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THE GENERALIZED GRAETZ PROBLEM IN FINITE

DOMAINS

JÉRÔME FEHRENBACH, FRÉDÉRIC DE GOURNAY, CHARLES PIERRE,
AND FRANCK PLOURABOUÉ

Abstract. We consider the generalized Graetz problem associated
with stationary convection-diffusion inside a domain having any reg-
ular three dimensional translationally invariant section and finite or
semi-infinite extent. Our framework encompasses any previous “ex-
tended” and “conjugated” Graetz generalizations and provides the-
oretical bases for computing the orthogonal set of generalized two-
dimensional Graetz modes. The theoretical framework both includes
heterogeneous and possibly anisotropic diffusion tensor. In the case
of semi-infinite domains, the existence of a bounded solution is shown
from the analysis of a two-dimensional operator eigenvectors which
form a basis of L2. In the case of finite domains a similar basis can
be exhibited and the mode’s amplitudes can be obtained from the
inversion of newly defined finite domain operator. Our analysis both
includes the theoretical and practical issues associated with this finite
domain operator inversion as well as its interpretation as a multi-
reflection image method. Error estimates are provided when numeri-
cally truncating the spectrum to a finite number of modes. Numerical
examples are validated for reference configurations and provided in
non-trivial cases. Our methodology shows how to map the solution of
stationary convection-diffusion problems in finite three dimensional
domains into a two-dimensional operator spectrum, which leads to a
drastic reduction in computational cost.

1. Introduction

The Graetz problem was first settled as the stationary convection-
dominated transport problem inside an axi-symmetrical Poiseuille flow in
a semi-infinite cylinder [7]. It is the cornerstone of many practical appli-
cations. The associated orthogonal Graetz modes are interesting to con-
sider since their projections into the imposed entrance boundary condi-
tions provide a nice set of longitudinally exponentially decaying solution
whichever the applied lateral boundary conditions, or the considered ve-
locity field (see for exemple [13]). Since many important convective heat
transfer problems share similar properties, the computation of a similar
orthogonal basis has been attractive in many studies in a context where
intensive computer simulations were difficult [20, 3]. Nevertheless the
generalization of this concept to simple situations is not straightforward.
When, for example, for the problem is no longer convection-dominated
and longitudinal diffusion is considered, a situation refered to as the “ex-
tended” Graetz configuration (see for example [12, 6, 21, 10]), it is not
simple to find a set of orthogonal modes. The same difficulty arises when
coupling the convection-diffusion arising into the Poiseuille flow to pure
diffusion into a surrounding cylinder, a configuration generally denoted
“conjugated” Graetz configuration [2, 11, 4].
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It is as late as 1980 than Papoutsakis et al. [15, 14], realized that a
matrix operator acting upon a two-component temperature/longitudinal
gradient vector (for the Graetz axi-symmetrical configuration) could pro-
vide a symmetric operator to the “extended” Graetz problem. The math-
ematical properties of this operator were nevertheless not deeply analyzed
in [15, 14]; neither the compacity of the resolvent, the spectrum structure
and location, the involved functional spaces, nor the numerical conver-
gence were studied. One has to admit that, even limited in scope, this im-
portant contribution remained poorly cited and recognized until the late
nineties, when it was realized that a similar approach could be adapted to
any concentric axi-symmetrical configurations [16, 17, 8, 9], adding nev-
ertheless a larger number of unkowns. Recently a detailed mathematical
study of a generalized version of the Graetz problem, referred to as gen-
eralized Graetz problem here, for general non-axisymmetrical geometries,
for any bounded velocity profile and including heterogeneous diffusiv-
ity, was presented in [18] and applied to infinite (at both ends) cylinder
configurations. This mathematical study has brought to the fore the di-
rect relevance of a new reformulation of the problem into a mixed form:
adding to the original scalar temperature unknown a vectorial auxiliary
unknown. This reformulation involves an operator, referred to as the
Graetz operator, acting both on the scalar and vectorial unknowns. The
Graetz operator was showed to be self adjoint, with compact resolvant in
a proper functional setting. Its spectrum was proved to be composed of
a double infinite discrete set of eigenvalues: a positive set (downstream
modes) and a negative one (upstream modes).

The aim of the present contribution is to provide the mathematical
analysis and numerical methods for solving the generalized Graetz prob-
lem in semi-infinite and finite domains, as well as effective numerical
methods to estimate the Graetz modes in the non-axisymmetrical case.
These results are interesting since finite domains represent the most rele-
vant configurations for applications such as, for example, convective heat
pipes, the size of which is obviously finite.

Let us now describe more precisely the context of this study. This
contribution addresses convection-diffusion/thermal transfer in a gener-
alized cylindrical geometry Ω × I, where Ω ⊂ R2 is a connected open
domain and I ⊂ R is an interval, possibly unbounded at one or both of
its ends. The fluid velocity inside the tube is denoted by v(ξ, z), whereas
its temperature is denoted by T (ξ, z) for ξ = (x, y) ∈ Ω and z ∈ I.

The fluid velocity v is assumed to be directed along the z direction
and constant in the z variable, that is v(ξ, z) = v(ξ)ez, where ez is the
unit vector in the z direction. Moreover, the velocity profile is assumed
to be bounded, i.e v ∈ L∞(Ω).

The conductivity matrix is supposed to be symmetric bounded, coer-
cive and anisotropic in the ξ direction only, i.e. it is of the form

(
σ(ξ) 0
0 c(ξ)

)
,

and there exists a constant C > 1 such that
(1)
C|η|2 ≥ ηTσ(ξ)η ≥ C−1|η|2 and C ≥ c(ξ) ≥ C−1, ∀ξ ∈ Ω, η ∈ R2.
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Figure 1. The geometry of the generalized Graetz problem

In this setting (see Figure 1), the steady convection-diffusion equation,
refered to as the generalized Graetz problem, reads:

(2) c(ξ)∂zzT + divξ(σ(ξ)∇ξT )− Pev(ξ)∂zT = 0,

where Pe is the so-called Peclet number. In the sequel, the subscript ξ
will be omitted and we will simply write: ∆ = ∆ξ, ∇ = ∇ξ, div = divξ
for the Laplacian, gradient and divergence operators in the section Ω.

This problem is reduced to a system of two first order equations by
introducing an additional vectorial unknown p. Let h = Pevc

−1, we
define the Graetz operator A by

(3) A
(
T
p

)
=

(
hT − c−1div(p)

σ∇T

)
,

in other words

(4) A =

(
h −c−1div
σ∇ 0

)
.

The generalized Graetz problem defined in Equation (2) is then equiv-
alent to the first-order system

∂zψ(z) = Aψ(z) with ψ =

(
∂zT
σ∇T

)
.

In [18] spectral properties of the operator A are established in order
to derive exact solutions of the generalized Graetz problem on infinite
geometries of the type Ω×R (unbounded ducts at both ends) involving
a jump in the boundary conditions on ∂Ω. It is proved that the spectrum
consists of the eigenvalue 0 and two countable sequences of eigenvalues,
one positive (downtream) and one negative (upstream) going both to
infinity. Numerical approximations of this exact solution are given for
axisymmetrical geometries.

