
From Pathwidth to Connected Pathwidth
Dariusz Dereniowski∗1

1 Department of Algorithms and System Modeling, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
deren@eti.pg.gda.pl

Abstract
It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where

pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm
that for a given path decomposition of width k computes a connected path decomposition of
width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of
‘bags’ in the input path decomposition.

The motivation for studying connected path decompositions comes from the connection
between the pathwidth and some graph searching games. One of the advantages of the above
bound for connected pathwidth is an inequality cs(G) ≤ 2s(G) + 3, where cs(G) is the connec-
ted search number of a graph G and s(G) is its search number, which holds for any graph G.
Moreover, the algorithm presented in this work can be used to convert efficiently a given search
strategy using k searchers into a connected one using 2k + 3 searchers and starting at arbitrary
homebase.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases connected pathwidth, connected searching, fugitive search games, graph
searching, pathwidth

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.416

1 Introduction

The notions of pathwidth and treewidth are receiving increasing interest since the series of
Graph Minor articles by Robertson and Seymour. The importance of those parameters is
due to their numerous practical applications, connections with several graph parameters and
usefulness in designing graph algorithms. Informally speaking, the pathwidth of a graph G,
denoted by pw(G), says how closely G is related to a path. Moreover, a path decomposition
captures the linear path-like structure of G. (For a definition see Section 2.)

Here we briefly describe a graph searching game that is the main motivation for the
results presented in this paper. A team of k searchers is given and the goal is to find an
invisible and fast fugitive located in a given graph G. The fugitive has also the complete
knowledge about the graph and about the strategy used by the searchers, and therefore
he will avoid being captured as long as possible. The fugitive is captured when a searcher
reaches his location. In this setting the game is equivalent to the problem of clearing all
edges of a graph that is initially entirely contaminated. There are two main types of this
graph searching problem. In the node searching two moves are allowed: placing a searcher on
a vertex and removing a searcher from a vertex. An edge becomes clear whenever both of its

∗ Research partially supported by MNiSW grant N N206 379337 (2009-2011).

© Dariusz Dereniowski;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 416–427

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.416
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


D. Dereniowski 417

endpoints are simultaneously occupied by searchers. In the edge searching we have, besides to
the two mentioned moves, a move of sliding a searcher along an edge. In this model an edge
{u, v} becomes clear if a searcher slides from u to v and either all the other edges incident
to u have been previously cleared or another searcher occupies u. In both cases the goal
is to find a search strategy (a sequence of moves of the searchers) that clears all the edges
of G. The node (edge) search number of G, denoted by ns(G) (s(G), respectively), equals
the minimum number of searchers sufficient to construct a node (edge, respectively) search
strategy. An important property is that pw(G) = ns(G)− 1 for any graph G [13, 14, 15, 18].
The edge searching problem is closely related to node searching, i.e. |s(G)− ns(G)| ≤ 1 [4],
and consequently to pathwidth, pw(G) ≤ s(G) ≤ pw(G) + 2.

In this work we are interested in special types of path decompositions called connected
path decompositions. The motivation comes from the need of creating connected search
strategies. An edge search strategy is connected if the subgraph of G that is clear is always
connected. The minimum number of searchers that guarantees the capture of the fugitive
by a connected (edge) search strategy, denoted by cs(G), is the connected search number
of G. This model of graph searching receives recently a growing interest, because in many
applications the connectedness is an requirement.

Related work. There are several results that give a relation between the connected
and the ‘classical’ search numbers of a graph. Fomin et al. proved in [7] that the connected
search number of an n-node graph of branchwidth b is bounded by O(b logn) and this bound
is tight. One of the implications of this result is that cs(G) = O(logn)pw(G). Nisse proved
in [19] that cs(G) ≤ (tw(G)+2)(2s(G)−1) for any chordal graph G. Barrière et al. obtained
in [2] a constant upper bound for trees, namely for each tree T , cs(T )/s(T ) ≤ 2. On the
other hand, there exists an infinite family of graphs Gk such that cs(Gk)/s(Gk) approaches
2 when k goes to infinity [3].

Fraigniaud and Nisse presented in [9] a O(nk3)-time algorithm that takes a width k tree
decomposition of a graph and returns a connected tree decomposition of the same width. (For
definition of treewidth see e.g. [5, 21].) Therefore, tw(G) = ctw(G) for any graph G. This
method cannot be applied for proving the same result for connected path decompositions,
because the decomposition that the algorithm in [9] constructs is not, in general, a path
decomposition even when a path decomposition is given as an input. That result also yields
an upper bound of cs(G) ≤ (logn+ 1)s(G) for any graph G. The problems of computing the
pathwidth (the search number) and the connected pathwidth (the connected search number)
are NP-hard, also for several special classes of graphs, see e.g. [6, 11, 12, 16, 17, 20].

