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A Semismooth Newton Method for Nonlinear Parameter Identification Problems
with Impulsive Noise∗
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Abstract. This work is concerned with nonlinear parameter identification in partial differential equations sub-
ject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with
L1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challeng-
ing. By approximating this problem using a family of smoothed functionals, a semismooth Newton
method becomes applicable. In particular, its superlinear convergence is proved under a second-order
condition. The convergence of the solution to the approximating problem as the smoothing param-
eter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based
on a balancing principle is suggested. The efficiency of the method is illustrated on several bench-
mark inverse problems of recovering coefficients in elliptic differential equations, for which one- and
two-dimensional numerical examples are presented.
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1. Introduction. We are interested in the nonlinear inverse problem

S(u) = yδ,

where S : X → Y is the parameter-to-observation mapping and yδ represents experimental
measurements corrupted by impulsive noise. Throughout we assume that the space Y com-
pactly embeds into Lq for some q > 2, yδ is bounded almost everywhere, and X is a Hilbert
space. The spaces X and Y are defined on the bounded domains ω ⊂ R

n and D ⊂ R
m, re-

spectively. Such models arise naturally in distributed parameter identification for differential
equations, where typically Y is H1(D) or H

1
2 (D) and X is L2(ω) or H1(ω) [3].

The noise model for the measured data yδ plays a critical role in formulating and solving the
problem. In practice, an additive Gaussian noise model is customarily adopted, which leads to
the standard L2 fitting. However, non-Gaussian (e.g., Laplace or Cauchy) noise—which admits
the presence of significant outliers—may also occur. An extreme case is impulsive noise such as
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salt-and-pepper or random-valued noise, which frequently occurs in digital image acquisition
and processing due to, e.g., malfunctioning pixels in camera sensors, faulty memory locations
in hardware, or transmission in noisy channels [6]. Before giving a formal definition below
(section 1.2), let us briefly describe its salient feature and motivate the use of L1 fitting. The
impulsive noise models considered here are characterized by the fact that only a (possibly large)
number of points are subject to large errors, while the remaining data points stay intact. (In
effect, such noise is “outliers only.”) Such noise thus has a sparsity property. Since it is well
known that L1 norms as penalties promote sparse solutions [10, 44], the expectation of a sparse
residual quite naturally leads to L1 fitting. In contrast, L2 fitting assumes that all points are
corrupted by independent and identically distributed Gaussian noise, and one single outlier
can exert substantial influence on the reconstruction [22].

These considerations motivate adopting the model

min
u∈U
‖S(u)− yδ‖L1 +

α

2
‖u‖2X ,

where the set U ⊂ X is convex and closed, representing physical constraints on the unknown
u. We are mainly interested in various structural properties of the L1-norm fitting compared
with the more conventional L2-norm counterpart. Our main goal in this work is to resolve the
computational obstacles posed by the nondifferentiability of the L1-norm and nonlinearity of
the operator S, such that Newton-type methods are applicable when the operator S has the
necessary differentiability properties.

Due to the practical significance of L1 models, there has been a growing interest in analyz-
ing their properties and in developing efficient minimization algorithms, e.g., in imaging [15, 34]
as well as parameter identification [8]. A number of recent works have addressed the analytical
properties of models with L1 fitting, explaining their superior performance over the standard
model for certain types of noise and elaborating the geometrical structure of the minimizers in
the context of image denoising [2, 9, 17, 50], i.e., when S is the identity operator. In addition,
several efficient algorithms [14, 15, 16, 48] have been developed for such problems.

However, all these works are concerned only with linear inverse problems, and their analysis
and algorithms are not directly applicable to the nonlinear case of our interest. The optimality
system is not differentiable in a generalized sense and thus cannot be solved directly with a
(semismooth) Newton method. We consider a smoothed variant and prove the convergence
as the smoothing parameter tends to zero. The smoothed optimality system is solved by a
semismooth Newton (SSN) method, and its superlinear local convergence is established under
a second-order condition. To the best of our knowledge, this work represents a first investiga-
tion on L1 fitting with general nonlinear inverse problems. The applicability of the proposed
approach and its numerical performance are illustrated with several benchmark problems for
distributed parameter identification for elliptic partial differential equations.

The rest of this work is organized as follows. In the remainder of this section, we introduce
a selection of model problems for which our approach is applicable (section 1.1) and state a
precise definition of the considered noise models (section 1.2). In section 2, we discuss well-
posedness and regularization properties for nonlinear L1 fitting (section 2.1) and derive the
optimality system (section 2.2). The approximating problem, its convergence as the smoothing
parameter tends to zero, and its numerical solution using an SSN method are studied in sec-
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tion 3. We also discuss the important issue of choosing suitable regularization and smoothing
parameters. Finally, in section 4, we present numerical results for our model problems.

1.1. Model problems. In this part, we describe three nonlinear model problems—an in-
verse potential problem, an inverse Robin coefficient problem, and an inverse diffusion coeffi-
cient problem—for which our SSN method is applicable.

Inverse potential problem. A first nonlinear model problem consists in recovering the po-
tential term in an elliptic equation. Let Ω ⊂ R

d be an open bounded domain with a Lipschitz
boundary Γ. We consider the equation

(1.1)

⎧⎨
⎩
−Δy + uy = f in Ω,

∂y

∂n
= 0 on Γ.

The inverse problem is to recover the potential u defined on ω = Ω from noisy observational
data yδ in the domain D = Ω, i.e., S maps u ∈ X = L2(Ω) to the solution y ∈ Y = H1(Ω)
of (1.1). Such problems arise in heat transfer, e.g., damping design [43] and identifying heat
radiative coefficient [47]. We shall seek u in the admissible set U = {u ∈ L∞(Ω) : u ≥ c} ⊂ X
for some fixed c > 0.

Inverse Robin coefficient problem. Our second example considers the recovery of a Robin
boundary condition from boundary observation. Let Ω ⊂ R

2 be an open bounded domain with
a Lipschitz boundary Γ consisting of two disjoint parts Γi and Γc. We consider the equation

(1.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Δy = 0 in Ω,

∂y

∂n
= f on Γc,

∂y

∂n
+ uy = 0 on Γi.

The inverse problem consists in recovering the Robin coefficient u defined on ω = Γi from
noisy observational data yδ on the boundary D = Γc, i.e., S maps u ∈ X = L2(Γi) to

y|Γc ∈ Y = H
1
2 (Γc), where v �→ v|Γc denotes the Dirichlet trace operator and y is the solution

to (1.2). This class of problems arises in corrosion detection and thermal analysis of quenching
processes [8, 33]. We shall seek u in the admissible set U = {u ∈ L∞(Γi) : u ≥ c} ⊂ X for
some fixed c > 0.

Inverse diffusion coefficient problem. Our last example, identification of a diffusion coeffi-
cient, addresses stronger regularization for the parameter. Let Ω ⊂ R

2 be an open bounded
domain with a smooth boundary Γ. We consider the equation

(1.3)

{
−∇ · (u∇y) = f in Ω,

y = 0 on Γ

with f ∈ Lq(Ω) for some q > 2. The inverse problem consists in recovering the diffusion
coefficient u within ω = Ω from the noisy observational data yδ in the domain D = Ω, i.e.,
S maps u ∈ X = H1(Ω) to the solution y ∈ Y = W1,q

0 (Ω), q > 2, of (1.3). Such problems
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arise in estimating the permeability of underground flow and the conductivity of heat transfer
[3, 12, 49]. We shall seek u in the admissible set U = {u ∈ L∞(Ω) : λ ≤ u ≤ λ−1} ∩ X for
some fixed λ ∈ (0, 1).

These model problems share the following properties, which are verified in Appendix A
and are sufficient to guarantee the applicability of our approach:
(A1) The operator S is uniformly bounded in U ⊂ X and completely continuous: If for

u ∈ U , the sequence {un} ⊂ U satisfies un −⇀ u in X , then

S(un)→ S(u) in L2(D).

(A2) S is twice Fréchet differentiable.
(A3) There exists a constant C > 0 such that for all u ∈ U and h ∈ X there holds

‖S′(u)h‖L2 ≤ C‖h‖X .

(A4) there holds

‖S′′(u)(h, h)‖L2 ≤ C‖h‖2X .

The twice differentiability of S in (A2) is required for a Newton method (see section 3.2) and
ensures strict differentiability required for the chain rule; see the proof of Theorem 2.7. The a
priori estimate in (A3) is employed in analyzing the convergence of the approximate solutions,
while (A4) will be used to show local superlinear convergence of the SSN method.

1.2. Noise model. We now motivate the use of L1 fitting for impulsive noise from a
statistical viewpoint (cf. [22, 24, 28]). The exact data y† = S(u†), where u† is the true solution,
defined over a domain D, is corrupted by noise. The contaminated observation yδ is formed
pointwise by

yδ(x) = f(y†, ξr)(x) x ∈ D,

where ξr(x) is a real-valued random variable, r ∈ [0, 1] is a noise parameter, and the function f
represents the noise formation mechanism. We assume that for any two distinct points x1, x2 ∈
D, ξr(x1) and ξr(x2) are independent. In practice, the Gaussian noise model (and hence L2

fitting) stands out predominantly. This is often justified by appealing to the celebrated central
limit theorem: a Gaussian distribution is suitable for data that are formed as the sum of a large
number of independent components [22]. Even in the absence of such justifications, this model
is still often preferred due to its computational and analytical conveniences. However, it is also
clear that not all real-world data can be adequately described by the Gaussian model. Here,
we consider impulsive noise models: There exist (many) points x ∈ D with f(y, ξr)(x) = y(x).
The two most common types of impulsive noises, e.g., arising in digital image processing [6],
are salt-and-pepper noise and random-valued impulse noise (RVIN).