However, on a semi-infinite duct Ω × [0,+∞), the projection of the
entrance condition on the eigenmodes may provide non-zero coefficients
associated to downstream modes. These coefficients yield a T (z) that
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is unbounded as z goes to +∞. The objective of the present work is
then to provide a mathematical and numerical framework to solve the
generalized Graetz problem on a semi-infinite duct that is adapted to
any geometry of Ω. As a consequence of the forthcoming analysis, it
is proved that the temperature components (Tn) of the upstream (resp.
downstream) eigenmodes form a basis of L2(Ω). This analysis also pro-
vides a framework suitable to solve the problem on ducts of finite length.
Error estimates for the operators induced on finite dimensional spaces
associated to N upstream (or downstream) eigenmodes are provided.
Finally a numerical implementation is proposed using a parametrization
of the orthogonal of kerA. Numerical examples provide a showcase of
the power of the method.

The generalized Graetz problem is described in detail in Section 2, re-
sults obtained in [18] are recalled, and our main result (Theorem 2.1) is
stated. In Section 3 we propose an equivalent formulation of this The-
orem in the setting of finite sequences. In Section 4, our main result is
proved in Proposition 4.1. Proposition 4.4 studies how the solution can
be approximated when only the first modes of the operator A are known.
These estimates are crucial in numerical studies since only a part of the
whole spectrum is computed. In Section 5 we solve different problems
in semi-infinite and finite cylinders, and we show how the inequalities
proved in Proposition 4.4 allow to obtain a priori inequalities on nu-
merical approximations. After detailing the algorithm we use, Section 6
presents some of the numerical results we obtained.

2. Setting the problem

2.1. Spectral analysis. We recall the definition of the Sobolev spaces
L2(Ω) and H1(Ω) on a smooth domain Ω. For that purpose, define the
scalar products of functions:

(u, v)L2(Ω) =

∫

Ω

uv̄ and (u, v)H1(Ω) =

∫

Ω

uv̄ +

∫

Ω

∇u∇v̄.

Then L2(Ω) (resp. H1(Ω)) is defined as the subspace of measurable
functions on Ω such that their L2(Ω) (resp H1(Ω))) norm induced by the
corresponding scalar product is bounded. We also recall that the Sobolev
space H1

0 (Ω) is defined as the closure of the space of smooth functions
with compact support for the H1(Ω) norm and that it can be identified
with the subspace of functions of H1(Ω) that are equal to zero on ∂Ω.
In what follows the space H1

0 (Ω) is endowed with the scalar product

(u, v)H1
0 (Ω) =

∫

Ω

σ∇u∇v̄

that defines a norm equivalent to the usual norm, thanks to the coercivity
conditions (1) and the Poincaré inequality.

We define H = L2(Ω) × (L2(Ω))2 and for every ψi ∈ H, we use the
notation ψi = (Ti,pi) throughout this paper. Once endowed with the
scalar product

(ψ1|ψ2)H =

∫

Ω

cT1T̄2 + σ−1p1p̄2,
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the vector space H is an Hilbert space. Denote Hdiv(Ω) the space defined
by

Hdiv(Ω) = {p ∈ (L2(Ω))2 such that div(p) ∈ L2(Ω)}
and define the unbounded operator A : D(A) = H1

0 (Ω) ×Hdiv(Ω) → H
as

A : ψ = (T,p) 7→ Aψ = (hT − c−1div(p), σ∇T ) ∈ H.
A is a self-adjoint operator with a compact resolvent and hence is diag-
onal on a Hilbertian basis of H. It is shown in [18] that the spectrum of
A is Sp(A) = {0} ∪ {λn;n ∈ Z∗}, where the λn are eigenvalues of finite
order that can be ordered as follows:

−∞← λ−n ≤ . . . λ−1 ≤ λ0 = 0 ≤ λ1 · · · ≤ λn → +∞.
The kernel of A consists of vectors of the form (0,p) ∈ D(A) with
div(p) = 0. It follows from Helmholtz decomposition that its orthog-
onal in H, the range of A, is given by

R(A) = {(f, σ∇s) with (f, s) ∈ L2(Ω)×H1
0 (Ω)}.

Because A is symmetric, it is bijective from D(A) ∩R(A) onto R(A).
Denote (ψn)n∈Z∗ an orthonormalized basis of R(A) composed of eigen-

vectors ψn of A associated respectively to the eigenvalues λn 6= 0, then
each ψn = (Tn,pn) verifies:

(5)

{
λnpn = σ∇Tn,

λ2nTn + c−1div(σ∇Tn)− hλnTn = 0,

and for every n,m ∈ Z∗:
∫

Ω

cTnTm +
1

λnλm
σ∇Tn∇Tm = δnm,

where δnm stands for the Kronecker’s symbol.
The diagonalization of the operator A ensures that if ψ|z=0 ∈ R(A) is

given, there exists a unique ψ(z) ∈ C0(I,R(A)) that verifies in the weak
sense

∂zψ(z) = Aψ(z) ψ(0) = ψ|z=0 ,

where verifying the above differential equation in the weak sense is tan-
tamount to verifying
∫

I

(ψ(z)|−∂zX(z))Hdz =

∫

I

(ψ(z)|AX(z))Hdz ∀X ∈ C1
c (I,D(A) ∩R(A)).

Moreover this unique ψ(z) verifies the equation

ψ(z) =
∑

n∈Z∗

(ψ(0)|ψn)Hψne
λnz.

Coming back to the original setting, if T|z=0 ∈ H1
0 (Ω) and ∂zT|z=0 ∈

L2(Ω) are given, then there exists a unique T (z, ξ) ∈ C0(R, H1
0 (Ω)) ∩

C1(R, L2(Ω)) solution of (2) which is given by
(6)

ψ(z) =
∑

n∈Z∗

(ψ(0)|ψn)Hψne
λnz, with ψ(z) =

(
∂zT (z)
σ∇T (z)

)
, ψ|z=0 ∈ R(A).

As a remark, following [18], if the initial boundary conditions are
slightly less regular, that is T|z=0 ∈ L2(Ω) and ∂zT|z=0 ∈ H−1(Ω), then
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there is still a unique solution to (2) in C0(R, L2(Ω)) ∩ C1(R, H−1(Ω)),
given by

(7) ψ̃(z) =
∑

n∈Z∗

(ψ̃(0)|ψn)Hψne
λnz, with ψ̃(z) =

(
T (z)
σ∇s(z)

)
,

where, for any z (and specially for z = 0), s(z) is the unique solution in
H1

0 (Ω) of

div(σ∇s) = chT − c∂zT.
We remark that the previous equation determines uniquely s|z=0 and
hence ψ|z=0 from the knowledge of T|z=0 and ∂zT|z=0 . Of course, if the

initial conditions are regular enough, then ψ and ψ̃ are linked by ψ = ∂zψ̃.