This work. This paper presents an efficient algorithm that takes a (connected) graph
G and its path decomposition P = (X1, . . . , Xd) of width k as an input and finds in time
O(dk2) a connected path decomposition C = (Z1, . . . , Zm) of width at most 2k + 1, where
m ≤ kd. This solves an open problem stated in several papers, e.g. in [1, 2, 3, 7, 8, 9, 10, 22],
since it implies that for any graph G, cpw(G) ≤ 2pw(G) + 1, and improves previously known
estimations [7, 19]. The path decomposition C can be turned into a monotone connected search
strategy using at most 2k + 3 searchers. Thus, in terms of the graph searching terminology,
the bound immediately implies that mcs(G) ≤ cpw(G) + 2 ≤ 2pw(G) + 3 ≤ 2s(G) + 3, where
mcs(G) is the monotone connected search number of G. (A search strategy is monotone if the
fugitive cannot reach a previously cleared edge.) Since cs(G) ≤ mcs(G), the bound can be
restated for the connected search number of a graph, cs(G) ≤ 2s(G)+3. Moreover, the factor
2 in the bound is tight [3]. The bound finds also applications in designing approximation
algorithms, for it implies that the pathwidth and the connected pathwidth (the search

STACS’11



418 From Pathwidth to Connected Pathwidth

number, the connected search number, and some other search numbers not mentioned here,
e.g. the internal search number) are within a constant factor of each other.

2 Preliminaries and basic definitions

Given a simple graph G = (V (G), E(G)) and its subset of vertices X ⊆ V (G), the subgraph
of G induced by X is G[X] = (X, {{u, v} ∈ E(G) : u, v ∈ X}). For a simple (not necessary
connected) graph G, H is its connected component if H is connected, that is, there exists a
path in H between each pair of vertices, and each proper supergraph of H is not a subgraph
of G. For X ⊆ V (G) let NG(X) = {u ∈ V (G) \X : {u, x} ∈ E(G) for some x ∈ X}.

I Definition 1. A path decomposition of a simple graph G = (V (G), E(G)) is a sequence
P = (X1, . . . , Xd), where Xi ⊆ V (G) for each i = 1, . . . , d, and

◦
⋃
i=1,...,dXi = V (G),

◦ for each {u, v} ∈ E(G) there exists i ∈ {1, . . . , d} such that u, v ∈ Xi,
◦ for each i, j, k, 1 ≤ i ≤ j ≤ k ≤ d it holds Xi ∩Xk ⊆ Xj .

The width of the path decomposition P is width(P) = maxi=1,...,d |Xi| − 1. The pathwidth of
G, pw(G), is the minimum width over all path decompositions of G.

A path decomposition P is connected if G[X1 ∪ · · · ∪Xi] is connected for each i = 1, . . . , d.
Then, cpw(G) denotes the minimum width over all connected path decompositions of G.

I Definition 2. Given a graph G and its path decomposition P = (X1, . . . , Xd), a node-
weighted graph G = (V (G), E(G), ω) derived fromG and P is the graph with vertex set V (G) =
V1 ∪ · · · ∪ Vd, where Vi = {vi(H) : H is a connected component of G[Xi]}, i = 1, . . . , d,
and edge set E(G) = {{vi(H), vi+1(H ′)} : vi(H) ∈ Vi, vi+1(H ′) ∈ Vi+1, i ∈ {1, . . . , d −
1}, and V (H) ∩ V (H ′) 6= ∅}. The weight of a vertex vi(H) ∈ V (G), i ∈ {1, . . . , d}, is
ω(vi(H)) = |V (H)|. The width of G, denoted by width(G), equals width(P) + 1.

In the following we omit a subgraph H of G and the index i ∈ {1, . . . , d} whenever they are
not important when referring to a vertex of G and we write v instead of vi(H). For brevity,
ω(X) =

∑
x∈X ω(x) for any subset X ⊆ V (G).

Figures 1(a) and 1(b) present a graph G and its path decomposition P , respectively, where
the subgraph structure in each bag Xi is also given. Figure 1(c) depicts the derived graph G.
Note that P is not connected: the subgraphs G[X1∪· · ·∪Xi] are not connected for i = 2, 3, 4.
Let C ⊆ V (G). The border δ(C) of the set C is its subset consisting of all the vertices v ∈ C
such that there exists u ∈ V (G) \ C adjacent to v in G, i.e. δ(C) = NG(V (G) \ C).

Given a set X ⊆ V (G), X 6= ∅, we define the left (right) extremity of X as l(X) =
min{i : Vi ∩X 6= ∅} (r(X) = max{i : Vi ∩X 6= ∅}, respectively).

A path P in G is progressive if |V (P ) ∩ Vi| ≤ 1 for each i = 1, . . . , d.