The salt-and-pepper noise model is especially common in image processing, and it reflects
a wide variety of processes that result in the same image degradation: the corrupted data
points (where ξr �= 0) only take a fixed maximum (“salt”) or minimum (“pepper”) value. A
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simple model is as follows:

yδ(x) =

⎧⎪⎪⎨
⎪⎪⎩
y†(x), with probability 1− r,
ymax, with probability r

2 ,

ymin, with probability r
2 ,

where ymax and ymin are the maximum and minimum of the signal, respectively, and the
parameter r ∈ (0, 1) represents the percentage of corrupted data points.

In the context of parameter identification problems, it is more reasonable to allow arbitrary
random values at the corrupted data points, which gives rise to the RVIN model

yδ(x) =

{
y†(x) with probability 1− r,
y†(x) + ξ(x) with probability r,

where ξ(x) is a random variable, e.g., normally distributed with mean zero and typically large
variance. Clearly, RVIN is generated by the random variable ξ(x) and reproduces the latter
if r = 1. However, its characteristic is fundamentally different from that of ξ(x) for r < 1:
there exist data points which are not corrupted by noise which carry a significant amount of
information in the data.

Like many non-Gaussian noise models such as Laplace and Cauchy noise, impulsive noise
features significant outliers, i.e., data points that lie far away from the bulk of the data. Sta-
tistically, this calls for robust methods (robust estimation in statistics [28]). One classical
approach is to first identify the outliers with noise detectors, e.g., adaptive median filter, and
then perform inversion/reconstruction on the data with outliers excluded. Its success relies
crucially on accurate identification of all outliers, which remains very challenging in case of
multiple outliers [42], and misidentification can significantly compromise the reconstruction.
The L1 approach provides a more systematic strategy for handling outliers due to its ability to
implicitly and accurately detect outliers and to automatically prune them from the inversion
procedure. The use of L1 fitting has shown very promising results in a number of practical
applications [4, 14, 16]. There have been some theoretical justifications of these empirical ob-
servations [27]. They are also reflected in the optimality system, where the dual variable acts
as a noise detector (cf. Corollary 2.8). In contrast, L2 fitting tends to place equal weight on all
data points and thus suffers from a lack of robustness: One single outlier can exert significant
influences globally and may spoil the reconstruction completely [22, p. 443].

We observe that these statistical considerations are finite-dimensional in nature. Nonethe-
less, they directly motivate the use of the continuous analogue, the L1 model, for parameter
identification problems. We would like to note that the model considered here remains de-
terministic, despite the preceding statistical motivations. In particular, we do not regard the
observational data yδ as an “impulsive” type of stochastic process in function spaces, instead
seeing it only as a realization of such stochastic process, as is usually the case for deterministic
inverse problems [19]. However, a stochastic analogue of the L1 model in function spaces is
also of great interest. We recall that the more conventional Gaussian model in function spaces
can be modeled as a Hilbert space-valued random variable—and more generally a Hilbert
space process—whose properties are characterized by its covariance structure. (See the nice
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summary in [5, section 2.5].) It would be desirable to have analogous characterizations for
the L1 model. Some results in this direction can be found in [37], where Besov priors were
(formally) studied that might also be applied to impulsive noises.

2. L1 fitting for nonlinear inverse problems. The above considerations motivate consid-
ering the problem

min
u∈U

{
Jα(u) ≡ ‖S(u)− yδ‖L1 +

α

2
‖u− u0‖2X

}
(P)

for the nonlinear operator S : U ⊂ X → Y satisfying assumptions (A1)–(A4) (although the
results of this and the next section require only (A1) and (A2)) and given yδ ∈ L∞(D). Here,
u0 is an initial guess which also plays the role of a selection criterion.

2.1. Existence and regularization properties. We first address the well-posedness of the
problem (P). In this section, we shall denote a minimizer of the functional Jα by uδα, while uα
will be a minimizer with yδ replaced by the exact data y†. We assume that y† is attainable,
i.e., that there exists an element u† ∈ U such that y† = S(u†). If u† is not unique, it always
refers to a u0-minimum-norm solution, i.e., an element minimizing ‖u− u0‖X over the set of
solutions to S(u) = y†. Throughout, C denotes a generic constant, whose value may differ at
different occurrences.

The proof of the next result is standard (see, e.g., [20], [19, Chap. 10]) and is thus omitted.
Theorem 2.1. Under Assumption (A1), problem (P) is well-posed and consistent, i.e.,
(i) there exists at least one minimizer uδα ∈ U to problem (P);
(ii) for a sequence of data {yn} such that yn → yδ in L1(D), the sequence {unα} of mini-

mizers contains a subsequence converging to uδα;
(iii) if the regularization parameter α = α(δ) satisfies

lim
δ→0

α(δ) = lim
δ→0

δ
α(δ) = 0,

then the sequence {uδα(δ)} has a subsequence converging to u† as δ → 0.

If we assume Lipschitz continuity of the derivative S′ and a (standard) source condition,
we have the following result on the convergence rate for the a priori parameter choice rule
α = α(δ) ∼ δε for any ε ∈ (0, 1) (cf. [26, 40]).

Theorem 2.2. Let yδ ∈ Y satisfy ‖yδ − y†‖L1 ≤ δ and let u† ∈ U be a u0-minimum norm
solution of S(u) = y†. Moreover, let the following conditions be fulfilled:

(i) There exists an L > 0 such that ‖S′(u†)− S′(z)‖L2 ≤ L‖u† − z‖X for all z ∈ U ⊂ X .
(ii) There exists a w ∈ L∞(D) ∩ L2(D) with L ‖w‖L2 < 1 satisfying u† − u0 = S′(u†)∗w.

Then for any fixed ε ∈ (0, 1), the choice α ∼ δε and δ sufficiently small, we have the estimate

‖uδα − u†‖X ≤ Cδ
1−ε
2 .

Proof. By the minimizing property of uδα and ‖yδ − y†‖L1 ≤ δ, we obtain

‖S(uδα)− yδ‖L1 +
α

2
‖uδα − u0‖2X ≤ δ +

α

2
‖u† − u0‖2X ,
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and hence

‖S(uδα)− yδ‖L1 +
α

2
‖uδα − u†‖2X ≤ δ + α〈u† − u0, u† − uδα〉X .

Now by the source condition (ii), we obtain

‖S(uδα)− yδ‖L1 +
α

2
‖uδα − u†‖2X ≤ δ + α〈w,S′(u†)(u† − uδα)〉L2 .

The Fréchet differentiability of S and condition (i) imply

S(uδα) = S(u†) + S′(u†)(uδα − u†) + r(uδα, u
†)

with
∥∥r(uδα, u†)∥∥L2 ≤ L

2 ‖uδα − u†‖2X . Combining these estimates leads to

‖S(uδα)− yδ‖L1 +
α

2
‖uδα − u†‖2X ≤ δ + α〈w, (y† − yδ) + (yδ − S(uδα)) + r(uδα, u

†)〉L2

≤ δ + α ‖w‖L∞ δ + α ‖w‖L∞ ‖S(uδα)− yδ‖L1

+
α

2
L ‖w‖L2 ‖uδα − u†‖2X ,

and hence

(1− α ‖w‖L∞)‖S(uδα)− yδ‖L1 +
α

2
(1− L ‖w‖L2)‖uδα − u†‖2X ≤ δ + α ‖w‖L∞ δ.

Now the desired result follows from the condition L ‖w‖L2 < 1 and the choice of α such that
α ‖w‖L∞ < 1 for δ sufficiently small.

Remark 2.3. An inspection of the proof shows that a rate of order O(δ 1
2 ) can be achieved

for a choice rule α(δ) for which the limit α∗ = limδ→0 α(δ) satisfies α∗ < 1/ ‖w‖L∞ and
α∗ > 0. We point out that the source condition u† − u0 = S′(u†)∗w might be further relaxed
by utilizing the structure of the adjoint operator; see [29] for relevant discussions in the context
of parameter identification.

The a priori choice gives only an order of magnitude for α and is thus practically incon-
venient to use. In contrast, the discrepancy principle [32, 39] enables constructing a concrete
scheme for determining the regularization parameter α. Specifically, one chooses α = α(δ)
such that

(2.1) ‖S(uδα)− yδ‖L1 = cδ,

where c ≥ 1 is a constant. Numerically, it can be realized efficiently by either a two-parameter
algorithm based on model functions or the secant method [32], but it requires knowledge of
the noise level δ.

The next result shows a O(δ 1
2 ) convergence rate. Its proof is almost identical to that of

Theorem 2.2 (cf. [32]) and hence is omitted.
Theorem 2.4 (discrepancy principle). Let conditions (i)–(ii) in Theorem 2.2 be fulfilled. Then

for the choice α determined by (2.1), there holds

‖uδα − u†‖X ≤ Cδ
1
2 .
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The next result shows an interesting property of L1 fitting (and in general, of one-homo-
geneous discrepancy functionals; cf. [7]) in the case of exact data: the regularized solution uα
coincides with the exact solution u† if the regularization parameter α is sufficiently small. This
is in sharp contrast to quadratic L2 fitting, where the Tikhonov minimizer is different from
the true solution for every α > 0.

Theorem 2.5 (exact recovery). Let conditions (i) and (ii) in Theorem 2.2 be fulfilled. Then,
uα = u† holds for α > 0 sufficiently small.

Proof. We only sketch the proof. By the minimizing properties of uα and the source
condition, we arrive at

‖S(uα)− y†‖L1 +
α

2
‖uα − u†‖2X ≤ −α〈w,S′(u†)(uα − u†)〉L2 .

As before, we obtain by the Fréchet differentiability of S that

‖S(uα)− y†‖L1 +
α

2
‖uα − u†‖2X ≤ α〈w, (y† − S(uα)) + r(uα, u

†)〉L2

≤ α ‖w‖L∞ ‖S(uα)− y†‖L1 +
α

2
L ‖w‖L2 ‖uα − u†‖2X .

Hence, for α ≤ 1/ ‖w‖L∞ , we have ‖uα − u†‖X = 0, i.e., uα = u†.

