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WEIGHT FUNCTION IN A BIMATERIAL STRIP CONTAINING AN

INTERFACIAL CRACK AND AN IMPERFECT INTERFACE.

APPLICATION TO BLOCH-FLOQUET ANALYSIS IN A THIN

INHOMOGENEOUS STRUCTURE WITH CRACKS.

A VELLENDER∗, G S MISHURIS† , AND A B MOVCHAN‡

Abstract. We define a weight function and analyse a problem of anti-plane shear in a bi-material
strip containing a semi-infinite crack and an imperfect interface. We then present an asymptotic
algorithm which uses the weight function to evaluate the coefficients in asymptotics of solutions to
problems of wave propagation in a thin bi-material strip containing a periodic array of cracks situated
at the interface between two materials.
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1. Introduction. In this paper we address the problem of determining a weight
function in a domain representing a bi-material strip containing a semi-infinite in-
terfacial crack. Where the crack is not present the interface is considered imperfect,
modelling a thin layer of adhesive between the materials.

Weight functions are mainly used to evaluate stress intensity factors for asymp-
totic representations near non-regular boundaries such as crack tips. Classically, sym-
metric weight functions for interfacial cracks in two-dimensional elasticity were studied
by Hutchinson et. al [11] and Bueckner [8]. In these classical works, weight functions
were defined as the stress intensity factors corresponding to the point force loads ap-
plied to the faces of the crack. More recently, Willis and Movchan [22] defined general
weight functions as non-trivial singular solutions of a boundary value problem with
zero tractions on the faces of the crack and unbounded elastic energy. Recently weight
functions have been used to perform perturbation analysis of the crack front in [20]
and to evaluate Lazarus-Leblond constants in [19]. These works contain perfect in-
terfaces which lead to the well-known square root singularity phenomenon [21, 22].
In the imperfect interface problem considered in the present paper there is no square
root singularity in stress components and so the weight function instead takes the role
of aiding in the evaluation of important asymptotic constants which take the place of
stress intensity factors.

The imperfect interface is a crucial feature of the problem discussed. Accurate
asymptotic derivations with various interfaces in composite materials (of imperfect
type among others) for anti-plane shear without the presence of cracks have been
analysed in [7, 10, 14]. Such interfaces have been used to model a thin layer con-
sisting of small cracks in such a way that the cracks do not appear in the analysis
in [5, 6, 9] using the phenomenological approach. Cracks in the static regime with
imperfect interfaces have been studied in [2, 15], where it is proved that the imper-
fect interface leads to a different type of singularity near the crack tip than in the
ideal interface case. Analysis of the perfect interface with cracks under harmonic load
can be found in [1, 17] and recently for a layered composite with cracks in [9]. The
manuscript [17] considers wave propagation in a thin bi-material strip and discusses
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the singular behaviour near the crack tip, while [1] considers a bi-material plane with
waves propagating perpendicular to the cracks.

We consider in this paper Mode III deformation and describe the extent of the
interface’s imperfection by a positive parameter denoted κ. The problem we study
here is a singular perturbation problem; taking very small values for κ gives a qualita-
tively significantly different weight function from that derived for the perfect interface
case in [17] which corresponds to the formulation with κ = 0. Moreover, large values
of κ can lead to interesting effects where the boundary layers surrounding different
crack tips decay slowly so they can no longer be considered as having no influence on
the Bloch-Floquet conditions. This effect is discussed in [4]; in the analysis presented
in the present paper we assume that κ is not large enough for these effects to come
into play and later find a condition for this to be the case. Problems regarding cracks
in domains including imperfect interfaces have been studied in [2] and [16], but no
corresponding weight function has previously been constructed.

Another critical characteristic of the problem is that the strip considered is very
thin. In addition to the strip itself being very thin, imperfect interfaces are typically
replaced with an extremely thin layer of a softer bonding material in finite element
computations (justified for example in [7, 10, 16]). Moreover, singular behaviour
exists at the crack tips. These points make FEM modelling for particularly thin
strips extremely difficult or even impossible and motivate the need for the asymptotic
approach. In this paper we compare the asymptotic model with finite element simu-
lations only in cases when the strip is not too thin, but stress that the finite element
methods are unsuitable for the limiting case whereas the asymptotics remain valid.
The asymptotic method also obtains crucial constants which describe the solution’s
behaviour at the crack tips which are vital for determining whether fracture may
occur. These important constants would not be attained by finite element methods.

The plan of the work is as follows. We first formulate the weight function problem
and use Fourier transform and Wiener-Hopf techniques [18] to obtain the solution.
Asymptotic analysis enables us to find analytic expressions for all important constants.
We then present an application of the weight function to the analysis of Bloch-Floquet
waves in a structure containing a periodic array of cracks and imperfect interfaces.
This application involves the derivation of junction conditions. Asymptotic theories
for structures like rods and plates have received much attention throughout the history
of elasticity theory. For multi-structures however, conditions in engineering practice
are often formulated on the basis of intuitive physical assumptions [3]. For example,
the zero order junction conditions for the problem addressed fit with physical intuition.
It is important to give these conditions a rigorous mathematical footing; moreover,
higher order junction conditions do not follow such intuition [12].

We conclude by presenting a comparison between the perfect interface case studied
in [17] and the imperfect interface case presented here.

2. Weight Function.

2.1. Formulation of the Problem. The geometry of the strip in which we
construct the weight function is shown in Figure 2.1. We define our domain ΠB to be

the union of Π
(1)
B and Π

(2)
B , where

Π
(j)
B = {(X,Y ) : X ∈ R, (−1)j+1Y ∈ (0, Hj)}, j = 1, 2.

Π
(1)
B corresponds to the material above the cut with shear modulus µ1, while Π

(2)
B

corresponds to the material below the cut with shear modulus µ2. The materials
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Fig. 2.1. Geometry for the weight function.

have respective thicknesses H1 and H2. A semi-infinite crack with its tip placed at
the origin occupies X < 0, while the rest of the interface is assumed to be imperfect
(see (2.5) in the text below).

The functions w1 and w2 are defined in domains Π1 and Π2 respectively as solu-
tions to the Laplace equation

∇2wj(X,Y ) = 0.(2.1)

We impose boundary conditions along the horizontal parts of the boundary of ΠB

and on the crack face itself. We denote the components of stress in the out-of-plane
direction by

σ(j)
nz (X,Y ) := µj

∂u(j)

∂n
, j = 1, 2.(2.2)

We assume a zero stress component in the out-of-plane direction along the top and
bottom of the strip, as well as along the face of the crack itself:

σ
(1)
Y Z(X,H1) = 0, σ

(2)
Y Z(X,−H2) = 0, X ∈ R,(2.3)

σ
(1)
Y Z(X, 0+) = 0, σ

(2)
Y Z(X, 0−) = 0, X < 0.(2.4)

Ahead of the cut we impose the imperfect transmission conditions

w1|Y=0+
− w2|Y=0−

= κσ
(1)
Y Z(X, 0+), X > 0,(2.5)

where κ > 0 is a parameter describing the extent of imperfection of the interface. We
further assume continuity of tractions across the interface between the materials