2.2. Main result. Following the previous discussion, if the problem is
set on the semi infinite duct Ω × R−, the initial conditions T|z=0 and

∂zT|z=0 determine uniquely ψ|z=0 (or ψ̃|z=0) and hence any value of ψ(z).
But in general this set of conditions yields a T (z) that may be unbounded
as z goes to −∞. A natural question to ask is then, given T|z=0 (resp.
∂zT|z=0) in L

2(Ω), is it possible to find ∂zT|z=0 (resp T|z=0 ) such that T (z)
stays bounded for z going to infinity ?

We reformulate this question as: Given f ∈ L2(Ω), is it possible to
find an s ∈ H1

0 (Ω) (preferably unique) such that ψ = (f, σ∇s) verifies:
(ψ|ψn)H = 0 for all n < 0 ?

The answer to this question is given by the following Theorem, which is
a consequence of Proposition 4.1

Theorem 2.1. Given f ∈ L2(Ω), there exists a unique sequence u =
(ui)i∈N∗ such that

f =
∑

i>0

uiTi.

In this case, setting s ∈ H1
0 (Ω) as s =

∑
i>0 λ

−1
i uiTi ensures that the

decomposition of (f, σ∇s) on the eigenmodes of A only loads positive
eigenvalues and hence goes to 0 as z goes to −∞. Of course, changing z
into −z (or equivalently changing the sign of h) transforms the problem
from a decomposition on the downstream modes to a decomposition on
the upstream modes.

3. Decomposition on the upstream modes

3.1. Isomorphism with the space of sequences. The choice of an
Hilbertian basis induces an isomorphism between R(A) and the space of
square summable sequences. Denote the discrete l2(Z∗) and h1(Z∗) scalar
product, defined for complex sequences a = (an)n∈Z∗ and b = (bn)n∈Z∗

as

(a|b)l2(Z∗) =
∑

n∈Z∗

anb̄n and (a|b)h1(Z∗) =
∑

n∈Z∗

λ2nanb̄n

and define the l2(Z∗) (resp. h1(Z∗)) Hilbert space as the subspace of
complex sequences such that their l2(Z∗) (resp. h1(Z∗)) norm is bounded.
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The mapping

χ : l2(Z∗) → R(A)
a 7→

∑

i∈Z∗

aiψi

with adjoint χ⋆ : ψ 7→ ((ψ|ψn)H)n∈Z∗ is an isometry, i.e both χχ⋆ and
χ⋆χ are the identities of their respective spaces. Moreover χ(h1(Z∗)) =
R(A)∩D(A) and χ⋆(R(A)∩D(A)) = h1(Z∗). Of course, this change of
variable diagonalizes A in the sense that if D is the operator

D : h1(Z∗) → l2(Z∗)
a 7→ (λnan)n

then

A = χDχ⋆.

3.2. Reformulation of the problem in the setting of sequences.

In order to reformulate our problem in a discrete setting, let us define
the following operators

Definition 3.1. Define P1 and P2 as

P1 : R(A) −→ L2(Ω)
(f, σ∇s) 7−→ c1/2f

P2 : R(A) −→ H1
0 (Ω)

(f, σ∇s) 7−→ s

with adjoints defined by

P ⋆
1 : L2(Ω) −→ R(A)

f 7−→ (c−1/2f, 0)
P ⋆
2 : H1

0 (Ω) −→ R(A)
s 7−→ (0, σ∇s).

Then trivially PiP
⋆
i = Id, P ⋆

i Pi is a projection and P ⋆
1P1+P

⋆
2P2 = Id.

Moreover PiP
⋆
j = 0 if i 6= j.

We shall also need the following technical definition

Definition 3.2. For m < M in Z∗, denote l2([[m,M ]]) the subspace of
l2(Z∗) of sequences a such that an = 0 if n /∈ [[m,M ]], and define the
projection Πm,M : l2(Z∗)→ l2([[m,M ]]) by

(Πm,Mu)i =

{
ui if m ≤ i ≤M
0 if i < m or i > M.

For m > 0 the space l2([[m,∞[[) is the subspace of l2(Z∗) of sequences a

such that an = 0 if n < m.

Proposition 3.3. Define the operator K : l2(Z∗) −→ l2(Z∗) by

K = χ⋆P ⋆
1P1χ.

Then K = K2 (K is an orthogonal projection). Moreover proving Theo-
rem 2.1 is equivalent to proving that

For every a ∈ l2(Z∗) such that Ka = a there is a unique u ∈ l2([[1,∞[[) such that Ku = a

Proof. The fact that K2 = K follows from the fact that χχ⋆ = Id and
P1P

⋆
1 = Id. By definition of P1, χ, K for every f ∈ L2(Ω) and u = (ui)

f =
∑

i

uiTi ⇔ f = c−1/2P1χu⇔ χ⋆P ⋆
1

√
cf = Ku,
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where the last equivalence is proven using the definition of K for the
direct implication and the property (P1χ)(χ

⋆P ⋆
1 ) = Id for the reciprocal

implication. We now claim that

Ka = a⇔ ∃f ∈ L2(Ω) such that a = χ⋆P ⋆
1

√
cf.

Once again, the reciprocal implication is proven by applying K on both
sides of the identity and using (P1χ)(χ

⋆P ⋆
1 ) = Id, whereas the direct

implication is proven by setting f = c−1/2(P1χ)a and using

a = Ka = χ⋆P ⋆
1P1χa = χ⋆P ⋆

1

√
cf.

�

In order to prove Theorem 2.1 using the equivalence from Proposi-
tion 3.3, we have to translate the eigenproblem equation in the setting of
the space of sequences which is the purpose of the forthcoming theorem.

Theorem 3.4. For each a ∈ h1(Z∗),b ∈ l2(Z∗), we have

KD−1K = 0,(8)

(Id−K)D(Id−K)a = 0,(9)

and

(10) (KDKa|b)l2 =
∫

Ω

h(P1χa)(P1χb).

Proof. By definition of A, for any (f, σ∇s) ∈ D(A)

A
(

f
σ∇s

)
=

(
hf − c−1div(σ∇s)

σ∇f

)
.

This transforms into
(11)
AP ⋆

1 (f) = P ⋆
1 (hf) + P ⋆

2 (c
−1/2f), AP ⋆

2 (s) = P ⋆
1 (−c−1/2div(σ∇s)).

We prove (9) using P2P
⋆
1 = 0 and multiplying the second equation of

(11) by P2:

P2AP ⋆
2 = 0⇒ P2(χDχ

⋆)P ⋆
2 = 0⇒ χ⋆P ⋆

2 (P2χDχ
⋆P ⋆

2 )P2χ = 0.

This in turn implies that for any a ∈ h1(Z∗), (Id −K)D(Id −K)a = 0
since Id−K = χ⋆P ⋆

2P2χ.
In order to prove (10), use P1P

⋆
2 = 0 and multiply the first equation

of (11) by P1. Then for each f ∈ P1(R(A) ∩D(A))
P1(χDχ

⋆)P ⋆
1 (f) = P1AP ⋆

1 (f) = hf.