2.2. Optimality system. We next derive the necessary first-order optimality conditions
for uα := uδα (slightly abusing the notation).

Remark 2.6. In this work, we assume that the true solution u† of the inverse problem (and a
minimizer uα of (P)) lies in the interior Uint of U and we do not explicitly enforce the constraint
u ∈ U , in order to focus the presentation on the treatment of the nonsmoothness inherent
in the L1-fitting problem. There is no fundamental difficulty in including this constraint in
the optimization, however, in which case the first equality in the optimality conditions (OS)
should be replaced by a variational inequality. When the domain of definition is given by box
constraints (as in the model problems), the modified optimality system can still be solved
using an SSN method after applying a Moreau–Yosida regularization; cf. [23].

Theorem 2.7. For any local minimizer uα ∈ Uint ⊂ X of problem (P) there exists a pα ∈
L∞(D) with ‖pα‖L∞ ≤ 1 such that the following relations hold:

{
S′(uα)∗pα + αj(uα − u0) = 0,

〈S(uα)− yδ, p − pα〉L2 ≤ 0 for all ‖p‖L∞ ≤ 1.
(OS)

Here S′(u)∗ denotes the adjoint of S′(u) with respect to L2(D), and j : X → X ∗ is the
(linear) duality mapping, i.e., j(u) = ∂(12 ‖u‖2X ). Note that both S(u) and yδ are in L2(D), and
hence the duality pairing 〈S(u)− yδ, p〉L1,L∞ coincides with the standard L2-inner product.

Proof. Setting

F : X → R, u �→ α

2
‖u− u0‖2X ,

G : L1(D)→ R, v �→ ‖v‖L1 ,



SEMISMOOTH NEWTON METHOD FOR IMPULSIVE NOISE 513

we have that

Jα(u) = F(u) + G(S(u)− yδ).
Since the operator S is twice Fréchet differentiable ((A2), which implies strict differentiability)
and G is real-valued and convex, the sum and chain rules for the generalized gradient [13,
Thms. 2.3.3, 2.3.10] yield that for all u ∈ X , the functional Jα is Lipschitz continuous near u
and the relation

∂Jα(u) = F ′(u) + S′(u)∗∂G(S(u) − yδ)
holds. The necessary condition 0 ∈ ∂Jα(uα) for every local minimizer uα of Jα (see, e.g., [13,
Prop. 2.3.2]) and thus implies the existence of a subgradient pα ∈ ∂G(S(uα) − yδ) ⊂ L∞(D)
such that

0 = αj(uα − u0) + S′(uα)∗pα

holds, which is the first relation of (OS). Since G is convex, the generalized gradient reduces to
the convex subdifferential (cf. [13, Prop. 2.2.7]), and by its definition we have the equivalence

pα ∈ ∂G(S(uα)− yδ) ⇔ S(uα)− yδ ∈ ∂G∗(pα),
where G∗ is the Fenchel conjugate of G (see, e.g., [18, Chap. I.4]), given by the indicator
function of the unit ball B ≡ {p ∈ L∞(D) : ‖p‖L∞ ≤ 1}. The subdifferential of G∗ coincides
with the normal cone to B. Consequently, we deduce that pα ∈ ∂G(S(uα)− yδ) if and only if

〈S(uα)− yδ, p− pα〉L2 ≤ 0

holds for all p ∈ L∞(D) with ‖p‖L∞ ≤ 1, which is the second relation of (OS).
The following structural information for a solution uα of problem (P) is a direct conse-

quence of (OS) and is of independent interest.
Corollary 2.8. Let uα ∈ Uint be a minimizer of problem (P) and pα ∈ L∞(D) as given by

Theorem 2.7. Then the following relations hold:

S(uα)− yδ = 0 a.e. on {x ∈ D : |pα(x)| < 1} ,
S(uα)− yδ ≥ 0 a.e. on {x ∈ D : pα(x) = 1} ,
S(uα)− yδ ≤ 0 a.e. on {x ∈ D : pα(x) = −1} .

This can be interpreted as follows: the box constraint on the dual solution pα is active
where the data is not attained by the primal solution uα. In particular, the dual solution pα
acts as a noise indicator.

By using a complementarity function [11, 31], we can rewrite the second relation of (OS)
as

S(uα)− yδ = max(0, S(uα)− yδ + c(pα − 1)) + min(0, S(uα)− yδ + c(pα + 1))

for any c > 0. This can be further discriminated by pointwise inspection to the following three
cases:
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1. (S(uα)− yδ)(x) > 0 and pα(x) = 1,
2. (S(uα)− yδ)(x) < 0 and pα(x) = −1,
3. (S(uα)− yδ)(x) = 0 and pα(x) ∈ [−1, 1].

Consequently, we have the concise relation

pα = sign(S(uα)− yδ),

from which we obtain a reduced optimality system

αj(uα − u0) + S′(uα)∗(sign(S(uα)− yδ)) = 0.(OS′)

3. Solution by the SSN method. In view of (OS′) and the lack of smoothness of the sign
function, the optimality system (OS) is not differentiable even in a generalized sense, which
precludes the application of Newton-type methods. Meanwhile, gradient descent methods are
inefficient unless the step lengths are chosen appropriately, which, however, necessarily requires
a detailed knowledge of Lipschitz constants. Therefore, we propose to approximate (P) using
a local smoothing of the L1 norm. For simplicity, we will consider only u0 = 0 from here on.

3.1. Approximation. To obtain an SSN system, we wish to replace the sign function in
(OS′) by a locally linear smoothing. We therefore consider for β > 0 the smoothed problem

min
u∈U
‖S(u)− yδ‖L1

β
+
α

2
‖u‖2X ,(Pβ)

where ‖v‖L1
β
is a Huber-type smoothing of the L1 norm:

‖v‖L1
β
≡

∫
Ω
|v(x)|β dx, |v(x)|β ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v(x)− β
2 if v(x) > β,

−v(x)− β
2 if v(x) < −β,

1
2β v(x)

2 if |v(x)| ≤ β.

The existence of a minimizer uβ of (Pβ) follows as before. Since the mapping ψ : R→ R,
t �→ |t|β, is differentiable with a globally Lipschitz continuous derivative t �→ signβ(t),

signβ(t) ≡

⎧⎪⎪⎨
⎪⎪⎩

1 if t > β,

−1 if t < −β,
1
β t if |t| ≤ β,

we have that ψ defines a differentiable Nemytskii operator from Lp(D) to L2(D) for every p ≥ 4
(see, e.g., [45, Chap. 4.3] and references therein) with pointwise defined derivative signβ(v)h.
We thus obtain the necessary optimality conditions for a minimizer uβ ∈ Uint:

αj(uβ) + S′(uβ)∗(signβ(S(uβ)− yδ)) = 0.(OSβ)
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Remark 3.1. This Huber-type smoothing (which is also used in classical robust estimation
[28]) is equivalent to an L2-penalization of the dual variable p ∈ L∞(D) in (OS). To see this,
we consider (OS) as the optimality conditions of the primal-dual saddle point problem

min
u∈U

max
‖p‖L∞≤1

〈S(u)− yδ, p〉L2 +
α

2
‖u‖2X ,

which makes use of the dual representation of the L1-norm. We now introduce for β > 0 the
penalized saddle point problem

min
u∈U

(
max

‖p‖L∞≤1
〈S(u)− yδ, p〉L2 − β

2
‖p‖2L2

)
+
α

2
‖u‖2X .

The corresponding optimality conditions for minimizers in Uint are given by

(3.1)

{
S′(uβ)∗pβ + αj(uβ) = 0,

〈S(uβ)− yδ − βpβ, p − pβ〉L2 ≤ 0

for all p ∈ L∞(D) with ‖p‖L∞ ≤ 1. By expressing the variational inequality again using a
complementarity function with c = β, we obtain by pointwise inspection that

pβ = signβ(S(uβ)− yδ).
Inserting this expression into the first relation of (3.1) yields precisely (OSβ).

We next show the convergence of solutions to the approximating problems (Pβ) to a
solution to problem (P).

Theorem 3.2. As β → 0, the family {uβ}β>0 ⊂ U of minimizers of (Pβ) contains a subse-
quence converging in X to a minimizer of (P).

Proof. Note that for any β > 0, there holds |v(x)|β ≤ |v(x)|, and consequently

‖S(uα)− yδ‖L1
β
≤ ‖S(uα)− yδ‖L1 .

Now the minimizing property of uβ implies

(3.2) ‖S(uβ)− yδ‖L1
β
+
α

2
‖uβ‖2X ≤ ‖S(uα)− yδ‖L1

β
+
α

2
‖uα‖2X ,

from which it follows that the family {uβ} is uniformly bounded in U . Therefore, there exists
a subsequence, also denoted by {uβ}, and some u∗ ∈ U ⊂ X such that uβ −⇀ u∗ in X . By
the strong continuity of S (cf. (A1)), we have S(uβ) → S(u∗) in L2, and this convergence is
pointwise almost everywhere after possibly passing to a further subsequence [21]. In addition,
since |t|β → |t| as β → 0 for every t ∈ R, we have that |S(uα) − yδ|β converges pointwise to
|S(uα)− yδ|. Fatou’s Lemma then implies

(3.3) ‖S(u∗)− yδ‖L1 =

∫
D
lim
β→0
|S(uβ)− yδ|β dx ≤ lim inf

β→0
‖S(uβ)− yδ‖L1

β
.

Meanwhile, by virtue of Lebesgue’s dominated convergence theorem [21], we deduce

lim
β→0
‖S(uα)− yδ‖L1

β
= ‖S(uα)− yδ‖L1 .
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These three relations together with the weak lower semicontinuity of norms indicate

‖S(u∗)− yδ‖L1 +
α

2
‖u∗‖2X ≤ ‖S(uα)− yδ‖L1 +

α

2
‖uα‖2X .