I Definition 3. Given G, C ⊆ V (G) and X ⊆ δ(C), a left (right) branch BL(C,X, i), where
1 ≤ i ≤ r(X) (respectively BR(C,X, i), where l(X) ≤ i ≤ d) is the subgraph of G induced by
the vertices in X and by the vertices of all progressive paths contained in (V (G) \ C) ∪X
and connecting x ∈ X ∩ Vj and v ∈ Vk \ C, where i ≤ k ≤ j (j ≤ k ≤ i, respectively).

We sometimes write B to refer to a branch whenever its ‘direction’ or C,X, i are clear from
the context. A branch B = BL(C,X, i), i ≤ r(X), (B = BR(C,X, i), i ≥ l(X)) is continuous
if Vj ∩ V (B) 6= ∅ for each j = i, . . . , r(X) (j = l(X), . . . , i, respectively). A vertex v of B
is external if NG(v) * C ∪ V (B). The branch B is proper if it has no external vertices in



D. Dereniowski 419

V9V8V7V6
V5

4V
V3V2

V1

X9

b3

b4

b2b1

b

a
1

a
2

a
4

a
3

a

X1

e1

e2

e

ca

X2

ca

e3

e4
e

X4
X6

c2

c3ca X8
b

ca

e

ca

X3
X5 7X

e4

e5

a
1

a
4

a
3

e1

e2

e5

e3

e4

c4

c5

c3

c1

a
2

a

b3

b4

b2b1

b

c2

e

c4c3

c5

ca

c1
c2

ca

e

v   G   e (   [{  }])
3

 (   [{    }])v   G   a,c3

e5e43
 (   [{       }])v   G      ,

(c)

5354
2

3

2

1

2

3

25

(a)

(b)

c

5

Figure 1 (a) a graph G; (b) a path decomposition P of G; (c) the graph G derived from G and P

Vi+1∪ · · ·∪Vr(X)−1 (Vl(X)+1∪ · · ·∪Vi−1, respectively), while B is maximal if it is continuous,
proper and BL(C,X, i− 1) (BR(C,X, i+ 1), respectively) is not a proper branch. An integer
j is a cut of the branch B if i ≤ j ≤ r(X) (l(X) ≤ j ≤ i, respectively). The weight of the
cut j of B is ω((V (B) ∩ Vj) ∪ (X ∩ Y )), where Y = Vl(X) ∪ · · · ∪ Vj−1 for a left branch, and
Y = Vi+1 ∪ · · · ∪ Vr(X) for a right branch. A cut of minimum weight is a bottleneck of B.

Figure 2 illustrates the above definitions. (In all cases the branch is distinguished by the
dark area.) Let X = {x1, x2, x3} be a subset of δ(C). Figure 2(a) gives BL(C,X, i2) and
this branch is continuous and proper, but not maximal for each i2, i3 < i2 ≤ i1. The branch
BL(C,X, i3) (see Figure 2(b)) is maximal (thus continuous and proper), which follows from
the fact that any branch BL(C,X, i4), where i4 < i3 is not proper, because it contains an
external vertex u2, as shown in Figure 2(c). Note that the vertices of G1 and G2 (except
for u1 and u2) do not belong to any branch BL(C,X, i), because they are not connected
by progressive paths to x2 or x3. Figure 2(d) depicts a branch BL(C,X, i7) that is not
continuous for any i7 < i5, because Vi5−1 ∩ V (BL(C,X, i7)) = ∅. In our algorithm we ensure
that each branch we use is continuous and proper.

Given C,X and i, a left (respectively right) branch B can be calculated efficiently as
follows. Initially B satisfies V (B) = X. We start with j = r(X) (j = l(X), resp.) and we
add to the vertex set of the branch all vertices in Vj−1 \ C (Vj+1 \ C, resp.) that have a
neighbor in Vj ∩ V (B). Then, we decrement (increment, resp.) j and repeat this step. The
computation stops when j < i (j > i, respectively).

3 The algorithm

The algorithm CP (Connected Pathwidth) for finding a connected path decomposition of a
graph G takes G, a vertex v of G, and a path decomposition P of G as an input. The vertex
v is guaranteed to belong to the first bag of the resulting connected path decomposition.
This flexibility is provided due to the potential application of this algorithm: in graph
searching games the bags of path decompositions correspond to the vertices occupied by the
searchers while the search proceeds; in this way the selected vertex v can be the first one
that becomes guarded in a connected search strategy and it is called the homebase. The
first step performed by CP is the construction of the derived graph G and in the subsequent

STACS’11



420 From Pathwidth to Connected Pathwidth

(a) (b)

(c) (d)

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

x1

x3

C
x2

u1

i1i2i3i4i5i6i7

BL(C,X, i3)

G1 G1

G1 G1

G2

G2 G2

G2

u2

u2 u2

u2

BL(C,X, i2)

BL(C,X, i4) BL(C,X, i7)

