Dφ|div(
Dφ

|Dφ|
)(x0, t0)〉.

�

Remark 4.2. If a point x0 is a collapsing point at time t0, then

u(x, t) = λ,∀t ∈ [t0, t0 + δ)

Therefore the test function ϕ satisfies Dφ(x0, t0) = 0.

Lemma 4.3. Let x0 belong to a level line Σλ,u
t0 of the function u(·, t0). Let φ be a test function

such that Dφ(x0, t0) = 0, D2φ(x0, t0) = 0. Then φ satisfies φt(x0, t0) ≤ 0.

Proof. By Remark 4.1 we can assume that the test function has the form φ(x, t) = f(x)+g(t).

By assumption, for every (x, t) in a neighborhood of (t0, x0) we have

(4.20) u(x, t)− f(x)− g(t) ≤ u(x0, t0)− f(x0)− g(t0).

1. Assume first that Σλ,u
t0 is not reduced to a point and say it is the curve shortening

evolution of the original level line Σλ,u
0 . Denote by Σλ,u

t the intermediate evolutions for

0 < t < t0. Consider, as before, for short times t ∈ (t0 − δ, t0] the points x(t) belonging to

Σλ,u
t such that x(t) → x0 as t → t0. Since u(x(t), t) = u(x0, t0) from inequality (4.20) we get

(4.21) g(t0)− g(t) ≤ f(x(t))− f(x0).

However, since the level line evolves by curve shortening, we also have

(4.22) x(t) = x0 + (t− t0)k(x0, t0)ν(x0, t0) + o(t− t0).

Substituting this asymptotic expansion in (4.21) and recalling that Df(x0, t0) = 0 yields

g′(t0)(t0 − t) ≤ o(t0 − t),

which implies g′(t0) ≤ 0. Since g′(t0) = φt(x0, t0), this proves the announced statement.

2. The only case not treated by the above argument is when x0 is the collapsing point of

some level line Σλ,u
t . Accordingly, t0 is its collapsing time. In this case, the level line does not

have a normal direction at (x0, t0) and consequently equation (4.22) is not valid anymore.

Nevertheless, by Theorem 1, property (P3), for short times t ∈ (t0 − δ, t0) the points x(t)

lie approximatively on a circle of radius R(t) respectively, with R(t0) = 0. Thus

(4.23) |x(t)− x0| ≃
√

2(t0 − t).
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Substituting this asymptotic expansion in (4.21) and taking into account that

Df(x0, t0) = 0 and D2f(x0, t0) = 0

we obtain

g′(t0)(t0 − t) ≤ o(t0 − t),

which implies again g′(t0) ≤ 0. �

The Level Lines Shortening can be extended by density to an operator acting on the class

of Lipschitz functions.

Corollary 4.1. For each u0 ∈ Lip(Ω) consider a uniform approximation by very simple

functions un0 ∈ VS(Ω) and define its LLS evolution by

LLS(t)u0(x) = lim
n→∞

(LLS(t)un0 (x)) ,

Then the right hand side member is well defined and is a solution of (MCM) with initial data

u0.

Proof. From the previous theorem we know that the LLS evolutions of the very simple func-

tions un0
un(·, t) = LLS(t)un0

are solutions of the mean curvature equation. By the comparison principle we know that

max
x∈Ω

(un(x, t)− um(x, t)) ≤ max
x∈Ω

(un0 (x)− um0 (x)).

Since the sequence of very simple functions is uniformly convergent, we deduce that for each

t > 0, the family {LLS(t)un0}n ⊂ VS(Ω) is a Cauchy sequence in the || · ||∞ norm. By the

stability properties of viscosity solutions, the limit function

u(x, t) = lim
n→∞

un(x, t)

is also a viscosity solution of (MCM) and hence satisfies

Lip(u(·, t)) ≤ Lip(u0).

�

4.2. Affine Curvature Motion. Similarly, one can connect the affine shortening

(AS)
∂x

∂t
= k1/3ν,

where ν(·, t) is the inner unit normal vector of the curve x(·, t) and k(·, t) the signed scalar

curvature corresponding the choice of ν(·, t), with the affine curvature motion

(ACM)

{

ut = |Du|
(

curv(u)
)1/3

, in R
2 × [0,∞)

u(·, 0) = u0, on R
2.