If a ∈ h1(Z∗) then f = P1χa ∈ P1(R(A) ∩D(A)), the above equation
applies and

hP1χa = P1χDKa

⇒ (hP1χa, P1χb)L2(Ω) = (P1χDKa, P1χb)L2(Ω) = (χ⋆P ⋆
1P1χDKa,b)l2 = (KDKa,b)l2

In order to prove (8), multiply the second equation of (11) by P1A−1 in
order to get

0 = P1A−1P ⋆
1 (div(c

−1/2σ∇s)) = P1χD
−1χ⋆P ⋆

1 (c
−1/2div(σ∇s)) ∀s ∈ H1

0 (Ω).

For any b ∈ l2(Z∗) define f = P1χb ∈ L2(Ω). There exists s ∈
H1

0 (Ω) such that div(σ∇s) = c1/2f , and the above equation amounts
to KD−1Kb = 0. �
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4. Properties of the sequential operators

4.1. The case h = 0. It is interesting to understand what happens in
the purely diffusive case where h = 0. In this case, denote (Sn) the
eigenvectors of the Laplacian associated to eigenvalues (µ2

n) with µn > 0:

−c−1div(σ∇Sn) = µ2
nSn with

∫

Ω

cSiSj = δij and Sn ∈ H1
0 (Ω).

Then the eigenvectors of A are given exactly by

ψ±n =
1√
2

(
Sn

±µ−1
n σ∇Sn

)
associated to the eigenvalues ± µn,

and hence Tn = T−n = 1√
2
Sn. In this case the restriction of K to the

finite dimensional space l2([[−N,N ]]) has the following simple form. De-
note ei = (δin)n∈Z∗ the ith vector of the canonical basis of the space of
sequences. Then

(Kei|ej)l2(Z∗) = (P1χei|P1χej)L2(Ω) = (P1

(
Ti

µ−1
i σ∇Ti

)
|P1

(
Tj

µ−1
j σ∇Tj

)
)L2(Ω) =

∫

Ω

cTiTj.

In the particular case h = 0,
∫

Ω

cTiTj =

∫

Ω

c
1√
2
S|i|

1√
2
S|j| =

1

2
δ|i|,|j|,

and we have

Π−N,NKΠ−N,N =
1

2

(
Id Id†

Id† Id

)
with Id† =



0 · · · 1
0 � 0
1 · · · 0


 , (Id†)i,j = δi+j,N+1.

In this setting, solving the problem of Proposition 3.3 is trivial. For any
sequence a = (an)n ∈ l2(Z∗), Ka = a means that a−n = an and it is then
sufficient to take u = (un)n defined by:

for n < 0, take un = 0 and for n > 0, take un = (an + a−n) = 2an

This simple example is important to point out, since the case h 6= 0 is
just a compact perturbation of the case h = 0. Indeed, coming back to
equation (5), at order 0 when λn goes to infinity, we have:

λ2nTn + c−1div(σ∇Tn) = 0

and hence, when n goes to infinity, one expects λ±n ≃ ±µn and T±n ≃
1√
2
Sn, see Remark 4.2 for a precise statement of this assertion.

4.2. Existence and uniqueness of the solution. The next result is
the main ingredient in the proof of Theorem 2.1.

Proposition 4.1. Suppose that m ∈ N∗, M > m possibly with M = +∞
and denote π = Πm,M .

For any a ∈ l2(Z∗) there exists a unique u ∈ l2([[m,M ]]) solution of
πKu = πa. Moreover this u satisfies

(12) ‖u‖l2(Z∗) ≤ (2 +
‖h‖L∞(Ω)

λm
)‖πa‖l2(Z∗).

Moreover, if a = Ka, then P1χu is the L2 orthogonal projection of
P1χa on the space V ect(c1/2Tm, c

1/2Tm+1, . . . , TM).
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Additionnaly, if m = 1 and M = +∞ and a = Ka, then we also have
Ku = a.

As an immediate corollary, the last assertion of this Proposition proves
Theorem 2.1 via the equivalence pointed out in Proposition 3.3.

Proof. We first suppose that M < +∞, then Im(π) = l2([[m,M ]]) is a
finite dimensional subspace on which the endomorphism K̄ = πKπ is
real symmetric, hence diagonalisable. It is sufficient to show that, on

this space any eigenvalue of K̄ is greater than C = (2 +
‖h‖L∞(Ω)

λm
)−1 in

order to prove existence of u, uniqueness and the bound in the l2 norm.
Let ρ be an eigenvalue of K̄ and v an associated normalized eigenvec-

tor: πKπv = ρv, (v|v)l2 = 1 and πv = v. Since

ρ = (πKπv|v)l2 = (Kπv|πv)l2 = (Kπv|Kπv)l2 = ‖Kv‖2l2 ,
then 0 ≤ ρ ≤ 1. In order to prove the lower bound on the l2 norm, recall
that since v is a finite sequence then (10) applies and

|(KDKv|v)l2| = |
∫

Ω

h(P1χv)
2| ≤ ‖h‖L∞(Ω)‖P1χv‖2L2(Ω) = ‖h‖L∞(Ω)‖Kv‖2l2(Z∗).

using (9) ((Id−K)D(Id−K)v|v)l2 = 0 and πD = Dπ, we have

(KDKv|v)l2 = (2ρ− 1)(Dv|v)l2
Since |(Dv|v)l2| = |

∑M
n=m λnvnvn| ≥ λm(v|v)l2 ≥ λm, we have

(13) |λm(2ρ− 1)| ≤ ‖h‖L∞(Ω)‖Kv‖2l2(Z∗) = ‖h‖L∞(Ω)ρ

Which in turns means that ρ ≥ C .
Consider now the case M = +∞ where any a ∈ l2([[1,+∞[[) is the

strong l2 limit of Πm,pa as p goes to infinity. Passing to the limit, we
recover

(πKπa, a)l2(Z∗) ≥ C‖a‖2.
The Lax-Milgram theorem applies and πKπ : l2([[m,+∞[[)→ l2([[m,+∞[[)
is a bijection with a continuous inverse bounded by C in the operator
norm.

We now turn our attention to the geometrical interpretation of u. By
definition, c1/2Ti = P1χei, where ei is the ith canonical basis vector of
l2(Z∗), hence, if a = Ka, for all i ∈ [[m,M ]]

(P1χa− P1χu|c1/2Ti) = (P1χa− P1χu|P1χei) = (χ⋆P ⋆
1P1χ(a− u)|ei) = (Ka−Ku|ei)

= (a−Ku|ei) = (a−Kπu|πei) = (πa− πKπu|ei) = 0

Hence P1χu ∈ V ect(c1/2Ti)i=m..M is the L2 orthogonal projection of
P1χa on V ect(c1/2Ti)i=m..M .

We finally prove that if m = 1,M = +∞ and Ka = a, then Ku = a.
Define b = Ku − a = K(u − a), then Kb = b. Since we already have
πKu = πa, then πb = 0. Using (8): KD−1K = 0, we have

0 = (KD−1Kb|b) = (D−1Kb|Kb) = (D−1b|b) =
∑

i<0

λi|bi|2.