Figure 2 G with distinguished vertex sets X = {x1, x2, x3} and C, and the corresponding branches
that are: (a) continuous and proper but not maximal; (b) maximal; (c) continuous but not proper
(thus not maximal); (d) not continuous nor proper (thus not maximal)

steps the algorithm works on G. (Also, most parts of our analysis use G rather than G.)
The algorithm computes a sequence of sets Cj ⊆ V (G), j = 1, . . . ,m, called expansions.
The expansion C1 consists of v and one of its neighbors, and Cm = V (G) at the end of the
execution of CP. Moreover, Cj ⊆ Cj+1 for each j = 1, . . . ,m− 1. Informally speaking, Cj+1
is obtained from Cj by adding to Cj some vertices from NG(Cj). This guarantees that the
final path decomposition obtained from δ(C1), . . . , δ(Cm) is valid and is connected, as proved
in Lemma 7. On the other hand, the particular vertices in NG(Cj), used to obtain Cj+1, are
selected in a way to guarantee that ω(δ(Cj)) is bounded by 2 ·width(G) for each j = 1, . . . ,m.
By construction, ω(δ(Cj)) is the size of the corresponding jth bag in the resulting connected
path decomposition.

In this section we give the statement of the algorithm and we prove that it computes a
connected path decomposition C. Then, in Section 4 we analyze the width of C. Due to the
space limitations, the proofs of several results (marked with M) are omitted.

The algorithm computes for each expansion Cj two sets called the left and right borders of
Cj , denoted by δL(Cj) and δR(Cj), respectively. It is guaranteed that δL(Cj)∪δR(Cj) = δ(Cj)
for each j = 1, . . . ,m (see Lemma 6). As it is proven later, the left and right borders are
special types of partitions of δ(Cj). In particular, there exists an integer i ∈ {1, . . . , d} such
that the left border δL(Cj) is contained in V1 ∪ · · ·Vi and the right border δR(Cj) is a subset
of Vi+1 ∪ · · · ∪ Vd. For brevity let in the following l(δL(Cj)) = r(δL(Cj)) = 0 if δL(Cj) = ∅
and l(δR(Cj)) = r(δR(Cj)) = d if δR(Cj) = ∅, where Cj is any expansion.

We start by describing a subroutine EE (Extend Expansion) that is used by the main
procedure CP given below. The input to EE consists of two integers i and k, i, k ∈ {1, . . . , d}.
Informally speaking, the procedure adds, in its subsequent iterations, to the current expansion
Cm each vertex in Vj that is connected by a progressive path to a vertex in Vj′ ∩ δ(Cm) for
each j = i to k and for some j′, i ≤ j′ ≤ j if i < k, and for each j = i down to k, j ≤ j′ ≤ i
if i > k, which we formally prove in Lemma 4 below. All the ‘intermediate’ expansions are
recorded as they will give us the corresponding bags in the final path decomposition. The
procedures EE(i, k) and CP(G,P) are as follows.



D. Dereniowski 421

Procedure EE (Extend Expansion)
Input: integers i and k. (G, m, Cm are used as global variables)

while k 6= i do
if k < i then

EL: Increment m, decrement i and set:
Cm = Cm−1 ∪ (Vi ∩NG(Cm−1)),
δL(Cm) = (δL(Cm−1) ∪ Vi) ∩ δ(Cm),
δR(Cm) = δR(Cm−1) ∩ δ(Cm).

else (k > i)
ER: Increment m, increment i and set:

Cm = Cm−1 ∪ (Vi ∩NG(Cm−1)),
δR(Cm) = (δR(Cm−1) ∪ Vi) ∩ δ(Cm),
δL(Cm) = δL(Cm−1) ∩ δ(Cm).

end if
end while.

end procedure EE.

Algorithm CP (Connected Pathwidth)
Input: a simple graph G, a path decomposition P of G, and a vertex v ∈ V (G).
Output: a connected path decomposition C of G.

(Initialization.)

I.1: Use G and P to calculate the derived graph G. Let v be any vertex of G. Let
C1 = {x, y}, where v ∈ C1, x, y are adjacent in G, and x ∈ Vi, y ∈ Vi+1 for
some i ∈ {1, . . . , d− 1}. Let m = 1.

I.2: If x ∈ δ(C1), then set δL(C1) = {x}, compute the maximal left branch
BL(C1, δL(C1), a0) with a bottleneck a′0 (a′0 ≥ a0) and with no external vertices
in Vi and call EE(i, a′0); otherwise δL(C1) = ∅.

I.3: If y ∈ δ(C1), then set δR(C1) = {y}, compute the maximal right branch
BR(C1, δR(C1), b0) with a bottleneck b′0 (b′0 ≤ b0) and with no external vertices
in Vi+1 and call EE(i+ 1, b′0); otherwise δR(C1) = ∅.