σ
(1)
Y Z(X, 0+) = σ

(2)
Y Z(X, 0−), X > 0.(2.6)

We seek solutions in the class of functions that decay exponentially as X → +∞
and are bounded as X → −∞:

wj = O(e−γ+X), X → +∞; wj = Cj +O(eγ−X), X → −∞,(2.7)

where γ± > 0 and Cj are constants to be sought from the analysis. At the vertex of
the crack, the solution wj is assumed to be weakly singular, with

w1, w2 = O(ln |X |), X → 0.(2.8)

Formally, conditions (2.1)-(2.7) are similar to those in [17] if we take κ = 0. How-
ever, with κ > 0 the problem is a singular perturbation problem and the behaviour
described in (2.8) is entirely different.
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2.2. An auxiliary problem. We now introduce an auxiliary solution Y which
satisfies the Laplace equation (2.1) along with the boundary and transmission con-
ditions (2.3)-(2.6), but the conditions at infinity and at the vertex of the crack are
modified as follows:

Yj = O(e−γ+X), X → +∞,(2.9)

Yj = CjX +Dj +O(eγ−X), X → −∞,(2.10)

Yj = Yj(0+, 0) +O(X ln |X |), X → 0.(2.11)

The functions w and Y are related via the formula

w(X,Y ) =
∂

∂X
Y(X,Y ).(2.12)

Bearing this relationship in mind, we often later refer to Y as a ‘weight function’ as
well as w. It is also shown in [15] that as R → 0,

Y± =
(−1)ja

(Y)
0

πµj

{

µ1κπ

1 + µ1

µ2

+

[

1− ln

(

R

b
(Y)
0

)]

R cos θ ± (π ∓ θ)R sin θ

}

,(2.13)

where Y+ and Y− represent Y1(R, θ) and Y2(R, θ) respectively and (R, θ) describes
the usual polar co-ordinate system with θ ∈ [0, π] for Y1 and θ ∈ [−π, 0] for Y2.

2.2.1. Derivation of Wiener-Hopf equation. We define the Fourier trans-
forms of Yj by

Ȳj(ξ, Y ) =

∞
∫

−∞

eiξXYj(X,Y )dX.(2.14)

The functions Ȳj are analytic in the strip S = {ξ ∈ C : −γ+ < Im(ξ) < 0}, and have
a double pole only at the point ξ = 0, so

Ȳj(ξ, Y ) ∼ 1

ξ2
Cj − i

Dj

ξ
+O(1), ξ → 0.(2.15)

Note that the functions Ȳj(ξ, Y ) can be analytically extended to the strip

S̃ = {ξ ∈ C : −γ+ < Im(ξ) < γ−}.

Let us now introduce [Y], the jump in Y, defined by

[Y] = Y1|Y=0+ − Y2|Y=0− .(2.16)

We see from (2.15) that the Fourier transform of the jump [Y](X) generally speaking
has a double pole at the point ξ = 0.

We introduce the following notation:

Φ−(ξ) = [Y]− µ1κ
∂Y1

∂Y

∣

∣

∣

∣

Y =0+

=

0
∫

−∞

(

[Y](X)− µ1κ
∂Y1

∂Y

∣

∣

∣

∣

Y=0+

)

eiξXdX,(2.17)

where we have taken into account (2.5) or equivalently the fact that [Y]−µ1κ
∂Y1

∂Y

∣

∣

Y =0+
=

0 for X > 0. The function Φ−(ξ) is analytic in the half plane Im(ξ) < 0 and has
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a double pole at ξ = 0. Thus it can be analytically extended into the half-plane
C− = {ξ ∈ C : Im(ξ) < γ−}. We further define the function

Φ+(ξ) = µ1

∞
∫

0

∂Y1

∂Y

∣

∣

∣

∣

Y =0+

eiξXdX,(2.18)

and so according to (2.4), Φ+(ξ) is analytic in the half plane C
+ = {ξ ∈ C : Im(ξ) >

−γ+}.
We expect that

Φ±(ξ) =
E±

1

ξ
+

E±
2 ln(∓iξ)

ξ
+O

(

1

ξ2

)

, ξ → ∞,(2.19)

in the respective domain according to (2.11); we later confirm this to be true.
The Fourier transforms of the functions Yj are of the form

Ȳj(ξ, Y ) = Aj(ξ) cosh(ξY ) +Bj(ξ) sinh(ξY ).(2.20)

Upon the application of boundary and transmission conditions expressions relating
Aj(ξ) and Bj(ξ) are found:

Bj(ξ) = (−1)jAj(ξ) tanh(ξHj), j = 1, 2; µ1B1(ξ)− µ2B2(ξ) = 0.(2.21)

Moreover, Φ±(ξ) can be expressed in terms of Aj(ξ), Bj(ξ).

Φ−(ξ) = A1(ξ)−A2(ξ)− µ1κξB1(ξ), Φ+(ξ) = µ1ξB1(ξ).(2.22)

By applying boundary and transmission conditions, we conclude that the functions
Φ+(ξ) and Φ−(ξ) satisfy the functional equation of the Wiener-Hopf type

Φ−(ξ) = −Ξ(ξ)Φ+(ξ),(2.23)

in the strip −γ+ < Im(ξ) < 0, where

Ξ(ξ) =
1

ξ

(

1

µ1
coth(ξH1) +

1

µ2
coth(ξH2) + κξ

)

,(2.24)

and −γ+ is equal to the size of the imaginary part of the first zero of Ξ(ξ) lying below
the real axis. We would like to stress that the form of the Wiener-Hopf kernel Ξ(ξ)
demonstrates that the weight function problem is a singular perturbation problem
as κ → 0; the presence of the term involving κ fundamentally alters the asymptotic
behaviour of Ξ(ξ) as ξ → ∞.

2.2.2. Factorization of the Wiener-Hopf kernel. We note that the kernel
function Ξ(ξ) as defined in (2.24) can be written in the form

Ξ(ξ) = κ
(λ+ iξ)(λ− iξ)

ξ2
Ξ∗(ξ),(2.25)

where

Ξ∗(ξ) =
ξ(µ1 coth(ξH2) + µ2 coth(ξH1) + µ1µ2κξ)

µ1µ2κ(λ2 + ξ2)
,(2.26)
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and

λ =

√

µ1H1 + µ2H2

µ1µ2H1H2κ
.(2.27)

Now, Ξ∗(ξ) is analytic in a strip containing the real axis, clearly positive, even and
smooth for all ξ ∈ R and has been chosen in such a way so that Ξ∗(ξ) tends towards
1 as ξ → ±∞ and as ξ → 0. Furthermore, the function Ξ∗(ξ) can be factorized in the
form

Ξ∗(ξ) = Ξ+
∗ (ξ)Ξ

−
∗ (ξ),(2.28)

where

Ξ±
∗ (ξ) = exp











±1

2πi

∞∓iβ
∫

−∞∓iβ

ln Ξ∗(t)

t− ξ
dt











,(2.29)

and β > 0 is chosen to be sufficiently small so the contours of integration lie within the
strip of analyticity of Ξ∗(ξ). The functions Ξ±

∗ are analytic in their respective half-
planes. To conclude this subsection, we have factorised Ξ(ξ) in the form given in (2.25)
and (2.28), where Ξ±

∗ are analytic in the half-planes denoted by their superscripts.
Note that in the case H1 = H2, other factorisation has been obtained in [2].