This together with the minimizing property of uα implies that u∗ is a minimizer of (P).
To conclude the proof, it suffices to show that lim supβ→0‖uβ‖X ≤ ‖u∗‖X holds. To this

end, we assume the contrary, i.e., that there exists a subsequence of {uβ}β>0, also denoted by
{uβ}, satisfying uβ −⇀ u∗ in X and limβ→0‖uβ‖X ≡ c > ‖u∗‖X . Letting uα = u∗ and β → 0 in
(3.2), we arrive at

lim sup
β→0

‖S(uβ)− yδ‖L1
β
+
α

2
c2 ≤ ‖S(u∗)− yδ‖L1 +

α

2
‖u∗‖2X ,

i.e., lim supβ→0‖S(uβ)−yδ‖L1
β
< ‖S(u∗)−yδ‖L1 , which is in contradiction with the weak lower

semicontinuity in (3.3). This concludes the proof.

3.2. SSN method. To solve the optimality system (OSβ) with a semi-smooth Newton
method [11, 23, 36, 46], we consider it as an operator equation F (u) = 0 for F : U ⊂ X → X ∗,

F (u) = αj(u) + S′(u)∗(signβ(S(u)− yδ)).

We now argue the Newton differentiability of F . We recall that a mapping F : X → Y between
Banach spaces X and Y is Newton differentiable at x ∈ X if there exists a neighborhood N(x)
and a mapping G : N(x)→ L(X,Y ) with

(3.4) lim
‖h‖→0

‖F (x+ h)− F (x)−G(x+ h)h‖Y
‖h‖X

→ 0.

(Note that in contrast to Fréchet differentiability, the linearization is taken in a neighborhood
N(x) of x.) Any mapping DNF ∈ {G(s) : s ∈ N(x)} is then a Newton derivative of F at x.

Since t �→ signβ(t) is a globally Lipschitz continuous mapping from R to R, the corre-
sponding Nemytskii operator p �→ signβ(p) is Newton differentiable from Lp to Lq for any
p > q ≥ 1 [41, 46], and a Newton derivative is given pointwise by

(
DN signβ(p)h

)
(x) =

{
0 if |p(x)| > β,

1
βh(x) if |p(x)| ≤ β.

This yields Newton differentiability of signβ from Y ↪→ Lq(D), q > 2, to L2(D). By the chain
rule and the Fréchet differentiability of S, it follows that P : U → L2(D),

P (u) = signβ(S(u) − yδ),

is Newton differentiable as well, and a Newton derivative acting on a direction v ∈ X is given
as

DNP (u)v = β−1χI(S′(u)v).
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Here, χI is defined pointwise for x ∈ D by

χI(x) =

{
1 if |(S(u) − yδ)(x)| ≤ β,
0 else.

For a given uk, one Newton step consists in solving for the increment δu ∈ X in

(3.5) αj′(uk)δu + (S′′(uk)δu)∗P (uk) + β−1S′(uk)∗(χIkS′(uk)δu) = −F (uk)

and setting uk+1 = uk + δu. Given a way to compute the action of the derivatives S′(u)v,
S′(u)∗v, and [S′′(u)v]∗p for given u, p, and v (given in Appendix A for the model problems),
system (3.5) can be solved iteratively, e.g., using a Krylov method.

It remains to show the uniform well-posedness of system (3.5), from which superlinear con-
vergence of the SSN method follows by standard arguments. Since the operator S is nonlinear
and the functional is possibly nonconvex, we assume the following condition at a minimizer
uβ: There exists a constant γ > 0 such that

(3.6) 〈S′′(uβ)(h, h), P (uβ )〉L2 + α‖h‖2X ≥ γ‖h‖2X
holds for all h ∈ X . This is related to standard second-order sufficient optimality conditions in
PDE-constrained optimization (see, e.g., [45, Chap. 4.10]). The condition is satisfied for either
large α or sparse residual S(uβ)− yδ, since

(3.7) 〈S′′(uβ)(h, h), P (uβ)〉L2 + α‖h‖2X ≥ (α− C‖P (uβ)‖L2)‖h‖2X
holds by the a priori estimate on S′′ (A4). In the context of parameter identification problems,
this is a reasonable assumption, since for a large noise level, α would take a large value,
while a small α is chosen only for small noise levels (which, given the impulsive nature of
the noise, is equivalent to strong sparsity of the residual). In the latter case, we observe that
P (uβ) = signβ(S(uβ) − yδ) can be expected to be small due to the L2 smoothing of signβ .
(See Remark 3.1 and note that P (uβ) = pβ.) Condition (3.6) is thus satisfied if either α or β
is sufficiently large. However, this property depends on β, which together with Theorem 3.2
motivates the use of a continuation strategy in β; see section 3.3. We note that in general it
is not possible to check such conditions a priori even for quadratic functionals.

Proposition 3.3. Let β > 0 be given. If condition (3.6) holds, then for each u ∈ U suffi-
ciently close to a solution uβ ∈ Uint of (OSβ), the mapping DNF : X → X ∗,

DNF (u) = αj′(u) + S′′(u)∗P (u) + β−1S′(u)∗χIS
′(u),

is invertible, and there exists a constant C > 0 independent of u such that

‖(DNF )
−1‖L(X ∗,X ) ≤ C.

Proof. For given w ∈ X ∗, we need to find δu ∈ X satisfying

〈αj′(u)δu + (S′′(u)δu)∗P (u) + β−1S′(u)∗χIS
′(u)δu, v〉X ∗ ,X = 〈w, v〉X ∗ ,X
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for all v ∈ X . Letting v = δu and observing that 〈j′(u)v, v〉X ∗ ,X = ‖v‖2X (since X is a Hilbert
space), we obtain

α ‖δu‖2X + 〈S′′(u)(δu, δu), P (u)〉L2 + β−1
∥∥χIS

′(u)δu
∥∥2
L2 = 〈w, δu〉X ∗ ,X .

Now the pointwise contraction property of the min and the max function implies

‖P (uβ)− P (u)‖L2 ≤ β−1‖S(uβ)− S(u)‖L2

+ β−1‖max(0, S(uβ)− yδ − β)−max(0, S(u) − yδ − β)‖L2

+ β−1‖min(0, S(uβ)− yδ + β)−min(0, S(u) − yδ + β)‖L2

≤ 3β−1‖S(uβ)− S(u)‖L2 .

Consequently, by the continuity of the mapping S, for sufficiently small ‖uβ − u‖X , we have
small ‖P (uβ)−P (u)‖L2 as well. Thus, by condition (3.6) and the locally uniform boundedness
of S′′ (cf. (A4)), there exists an ε > 0 such that

α ‖δu‖2X + 〈S′′(u)(δu, δu), P (u)〉L2

= α ‖δu‖2X + 〈S′′(u)(δu, δu), P (uβ )〉L2 + 〈S′′(u)(δu, δu), P (u) − P (uβ)〉L2

≥ γ ‖δu‖2X − Cε ‖δu‖2X ≥
γ

2
‖δu‖2X

holds for all u with ‖u− uβ‖X ≤ ε if ε is sufficiently small.
Finally, we deduce by the Cauchy–Schwarz inequality that

γ

4
‖δu‖2X ≤ ‖w‖X ∗ ‖δu‖X .

This implies the claim.
Newton differentiability and uniform boundedness of Newton derivatives immediately im-

plies superlinear convergence of the SSN method (3.5).
Theorem 3.4. Let β > 0 and condition (3.6) hold. Then the sequence {uk} of iterates in

(3.5) converge superlinearly to a solution uβ ∈ Uint of (OSβ), provided that u0 is sufficiently
close to uβ.

Proof. The proof is standard [11, 23, 36, 46] but given here for the sake of completeness.
By the definition of the Newton step uk+1 = uk − (DNF (u

k))−1F (uk) and F (uβ) = 0, we
obtain using Proposition 3.3 that

‖uk+1 − uβ‖X = ‖(DNF (u
k))−1[F (uk)− F (uβ)−DNF (u

k)(uk − uβ)]‖X
≤ C ‖F (uk)− F (uβ)−DNF (u

k)(uk − uβ)‖X ∗

= C‖F (uβ + dk)− F (uβ)−DNF (uβ + dk)dk‖X ∗

with dk := uk − uβ ∈ X . Now the Newton differentiability of F at uβ implies that

‖uk+1 − uβ‖X = o(‖uk − uβ‖X ),
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and thus there exists a neighborhood of uβ such that

‖uk+1 − uβ‖X <
1

2
‖uk − uβ‖X ,

from which convergence follows by induction. Applying (3.4) then yields the claimed superlin-
ear rate.

3.3. Parameter choice. The regularized formulation (P) of the parameter identification
problem S(u) = yδ requires specifying the regularization parameter α, whose correct choice is
crucial in practice. Usually, it is determined using a knowledge of the noise level δ by, e.g., the
discrepancy principle (2.1). However, in practice, the noise level δ may be unknown, rendering
such rules inapplicable. To circumvent this issue, we propose a heuristic choice rule based on
the following balancing principle [15]: Choose α such that

(3.8) (σ − 1)‖S(uα)− yδ‖L1 − α

2
‖uα‖2X = 0

is satisfied. The underlying idea of the principle is to balance the data fitting term with the
penalty term, and the weight σ > 1 controls the trade-off between them. This weight depends
on the relative smoothness of residual and parameter but not on the data realization. The
principle does not require knowledge of the noise level and has been successfully applied to
linear inverse problems with L1 data fitting [14, 15]. (See also [30] for relevant theoretical
analysis.)

We compute a solution α∗ to the balancing equation (3.8) by the following simple fixed
point algorithm proposed in [14]:

(3.9) αk+1 = (σ − 1)
‖S(uαk

)− yδ‖L1

1
2‖uαk

‖2X
.

This fixed point algorithm can be derived formally from the model function approach [15].
The convergence can be proved similar to [14] by observing that the proof given there does
not depend on the linearity of the forward operator.