(Main loop.)
while Cm 6= V (G) do

if ω(δL(Cm)) > ω(δR(Cm)) then

L.1: Compute the maximal left branch B1 = BL(Cm, δL(Cm), k1). If B1
has no external vertex in Vi, i = r(δL(Cm)), then call EE(r(δL(Cm)), k1),
otherwise let k1 = r(δL(Cm)).

L.2: Compute the maximal right branch B2 = BR(Cm, δR(Cm) ∪ (Vk1 ∩
δL(Cm)), k2). Let k′2 be its minimum weight cut such that k′2 > k1. Call
EE(k1, k

′
2).

L.3: If r(δL(Cm)) = k1, then compute the maximal left branch B3 =
BL(Cm, δL(Cm), k3) with bottleneck k′3 and call EE(k1, k

′
3).

else (ω(δL(Cm)) ≤ ω(δR(Cm)))

R.1: Compute the maximal right branch B1 = BR(Cm, δR(Cm), k1). If B1
has no external vertex in Vi, i = l(δR(Cm)), then call EE(l(δR(Cm)), k1),
otherwise let k1 = l(δR(Cm)).

STACS’11



422 From Pathwidth to Connected Pathwidth

R.2: Compute the maximal left branch B2 = BL(Cm, δL(Cm) ∪ (Vk1 ∩
δR(Cm)), k2). Let k′2 be its minimum weight cut such that k′2 < k1.
Call EE(k1, k

′
2).

R.3: If l(δR(Cm)) = k1, then compute the maximal right branch B3 =
BR(Cm, δR(Cm), k3) with bottleneck k′3 and call EE(k1, k

′
3).

end if
end while.
Let Zj =

⋃
vk(H)∈δ(Cj) V (H) for each j = 1, . . . ,m. Return C = (Z1, . . . , Zm).

end procedure CP.

First we briefly discuss the initialization stage of CP. In Step I.1 an expansion C1 is
constructed in such a way that it contains any two adjacent vertices (the adjacency guarantees
the connectedness of the final path decomposition) such that one of them is the input vertex
v. (W.l.o.g. v has a neighbor in G, because otherwise G contains a single vertex and therefore
P is connected.) Steps I.2 and I.3 are symmetric. In Step I.2 (I.3) the algorithm finds the
maximal left (right) branch ‘emanating’ from x (resp. y) provided that the vertex belongs to
the border of C1, otherwise the left (right, respectively) border is empty.

In the following, one iteration of CP or EE means one iteration of the ‘while’ loop in
the corresponding procedure. Thus, in the case of CP, one iteration reduces to executing
Steps L.1-L.3 or R.1-R.3 within the ‘if’ statement, while in the procedure EE one iteration
results in executing the instructions in Step EL or in Step ER. We use the symbols B1,B2,B3,
a0, a

′
0, b0, b

′
0, ki, k′i to refer to the variables used in CP, where in the case of k1 we refer

to its value at the end of Step L.1 or Step R.1. In what follows we denote for brevity
B′2 = BR(Cm, δR(Cm)∪(Vk1∩δL(Cm)), k′2) and B′3 = BL(Cm, δL(Cm), k′3) if Steps L.1-L.3 have
been executed in this particular iteration of CP, and B′2 = BL(Cm, δL(Cm)∪(Vk1∩δR(Cm)), k′2),
B′3 = BR(Cm, δL(Cm), k′3) otherwise (i.e. in Steps R.1-R.3). Informally speaking, B′2 and B′3
are the branches B2 and B3, respectively, restricted to the vertices up to the corresponding
cut k′2 or k′3. The vertex v selected to be in C1 is called the starting vertex.

The branches are used in the subsequent iterations of the algorithm in the way presented
in Figure 3, where Csi refers to the expansion obtained at the end of Step L.i of an iteration
of CP, i = 1, 2, 3 (the execution of Steps R.1-R.3 is symmetric), and Cs0 is the expansion from
the beginning of the iteration. First, a branch B1 is used to obtain Cs1 from Cs0 (during the
execution of Step L.1 of CP). It holds in particular Cs1 = Cs0 ∪ V (B1), as stated in Lemma 5
below. It is guaranteed that r(δL(Cs1)) ≤ k1. The (external) vertices in V (B1) ∩ Vk1 have
some neighbors in Vk1+1 \ Cs1 and the algorithm calculates the right branch B′2 (‘emanating’
from k1) in Step L.2. Its right extremity, k′2, may by strictly less than the left extremity
of the new right border δR(Cs2) if B′2 has no external vertices in Vk′

2
. Finally, a branch B′3

is calculated in a symmetric way (this step is omitted if the vertices in Cs1 ∩ Vk1 have no
neighbors in Vk1−1 \ Cs1 , and in such case δL(Cs3) ⊆ δL(Cs0)).

The following lemmas are used to prove that the computation stops and they also
demonstrate how the expansions change between the subsequent calls of EE.