2.2.3. Asymptotic behaviour of Ξ+
∗ . We now seek asymptotic estimates of

Ξ+
∗ (ξ). We first note that for ξ within the strip of analyticity,

Ξ(ξ) =
η

ξ2
+O(1), Ξ∗(ξ) = 1 +O(|ξ|2), ξ → 0, η =

1

µ1H1
+

1

µ2H2
.(2.30)

Let us now consider more accurately the behaviour of Ξ∗(ξ) for ξ ∈ R as ξ → ∞.
Noting that Ξ∗(ξ) is an even function, it follows from (2.24) that

Ξ∗(ξ) = 1 +
µ1 + µ2

µ1µ2κ|ξ|
− λ2

ξ2
+O

(

1

|ξ|3
)

, ξ → ±∞.(2.31)

The same estimate is true for any ξ lying in the strip of analyticity. We further find
that

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(|ξ|2), ξ → 0,(2.32)

Ξ+
∗ (ξ) = 1 +

1

πi

(µ1 + µ2)

µ1µ2κ

ln(−iξ)

ξ
+O

(

1

|ξ|

)

, Im(ξ) → +∞;(2.33)

the derivation of these expressions is given in Appendix A. Here we have defined the
asymptotic constant

α =

∞
∫

0

ln Ξ∗(t)

t2
dt.(2.34)

The important expression (2.33) describing logarithmic asymptotics at infinity is
needed later for equation (2.43).
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2.2.4. Solution of the Wiener-Hopf equation. The factorized equation (2.23)
is of the form

− κ(λ− iξ)Φ+(ξ)Ξ+
∗ (ξ) =

1

λ+ iξ
ξ2Φ−(ξ)

1

Ξ−
∗ (ξ)

.(2.35)

Both sides of (2.35) represent analytic functions in the strip −γ+ < Im(ξ) < γ−.
Moreover we now have asymptotic estimates for Ξ±

∗ (ξ) at the zero point in equation
(2.32) and for ξ → ±∞ in (2.33). We deduce that since both sides of (2.35) exhibit the
same behaviour at infinity in their respective domains according to (2.19), both sides
must be equal to a constant, which we denote A. We can therefore obtain explicit
expressions for Φ±, which are as follows:

Φ+(ξ) = − A
κ(λ− iξ)Ξ+

∗ (ξ)
, Φ−(ξ) =

A(λ+ iξ)Ξ−
∗ (ξ)

ξ2
,(2.36)

We deduce that

Ȳj(ξ, Y ) = −AΦ+(ξ)

µjξ

{

cosh(ξ(Y + (−1)jHj))

sinh(ξ(−1)j+1Hj)

}

, j = 1, 2.(2.37)

This allows us to investigate the behaviour of Ȳj as ξ → ±∞ and at the zero point.
It also enables us to find the hitherto unknown real constants Cj and Dj.

2.2.5. Evaluation of constants Cj, Dj, a
(Y)
0 , γ±. In this subsection we eval-

uate the constants γ+ (defined in (2.9)), γ−, Cj , Dj (defined in (2.10)) and a
(Y)
0

(defined in (2.13)). We see from our expressions for Ȳj and Φ+ (equations (2.36) and
(2.37)), along with our asymptotic estimate for Ξ+

∗ (ξ) as ξ → 0 that

Ȳj(ξ) =
(−1)j+1A
κλµjHj

(

1

ξ2
− i

ξ

(

−α

π
− 1

λ

))

+O(1), ξ → 0,(2.38)

where α is the constant defined in (2.34). It follows from our definition of Cj and Dj

in (2.15) that

Cj =
(−1)j+1A
κλµjHj

, Dj =
(−1)jA
κλµjHj

(

α

π
+

1

λ

)

.(2.39)

For normalisation we choose A = κλ, giving

Cj =
(−1)j+1

µjHj
, Dj =

(−1)j

µjHj

(

α

π
+

1

λ

)

.(2.40)

The chosen normalisation leaves (2.40)1 in the same form as in [17], but it is clearly
seen that the expression for Dj (which depends upon κ is different). Mishuris (2001)
[15] demonstrates that near the crack tip (i.e. as R → 0), Yj(R, θ) has behaviour
described by (2.13). From this we see that

[Y] ∼ −κa
(Y)
0 , R → 0.(2.41)

The imperfect transmission conditions (2.5) therefore give that

µ1
∂Y1

∂Y

∣

∣

∣

∣

Y =0+

∼ −a
(Y)
0 , X → 0.(2.42)
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We earlier made an assumption in (2.19) regarding the behaviour of Φ+ at infinity
and now verify that this was correct. It follows from the expression for Φ+(ξ) given
in (2.36) and the asymptotic estimate for Ξ+

∗ (ξ) given in (2.33) that

Φ+(ξ) =
λ

iξ
+

(µ1 + µ2)λ

µ1µ2πκξ2
ln(−iξ) +O

(

1

|ξ|2
)

, Im(ξ) → +∞,(2.43)

which justifies our previous claim. Theorem B.1 (using µ1
∂Y
∂Y in place of ‘f ’ in the

statement of the theorem) then yields that

lim
X→0+

µ1
∂Y
∂Y

= −λ,(2.44)

where λ has been defined in (2.27) and so it follows that

a
(Y)
0 = λ.(2.45)

The constant γ+ is the distance of the first zero of Ξ(ξ) below the real axis. Manipu-
lation of (2.24) indicates that zeros of Ξ(ξ) satisfy

1

µ1
cot(γ+H1) +

1

µ2
cot(γ+H2)− κγ+ = 0,(2.46)

For the first zero below the axis, for large κ, γ+ should be small, and so it can be
shown that

γ+(κ) = λ(κ)(1 +O(κ−1)), κ → ∞,(2.47)

indicating that γ+(κ) = O(κ−1/2), κ → ∞. We also see that

γ+(0) ∈
(

π

2H1
,

π

2H2

)

.(2.48)

The constant γ− is given by

γ− = πmin

{

1

H1
,
1

H2

}

.(2.49)

In conjunction with (2.40) we have now found all constants describing the asymptotic
behaviour of the weight function Y.

3. Application to Analysis of Bloch-Floquet Waves. In this section, we
present an application of the weight function derived in the previous section by ad-
dressing the problem of out-of plane shear Bloch-Floquet waves within a thin bi-
material strip containing a periodic array of longitudinal cracks and imperfect inter-
faces. The problem addressed is an imperfect interface analogue to that studied in
[17].

3.1. Geometry. The geometry of an elementary cell of the thin periodic struc-
ture considered is shown in Figure 3.1. The elementary cell is of length a and contains
two materials of thicknesses εH1 and εH2, where ε is a small dimensionless param-
eter. These materials occupy respective domains Π(j), j = 1, 2, and the elementary

cell is further split into smaller domains Ω
(m)
ε , m = 1, 2, 3, 4, as shown in Figure 3.1.