Theorem 3.5. If the initial guess α0 satisfies (σ − 1)‖S(uα0) − yδ‖L1 − α0
2 ‖uα0‖2X < 0,

then the sequence {αk} generated by the fixed point algorithm is monotonically decreasing and
converges to a solution to (3.8).

Of similar importance is the proper choice of the smoothing parameter β. If β is too
large, the desirable structural property of the L1 model will be lost. However, the second-
order condition (3.7) depends on β and cannot be expected to hold for arbitrarily small β. In
particular, the convergence radius for the SSN method is likely to shrink as β decreases to
zero. These considerations motivate the following continuation strategy: Starting with a large
β0 and setting βn+1 = qβn for some q ∈ (0, 1), we compute the solution uβn of (OSβ) using
the previous solution uβn as an initial guess.

A crucial issue is then selecting an appropriate stopping criterion for the continuation.
Since we are most interested in the L1 structure of the problem, we base our stopping rule
on the following finite termination property of the linear L1 fitting problem [15, Prop. 3.6]:
If the active sets coincide for two consecutive iterations of the SSN method, the semismooth
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Algorithm 1. Path-following SSN method.

1: Choose β0, q < 1, βmin > 0, u0 ∈ U , k∗ > 0, set n = 0
2: repeat
3: Set u0 = un, k = 0
4: repeat
5: Compute yk = S(uk)
6: Compute active and inactive sets

Ak
+ =

{
x ∈ D : (yk − yδ)(x) > β

}
Ak

− =
{
x ∈ D : (yk − yδ)(x) < −β

}
Ik =

{
x ∈ D : |(yk − yδ)(x)| ≤ β

}
7: Compute pk = signβ(y

k − yδ)
8: Compute F (uk) = αj(uk) + S′(uk)∗(pk)
9: Compute update δu by solving

αj′(uk)δu+ (S′′(uk)δu)∗pk + β−1S′(uk)∗(χIkS′(uk)δu) = −F (uk)

10: Set uk+1 = uk + δu, k ← k + 1.
11: until (Ak

+ = Ak−1
+ and Ak− = Ak−1

− and ‖F (uk)‖ ≤ tol) or k = k∗

12: if k < k∗ then
13: Set n← n+ 1, un = uk, βn = qβn−1

14: end if
15: until k = k∗ or βn < βmin

optimality system is solved exactly. In addition, the convergence is usually very fast due to
the continuation strategy, and the required number of iterations is independent of the mesh
size (this property is well known as mesh independence [25]). Hence, if the active sets (cf. Ak

+

and Ak− in Algorithm 1) are still changing after a fixed number of iterations, we deduce that
the semismoothness of the operator F (u) might be lost and return the last feasible solution
uβn−1 as the desired approximation. In practice, we also check for smallness of the norm of the
gradient to take into account the nonlinearity of S and safeguard termination of the algorithm
by stopping the continuation if a given very small value βmin is reached.

A complete description of this approach, hereafter called the path-following SSN method,
is given in Algorithm 1.

4. Numerical examples. We now present some numerical results for several benchmark
parameter identification problems with one- and two-dimensional (1d and 2d) elliptic differ-
ential equations to illustrate the features of the proposed approach. In each case, the forward
operator was discretized using finite elements on a uniform grid (triangular, in the case of two
dimensions). We denote by P0 the space of piecewise constant functions (on each element),
while P1 is the space of piecewise linear functions. Unless otherwise stated, the number N of
grid points is 1001 in one dimension and 128× 128 in two dimensions.
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We implemented the SSN method as given in Algorithm 1. The iteration was terminated
if the active sets did not change and the norm of the gradient fell below 1.00 × 10−6, or if
20 iterations were reached. In our experiments, we consider random-valued impulsive noise
(cf. section 1.2): Given the true solution u† and the corresponding exact data y† = S(u†), we
set

yδ =

{
y† with probability 1− r,
y† + ‖y†‖L∞ξ with probability r,

where the random variable ξ follows the standard normal distribution and r ∈ (0, 1) is the
percentage of corrupted data points. Unless otherwise noted, we take r = 0.3. The exact
noise level δ is defined by δ = ‖yδ−y†‖L1 . The Newton system (3.5) is solved iteratively using
BiCGstab (with tolerance 1.00×10−6 and maximum number of iterations 100). The reduction
rate q is set to 1

2 .
All timing tests were performed with MATLAB (R2010b) on a single core of a 2.8GHz

workstation with 24GB of RAM. The MATLAB codes of our implementation can be down-
loaded from http://www.uni-graz.at/˜clason/codes/l1nonlinfit.zip. To keep the presentation
concise, all tables are collected in Appendix B.

4.1. Inverse potential problem. This example is concerned with determining the poten-
tial u ∈ L2(Ω) in (1.1) from noisy measurements of the state y ∈ H1(Ω) in the domain Ω. The
discretized operator Sh maps uh ∈ Uh = P0 to yh ∈ Yh = P1 which satisfies

〈∇yh,∇vh〉L2(Ω) + 〈uhyh, vh〉L2(Ω) = 〈f, vh〉L2(Ω) for all vh ∈ Yh.
For the automatic parameter choice using the balancing principle, we have set the weight σ
to 1.03 and the initial guess α0 to 1.

1d example. Here, we take Ω = [−1, 1], f(x) = 1 and

u†(x) = 2− |x| ≥ 1.

A typical realization of noisy data is displayed in Figure 1(a) for r = 0.3 and Figure 1(b) for
r = 0.6. The fixed point iteration (3.9) converged after 3 (4) iterations for r = 0.3 (r = 0.6),
and yielded the values 4.33 × 10−3 (9.39 × 10−3) for the regularization parameter α. The
respective reconstructions uα, shown in Figures 1(c) and 1(d), are nearly indistinguishable
from the true solution u†. To measure the accuracy of the solution uα quantitatively, we
compute the L2-error e = ‖uα − u†‖L2 , which is 8.65 × 10−4 for r = 0.3 and 3.32 × 10−3 for
r = 0.6. For comparison, we also show the solution by the L2 data fitting problem (solved
by a standard Newton method), where the parameter α has been chosen to give the smallest
L2-error. We observe that the L2 reconstructions are clearly unacceptable compared to their
L1 counterparts, which illustrates the importance of a correct choice of the noise model, and
especially the suitability of L1 fitting for impulsive noise.

The performance of the balancing principle is further illustrated in Table 1 (see Appendix B
for all tables), where we compare the balancing parameter αb with the “optimal,” sampling-
based parameter αo for different noise levels. This parameter is obtained by sampling each
interval [0.1αb, αb] and [αb, 10αb] uniformly with 50 parameters and taking as αo the one

http://www.uni-graz.at/~clason/codes/l1nonlinfit.zip
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Figure 1. Results for 1d inverse potential problem. Left: r = 0.3, right: r = 0.6.

with the smallest L2-error eo ≡ ‖uαo − u†‖L2 . We observe that both the regularization pa-
rameters and the reconstruction errors obtained from the two approaches are comparable.
This shows the feasibility of the balancing principle for choosing an appropriate regulariza-
tion parameter in nonlinear L1 models. Table 1 also illustrates the fundamentally different
nature of impulsive noise and L1 fitting compared with Gaussian models, since the L2-error
does not depend linearly on the noise level or the percentage r of corrupted data. This can
be attributed to the fact that the structural properties of the noise (e.g., clustering of cor-
rupted data points, which is increasingly likely for r ≥ 0.5) is more important than the noise
percentage itself.

Next we study the convergence behavior of the path-following SSN method. First, the
convergence behavior in the smoothing parameter β is illustrated in Table 2 by showing for
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each step in the continuation procedure the value of β, the required number of SSN iterations,
and the L2-error e. The required number of SSN iterations is relatively independent of the value
of β provided it is sufficiently large. Then the semismoothness of the optimality system (OSβ)
is gradually lost after the β value drops below 1.00× 10−7, and more and more iterations are
required for the Krylov method to solve the Newton system (3.5) to the prescribed accuracy.
Nonetheless, the reconstruction already represents a very reasonable approximation (in terms
of the L2-error e) at β = 1.19 × 10−7. Second, we illustrate the superlinear convergence of
the SSN method by solving the optimality system (3.1) with fixed r = 0.3, α = 4.00 × 10−3

and β = 1.00× 10−1. Table 3 shows the number of elements that changed between active and
inactive sets and the residual norm ‖F (uk)‖L2 after the kth iteration for several problem sizes
N . The superlinear convergence as well as the mesh independence can be observed.

Finally, we demonstrate the scalability of the proposed approach. Table 4 summarizes the
computing time for one run of the path-following SSN method and for the full fixed point
iteration. Since the computing time depends on the α value, we present the results with the
final value of α as obtained from the fixed point iteration (3.9). The presented results are
the mean and standard deviation over 10 noise realizations. We observe that both the fixed
point iteration and the path-following SSN method scale very well with the problem size N ,
which corroborates the mesh independence of the SSN method [25]. We point out that the
computational cost of calculating the balancing parameter is only two to three times that
of solving the L1 model with one fixed regularization parameter. Therefore, the balancing
principle is also computationally inexpensive.

2d example. Here, we take Ω = [−1, 1]2, f(x1, x2) = 1, and

u†(x1, x2) = 1 + cos(πx1) cos(πx2)χ{|(x1,x2)|∞<1/2} ≥ 1;

see Figure 2(c). The exact and noisy data (with r = 0.3) are given in Figures 2(a) and 2(b),
respectively. The fixed point algorithm (3.9) converged within two iterations to the value
αb = 1.06 × 10−2. The solution (with an L2-error e = 5.28 × 10−3), shown in Figure 2(d),
accurately captures the shape as well as the magnitude of the potential u† and thus represents
a good approximation. The reconstruction by the L2 model is again far from the true solution
and thus is not shown here.