I Lemma 4. Given an expansion Cj and X ⊆ δ(Cj), after the execution of the ith iteration
of the procedure EE(r(X), k), where k ≤ r(X) (respectively EE(l(X), k), where k ≥ l(X)) it
holds Cj+i = Cj ∪V (BL(Cj , X, r(X)− i)) (Cj+i = Cj ∪V (BR(Cj , X, l(X) + i)), respectively),
i ≥ 1. M

I Lemma 5. Let Cs0 be an expansion from the beginning of an iteration of CP, and let Csi ,
i = 1, 2, 3, be the expansions obtained at the end of Steps L.1, L.2 and L.3 or R.1, R.2



D. Dereniowski 423

Step L.1

Step L.3

Step L.2

r(δL(Cs3 )) l(δR(Cs3 ))

k′
3 k1 k′

2

Cs0

B′
2

B1

B′
3

r(δL(Cs0 ))

Figure 3 The expansion Cs3 obtained from Cs0 by including three branches B1,B′
2 and B′

3
calculated in Steps L.1,L.2 and L.3 of CP, respectively

and R.3 in this iteration, respectively. Then, Cs1 = Cs0 ∪ V (B1), Cs2 = Cs1 ∪ V (B′2) and
Cs3 = Cs2 ∪ V (B′3). Moreover, Cs3 6= Cs0 . M

Figure 4 gives an example of the execution of CP. In all cases (including the following
figures) ♦ and � are used to denote the vertices of the right and left borders, respectively. In
particular Figure 4(a) presents a graph G and C2 (this is the expansion obtained at the end
of initialization of CP, where the starting vertex and its neighbor in C1 are among the three
vertices in C2). Figures 4(b)-(d) depict the state of the algorithm at the end of the first three
iterations. (The fourth iteration executes the Steps L.1-L.3, which ends the computation.)

k =1

k =1k’=3 k =1k’=2 2k3k =

2k k’2

2k k’2 3k’ k3

3k’ k3

2 3 1 3 2 2

9
3

3

9
2

2

2

5

5

5
4

7 2

1

57

9 2 3 3

34

55

3

8

2 3 1 3 2 2

9

3

9
2

2

2

5

5

5
5

4

7 2

1

5

9 2 3 3

34

55

3

8

3

4 4

55
8 8

2 3 1 3 2 2

9

9
2

2

2

5

5

54

7 2

1

57

9 2 3 3

4

55

3

8

3

4

8

2 3 1 3 2 2

9

3

9
2

2

2

5

5

5
5

4

7 2

1

57

9 2 3 3

34

55

3

8

3

4

5
8

5
6

6 6

6 6

6 6
5 3

L.1

3 L.2

L.3

R.2 R.3

R.3
R.1

6
7

R.2

5

7

41 77=

  (   =4<5=)

  (   =5<6=) (=8<9=    )

(a) (b)

(c) (d)

(=9<10=    )

Figure 4 a graph G (the integers are vertex weights) with distinguished vertices in Cm representing
the state of CP after: (a) the initialization; (b) first iteration with Steps R.1-R.3 executed; (c) second
iteration with Steps L.1-L.3 executed; (c) third iteration with Steps R.1-R.3 executed

The lemma below follows directly from the instructions in procedure EE.

I Lemma 6. δ(Cj) = δL(Cj) ∪ δR(Cj) for each j = 1, . . . ,m. M

The connectedness of C is due to the fact that G[Cj ] is connected for each j = 1, . . . ,m,
while the fact that C is a path decomposition follows from the definition of G.

I Lemma 7. Given a simple graph G and its path decomposition P = (X1, . . . , Xd), CP
returns a connected path decomposition C = (Z1, . . . , Zm) of G. M

4 The approximation guarantee of the algorithm

In this section we analyze the width of the path decomposition C calculated by CP for the
given G and P. First we introduce the concept of a nested expansion, which, informally

STACS’11



424 From Pathwidth to Connected Pathwidth

speaking, is as follows. The first condition for C to be nested states that the weight of Vi ∩C
for any i ‘between’ the right extremity of the left border and the left extremity of the right
border (by Lemma 9 the former is less than the latter) is greater than or equal to the weight
of the left or the right border of C. The remaining conditions refer to the situation ‘inside’
borders and are analogous in both cases. The condition (ii) for the left border requires
that the weight of Vi ∩ C, where i ≤ r(δL(C)), is not less than the weight of the left border
restricted to the vertices in V1 ∪ · · · ∪ Vi. Finally, condition (iii) gives a ‘local’ minimality,
that is, if we take a left branch BL(C, δL(C), i) (where i by the definition is ≤ r(δL(C))) and
we include several vertices of the branch, as it is done in procedure EE, then we ‘arrive’ at
some cut of this branch, and (iii) for C guarantees that the weight of the left border of the
new expansion is greater than or equal to the weight of the left border of C.