Along the join of the two materials and centered on the origin sits a crack of length
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εH2

εH1

x

y

l
a

Ω
(1)
ε

Ω
(2)
ε

Ω
(3)
ε

Ω
(4)
ε

A B

Π
(1)
ε

Π
(2)
ε

Fig. 3.1. Geometry of the elementary cell.

l. Outside the crack, the interface is assumed to be imperfect, which models a thin
layer of adhesive joining the materials together. The extent of this imperfection is
represented by the parameter κ.

The functions u(j)(x, y) are defined in Π
(j)
ε , j = 1, 2 as solutions of the Helmholtz

equations

∇2u(j)(x, y) +
ω2

c2j
u(j)(x, y) = 0, (x, y) ∈ Π(j)

ε , j = 1, 2.(3.1)

Here, cj =
√

µj/ρj are the shear speeds in their respective domains j = 1, 2. The

functions u(j) are regarded as out-of-plane displacements, µj denotes the shear modu-

lus and ρj the mass density of the material occupying Π
(j)
ε . The quantity ω represents

the radian frequency of the time-harmonic vibrations with amplitude u.

3.2. Boundary conditions. We impose boundary conditions along the horizon-
tal parts of the boundary of Πε and on the crack face itself. We use similar notation
to that in the previous section to denote the components of stress (see (2.2)).

We assume a zero stress component in the out-of-plane direction along the top
and bottom of the strip, as well as along the face of the crack itself:

σ(1)
yz (x, εH1) = 0, σ(2)

yz (x,−εH2) = 0, x ∈ (−a/2, a/2),(3.2)

σ(1)
yz (x, 0

+) = 0, σ(2)
yz (x, 0

−) = 0, x ∈ (−l/2, l/2).(3.3)

Outside the crack, along the boundary between Π
(1)
ε and Π

(2)
ε , there is an imper-

fect interface described by the condition

u(1)(x, 0+)− u(2)(x, 0−) = εκσ(1)
yz (x, 0

+), x ∈ (−a/2,−l/2)∪ (l/2, a/2).(3.4)

We also assume continuity of stress across the interface

σ(1)
yz (x, 0

+) = σ(2)
yz (x, 0

−), x ∈ (−a/2,−l/2)∪ (l/2, a/2).(3.5)

We seek the solutions u(j) which represent the Bloch-Floquet waves, so that at the
ends of our elementary cell x = ±a/2 we have for j = 1, 2 the Bloch-Floquet conditions

u(j)(−a/2, y) = e−iKau(j)(a/2, y), y ∈ (−εH2, εH1),(3.6)

σ(j)
xz (−a/2, y) = e−iKaσ(j)

xz (a/2, y), y ∈ (−εH2, εH1).(3.7)
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For a fixed value of the Bloch parameter K, we seek the eigenvalues ω and the

corresponding eigenfunctions u(j) with finite norm in W 1
2 (Π

(j)
ε ), j = 1, 2.

In (3.4), the case in which κ = 0 corresponds to an ideal/perfect interface between
the different materials; such a problem was considered in [17]. Where possible we will
follow the same line as in this paper. To summarise the approach, we approximate u
in a certain form, derive a lower-dimensional model together with boundary layers in
the vicinity of the vertices of the crack and then use our weight function to assist in
the derivation of junction conditions for a skeleton model.

3.3. Asymptotic Ansatz. The eigenfunctions u(x, y) are approximated in the
form

u(x, y, ε) =
N
∑

k=0

εk

{

4
∑

m=1

χm

(

v(k)m (x) + ε2V (k)
m (x, Y )

)

+
(

W
(k)
A (XA, Y ) +W

(k)
B (XB, Y )

)}

+RN (x, y, ε),(3.8)

with scaled co-ordinatesXA, XB and Y introduced in the vicinity of the left and right
vertices of the crack defined as

XA =
x− xA

ε
, XB =

x− xB

ε
, Y =

y

ε
.(3.9)

Here, v
(m)
k represent solutions of lower-dimensional problems within limit sets Ω

(j)
0 ,

j = 1, 2, 3, 4. χm = χm(x, y, ε) are cut-off functions defined so that χm(x, y; ε) ≡ 1 in

Ω
(m)
ε and decay rapidly to zero outside Ω

(m)
ε . They vanish near the so-called junction

points A and B (the vertices of the crack). The terms W
(k)
A and W

(k)
B represent the

boundary layers near A and B, and V
(k)
m is the ‘fast’ change of eigenfunctions in the

transverse direction in the domain Ω
(j)
ε . RN is the remainder term in the asymptotic

approximation. We would like to indicate to the reader that the uppercase scaled
co-ordinate XB defined in (3.9) corresponds to X from the derivation of the weight
function in section 2.

We note that this form of Ansatz relies upon the vital assumption that the bound-
ary layers surrounding the crack vertices A and B are independent. That is, we assume
that the exponential decay of both boundary layers is sufficiently rapid so that it is
negligible in the vicinity of the other crack tip.

In this paper we will consider the form of approximation given in (3.8) with N = 1
and will comment on the effect of taking higher order approximations.

3.4. One-dimensional model problems. Outside the vicinity of A and B,

the boundary layers W
(j)
A and W

(j)
B decay (we later verify this to be the case) and so

seek u in the form

u(x, y, ε) ∼
1
∑

k=0

εk
(

v(k)m (x) + ε2V (k)
m (x, Y )

)

,(3.10)

where V
(k)
m have zero average over the cross-section of Ω

(m)
ε for all m = 1, 2, 3, 4. That

is,

∫ H1

0

V (k)
m (x, Y )dY = 0,

0
∫

−H2

V (k)
m (x, Y )dY = 0.(3.11)
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Since the low-dimensional model problem studied in [17] was the same above and

below the crack (in Ω
(2)
ε and Ω

(3)
ε ), we refer the reader to that paper. The problem

is however differently formulated in Ω
(1)
ε and Ω

(4)
ε due to the imperfect transmission

conditions in these domains. We focus our attention on the layered structure Ω
(1)
ε ;

analogous arguments will apply to Ω
(4)
ε . We use the notation v

(k)
1j to denote the

function v
(k)
1 in Π

(j)
ε . The key observation is then to note that the transmission

condition across the imperfect interface as given in (3.4) imply that

v
(k)
11 − v

(k)
12 = 0, k = 0, 1.(3.12)

and so it follows that for k = 0, 1, that the solution to this low dimensional model is
not impacted by the presence of the imperfect interface.

To conclude this section, we have found that our case with the imperfect interface
has the same equations for the low dimensional model up to terms in ε as the case

with the perfect interface studied in [17]. The equations for v
(k)
4 and V

(k)
4 are of

course similar to the case examined here where m = 1. We would like to stress that
the imperfect interface impacts on the low dimensional model equations for terms
in εk, k ≥ 2. The equations gained in this section need to be complemented with
the boundary conditions and junction conditions at the points xA and xB. In order
to derive these junction conditions which depend on the imperfect parameter κ, we
construct boundary layers in the vicinity of the vertices of the crack.