In the definition of these nonlinear evolutions, for x ∈ R, x1/3 stands for sgn(x)|x|1/3.
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Theorem 5. Let u0 ∈ VS(Ω). Then the Level Lines Affine Shortening evolution of the

function u0,

u(x, t) = LLAS(t)u0(x),∀x ∈ R
2,∀t ∈ [0,∞)

is a viscosity solution for (ACM) with initial data u0.

Proof. The proof of Theorem 4 is purely geometric, thus the same arguments apply for level

lines affine shortening.

1. When Dφ(x0, t0) 6= 0 we need to estimate from above the right hand side of

φt(x0, t0) = −|Dφ|(x0, t0)〈
∂y

∂t
(x0, t0), ν

u(x0, t0)〉.

The proof is literally the same up to inequality (4.17)

〈
∂x

∂t
(t0), ν

u(x0, t0)〉 ≤ 〈
∂y

∂t
(t0), ν

u(x0, t0)〉.

The only difference it makes with the previous proof is when (AS) comes into play. More

precisely the evolution equation (4.18) at the maximum point (x0, t0) should be replaced by

an affine shortening evolution

(4.24) 〈
∂x

∂t
(t0), ν

u(x0, t0)〉 = (ku(x0, t0))
1/3

On the other hand kφ(x0, t0) ≤ ku(x0, t0) which implies
(

kφ(x0, t0)
)1/3

= sgn(kφ)|kφ(x0, t0)|
1/3 ≤ sgn(ku)|ku(x0, t0)|

1/3 =
(

ku(x0, t0)
)1/3

But for the test function φ, kφ(x0, t0) = −curv(φ)(x0, t0). Hence

−(curv(φ))1/3 ≤ 〈
∂y

∂t
(t0), ν

u(x0, t0)〉.

from where we deduce the desired viscosity inequality.

2. For the case Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0 it is sufficient to replace the asymptotic

expansions (4.22) by

(4.25) x(t) = x0 + (t− t0)
(

k(x0, t0)
)1/3

ν(x0, t0) + o(t− t0).

respectively (4.23) by

(4.26) |x(t)− x0| ≃
4
3

√

4

3
(t0 − t).

This concludes the proof.

�

5. Numerical Implementation and Applications

The discrete Level Lines Shortening Algorithm performs accurate sub-pixel evolution by

mean curvature motion. The complexity of the algorithm is directly proportional to the total

variation of the image, since it acts simultaneously and independently on all of the level lines

of the image (of course up to a quantization step). The main goal of the implementation is to
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obtain and move level lines with arbitrarily high sub-pixel precision, overcoming thus all the

drawbacks of finite difference schemes based on pixel approximations. Moving simultaneously

level lines extracted with high sample precision allows straight level lines with high gradient

to stand still with LLS, whereas they are diffused by FDS, even in its stack variant. Further

example and details about the numerical implementation are given in [9]. The following

example illustrates the recovery of shapes freed from their aliasing, JPEG, and noise artifacts.

5.1. Image restoration and visualization. Aliasing due to pixelization is common in

scanned documents. LLAS can be used for a graphic quality improvement smoothing contours,

see Fig. 4. After smoothing, pixelized level lines become accurate curves with sub-pixel control

points, whose curvature can be faithfully computed. Thus the whole chain can be viewed as a

numerical preprocessing before further numerical analysis and feature extraction. But there

is also a strong interest in the direct visualization of the level lines and of the microscopic

curvature map of an image.

Figure 4. Top: original cartoon image and its corresponding bilinear level lines.
Bottom: LLAS evolution and smoothed level lines.

5.2. Fingerprints restoration and discrimination. Minutiae such as cores, bifurcations

and ridge endings characterize uniquely fingerprints. Their detection requires a careful

smoothing, particularly to avoid a spurious diffusion mixing the ridges. The main objective

of smoothing is to sieve the curvature extrema, which allow the fingerprint discrimination.
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Figure 5. Original fingerprint and its level lines, Level Lines Affine Shortening of
the image and the corresponding level lines.
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