We say that an expansion C is nested if it satisfies the following conditions:

(i) for each i = r(δL(C)), . . . , l(δR(C)), min{ω(δL(C)), ω(δR(C))} ≤ ω(Vi ∩ C),
(ii) for each i ≤ r(δL(C)), ω(Vi ∩ C) ≥

∑
j≤i ω(Vj ∩ δL(C)), and for each i ≥ l(δR(C)),

ω(Vi ∩ C) ≥
∑
j≥i ω(Vj ∩ δR(C)),

(iii) r(δL(C)) (l(δR(C))) is a bottleneck of each branch BL(C, δL(C), i) (respectively,
BR(C, δR(C), i)).

Figure 5 presents a subgraph of G on the vertices that belong to an expansion C. For
this expansion to be nested it holds in particular: (ii) implies ω(Vi+1 ∩ C) ≥ ω({x1, x2, x3}),
ω(Vi+3 ∩ C) ≥ ω({x1, x2, x3}); (i) implies ω(Vi+6 ∩ C) ≥ min{ω(δL(C)), ω(δR(C))} =
min{ω({x1, . . . , x4}), ω({y1, . . . , y4})}.

...
... ... ... ...

...
...

x2

y4
i+ 3 i+ 11i i+ 5 i+ 8i+ 6

y3

x4x3

x1

y1 y2

l(δL(C)) r(δR(C))r(δL(C)) l(δR(C))

Vi+1 ∩ C

Vi+3 ∩ C... Vi+6 ∩ C

Figure 5 A nested expansion with left and right borders distinguished

Not all expansions computed by CP are nested, but we prove that all of them satisfy (ii)
(Lemmas 10-12). The fact that the expansions obtained in Steps I.1-I.3 of CP satisfy (ii)
follows from the observation that both the left and right border or each such expansion is a
subset of a single set Vi. For this reason we focus on analyzing the subsequent iterations of
CP, and we proceed with an assumption that an expansion from the beginning of an iteration
(i.e. obtained at the end of the previous iteration, or at the end of Step I.3) is nested. We
justify this assumption in Lemma 12.

First we introduce the following concept of moving the borders of an expansion. We
say that Cj moves the right (left) border of Cj−1 if l(δR(Cj)) > l(δR(Cj−1)) (r(δL(Cj)) <
r(δL(Cj−1)), respectively). The following lemma states that in each iteration of CP at most
one expansion may be computed that does not move the left or right border of its predecessor.
Moreover, this is the first expansion calculated in Step L.2 or in Step R.2, depending on the
condition checked in the ‘if’ statement in the main loop of CP.

I Lemma 8. If Cj , j ∈ {2, . . . ,m}, is any expansion calculated in Step EL (Step ER) of EE
invoked in an iteration of CP, except for an expansion obtained in the first iteration of EE
executed in Step L.2 or in Step R.2 of CP, then Cj moves the left (right, resp.) border of
Cj−1. M



D. Dereniowski 425

Lemma 6 states that δ(Cj) = δL(Cj) ∪ δR(Cj) for each expansion obtained in CP, while the
following lemma implies that the left and right borders of any expansion obtained during the
execution of CP are disjoint.

I Lemma 9. r(δL(Cj)) < l(δR(Cj)) for each j = 1, . . . ,m. M

Provided that an expansion from the beginning of an iteration of CP is nested, the following,
together with Lemma 8, implies that if the first expansion computed in Step L.2 or R.2 of
CP satisfies (ii), then all expansions from the iteration satisfy (ii).

I Lemma 10. Let j ∈ {2, . . . ,m}. If Cj−1 satisfies (ii) and Cj moves the right or the left
border of Cj−1, then Cj satisfies (ii). M

Due to the above, we analyze the first expansion obtained in Step L.2 or R.2 of CP. Let
Cs0 be the expansion from the beginning of an iteration of CP and let Cs1 be the expansion
obtained at the end of Step L.1 or Step R.1 of this iteration. We obtain that if Cs0 is nested,
then Cs1 satisfies (i) (the proof is omitted due to lack of space). This allows us to prove
that the first expansion obtained in Step L.2 or R.2 of CP also satisfies (ii). Thus, due to
Lemmas 8 and 10 we obtain that each expansion in an iteration of CP satisfies (ii), when the
expansion from the beginning of the iteration is nested.

I Lemma 11. If an expansion Cs0 from the beginning of an iteration of CP is nested, then
each expansion computed by CP in this iteration satisfies (ii). M

Finally, we finish our argument that each expansion calculated by CP satisfies (ii), by
proving the following.

I Lemma 12. Let Cs0 and Cs3 be the expansions from the beginning of two consecutive
iterations of CP. If Cs0 is nested, then Cs3 is nested. M

Therefore, an induction on the number of iterations of CP allows us to prove the claim that
each expansion computed by CP satisfies (ii), as shown in Lemma 14. Lemma 13 below,
together with Lemma 6, gives an upper bound for ω(δ(Cj)) for each j = 1, . . . ,m.