4. Junction conditions. We introduce four smooth cut-off functions χm ∈
C∞(R) in the spirit of [17]. These are functions defined so that χm(x, y; ε) ≡ 1 in

Ω
(m)
ε and decay rapidly to zero outside Ω

(m)
ε . These allow us to extend the function

(3.10) outside Ω
(m)
ε , m = 1, 2, 3, 4, giving

u(x, y; ε) ∼
1
∑

k=0

εk
4
∑

m=1

χm(x, y, ε)
(

v(k)m (x) + ε2V (k)
m (x, Y )

)

,(4.1)

however this gives an error near the junction points xA and xB. We therefore introduce
boundary layers WA(XA, Y ) and WB(XB , Y ), and so seek u(x, y, ε) in the form

u ∼
1
∑

k=0

εk

{

4
∑

m=1

χm

(

v(k)m (x) + ε2V (k)
m (x, Y )

)

+W
(k)
A (XA, Y ) +W

(k)
B (XB, Y )

}

.

Substituting this expression into the original equation and comparing terms of the
same degree of ε we obtain

∇2
XαY

{

W (k)
α (Xα, Y ) + F (k)

α (Xα, Y )
}

= 0, α = A,B, k = 0, 1,(4.2)

with the functions F (k)
α , k = 0, 1, α = A,B given by

F (0)
A =

3
∑

m=1

v(0)m (xA)χm(x, y; ε), F (0)
B =

4
∑

m=2

v(0)m (xB)χm(x, y; ε),

F (1)
A =

3
∑

m=1

{

(v(0)m )′(xA)XA + v(1)m (xA)
}

χm(x, y; ε),(4.3)

F (1)
B =

4
∑

m=2

{

(v(0)m )′(xB)XB + v(1)m (xB)
}

χm(x, y; ε).(4.4)
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l
(2)
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l
(1)
4
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(2)
4

S
(1)
δ

S
(2)
δ

Π
(1)
B (L)

Π
(2)
B (L)

XB = −L XB = L

Fig. 4.1. Contour of integration for (4.6)

We now focus our attention near xB; analogous arguments apply to xA. We will con-
sider in the following analysis four functions gi, i = 1, 2, 3, 4, which are solutions of the
Laplace equation. These solutions also satisfy the boundary conditions corresponding
to zero stress on the top and bottom edges of the strip (2.3) as well as along the cut
itself (2.4). They also satisfy the transmission condition (2.5) across the imperfect
interface, along with continuity of stress (2.6). These solutions are given by

g1 = 1, g2 = XB, g3 = Y, g4 =
∂Y
∂X

,(4.5)

where Y is the weight function derived in section 2.

Since they are boundary layers, we expect that W
(k)
B decay exponentially as X →

+∞ and behave as C
(k)
j X +D

(k)
j as X → −∞. We first express C

(k)
j , D

(k)
j , k = 0, 1

in terms of v
(k)
m and their derivatives. We have from Green’s formula that

0 =
2
∑

j=1

µj

∫

∂Π
(j)
B (L)

(

gi
∂

∂n
(W

(k)
B + F (k)

B )− (W
(k)
B + F (k)

B )
∂gi
∂n

)

dS.(4.6)

The further analysis is quite similar to that in [17], although we would like to stress
that the weight function Y in the present paper is different, as are the transmission
conditions. We therefore need to prepare this analysis from the beginning where it is
different for g3, g4.

4.1. The cases k = 0, 1, i = 1, 2, 3. We see from boundary conditions that

integrals over the horizontal parts of the boundary l
(j)
1 , l

(j)
3 , l

(j)
4 , j = 1, 2 give zero
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contribution to the integral. Moreover, the contribution from Sδ also disappears as

δ → 0 (see Figure 4.1) for g1, g2 and g3, leaving contributions solely from l
(j)
2 and l

(j)
5

in these cases.
From the definitions of F (k)

B , we obtain the following limits at ±∞ for k = 0, 1:

F (0)
B = v

(0)
4 (xB), XB → +∞,(4.7)

F (0)
B = v

(0)
2 (xB)H(Y ) + v

(0)
3 (xB)H(−Y ), XB → −∞,(4.8)

F (1)
B = (v

(0)
4 )′(xB)XB + v

(1)
4 (xB), XB → +∞,(4.9)

F (1)
B =

3
∑

j=2

{

(v
(0)
j )′(xB)XB + v

(1)
j (xB)

}

H((−1)jY ), XB → −∞,(4.10)

where H(Y ) is the Heaviside step function. Since W
(k)
B → 0 as XB → +∞, equation

(4.6) reduces to

0 =
2
∑

j=1

µj

∫

l
(j)
5

(

gi
∂

∂XB
F (k)

B −F (k)
B

∂gi
∂XB

)

dS(4.11)

−
2
∑

j=1

µj

∫

l
(j)
2

(

gi
∂

∂XB

(

F (k)
B +W

(k)
B

)

−
(

F (k)
B +W

(k)
B

) ∂gi
∂XB

)

dS(4.12)

Applying this procedure with each of g1, g2, g3 and F (0)
B ,F (1)

B yields six equations,
which are presented in subsection 4.3.

4.2. The cases k = 0, 1, i = 4. To obtain a further two equations, we apply
the same procedure to the solution g4 = ∂Y

∂XB
. Again, the contribution from the

horizontal parts of the contour of integration is zero, leaving nonzero contributions

from the vertical parts of the contour, l
(j)
2 and l

(j)
5 . Unlike with g1, g2 and g3 however,

the contribution from Sδ
(j) is non-zero. We investigate the behaviour of g4 near the

crack tip.

We have that g
(j)
4 =

∂Yj

∂X =
∂Yj

∂R cos θ− 1
R

∂Yj

∂θ sin θ, where (R, θ) is the usual polar

co-ordinate system, with R =
√

X2
B + Y 2 and so from our asymptotic estimate for

Yj near the crack tip from we deduce that near the crack tip,

g
(j)
4 ∼ (−1)j

πµj

{

b
(Y)
0 + a

(Y)
0 lnR+ (−1)(j+1)a

(Y)
0 sin 2θ(π + (−1)jθ)

}

,(4.13)

and so for small R,

∂g
(j)
4

∂R
∼ (−1)ja

(Y)
0

πµjR
.(4.14)

Noting that the outward normal to S
(j)
δ is in the direction of −R, we have that as

δ → 0

µj

∫

Sδ

(

g4

(

− ∂

∂R

)

(W
(k)
B + F (k)

B )− (W
(k)
B + F (k)

B )

(

−∂g4
∂R

))

dS(4.15)

= µj

∫

Sδ

(

(W
(k)
B + F (k)

B )
∂g4
∂R

)

Rdθ = µj

∫

Sδ

(−1)ja
(Y)
0

πµjR

(

W
(k)
B + F (k)

B

)

Rdθ.
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Since WB satisfies the same model problem as Y, it too will possess asymptotic
behaviour at the crack tip of the same form as g4 in (4.13), but with different constants

which we denote a
(W )
(k) and b

(W )
(k) for k = 0, 1. The contribution to the integral from

the circular part of the contour is therefore given by

− a
(Y)
0

π

π
∫

0

(

W
(k)
B (0+, θ) + F (k)

B (0+, θ)
)

dθ +
a
(Y)
0

π

0
∫

−π

(

W
(k)
B (0+, θ) + F (k)

B (0+, θ)
)

dθ

= −a
(Y)
0

π

π
∫

0

−1

πµ1

µ1κπ

1 + µ1

µ2

a
(W )
(k) dθ +

a
(Y)
0

π

0
∫

−π

1

πµ2

µ1κπ

1 + µ1

µ2

a
(W )
(k) dθ = κa

(Y)
0 a

(W )
(k) .