Since all the λi are strictly negative, then bi = 0 for all i < 0 and since
πb = 0, we finally have b = 0. �
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Remark 4.2. The bound (12) is indeed sharp, since, in the case h = 0,
we have u = 2πa. Indeed, in this case, the matrix Πm,MKΠm,M = 1/2Id.
Moreover, when λm > ‖h‖L∞(Ω)/2, the bound (13) translates into:

2− ‖h‖L∞(Ω)

λm
≤ ρ−1 ≤ 2 +

‖h‖L∞(Ω)

λm
.

Hence, when m goes to +∞ and M > m, every eigenvalue of the matrix
Πm,MKΠm,M goes to 1

2
. Anticipating on the results of Proposition 4.3

that asserts that every off-diagonal term Kij of Πm,MKΠm,M is bounded
like ‖h‖L∞(Ω)/(λi + λj), we can conclude that the matrix Πm,MKΠm,M

tends towards the matrix
1

2
Id as m goes to +∞. Hence, as expected,

when m goes to infinity, the effect of h wears off and K behaves as if the
compact perturbation h was inexistent.

4.3. Bounds for the approximation. The result of Proposition 4.1
states that the sought u solves the equation

πKπu = πa

with π = Π1,∞. But in practice, we can only compute this matrix for
π = Π1,N with a finite N . Therefore, we wish to estimate the resulting
error. For that purpose, we first prove that the off-diagonal terms of
πKπ are small.

Proposition 4.3. For i = 1, 2, let mi,Mi ∈ N∗, and denote πi = Πmi,Mi
.

We assume that π1π2 = 0, (or equivalently [[m1,M1]] ∩ [[m2,M2]] = ∅).
Then

‖π1Kπ2u‖l2(Z∗) ≤
‖h‖L∞(Ω)

λm1 + λm2

‖π2u‖l2(Z∗) ∀u ∈ l2(Z∗).

Proof. Let ρ be the largest eigenvalue on Im(π2) of

π2Kπ1Kπ2v = ρv with v = π2v ∈ Im(π2),

where v is a corresponding eigenvector such that ‖v‖l2 = 1. We claim
that it is sufficient to show that

(14) 0 ≤ ρ ≤
( ‖h‖L∞(Ω)

λm1 + λm2

)2

Indeed, the inequality to be proven in Proposition 4.3 is, for all u ∈ l2Z∗:

(π2Kπ1Kπ2u|π2u)l2 = ‖π1Kπ2u‖2l2(Z∗) ≤
( ‖h‖L∞(Ω)

λm1 + λm2

)2

‖π2u‖2l2(Z∗),

which is exactly tantamount to proving (14). First, ρ is positive since

ρ = (π2Kπ1Kπ2v,v) = (π1Kπ2v, Kπ2v) ≥ 0.

In order to prove the upper bound on ρ, set a = π1Kπ2v and b = π2v,
then trivially π1Kb = a and the eigenvector equation reads π2Ka = ρb.
Moreover, since D is a diagonal operator that commutes with π1 and π2,
then

a = π1a⇒ Da = π1Da and b = π2b⇒ Db = π2Db

and hence

(DKa|b)l2 + (KDa|b)l2 = (Ka|Db)l2 + (Da|Kb)l2 = (Ka|π2Db)l2 + (π1Da|Kb)l2

= (π2Ka|Db)l2 + (Da|π1Kb)l2 = ρ(b|Db)l2 + (Da|a)l2 .
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Since π1π2 = 0, then (Da|b)l2 = 0 and (9) turns into

(KDKa|b)l2 = (DKa|b)l2 + (KDa|b)l2 .
On the other hand, (10) reads

(KDKa|b)l2 =

∫

Ω

h(P1χa)(P1χb) ≤ ‖h‖L∞(Ω)‖(P1χa)‖L2(Ω)‖(P1χb)‖L2(Ω)

≤ ‖h‖L∞(Ω)‖a‖l2(Z∗)‖b‖l2(Z∗).

Collecting these three equations yields

(15) ρ(b|Db)l2 + (Da|a)l2 ≤ ‖h‖L∞(Ω)‖a‖l2(Z∗)‖b‖l2(Z∗).

Since π2b = b, then (b|Db)l2 =
∑M2

i=m2
λi|bi|2 ≥ λm2‖b‖2l2 . Similarly

(a|Da)l2 ≥ λm1‖a‖2l2 . Moreover, using ‖b‖ = ‖π2v‖ = 1 and

‖a‖2l2 = (π1Kπ2v|π1Kπ2v)l2 = (π2Kπ1Kπ2v|v)l2 = ρ,

Equation (15) turns into

ρ(λm1 + λm2) ≤ ‖h‖L∞(Ω)
√
ρ,

which is exactly (14). �

The following proposition precisely states the error made when com-
puting u with the limited information of the k first modes.

Proposition 4.4. For any a ∈ l2(Z∗), for any k ∈ N∗, define π = Π1,k.
Define, by Proposition 4.1, ûf ∈ l2([[1, k]]) as the unique solution to
πKû = πa.

Define u ∈ l2([[1,+∞]]) the only solution to Π1,∞Ku = Π1,∞a, i.e.
u = û when k = +∞.

There exists a constant C > 0 independent of k and a, there exists
k0 ∈ N∗ such that for all k ≥ k0,

‖u− û‖l2(Z∗) ≤ C‖(Π1,∞ − π)(a−Kû)‖l2(Z∗),

‖πu− û‖l2(Z∗) ≤
C

λk
‖u− û‖l2(Z∗).

Corollary 4.5. When a = χ⋆P ⋆
1 f , if fproj is the L

2 orthogonal projection
of f on the space V ect(c1/2T1, . . . , c

1/2Tn) then

‖u− û‖l2(Z∗) ≤ C‖f − fproj‖L2(Ω)

Indeed when a = χ⋆P ⋆
1 f , then Ka = a, P1χa = f and thanks to

Proposition 4.1 P1χû = fproj. The corollary is then simply proven by

‖(Π1,+∞−π)(a−Kû)‖l2(Z∗) ≤ ‖(a−Kû)‖l2(Z∗) = ‖K(a−û)‖l2(Z∗) = ‖P1χa−P1χû‖l2(Ω).

Proof. of Proposition 4.4. Define π̃ = Πk+1,+∞, d = u − û, then the
equations

πKû = πa and (π̃ + π)Ku = (π + π̃)a

yield the following system
{

(πKπ) (πd) + (πKπ̃) (π̃d) = 0
(π̃Kπ) (πd) + (π̃Kπ̃) (π̃d) = π̃a− (π̃Kπ) û
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Thanks to Proposition 4.1, the operators πKπ (resp. π̃Kπ̃) are invert-
ible with an inverse bounded from above with a constant independent of
k and then{

‖πd‖l2 ≤ C‖ (πKπ̃) π̃d‖l2
‖π̃d‖l2 ≤ C (‖π̃(a−Kπû)‖l2 + ‖ (π̃Kπ) πd‖l2)

Since π̃π = 0, then Proposition 4.4 applies to πKπ̃ and π̃Kπ and

‖πd‖l2 ≤
C

λk
‖π̃d‖l2 and (1− C

λ2k
)‖π̃d‖l2 ≤ C‖π̃(a−Kû)‖l2

Letting k big enough so that 1− C
λ2
k

> 1
2
and 1

λk

< 1 there exists another

constant, also denoted by C such that

‖d‖l2 = ‖πd‖l2 + ‖π̃d‖l2 ≤ C‖π̃(a−Kû)‖l2 and ‖πd‖l2 ≤
C

λk
‖d‖l2 .