4.2. Inverse Robin coefficient problem. This example, meant to illustrate coefficient
recovery from boundary data, concerns reconstructing the Robin coefficient u ∈ L2(Γi) in
(1.2) from noisy measurements of the Dirichlet trace of y ∈ H1(Ω) on the boundary Γc. The
discretization Sh of the forward operator S thus maps uh ∈ Uh = P0(Γi) to the restriction of
yh ∈ Yh = P1 to the nodes on Γc, where yh satisfies

〈∇yh,∇vh〉L2(Ω) + 〈uhyh, vh〉L2(Γi)
= 〈f, vh〉L2(Γc)

for all vh ∈ Yh.
Here, we take the domain Ω = [0, 1]2, inaccessible boundary Γi = {(x1, x2) ∈ ∂Ω : x1 = 1},
and accessible (contact) boundary Γc = ∂Ω \ Γi. Further, we set f(x1, x2) = −4 + x1 and

u†(x2) = 1 + x2 ≥ 1.

For the automatic parameter choice using the balancing principle, we have set the weight σ
to 1.03 and the initial guess α0 to 1 as before.
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(a) Exact data (b) Noisy data (r = 0.3)

(c) True solution (d) L1 reconstruction (α = 1.06× 10−2)

Figure 2. Results for the 2d inverse potential problem with r = 0.3 (δ = 2.24× 10−1).

The noisy data for r = 0.3 and r = 0.6 are displayed in Figures 3(a) and 3(b), respectively.
The fixed point algorithm (3.9) converged after two iterations in both cases, giving a value
9.77 × 10−2 (r = 0.3) and 2.12 × 10−1 (r = 0.6) for the regularization parameter α. The
corresponding reconstructions uα, with respective L2-error 3.13 × 10−3 and 1.05 × 10−2, are
shown in Figures 3(c) and 3(d). Overall, the approximate solutions agree well with the true
coefficient, except around the two end points, where the reconstructions suffer from pronounced
boundary effect, especially in case of r = 0.6. Again, the reconstruction by the L2 model
(with optimal choice of α) is not acceptable and thus is not shown. A comparison of the
balancing principle with the optimal choice based on sampling is given in Table 5. The results
by these two approaches are very close to each other. From the table, we also observe the
nonmonotonicity of the error as a function of r, where the reconstruction error e shows a
noticeable jump after r = 0.5.
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(a) Exact and noisy data (r = 0.3)
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(b) Exact and noisy data (r = 0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

L1(α = 0.0977)
exact

(c) L1 reconstruction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

L1(α = 0.212)
exact

(d) L1 reconstruction

Figure 3. Results for the inverse Robin coefficient problem. Left: r = 0.3, right: r = 0.6.

4.3. Inverse diffusion coefficient problem. Finally, we consider the problem of deter-
mining the diffusion coefficient u ∈ H1(Ω) in (1.3) from noisy measurements of the solution
y ∈ H1

0(Ω). Here we take Uh = P1 and Yh = P1 ∩H1
0(Ω) and consider the discrete operator Sh

as mapping uh ∈ Uh to yh ∈ Yh satisfying

〈uh∇yh,∇vh〉L2(Ω) = 〈f, vh〉L2(Ω) for all vh ∈ Yh.

To accelerate the convergence of the Krylov solver, we precondition the Newton system with
the inverse Helmholtz operator (−Δ+I)−1, i.e., the gradient α(−Δu+u)−∇y·∇p is replaced by

αu− (−Δ+ I)−1(∇y · ∇p),
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Figure 4. Results for the 1d inverse diffusion coefficient problem. Left: r = 0.3, right: r = 0.6.

and similarly the action of the Hessian on δu is computed as

αu− (−Δ+ I)−1(∇δy · ∇p+∇y · ∇δp).
For the automatic parameter choice using the balancing principle, we have set the weight

σ to 1.001 and the initial guess α0 to 0.1. As noted, the different weight is chosen according
to the stronger smoothness assumption on u (H1 instead of L2 regularization).

1d example. Here, we take the domain Ω = [0, 1] and f(x) = 1. The exact solution u† is
given by

u†(x) =
1

2
+ x2(1− x)4 ≥ 1

2
.

Noisy data with r = 0.3 and r = 0.6 and the reconstructions (α = 3.85 × 10−4, L2-error
2.77 × 10−5 and α = 6.90 × 10−4, L2-error 3.86 × 10−5) are shown in Figure 4. In both
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(a) Exact data (b) Noisy data (r = 0.3)

(c) True solution (d) L1 reconstruction (α = 5.14× 10−5)

Figure 5. Results for the 2d inverse diffusion coefficient problem with r = 0.3 (δ = 3.06 × 10−2).

cases, the fixed point iteration (3.9) converged within two iterations. The convergence of the
path-following method and of the SSN method is similar to the inverse potential problem. A
comparison of the balancing principle with the optimal choice based on sampling is given in
Table 6. The results by these two approaches are very close to each other. From the table,
we also observe the nonmonotonicity of the error as a function of r, where the reconstruction
error e remains almost constant for r ≤ 0.5 and then increases quickly. Again the proposed
SSN method scales very well with the problem size, as shown in Table 7.

2d example. Here, we take Ω = [0, 1]2, f(x1, x2) = 1, and

u†(x1, x2) =
1

2
+ x21x

2
2 ≥

1

2
;

see Figure 5(c). The exact and noisy data (r = 0.3) are given in Figures 5(a) and 5(b),
respectively. The fixed point algorithm converged in seven iterations to the value α = 5.14 ×
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10−5. The reconstruction, shown in Figure 5(d), agrees well with the true solution (the L2-error
being 5.63×10−3). The less accurate approximation around the corner might be attributed to
the fact that the true solution does not satisfy the homogeneous Neumann conditions imposed
by the Newton step. Again, we remark that the L2 reconstruction (not presented) is far from
the true solution.

5. Conclusion. In this paper we have presented a path-following SSN method for the
efficient numerical solution of nonlinear parameter identification problems with impulsive noise.
The method is based on a Huber-type smoothing of the L1 fitting functional, and its superlinear
convergence is proved and demonstrated numerically. Furthermore, mesh independence of the
method can be observed. Several model examples for elliptic differential equations illustrate
the efficiency of this approach.

The balancing principle is shown to be an effective parameter choice method, which re-
quired little a priori information such as the noise level, while adding only a small amount of
computational overhead over the solution of one single minimization problem.

The presented approach can be extended in several directions. As noted in Remark 2.6,
including constraints on the solution would be a natural progression. The extension to time-
dependent problems would be straightforward but poses interesting challenges for efficient
implementation. Finally, it would be worthwhile to consider mixed Gaussian and impulsive
noise. While such noise is challenging for either L1 or L2 fitting, our robust approximation (Pβ)
seems to be an appropriate model [28] (cf. also Remark 3.1). Then the continuation β → 0
would have to be replaced by a suitable parameter choice method for determining the optimal
stopping value β∗ > 0. Such an approach might also be applicable to other non-Gaussian
models like Laplace and Cauchy noise.

Appendix A. Verification of properties for model problems. For completeness, we collect
in this section some results which verify the continuity and differentiability properties (A1)–
(A4) for our model problems. Throughout, we shall denote by C a generic constant, which is
independent of u ∈ U .

A.1. Elliptic potential problem. For this model problem, S maps u ∈ X = L2(Ω) to the
solution y ∈ Y = H1(Ω) of (1.1), and we take U = {u ∈ L∞(Ω) : u ≥ c} for some fixed
c > 0. The verification of properties (A1)–(A4) is analogous to [35]. We therefore only give,
for the sake of completeness, the explicit form of the derivatives required for the solution of
the Newton system (3.5) using a Krylov subspace method.

For given u ∈ L2(Ω), F (u) is computed by the following steps:
1. Solve for y ∈ H1(Ω) in

〈∇y,∇v〉L2(Ω) + 〈uy, v〉L2(Ω) = 〈f, v〉L2(Ω) for all v ∈ H1(Ω).

2. Solve for p ∈ H1(Ω) in

〈∇p,∇v〉L2(Ω) + 〈up, v〉L2(Ω) = −〈signβ(y − yδ), v〉L2(Ω) for all v ∈ H1(Ω).

3. Set F (u) = αu+ yp.
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For given δu ∈ L2(Ω), the application of DNF (u) on δu is computed by the following:
1. Solve for δy ∈ H1(Ω) in

〈∇δy,∇v〉L2(Ω) + 〈uδy, v〉L2(Ω) = −〈yδu, v〉L2(Ω) for all v ∈ H1(Ω).

2. Solve for δp ∈ H1(Ω) in

〈∇δp,∇v〉L2(Ω) + 〈uδp, v〉L2(Ω) = −〈 1βχIδy + pδu, v〉L2(Ω) for all v ∈ H1(Ω).

3. Set DNF (u) = αδu+ pδy + yδp.

A.2. Robin coefficient problem. Here, S maps u ∈ X = L2(Γi) to y|Γc ∈ Y = H
1
2 (Γc),

where y is the solution to (1.2). Set U = {u ∈ L∞(Γi) : u ≥ c} for some fixed c > 0. We
shall denote the mapping of u ∈ U to the solution y ∈ H1(Ω) of (1.2) by y(u). The following
a priori estimate follows directly from the Lax–Milgram theorem.

Lemma A.1. For any u ∈ U , problem (1.2) has a unique solution y ∈ H1(Ω) which satisfies

‖y‖H1(Ω) ≤ C‖f‖H− 1
2 (Γc)

.

Since f ∈ H− 1
2 (Γc) is fixed, the uniform boundedness of S follows from the continuity of

the trace operator. We next address the complete continuity of S.
Lemma A.2. Let {un} ⊂ U be a sequence converging weakly in L2(Γi) to u

∗ ∈ U . Then

S(un)→ S(u∗) in L2(Γc).

Proof. For un ∈ U , set yn = y(un) ∈ H1(Ω). By the a priori estimate from Lemma A.1, the
sequence {yn} is uniformly bounded in H1(Ω) and has a convergent subsequence, also denoted
by {yn}, such that there exists y∗ ∈ H1(Ω) with

yn −⇀ y∗ in H1(Ω).