With this information at hand, we are now able to apply (4.6) with g4 and F (1)
B ,F (2)

B ,
yielding a further two relationships.

4.3. Deriving the junction conditions. We define the column matrices

E(k) =
[

C
(k)
1 C

(k)
2 D

(k)
1 D

(k)
2

]T

, k = 0, 1.(4.16)

The eight equations obtained in the previous two subsections can then be rewritten
as two matrix equations, the first of which is found to be

ME(0) =











0

(µ1H1 + µ2H2)v
(0)
4 (xB)− µ1H1v

(0)
2 (xB)− µ2H2v

(0)
3 (xB)

µ1H1C1v
(0)
2 (xB) + µ2H2C2v

(0)
3 (xB)

κa
(Y)
0 a

(W )
0 ,











(4.17)

where M is the 4x4 matrix













µ1H1 µ2H2 0 0
0 0 µ1H1 µ2H2

µ1H1D1 µ2H2D2 −µ1H1C1 −µ2H2C2

µ1H1C1 µ2H2C2 0 0

,













(4.18)

where Cj and Dj are the asymptotic constants from the weight function defined in
(2.40). The determinant of M is given by det(M) = −µ2

1µ
2
2H

2
1H

2
2 (C1 − C2)

2 < 0.

Therefore for C
(0)
1 = C

(0)
2 = D

(0)
1 = D

(0)
2 = 0 (that is, for W to vanish far away from

the crack tip as we would expect for such a boundary layer), we have that the matrix
in the right hand side of (4.17) must be equal to zero. From this follow the junction
conditions

v
(0)
2 (xB) = v

(0)
3 (xB) = v

(0)
4 (xB),(4.19)

a
(W )
(0) = 0.(4.20)

The latter condition (4.20) yields that W
(0)
B ≡ 0. The second matrix equation is

ME(1) =(4.21)
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(µ1H1 + µ2H2)(v
(0)
4 )′(xB)− µ1H1(v

(0)
2 )′(xB)− µ2H2(v

(0)
3 )′(xB)

(µ1H1 + µ2H2)v
(1)
4 (xB)− µ1H1v

(1)
2 (xB)− µ2H2v

(1)
3 (xB)

µ1H1C1v
(1)
2 (xB) + µ2H2C2v

(1)
3 (xB)− µ1H1D1(v

(0)
2 )′(xB)− µ2H2D2(v

(0)
3 )′(xB)

κa
(Y)
0 a

(W )
1 − µ1H1C1(v

(0)
2 )′(xB)− µ2H2C2(v

(0)
3 )′(xB)











where M is the matrix given in (4.18). For C
(1)
1 = C

(1)
2 = D

(1)
1 = D

(1)
2 = 0, the

right hand matrix is again set to zero. Noting that a
(Y)
0 = λ (see (2.45)) and that

µ1H1C1 + µ2H2C2 = 0, setting the fourth row of the RHS matrix to zero then yields
that

a
(W )
(1) =

1

κλ
∆{(v(0))′}.(4.22)

where

∆{(v(0))′}(xB) = (v
(0)
2 )′(xB)− (v

(0)
3 )′(xB).(4.23)

The other conditions imply

v
(1)
2 (xB) = v

(1)
4 (xB)−

µ2H2

µ1H1 + µ2H2

(

α

π
+

1

λ

)

∆{(v(0))′}(xB),(4.24)

v
(1)
3 (xB) = v

(1)
4 (xB) +

µ1H1

µ1H1 + µ2H2

(

α

π
+

1

λ

)

∆{(v(0))′}(xB),(4.25)

along with the relationship

(µ1H1 + µ2H2)(v
(0)
4 )′(xB)− µ1H1(v

(0)
2 )′(xB)− µ2H2(v

(0)
3 )′(xB) = 0.(4.26)

We stress that α and λ are functions of κ and so expressions (4.24) and (4.25) de-
scribe how the junction conditions depend upon the extent of imperfection of the
interface. In particular, (α/π + 1/λ) is a constant that plays a crucial physical role
since it defines the proportionality between the displacement jump in the first order
approximation and the angle of opening in the zero order approximation. Equation
(4.26) complements conditions (4.19) and (4.20) to give full information for the zero
order approximation. We later present numerical results for the normalized constant
αI = (α/π) + 1/λ)/(H1 +H2).

The conditions regarding the first order approximation (4.22), (4.24) and (4.25)

can be complemented by a further equation in (v
(1)
m )′(xB), which follows from the

next level of approximation, i.e. taking N = 2 in (3.8):

µ1H1(v
(1)
2 )′(xB)+µ2H2(v

(1)
3 )′(xB)−(µ1H1+µ2H2)(v

(1)
4 )′(xB) =

2
∑

j=1

∫

Π
(j)
B

ω2

c2j
W

(0)
B dΠ

(j)
B ,

and by our earlier comment that W
(0)
B ≡ 0, the right side of this expression is zero.

At this point we would like to comment that taking higher order approximations and
evaluating higher order junction conditions is possible but much more advanced. For
example, integrals analogous to that on the right hand side of the above expression

would depend upon W
(1)
B and boundary layers from higher order approximations, and

so would not in general be zero. However, since we focus on thin strips, ε is small
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Fig. 5.1. Contour plots of the ratio αI/αP for four different values of κ∗, a dimensionless
parameter describing the extent of imperfection of the interface between the two materials. The
axes of each plot are µ∗ and H∗, dimensionless parameters respectively describing the mechanical
and geometric properties of the problem. The ratio αI/αP gets closer to 1 as κ∗ decreases in value
towards 0.

and so terms in ε2 would give significantly less contribution than the lower order
approximations. We later comment on the accuracy of the zero order approximation
on page 19 by comparing computations against FEM results in a case where ε is not
too small. We would like to underline that the accuracy will increase for smaller ε,
but for very small ε it is no longer possible to obtain finite element computations.