�

5. Solving semi-infinite and finite problems

5.1. The semi-infinite case with L2 initial conditions. For a given
Tini ∈ L2(Ω), we are interested in solving in the space C0(R−, L2(Ω)) ∩
C1(R−, H−1(Ω)) the following equation:

(16)

{
c∂zzT − div(σ∇T )− Pev∂zT = 0

T|z=0 = Tini and lim
z→−∞

T (z) = 0

As developped in (7) in Section 1, T solves the differential equation (16),
if and only if

ψ(z) = (T (z), σ∇s) ∈ C0(R−,R(A))
verifies ψ(z) =

∑
n∈Z∗ une

λnψn with some sequence u = (un)n∈Z∗ ∈ l2(Z∗)
that verifies the boundary conditions in z = 0 and z = −∞, that is:

Tini =
∑

n∈Z∗

unTn and un = 0 ∀n < 0.

As stated in (6) in Section 1, a similar reduction can be performed if
Neumann boundary conditions are enforced in z = 0, that is if

∂zT|z=0 = Fini

is given instead of the value of T|z=0 . In this case the problem would turn
into

Fini =
∑

n∈Z∗

unTn and un = 0 ∀n < 0 and ψ = (∂zT, σ∇T ).

Moreover, solving this equation for positive z instead of negative z can
be done by changing z into −z, or equivalently by multiplying v by −1
which does not change the analysis.

Coming back to the original Dirichlet problem, setting a = χ⋆P ⋆
1

√
cTini ∈

l2(Z∗), we have Ka = a and u is given by Theorem 2.1 as the unique
solution to

Ku = a and u ∈ l2([[1,∞]]).

Hence the existence and uniqueness of T (z) in the considered space. In
practice, one is able to compute only the k first eigenvectors. We wish to
estimate the error made by an approximation of T (z) if only the k first
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eigenmodes are considered. The following proposition sums up every
property proved earlier.

Proposition 5.1. Suppose that (λn, Tn)n=1..k, the k first positive eigen-
values/eigenvectors of A have been computed. Define â = (

∫
Ω
cTiniTn)n=1..k,

set K̂ = (
∫
Ω
TiTj)1≤i,j≤k and find û = (ûn)n=1..k the unique solution to

(17) K̂û = â .

Define

T̂ (z) =
k∑

n=1

c−1/2ûne
λnzTn.

If T (z) denotes the unique solution to problem (16), then for all z ≤ 0
we have

‖T (z)− T̂ (z)‖L2(Ω) ≤ C

(
eλ1z

λk
+ eλkz

)
‖√cTini −

√
cTproj‖L2(Ω),

where
√
cTproj is the L2-orthogonal projection of

√
cTini on the space

spanned by V ect(
√
cTn)n=1..k.

We remark that since we are interested in the semi-cylinder defined by
z ≤ 0, the inequality gets better as z goes to −∞ or as k grows.

Proof. Set π = Π1,k, if a = χ⋆P ⋆
1

√
cTini then the solution of (16) is given

by

(T (z), σ∇s(z)) =
∑

n∈Z∗

c−1/2une
λnzψn,

where u = (un)n∈Z∗ is given by Ku = a and u ∈ l2([[1,+∞[[), see
Proposition 4.1.

Extending by zero û and â in l2(Z∗) then â = πa, K̂ = πKπ and û

verifies

πKπû = πa and û ∈ l2([[1, k]]).
Hence, û is unique and determined by Proposition 4.1. Moreover, Corol-
lary 4.5 states that

‖u− û‖l2 ≤ C‖√cTini −
√
cTproj‖L2(Ω).

‖T (z)− T̂ (z)‖L2(Ω) ≤ C

k∑

n=1

|un − ûn|2e2λnz + C
∑

n>k

|un − ûn|2e2λnz

≤ C‖πu− û‖2l2e2λ1z + C‖u− û‖2l2e2λkz.

The conclusion follows from Proposition 4.4 since ‖πu− û‖l2 ≤
C

λk
‖u−

û‖l2 . �

5.2. The finite case with Dirichlet condition on both ends. For
given L > 0, T0, TL ∈ L2(Ω), we are interested in finding T ∈ C1([0, L], L2(Ω))∩
C0([0, L], H1

0 (Ω)), solution to the following equation

(18)

{
c∂zzT + div(σ∇T )− Pev∂zT = 0 in [0, L]× Ω

T|z=0 = T0 and T|z=L
= TL

,
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In this problem, two boundary conditions are imposed, one on each end
of the finite cylinder. The mathematical proof of existence of solution
is straightforward since this problem is the one of a three-dimensional
Laplacian on Ω × [0, L] with a transport term and Dirichlet boundary
condition. We are looking here for an effective way to compute the so-
lution of this problem by performing a reduction to a problem in two
dimensions.

The first idea is to use upstream modes (negative eigenvalues) for the
left-most boundary condition (z = 0), and to use downstream modes
(positive eigenvalues) for the right-most boudary condition (z = L).
Some corrections must be added in order to take into account the in-
fluence of each boundary on the other.

Proposition 5.2. Consider T0 and TL in L2(Ω). Then there exists a
unique (an)n∈Z∗ ∈ l2(Z∗) such that

(19)
∑

n<0

anTn +
∑

n>0

ane
−LλnTn = T0

and

(20)
∑

n<0

ane
LλnTn +

∑

n>0

anTn = TL.

The solution of Problem (18) is then given by

T (z) =
∑

n<0

ane
λnzTn +

∑

n>0

ane
λn(z−L)Tn for 0 ≤ z ≤ L.

Proof. For a given sequence a ∈ l2(Z∗), denote a+ = (an)n>0 and a− =
(an)n<0. We also introduce the operators

U± : l2(Z∗±) −→ L2(Ω) C± : l2(Z∗±) −→ l2(Z∗±)

a± = (an)n 7−→
∑

±n>0

anTn and a± = (an) 7−→ (ane
∓Lλn)±n>0.

Theorem 2.1 implies that U+ and U− are one-to-one. Then the two
equations (19) and (20) read

(21)

(
U− U+C+

U−C− U+

)(
a−

a+

)
=

(
T0
TL

)
.