The trace theorem and the Sobolev embedding theorem [1] imply

yn → y∗ in Lp(Γc)

for any p < +∞. In particular, we will take p = 4. Then we have

| 〈un(yn − y∗), v〉L2(Γi)
| ≤ ‖un‖L2(Γi)‖yn − y∗‖L4(Γi)‖v‖L4(Γi) → 0

by the weak convergence of {un} in L2(Γi) and the strong convergence of {yn} in L4(Γi).
Therefore, we have

lim
n→∞ 〈unyn, v〉L2(Γi)

= lim
n→∞

( 〈un(yn − y∗), v〉L2(Γi)
+ 〈uny∗, v〉L2(Γi)

)
= 〈u∗y∗, v〉L2(Γi)

.

Now passing to the limit in the weak formulation indicates that y∗ satisfies

〈∇y∗,∇v〉L2(Ω) + 〈u∗y∗, v〉L2(Γi)
= 〈f, v〉L2(Γc)

for all v ∈ H1(Ω),
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i.e., y∗ = y(u∗). Since every subsequence has itself a subsequence converging weakly in H1(Ω)
to y(u∗), the whole sequence converges weakly. The continuity of S : u �→ y(u)|Γc then follows
from the trace theorem and the Sobolev embedding theorem for p = 2.

The above two statements imply that property (A1) holds. We next address the remaining
properties.

Lemma A.3. The mapping u �→ y(u) is twice Fréchet differentiable from U to H1(Ω), and
for every u ∈ U and all directions h1, h2 ∈ L2(Γi), the derivatives are given by the following:

(i) y′(u)h1 ∈ H1(Ω) is the solution z of

〈∇z,∇v〉L2(Ω) + 〈uz, v〉L2(Γi)
= −〈h1y(u), v〉L2(Γi)

for all v ∈ H1(Ω), and the following estimate holds:

‖y′(u)h1‖H1(Ω) ≤ C‖h1‖L2(Γi).

(ii) y′′(u)(h1, h2) ∈ H1(Ω) is the solution z of

〈∇z,∇v〉L2(Ω) + 〈uz, v〉L2(Γi)
= − 〈

h1y
′(u)h2, v

〉
L2(Γi)

− 〈
h2y

′(u)h1, v
〉
L2(Γi)

for all v ∈ H1(Ω), and the following estimate holds:

‖y′′(u)(h1, h2)‖H1(Ω) ≤ C‖h1‖L2(Γi)‖h2‖L2(Γi).

Proof. The characterization of the derivatives follows from direct calculation. It remains
to show boundedness and continuity. By setting v = y′(u)h1 in the weak formulation, Hölder’s
inequality, the trace theorem, and the a priori estimate in Lemma A.1, we have∥∥y′(u)h1∥∥2H1(Ω)

≤ C ∥∥y′(u)h1∥∥L4(Γi)
‖h1‖L2(Γi)

‖y(u)‖L4(Γi)

≤ C ∥∥y′(u)h1∥∥H1(Ω)
‖h1‖L2(Γi)

‖y(u)‖H1(Ω)

≤ C ∥∥y′(u)h1∥∥H1(Ω)
‖h1‖L2(Γi)

,

from which the first estimate follows. Analogously we deduce that

‖y(u+ h1)− y(u)‖H1(Ω) ≤ C ‖h1‖L2(Γi)
.

Next let w = y(u+ h1)− y(u)− y′(u)h1, which satisfies

〈∇w,∇v〉L2(Ω) + 〈uw, v〉L2(Γi)
= −〈h1(y(u+ h1)− y(u)), v〉L2(Γi)

for all v ∈ H1(Ω). By repeating the proof of the preceding estimate, we deduce that

‖w‖H1(Ω) ≤ C ‖h1‖L2(Γi)
‖y(u+ h1)− y(u)‖H1(Ω) ,

from which it follows directly that y′(u)h1 defined above is indeed the Fréchet derivative of
y(u) at u. By arguing similarly and using the first assertion, the second assertion follows.
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Together with the linearity of the trace operator, we obtain S′(u)h1 = y′(u)h1|Γc ∈ H
1
2 (Γc)

and S′′(u)(h1, h2) = y′′(u)(h1, h2)|Γc ∈ H
1
2 (Γc) and thus property (A2). Finally, properties

(A3) and (A4) follow directly from the estimates in Lemma A.3 and the trace theorem [1].
We again give the necessary steps in a Krylov subspace method for the solution to (3.5).

For given u ∈ L2(Γi), F (u) is computed by the following steps:
1. Solve for y ∈ H1(Ω) in

〈∇y,∇v〉L2(Ω) + 〈uy, v〉L2(Γi)
= 〈f, v〉L2(Γc)

for all v ∈ H1(Ω).

2. Solve for p ∈ H1(Ω) in

〈∇p,∇v〉L2(Ω) + 〈up, v〉L2(Γi)
= −〈signβ(y|Γc − yδ), v〉L2(Γc) for all v ∈ H1(Ω).

3. Set F (u) = αu+ y|Γip|Γi .
For given δu ∈ L2(Γi), the application of DNF (u) on δu is computed by the following:

1. Solve for δy ∈ H1(Ω) in

〈∇δy,∇v〉L2(Ω) + 〈uδy, v〉L2(Γi)
= −〈yδu, v〉L2(Γi)

for all v ∈ H1(Ω).

2. Solve for δp ∈ H1(Ω) in

〈∇δp,∇v〉L2(Ω)+〈up, v〉L2(Γi)
= −〈 1βχI(δy|Γc), v〉L2(Γc)−〈pδu, v〉L2(Γi)

for all v ∈ H1(Ω).

3. Set DNF (u) = αδu+ p|Γi(δy)|Γi + y|Γi(δp)|Γi .

A.3. Diffusion coefficient problem. In this model problem, the operator S maps u ∈
X = H1(Ω) to the solution y ∈ Y = W1,q

0 (Ω), for some q > 2, of (1.3), and the admissible set
is U = {u ∈ H1(Ω) : λ ≤ u ≤ λ−1} for some fixed λ ∈ (0, 1). The following estimate is an
immediate consequence of Theorem 1 in [38], where Q > 2 is a constant depending only on λ
and Ω. We shall assume f ∈ Lq(Ω) for some q > Q.

Lemma A.4. There exists a number Q > 2 depending only on λ and Ω such that for any
u ∈ U and q ∈ (2, Q), problem (1.3) has a unique solution y ∈W1,q

0 (Ω) which satisfies

‖y‖W1,q(Ω) ≤ C‖f‖Lq(Ω).

From this, the uniform boundedness of S follows since f ∈ Lq(Ω) is fixed. We next address
the complete continuity of S.

Lemma A.5. Let {un} ⊂ U be a sequence converging weakly in H1(Ω) to u∗ ∈ U . Then

S(un)→ S(u∗) in L2(Ω).

Proof. For un ∈ U , set yn = S(un) ∈W1,q
0 (Ω). By the a priori estimate from Lemma A.4,

the sequence {yn} is uniformly bounded in W1,q(Ω) and has a convergent subsequence also
denoted by {yn} such that there exists y∗ ∈W1,q

0 (Ω) with

yn −⇀ y∗ in W1,q(Ω).
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The Rellich–Kondrachov embedding theorem [1, Thm. 6.3] implies

un → u∗ in Lp(Ω)

for any p < +∞. In particular, we will take p such that 1
2 +

1
p + 1

q = 1. Then we have∣∣∣〈(un − u∗)∇yn,∇v〉L2(Ω)

∣∣∣ ≤ ‖un − u∗‖Lp(Ω)‖∇yn‖Lq(Ω)‖∇v‖L2(Ω) → 0

by the weak convergence of {yn} in W1,q(Ω) and the strong convergence of {un} in Lp(Ω).
Therefore, we have

lim
n→∞ 〈un∇yn,∇v〉L2(Ω) = lim

n→∞
( 〈(un − u∗)∇yn,∇v〉L2(Ω) + 〈u∗∇yn,∇v〉L2(Ω)

)
= 〈u∗∇y∗,∇v〉L2(Ω) .

Now passing to the limit in the weak formulation indicates that y∗ satisfies

〈u∗∇y∗,∇v〉L2(Ω) = 〈f, v〉L2(Ω) for all v ∈ H1
0(Ω),

i.e., y∗ = S(u∗). Since every subsequence has itself a subsequence converging weakly in W1,q(Ω)
to S(u∗), the whole sequence converges weakly. Applying again the Rellich–Kondrachov em-
bedding theorem [1] for p = 2 completes the proof of the lemma.

The above two statements imply that property (A1) holds. The next statement yields the
remaining properties (A2), (A3), and (A4).

Lemma A.6. The operator S : U →W1,q
0 (Ω) is twice Fréchet differentiable, and for every

u ∈ U and all admissible directions h1, h2 ∈ H1(Ω), the derivatives are given by the following:
(i) S′(u)h1 ∈W1,q

0 (Ω) is the solution z of

〈u∇z,∇v〉L2(Ω) = −〈h1∇S(u),∇v〉L2(Ω) for all v ∈ H1
0(Ω),

and the following estimate holds:∥∥S′(u)h1
∥∥
W1,q(Ω)

≤ C ‖h1‖H1(Ω) .

(ii) S′′(u)(h1, h2) ∈W1,q
0 (Ω) is the solution z of

〈u∇z,∇v〉L2(Ω) = −
〈
h1∇S′(u)h2 + h2∇S′(u)h1,∇v

〉
L2(Ω)

for all v ∈ H1
0(Ω),

and the following estimate holds:∥∥S′′(u)(h1, h2)
∥∥
W1,q(Ω)

≤ C ‖h1‖H1(Ω) ‖h2‖H1(Ω).