5. Numerical simulations and discussions. To enable us to compare results
with the perfect interface case discussed in [17] effectively, we seek normalized con-
stants. We first seek a normalized representation of α. We introduce the notation

H = H1 +H2, H∗ =
H1 −H2

H1 +H2
, µ∗ =

µ1 − µ2

µ1 + µ2
, κ∗ =

κ(µ1 + µ2)

H
, λ∗ = λH,

where H∗, µ∗ and κ∗ are non-dimensional parameters which respectively describe the
geometrical, mechanical and imperfect properties of the problem. λ is the constant
dependent on µj , Hj and κ defined in (2.27). λ∗ can be expressed in terms of the
other dimensionless parameters as

λ2
∗ =

8(1 + µ∗H∗)

κ∗(1 − µ2
∗)(1−H2

∗ )
.(5.1)

We also introduce the function

Ξ∗∗(t) =
t

λ2
∗ + t2

(

t+
2

κ∗(1 + µ∗)
coth

t(1 +H∗)

2
+

2

κ∗(1 − µ∗)
coth

t(1−H∗)

2

)

,
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which satisfies the relationship Ξ∗∗(t) = Ξ∗

(

t
H

)

, and so we can write

α =

∞
∫

0

ln Ξ∗(ξ)

ξ2
dξ =

∞
∫

0

H2 ln Ξ∗∗(t)

t2
dt

H
= H

∞
∫

0

ln Ξ∗∗(t)

t2
dt = Hα∗,(5.2)

where we have defined the non-dimensional quantity α∗. We find through asymptotic
analysis that

lnΞ∗∗(t)

t2
=

1

12

H3
∗µ∗ −H2

∗ − µ∗H∗ + 1

1 + µ∗H∗

+O(t2), t → 0.(5.3)

Mishuris, Movchan and Bercial [17] showed that in the analogous problem to that
discussed in this paper with a perfect interface instead of an imperfect interface,

Dj = αP (H1 +H2)Cj ,(5.4)

where

αP =
1

π
ln

{

(

1 +H∗

2

)
1+H∗

2
(

1−H∗

2

)
1−H∗

2

}

− µ∗

π

∞
∫

0

H∗ − tanh(tH∗) coth(t)

(sinh(t) + µ∗ sinh(tH∗))t
dt.

We have demonstrated (see the form of the constants Cj , Dj in (2.40)) that for the
imperfect interface problem,

Dj = αI(H1 +H2)Cj ,(5.5)

where

αI = −





1

π

∞
∫

0

ln Ξ∗∗(t)

t2
dt+

1

λ∗



 ,(5.6)

and since small κ∗ correspond to an interface which is ‘almost perfect’, we would
expect αI → αP as κ∗ → 0. Figure 5.1 shows a plot of the ratio αI/αP on axes of µ∗

against H∗ for four different values of κ∗. From this it is easily seen that as κ∗ → 0,
αI/αP gets close to 1 as expected. The behaviour of the weight functions near the
crack tip are however absolutely different since the problem is singularly perturbed,
that is:

[Y] ∼ √
ηκ, κ → 0,(5.7)

µ1
∂Y
∂Y

∣

∣

∣

∣

Y=0+

∼ −
√

η

κ
, X → 0, κ → 0,(5.8)

where η is defined in (2.30). In the plots showing the ratio for small values of κ∗, the
highest deviations from 1 occur near the corner of the plot. These correspond to the
cases where there is a high contrast between the shear moduli and thicknesses of the
two materials. We see that in the cases where the materials have similar shear moduli
and thicknesses (nearer the center of the plot), the ratio αI/αP quickly approaches 1
as κ∗ → 0.
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Fig. 5.2. Surface plots of αI for κ∗ = 100, 1 and 0.01; also of αP , all plotted on axes of µ∗

and H∗.

Figure 5.2 shows surface plots of αI on axes of µ∗ and H∗ for κ∗ = 100, 1, and
0.01. This constant describes the impact that the imperfect interface has upon the
junction conditions as described in equations (4.24) and (4.25). Also shown in the
figure is a plot of αP . The similarity between the plot of αI for κ∗ = 0.01 and the
plot of αP is evident here. For the cases with larger κ∗ values, we see that αP is
differently dependent upon the mechanical and geometric parameters of the problem.

Figure 5.3 shows finite-element plots (COMSOL) of standing wave eigensolutions.
For these simulations we use the following geometrical parameters for the elementary
cell:

l = 0.8[m], a = 2.4[m], H1 = 0.1[m], H2 = 0.05[m],

and the following material constants which correspond to iron (in Π
(2)
ε ) and aluminium

(in Π
(1)
ε ).

µ2 = 82 · 109[N/m2], µ1 = 26 · 109[N/m2], ρ2 = 7860[kg/m3], ρ1 = 2700[kg/m3].

Presented in this figure are three plots corresponding to Al-Fe strips with different
materials bonding them together, with the vertical dotted lines indicating the location
of the crack tips. The imperfect interface is modelled in the COMSOL simulations by
a thin layer occupied by an adhesive material; this approach was justified in [15, 16],
among others. Provided that hresin/H2 is sufficiently small and µresin is small in
comparison to µ1 and µ2, this gives κ = hresin/µresin.
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Fig. 5.3. Finite element computation (COMSOL) contour plot of the eigensolution correspond-
ing to the standing Bloch-Floquet waves for three different values of κ. Top: Bonding material with
shear modulus 1000µresin. Middle: Bonding material is epoxy resin. Bottom: Bonding material
with shear modulus µresin/10. Countours join points of integer values, and the dotted vertical lines
indicate the location of the crack tips.

The second of the three plots in Figure 5.3 uses epoxy resin as the bonding
material with parameters

µresin = 2.5 · 109[N/m2], ρresin = 1850[kg/m3], hresin = 0.01[m].

For comparison, the first plot shows a simulation with a gluing layer of shear modulus
1000 greater than that of epoxy resin. The third plot uses a material with shear
modulus 10 times less than epoxy resin. Equivalently, these three cases in the top,
middle and bottom parts of the figure correspond to κ∗ = 2.88 · 10−3, κ∗ = 2.88, and
κ∗ = 28.8, respectively. The plots show that the standing wave is more localised and
intense in the locality of the crack when the bonding material is stiffer. Conversely,
when the bonding material is less stiff, the standing wave extends further beyond the
locality of the crack and is less intense. Closely packed contours indicate areas where
stress is high; we see that the highest stress is to be found in the vicinity of the crack
tip in all three cases. Moreover, as we would expect, the highest stress intensity is
found in the case with the stiffest bonding material.

We do not present dispersion diagrams here computed by the asymptotic analysis
and COMSOL as they are similar to those given in [17]. As in that paper, the biggest
discrepancy between results obtained from asymptotic analysis and numerical simula-
tions appear for the case of the standing waves. In all other situations the accuracy is
very good, with a typical discrepancy between finite element and asymptotic results of
around 0.3% in the case where the strip has the same dimensions as used throughout
this section, which corresponds to ε = 0.0625. We remind the reader that we use
static boundary layers in the analysis. The standing waves lie in the area of rather
high frequencies, which may provide one possible explanation for this phenomenon.
This discrepancy needs to be eliminated and this will form part of future work.