It remains to prove that the operatorW from l2(Z∗−)×l2(Z∗+) to L2(Ω)2

defined by

W =

(
U− U+C+

U−C− U+

)
=

(
Id U+C+(U+)−1

U−C−(U−)−1 Id

)(
U− 0
0 U+

)

is invertible. The endomorphism W0 of (L2(Ω))2 defined by

W0 =

(
Id M+

M− Id

)
with M± = U±C±(U±)−1

is invertible if and only if Id −M+M− and Id −M−M+ are invertible
which is the case since the operator M± is diagonal in the basis (Tn)±n>0

with largest eigenvalue e∓Lλ±1 < 1. As a conclusion, the operator W is
invertible, hence the equation (21) admits a unique solution (a−, a+). �
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Remark 5.3. A physical interpretation of the operator M± is the follow-
ing. The operator M+ acts on an element of L2(Ω) by decomposing this
element on the downstream modes, and damps the modes with a damping
factor corresponding to a length L. The operator M− has the same in-
terpretation except that upstream modes are concerned. These operators
model the influence of one boundary condition on the other boundary of
the cylinder.

Equation (21) can be rewritten

(22)

(
Id M+

M− Id

)(
U+a+

U−a−

)
=

(
T0
TL

)
.

Such equation is of type

(23) (Id+Mr)x = y

where Mr =

(
0 M+

M− 0

)
is a reflection operator associated with the

influence of the boundary conditions on the mode’s amplitude. In our
case the spectral radius of Mr is smaller than 1, and (23) can be solved
using a power series:

x = (Id+Mr)
−1y = y −Mry +M2

r y −M3
r y + ...

As stated above, this amounts to write that (in a first approximation)
the solution is x ≈ y: x is obtained by decomposing the boundary
condition at z = 0 along the downstream modes, and the boundary
condition at z = L along the upstream modes. The next term in the
power series reads x ≈ y −Mry, this takes into account the corrective
terms coming from the influence of each boundary condition on the other
boundary of the cylinder. The higher order termM2

r y takes into account
the correction of the corrective terms and so on. In this sense our solution
is a multi-reflection method, since each step provides an incremental
reflection of the boundary influence. Nevertheless, as opposed to the
image methods used for the computation of the Green functions in finite
domains for which the convergence is algebraic, and thus rather poor, the
successive terms in the sequence are exponentially decaying, providing an
exponential convergence of our multi-reflection finite domain operator.

6. Numerical results

We present in this section more details on the implementation of the
method, and illustrate the results in different configurations.

6.1. Implementation. The main obstacle to the numerical resolution
of the eigenproblem

(24) Aψ = λψ

is the existence of the kernel of A which is infinite dimensional, since
this prohibits applying effective numerical methods for the eigenvalues
computation. The resolution can become effective when one restricts to
a subspace of R(A). We have seen in section 2 that the space R(A) is
given by

R(A) = {(f, σ∇s) with (f, s) ∈ L2(Ω)×H1
0 (Ω)}.
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We introduce the space G as

G = {(f, σ∇s) with (f, s) ∈ H1
0 (Ω)×H1

0 (Ω)},
endowed with the norm

‖(f, σ∇s)‖G = ‖f‖H1
0 (Ω) + ‖s‖H1

0 (Ω).

It is clear that G is a dense subset of R(A) for the H norm, that D(A)∩
R(A) is a dense subset of G for the G norm and that G belongs to the
domain of A1/2 in the sense that

(Aψ|ψ)H =

∫

Ω

chT 2+2σ∇s ·∇T ≤ C‖ψ‖2G ∀ψ = (T, σ∇s) ∈ D(A)∩G.

Solving the eigenproblem of finding ψn ∈ D(A) ∩R(A) such that for all
ψ ∈ R(A)

(Aψn|ψ)H = λn(ψn, ψ)H,

amounts to solving it for all ψ ∈ G (by density of G in R(A)) and to seek
ψn ∈ G if one defines, for all ψi = (Ti, σ∇si) ∈ G

(Aψ1|ψ2)H =

∫

Ω

chT1T2 + σ∇s1 · ∇T2 + σ∇s2 · ∇T1.(25)

We recall that the H scalar product reads for all ψi = (Ti, σ∇si) ∈ G :

(26) (ψ1, ψ2)H =

∫

Ω

cT1T2 + σ∇s1 · ∇s2.

If one approximates H1
0 (Ω) by -say- P 1 finite element spaces, equation

(26) allows to obtain the mass matrix M , and Equation (25) allows to
assemble the stiffness matrix A of the eigenproblem

Find X, λ such that AX = λMX,

which is the discrete version of the eigenproblem (24), set on the orthog-
onal of the kernel of A.
6.2. Solving the eigenproblem. The eigenproblem Aψ = λψ, reduced
to the generalized eigenvalue problem

AX = λMX,

is solved using Lanczos method [5]. This algorithm provides the n eigen-
modes whose associated eigenvalues are closest from zero (exepted 0 since
we work in the orthogonal of the kernel). We denote by N ′ the number
of eigenmodes associated to negative eigenvalues, and by N the number
of eigenmodes associated to positive eigenvalues. Due to non-symmetry
reasons (because of the convective term) it is very likely that N ′ 6= N .
One can of course restrict the number of eigenmodes to min(N ′, N) but
this was not considered here.

Let Tini ∈ L2(Ω). Consider k ∈ Z∗. We denote Tproj the approximation
of Tini by the first k upstream modes if k > 0, and by the first |k|
downstream modes if k < 0. In other words, Tproj is the projection of Tini
on V ect(T1 . . . Tk) when k > 0 and V ect(T−1 . . . T−k) when k < 0. Using
the notations of Proposition 4.4, we recall that Tproj (for example in the
case k > 0) is computed as

Tproj =
k∑

i=1

uiTi with πKπû = a and ai =

∫

Ω

TiniTi.
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For a given value of k, the relative error is defined by

(27)
‖Tini − Tproj‖L2(Ω)

‖Tini‖L2(Ω)

.

When N ′ upstream eigenmodes and N downstream eigenmodes are
available, this allows to solve the problem in a cylinder of finite length.
The computation of the eigenmodes allows to obtain an approximation
of the operator W that appears at the left-hand side in Equation (21).
The quantities a+ and a− are then computed by solving Equation (21)
in the least squares sense.

6.3. An axisymmetric case. We first consider an axisymmetric case.
It allows a comparison with existing methods. Reference eigenvalues
are computed using the ”λ-analicity” method, as presented in [19] in
a simpler case. This method provides an implicit analytical definition
of the eigenvalues that makes possible their computation up to a given
accuracy. The first eigenvalues were computed with this method with a
precision of 10−10, providing the reference eigenvalues, named ’analytical
eigenvalues’ in the sequel.

The domain Ω is the unit circle. The Peclet number is set to 10 and the
velocity is supported in the disc B centered at the origin and of radius
r0 = 1/2. The velocity profile v is parabolic, culminating at the origin
with the value 2, more precisely:

v(x, y) = 2(1− x2 + y2

r20
) on B.

The simulations were performed using Getfem [1] and Matlab. The prob-
lem was discretized using P1 finite elements, on different meshes contain-
ing respectively 164 points (mesh 0), 619 points (mesh 1), 2405 points
(mesh 2) and 9481 points (mesh 3).