Proof. Again, the characterization of the derivatives are obtained by direct calculation.
Set y = S(u) ∈W1,q

0 (Ω). By Lemma A.4 and Hölder’s inequality, we get

‖S′(u)h1‖W1,q(Ω) ≤ C‖h1∇y‖Lq(Ω) ≤ ‖h1‖Lp(Ω)‖∇y‖Lq′ (Ω)

≤ C‖h1‖H1(Ω)‖∇y‖Lq′ (Ω) ≤ C‖h1‖H1(Ω)
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with q′ ∈ (q,Q) and 1
q = 1

p +
1
q′ , where we have used the Sobolev embedding theorem and the

estimate in Lemma A.4. Analogously, we deduce that

‖S(u+ h1)− S(u)‖W1,q̃ (Ω) ≤ C‖h1‖H1(Ω),

where the exponent q̃ satisfies q̃ ∈ (q,Q). Next let w = S(u + h1) − S(u) − S′(u)h1, which
satisfies

〈u∇w,∇v〉L2(Ω) = −〈h1∇(S(u+ h1)− S(u)),∇v〉L2(Ω) for all v ∈ H1
0(Ω).

Repeating the proof of the preceding estimate, we derive

‖w‖W 1,p(Ω) ≤ C‖h1‖H1(Ω)‖S(u+ h1)− S(u)‖W 1,q̃(Ω).

Combining these estimates yields the first assertion, i.e., S′(u)h1 defined above is indeed the
Fréchet derivative of the forward operator S(u) : H1(Ω)→W 1,p

0 (Ω), and it satisfies the desired
estimate. Similarly, the second assertion follows from Lemma A.4 and the first assertion.

We finally address the steps required in a Krylov subspace method for the solution to (3.5).
For given u ∈ H1(Ω), F (u) is computed by the following steps:

1. Solve for y ∈ H1
0(Ω) in

〈u∇y,∇v〉L2(Ω) = 〈f, v〉L2(Ω) for all v ∈ H1
0(Ω).

2. Solve for p ∈ H1
0(Ω) in

〈u∇p,∇v〉L2(Ω) = 〈signβ(y − yδ), v〉L2(Ω) for all v ∈ H1
0(Ω).

3. Set F (u) = α(−Δu+ u)−∇y · ∇p.
For given δu ∈ H1(Ω), the application of DNF (u) on δu is computed by the following:

1. Solve for δy ∈ H1
0(Ω) in

〈u∇δy,∇v〉L2(Ω) = 〈δu∇y,∇v〉L2(Ω) for all v ∈ H1
0(Ω).

2. Solve for δp ∈ H1
0(Ω) in

〈u∇δp,∇v〉L2(Ω) = −〈 1βχIδy, v〉L2(Ω) + 〈δu∇p,∇v〉L2(Ω) for all v ∈ H1
0(Ω).

3. Set DNF (u) = α(−Δδu+ δu)−∇δy · ∇p−∇y · ∇δp.
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Appendix B. Tables.

Table 1
Comparison of the balancing principle (αb, eb) with the sampling-based optimal choice (αo, eo) for the 1d

inverse potential problem.

r δ αo αb eo eb

0.1 6.46e-2 4.65e-3 1.66e-3 2.64e-4 5.90e-4
0.2 1.13e-1 5.53e-3 2.91e-3 3.49e-4 4.11e-4
0.3 1.68e-1 4.17e-3 4.32e-3 4.60e-4 5.06e-4
0.4 2.26e-1 3.82e-3 5.81e-3 6.26e-4 8.97e-4
0.5 2.94e-1 3.34e-3 7.56e-3 3.54e-3 5.40e-3
0.6 3.19e-1 6.72e-3 8.20e-3 1.31e-2 2.05e-2
0.7 3.86e-1 1.35e-2 9.93e-3 8.47e-3 8.95e-3
0.8 4.38e-1 6.40e-3 1.13e-2 9.27e-3 1.89e-2
0.9 4.85e-1 1.51e-2 1.28e-2 2.04e-1 2.04e-1

Table 2
Convergence of path-following method. For each step k, the parameter β(k), number it(k) of SSN iterations,

and L2-error e(k) are shown.

β(k) 1.00e0 5.00e-1 2.50e-1 1.25e-1 6.25e-2 3.12e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3

it(k) 6 4 4 3 3 3 3 3 3 3
e(k) 1.83e-1 1.33e-1 1.08e-1 8.77e-2 7.17e-2 5.99e-2 4.63e-2 3.43e-2 2.63e-2 2.11e-2

β(k) 9.77e-4 4.88e-4 2.44e-4 1.22e-4 6.10e-5 3.05e-5 1.53e-5 7.63e-6 3.81e-6 1.91e-6

it(k) 3 3 3 3 3 3 3 3 3 4
e(k) 1.70e-2 1.33e-2 1.03e-2 8.06e-3 6.29e-3 4.90e-3 3.80e-3 2.94e-3 2.31e-3 1.85e-3

β(k) 9.54e-7 4.77e-7 2.38e-7 1.19e-7 5.96e-8 2.98e-8 1.49e-8 7.45e-9 3.73e-9 1.86e-9

it(k) 4 5 5 9 14 20 20 20 20 20
e(k) 1.51e-3 1.28e-3 1.12e-3 1.00e-3 9.32e-4 9.08e-4 8.90e-4 8.66e-4 8.65e-4 8.66e-4

Table 3
Convergence behavior of the SSN method (for fixed α, β) for the 1d inverse potential problem. Shown are

the problem size N , the number n(k) of elements that changed between active and inactive sets and residual
norm r(k) ≡ ‖F (u)‖L2 after each iteration k.

N k 1 2 3 4 5

101
n(k) 88 0 0 0 0
r(k) 4.40e-2 1.51e-2 8.62e-4 6.58e-6 2.86e-10

1001
n(k) 791 6 5 0 0
r(k) 1.23e-1 1.78e-2 2.30e-3 3.53e-5 9.99e-9

10001
n(k) 7803 91 16 1 0
r(k) 1.21e-1 1.67e-2 1.68e-3 1.90e-5 2.47e-9
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Table 4
Computing times (in seconds) for SSN method (ts) and fixed point iteration (tb) and L2-error e for the 1d

inverse potential problem. Shown are the problem size N , the mean ({ts, tb, e}m), and the standard deviation
({ts, tb, e}s) over 10 noise realizations.

N 100 200 400 800 1600 3200 6400 12800

ts,m 1.25 1.75 5.28 12.09 19.40 29.66 55.33 107.87
ts,s 0.48 0.45 3.31 4.57 7.22 4.45 11.44 25.92

tb,m 7.12 9.63 14.42 39.04 54.19 80.30 131.72 234.00
tb,s 3.42 6.21 7.63 17.14 16.79 17.25 38.08 75.21

em 8.98e-1 1.51e+0 2.88e-3 9.17e-4 6.22e-4 3.52e-4 2.76e-4 2.78e-4
es 2.46e+0 3.16e+0 2.05e-3 5.76e-4 6.83e-4 9.36e-5 4.29e-5 6.93e-5

Table 5
Comparison of the balancing principle (αb, eb) with the sampling-based optimal choice (αo, eo) for the

inverse Robin coefficient problem.

r δ αo αb eo eb

0.1 1.31e+0 1.40e-1 3.38e-2 1.15e-5 4.10e-5
0.2 2.19e+0 1.07e-1 5.62e-2 4.03e-6 1.46e-5
0.3 3.41e+0 2.45e-1 8.76e-2 8.63e-4 1.22e-3
0.4 5.30e+0 6.27e-1 1.36e-1 2.64e-3 5.40e-3
0.5 6.00e+0 5.01e-1 1.54e-1 4.10e-4 1.53e-3
0.6 7.31e+0 4.41e-1 1.88e-1 3.72e-2 6.30e-2
0.7 9.13e+0 3.40e-1 2.35e-1 6.07e-3 6.36e-3
0.8 9.79e+0 2.53e-1 2.53e-1 6.59e-2 6.59e-2
0.9 1.16e+1 6.00e-1 3.16e-1 3.02e-1 3.37e-1

Table 6
Comparison of the balancing principle (αb, eb) with the sampling-based optimal choice (αo, eo) for the 1d

inverse diffusion coefficient problem.

r δ αo αb eo eb

0.1 2.08e-2 9.20e-5 1.52e-4 2.34e-5 2.71e-5
0.2 3.81e-2 1.43e-4 2.77e-4 2.17e-5 2.28e-5
0.3 5.82e-2 3.41e-4 3.99e-4 2.68e-5 3.98e-5
0.4 8.54e-2 2.11e-4 5.71e-4 2.59e-5 3.84e-5
0.5 9.45e-2 3.83e-4 5.98e-4 3.56e-5 4.28e-5
0.6 1.22e-1 1.28e-3 7.45e-4 2.82e-4 3.60e-4
0.7 1.42e-1 2.04e-3 8.35e-4 8.01e-4 1.31e-3
0.8 1.55e-1 1.66e-3 8.71e-4 4.82e-4 6.52e-4
0.9 1.80e-1 4.33e-3 9.42e-4 2.11e-3 6.49e-3
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Table 7
Computing times (in seconds) for the SSN method (ts) and fixed point iteration (tb) and L2-error e for the

1d inverse diffusion coefficient problem. Shown are the problem size N , the mean ({ts, tb, e}m), and the standard
deviation ({ts, tb, e}s) over 10 noise realizations.

N 100 200 400 800 1600 3200 6400 12800

ts,m 0.70 2.19 6.49 11.46 25.48 55.34 82.38 167.71
ts,s 0.46 1.65 0.91 2.80 5.34 17.19 23.07 31.01

tb,m 4.12 8.68 19.27 27.59 52.45 97.32 154.46 332.96
tb,s 2.51 3.71 2.20 6.28 9.14 21.96 22.59 39.17

em 2.17e-1 8.03e-2 4.94e-5 3.20e-5 2.89e-5 3.33e-5 3.39e-5 3.08e-5
es 2.05e-1 1.53e-1 2.66e-5 5.86e-6 4.89e-6 6.74e-6 5.42e-6 3.25e-6
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