It is readily seen in the bottom plot of Figure 5.3 (which corresponds to a highly
imperfect interface) that the boundary layer support extends almost to the edge of
the elementary cell. This extension far away from the crack tips suggests that the
boundary layers decay slowly from the crack tips and so may not be assumed indepen-
dent. In this case, therefore, our analysis may become invalid due to the assumption
in our asymptotic procedure that the exponentially decaying boundary layer does not
influence the Bloch-Floquet conditions. This assumption is satisfied if γ+ is far from
zero, so if κ is not too large. More accurately, we assume γ+ ≫ ε

a−l (see (2.47) for
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large κ). If the imperfect interface is too weak and this condition is violated then
the junction conditions evaluated here will no longer be accurate and other analysis
should be sought.
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Appendix A. Derivation of asymptotics of Ξ+
∗ (ξ). We present here the

derivation of asymptotics for Ξ+
∗ (ξ). The results of this derivation are used in expres-

sions (2.32) and (2.33). We introduce the auxiliary function

Θ+
∗ (ξ) =

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t− ξ
dt,(A.1)

so that Ξ+
∗ (ξ) = exp((1/2πi)Θ+

∗ (ξ)) (see (2.29)). We first note that Θ+
∗ (0) = 0 since

the integrand is odd and estimate (2.30)2 demonstrates integrability of Ξ∗ at the zero
point, allowing us to take β = 0. Thus

Θ+
∗ (ξ) =

∞−iβ
∫

−∞−iβ

[

ln Ξ∗(t)

t− ξ
− ln Ξ∗(t)

t

]

dt = ξ

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t(t− ξ)
dt → 0, ξ → 0,

since the integral is bounded. Also, we have that

∞−iβ
∫

−∞−iβ

ln Ξ∗(t)

t2
dt =

∞
∫

−∞

ln Ξ∗(t)

t2
dt = 2

∞
∫

0

ln Ξ∗(t)

t2
dt = 2α,(A.2)

since the integrand is even and again by considering (2.30)2, which indicates that we
have integrability at the zero point. Here we have found that

Θ+
∗ (ξ) = 2αξ +O(|ξ|2), ξ → 0.(A.3)

From this we obtain the following estimate for Ξ+
∗ (ξ) as ξ → 0:

Ξ+
∗ (ξ) = 1 +

αξ

πi
+O(|ξ|2), ξ → 0.(A.4)

We now seek estimates of Θ+
∗ (ξ) for ξ → ∞ within the domain. To avoid problems

caused by integrating along the real line, we consider ξ → ∞ in such a way that
Im(ξ) → +∞. Integrating (A.1) by parts, splitting the integral in two and manipu-
lating the resulting expression gives

Θ+
∗ (ξ) =

∞
∫

0

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt.(A.5)

We introduce an arbitrary R > 0 and split this integral at R to give

Θ+
∗ (ξ) =

R
∫

0

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt+

∞
∫

R

ln

(

1 + t/ξ

1− t/ξ

)

Ξ′
∗(t)

Ξ∗(t)
dt.(A.6)

We then see that

ln

(

1 + t/ξ

1− t/ξ

)

= 2
t

ξ
+O

(

t3

|ξ|3
)

, ξ → ∞, 0 < t < R,(A.7)
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and from (2.31) we have

Ξ′
∗(t)

Ξ∗(t)
=

[

−µ1 + µ2

κµ1µ2

]

1

t2
+O

(

1

t3

)

, t → ∞.(A.8)

This allows us to estimate

Θ+
∗ (ξ) =

∞
∫

R

[

− (µ1 + µ2)

µ1µ2κ

1

t2
+O

(

1

t3

)]

ln

(

ξ + t

ξ − t

)

dt+O

(

1

|ξ|

)

, ξ → ∞.

After integrating by parts and performing a change of variables, we find that

∞
∫

R

1

t2
ln

(

ξ + t

ξ − t

)

dt = −1

ξ

(

ln

∣

∣

∣

∣

1

ξ2

∣

∣

∣

∣

+ i arg

(

− 1

ξ2

))

+O

(

1

|ξ|

)

, ξ → ∞,(A.9)

and so from (A), we deduce that

Θ+
∗ (ξ) =

2(µ1 + µ2)

µ1µ2κξ
ln(−iξ) +O

(

1

|ξ|

)

, Im(ξ) → +∞.(A.10)

Recalling the relationship between our auxiliary function Θ+
∗ and Ξ+

∗ as we discussed
after (A.1), we see that

Ξ+
∗ (ξ) = 1 +

1

πi

(µ1 + µ2)

µ1µ2κ

ln(−iξ)

ξ
+O

(

1

|ξ|

)

, Im(ξ) → +∞.(A.11)

Appendix B. Theorem.

Theorem B.1. Let f(x) be the function

f(x) =
1

2π

∞
∫

−∞

Φ+(t)e−ixtdt.(B.1)

If Φ+(t) is analytic in C+ and

Φ+(t) = a1t
−1 +O(t−(1+δ)), t → ∞,(B.2)

where δ > 0 is small, in the closed half-plane C
+

= C+ ∪ R, then f(x) = 0 for all
x < 0 and

lim
x→0+

f(x) = −ia1.(B.3)

Proof. The fact that f(x) = 0 for all x < 0 is a direct consequence of the fact
that Φ+(t) is a ‘+’ function. Assume now that x > 0. From the assumptions on
the behaviour of the function Φ+(t), it follows that Φ+(t) = a1t

−1 + R(t), where

tR(t) → 0, as t → ∞, t ∈ C
+
(including t → ±∞, t ∈ R).

We write

f(x) =
1

2π
lim

a→+∞







∞
∫

a

[Φ+(−t)eixt +Φ+(t)e−ixt]dt+

a
∫

−a

Φ+(t)e−ixtdt







.(B.4)
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The first integral is

f1(x, a) =

∞
∫

a

[Φ+(−t)eixt +Φ+(t)e−ixt]dt = f11(x, a) + f12(x, a),(B.5)

where

f11(x, a) =

∞
∫

a

[

−a1
t
eixt +

a1
t
e−ixt

]

dt = −2ia1

∞
∫

xa

sin(t)

t
dt,(B.6)

and

f12(x, a) =

∞
∫

a

[

R(−t)eixt +R(t)e−ixt
]

dt =

∞
∫

xa

[

1

x
R

(

− t

x

)

eit +
1

x
R

(

t

x

)

e−it

]

dt.

Taking a = x−1/2, we have that f11(x, x
−1/2) → −iπa1 and f12(x, x

−1/2) → 0 as
x → 0+. Let us denote the second integral in (B.4) by f2(x, a). Then using analyticity
of Φ+(t) in C+ and defining

Γa = {t ∈ C|t = aeiθ, 0 < θ < π},(B.7)

we deduce

f2(x, a) = −
∫

Γa

Φ+(t)e−ixtdt.(B.8)

We write this in the form

f2(x, a) = f21(x, a) + f22(x, a),(B.9)

where

f21(x, a) = −
∫

Γa

a1
t
e−ixtdt, andf22(x, a) = −

∫

Γa

R(t)e−ixtdt.(B.10)

Again taking a = x−1/2, we obtain

f21(x, x
−1/2) = −

∫

Γ
x−1/2

a1
t
e−ixtdt ∼ −a1

∫

Γ
x−1/2

1

t
dt = −iπa1, x → 0+.(B.11)

Now,

f22(x, a) = −
∫

Γa

R(t)e−ixtdt = −
∫

Γxa

1

x
R

(

t

x

)

e−itdt,(B.12)

and so f22(x, x
−1/2) → 0 as x → 0+. By collecting together these observations and

reconsidering equation (B.4) we conclude that

f(x) → 1

2π
(−iπa1 − iπa1) = −ia1, x → 0+,(B.13)

which completes the proof.