We computed the 50 eigenvalues that are closest to zero (multiplicity
counted). These eigenvalues were compared with the analytical eigenval-
ues corresponding to axisymmetric eigenmodes. These results are pre-
sented in Figure 2. Note that the distribution of the eigenvalues is not
symmetric with respect to 0, due to the convective term. In this case
there are 30 downstream modes, and 20 upstream modes. The relative
error on the first upstream eigenvalue compared to the analytical eigen-
value, as a function of the mesh size is presented in Figure 3.

As an illustration of Theorem 2.1, we decompose an element Tini ∈
H1

0 (Ω) along the downstream modes, and along the upstream modes.
The field Tini is Tini(x, y) = (1−x2−y2)(1+5x3+xy). The total number
of eigenvalues is 300. This computation uses the finest mesh mesh 3. We
indicate in Figure 4 the relative error when the first k modes are taken
into account, defined by Equation (27).

As another illustration of Theorem 2.1, we decompose another ele-
ment Tini ∈ L2(Ω) along the downstream modes, and along the upstream
modes. The field Tini is Tini(x, y) = 1 and the convergence of the projec-
tions when an increasing number of modes taken into account is shown in
Figure 5. Note that the convergence is slower here than in the previous
case (Figure 4), since in the previous case, the element Tini belongs to
H1

0 (Ω) and in the present case to L2(Ω) only. We recall Tini is projected
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Figure 2. Left: the first eigenvalues for the downstream
modes; right: the first eigenvalues for the upstream modes.
The eigenvalues obtained for different discretizations are
compared to the analytical eigenvalues (only for axisym-
metric modes, indicated in black)
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Figure 3. Numerical error for the first upstream eigen-
value, as a function of the mesh size (log scale).

on the space of eigenmodes which all belong to H1
0 (Ω) and even if it

is possible to approximate elements of L2(Ω) by elements of H1
0 (Ω) in

the L2 norm, phenomenom of slow convergence (similar the well known
Gibb’s effect) will occur.

6.4. A non-axisymmetric case. In order to illustrate the capabilities
of our approach, we present an illustration in a non-axisymmetric case.
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Figure 4. The log10 of the relative error of the projection
of a field Tini ∈ H1

0 (Ω) on the first k eigenmodes plotted as
a function of k for the downstream modes (left); the log10
of the relative error as a function of k for the upstream
modes (right).
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Figure 5. The log10 of the relative error of the projection
of a field Tini ∈ L2(Ω) on the first k eigenmodes plotted as
a function of k for the downstream modes (left); the log10
of the relative error as a function of k for the upstream
modes (right).

The domain Ω is the unit circle. The Peclet number is set to 10 and
the velocity is contained in the disc B centered at the point (x0, y0) =
(0.3, 0.2) and of radius r0 = 1/2. The velocity profile v is parabolic in B
culminating at (x0, y0) with the value 2 (see Figure 6):

v(x, y) = 2(1− (x− x0)2 + (y − y0)2
r20

) in B

The problem was discretized on a mesh containing 9517 vertices. We
computed the 50 eigenmodes that are closer to zero (multiplicity counted),
see Figure 7. In this case there are 31 downstream modes, and 19 up-
stream modes.

We present in Figures 8 and 9 the first downstream and upstream
eigenmodes.

We document also the results of section 4 by showing the matrix
Π−N ′,NKΠ−N ′,N for different values of the Peclet number, see Figure
10.
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Figure 6. Velocity profile.
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Figure 7. Left: the first eigenvalues for the downstream
modes; right: the first eigenvalues for the upstream modes.

6.5. A finite cylinder. The results of section 5.2 are documented here.
The domain B, the Peclet number and the velocity profile v are the same
as in section 6.4. We address the 3-dimensional problem in a cylinder of
length L. Two boundary conditions are imposed on the extremities of
this cylinder:

T|z=0 = T0 and T|z=L
= TL,

where

T0(x, y) = 1B(x, y) and TL(x, y) = 1− x2 − y2.
This problem was discretized on a mesh comprising 9517 vertices. The
1000 eigenvalues closest to 0 are computed (527 downstream modes and
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Figure 8. The first downstream eigenmodes.

473 upstream modes). The matrix W defined in section 5.2 was assem-
bled, the sequences a+ and a− were computed, and the value of T (z) at
different sections, corresponding to different values of z are illustrated in
Figures 11 and 12 for L = 1 and L = 5 respectively. Note that since
the incoming condition T0 is not in H

1
0 (Ω), the initial condition is poorly

approximated (oscillations are visible). Note also that the downstream
modes are damped slower than the upstream modes. The largest down-
stream eigenvalue is λ−1 ≈ −0.704 which gives a characteristic length of
ln(2)/|λ−1| ≈ 0.98, while the smallest upstream eigenvalue is λ1 ≈ 3.28
which gives a characteristic length of ln(2)/λ1 ≈ 0.21.

Conclusion

It has been shown that the decomposition on the upstream (or down-
stream) modes is not only mathematically possible but also numerically
feasible. Indeed, thanks to the bounds of Proposition 4.4, standard error
analysis, as the one of Proposition 5.1, may be performed. Such analy-
sis leads to effective algorithms that improve the state of the art on the
generalized Graetz problem by many ways. First, non axisymmetrical
geometries are allowed. Second, semi-infinite ducts and bounded ducts
geometries are studied. Third, effective error analysis is available. We
presented numerical examples that showcase the power of this method.

All these improvements pave the way to numerous applications, as for
example, optimization of the velocity v in order to maximize (or mini-
mize) heat transfer under constraints (for instance viscosity constraints if
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Figure 9. The first upstream eigenmodes.
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Figure 10. The matrix Π−N ′,NKΠ−N ′,N . From left to
right: Peclet = 10 (31 downstream and 19 upstream
modes); Peclet = 1 (27 downstream and 23 upstream
modes); Peclet = 0.1 (25 downstream and 25 upstream
modes)

the velocity is the solution of a Stoke’s problem). Nevertheless, some ex-
pected results still lack. For instance, the theory handles well L2 bounds
when L2 initial data is given. But there isn’t, as of today, any direct way
to show H1

0 bounds when H1
0 initial data is given. An other improvement
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Figure 11. The finite cylinder with length L = 1. From
left to right: the value of T (z) for z =
0, 0.25L, 0.5L, 0.75L,L.

Figure 12. The finite cylinder with length L = 5. From
left to right: the value of T (z) for z =
0, 0.25L, 0.5L, 0.75L,L.

would be to understand if the information given by the eigenvectors with
a positive eigenvalue is of any help when trying to decompose on the
downstream modes. Indeed the algorithm we propose simply dumps this
information in order to concentrate only on the one given by the neg-
ative eigenvalues. It is also not clear how to proceed when Dirichlet
and Neumann boundary conditions are mixed at the entrance and the
exit. For instance, extending Graetz modes expansions for semi-infinite
ducts when Ω is parted into two subsets ΩD and ΩN where respectively
Dirichlet and Neumann boundary conditions are imposed is still an open
question.

Such problems and extensions are currently under investigation.
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