I Lemma 13. If an expansion C satisfies (ii), then ω(δL(C)) ≤ width(G) and ω(δR(C)) ≤
width(G).

Proof. Suppose w.l.o.g. that ω(δR(C)) ≥ ω(δL(C)). Then, it is enough to argue that
ω(δR(C)) ≤ width(G). To that end observe that by (ii), where i = l(δR(C)), ω(Vi ∩ C) ≥∑
k≥i ω(δR(C)∩Vk) = ω(δR(C)). Since ω(Vi∩C) ≤ ω(Vi) ≤ width(G), the thesis follows. J

I Lemma 14. If C = (Z1, . . . , Zm) is a path decomposition calculated by CP for the given G
and P, then width(C) ≤ 2 · width(P) + 1.

Proof. The expansion obtained at the end of Step I.3 of CP is nested. Indeed, (i) and
(iii) follow from the fact that a′0 and b′0 are the bottlenecks of the corresponding branches
used in Steps I.2 and I.3, respectively, while (ii) trivially holds, for both the left and right
border is contained in a single set Vi. Using an induction (on the number of iterations
of CP) we obtain by Lemma 12 that any expansion from the beginning of an iteration
of CP is nested. Note that for each expansion Cj obtained in Steps I.1-I.3 of CP it holds
δL(Cj) ⊆ Vi and δR(Cj) ⊆ Vi′ for some i, i′ ∈ {1, . . . , d}, which implies (ii) for Cj . This,
together with Lemma 11, implies that Cj satisfies (ii) for each j = 1, . . . ,m. By Lemmas 6
and 9, ω(δ(Cj)) = ω(δL(Cj)) + ω(δR(Cj)) for each j = 1, . . . ,m. By Lemma 13, ω(δ(Cj)) ≤
2 · width(G). By the definition, width(C) = max{ω(δ(Cj)) : j = 1, . . . ,m} − 1. Thus, by the
definition, width(C) ≤ 2 · width(G)− 1 = 2 · width(P) + 1. J

STACS’11



426 From Pathwidth to Connected Pathwidth

I Lemma 15. Let G be a simple connected graph and let P = (X1, . . . , Xd) be its path
decomposition of width k. The running time of CP executed for G and P is O(dk2).

Proof. Since each edge of G is contained in one of the bags of P , |E(G)| ≤ dk. The number
of vertices and edges in G is O(kd) and O(dk2), respectively. Thus, the complexity of
constructing G is O(dk2).

If a branch is given, then the weights of all its cuts can be calculated in time linear in
the number of edges and vertices of the branch. The time of finding any branch B in an
iteration of CP is O(|E(B)|). The complexity of calculating the weight of all cuts of B, and
thus finding its bottleneck, is O(|E(B)|). Whenever two branches overlap, we do not have to
repeat the computation. Therefore, the time complexity of determining all branches and
their bottlenecks is O(dk2). This includes the complexity of all executions of the procedure
EE, because, by Lemma 5, the procedure ‘follows’ the previously calculated branches by
including their vertices into the expansions Cj . It holds that m ≤ kd, because (by Lemmas 4
and 5) Cj ⊆ Cj+1 and Cj 6= Cj+1 for each j = 1, . . . ,m−1. By Lemma 14, ω(Cj) = O(k) for
each j = 1, . . . ,m. Thus,

∑
1≤j≤m |Zj | = O(dk2). Thus, the complexity of CP is O(dk2). J

I Theorem 16. There exists a O(dk2)-time algorithm that for given connected graph G and
its path decomposition P = (X1, . . . , Xd) of width k returns a connected path decomposition
C = (Z1, . . . , Zm) such that width(C) ≤ 2 · width(P) + 1 and m ≤ kd.

Proof. The correctness of CP is due to Lemma 7. The inequality width(C) ≤ 2width(P) + 1
follows from Lemma 14, and the complexity of CP is due to Lemma 15. As argued in the
proof of Lemma 15, m ≤ kd. J

I Theorem 17. For each connected graph G, cpw(G) ≤ 2 · pw(G) + 1. J

The inequalities pw(G) ≤ s(G) ≤ pw(G) + 2 and cpw(G) ≤ cs(G) ≤ cpw(G) + 2 [4] and
Theorem 17 give the following

I Corollary 18. For each graph G it holds cs(G) ≤ 2 · s(G) + 3. J

5 Conclusions

The advances in graph theory presented in this paper are three-fold:
◦ A bound for connected pathwidth is given, cpw(G) ≤ 2pw(G) + 1, where G is any

graph, which bounds the connected search number of a graph by its search number,
cs(G) ≤ 2s(G) + 3. Moreover, the input vertex v that belongs to the first bag in the
resulting connected path decomposition is selected arbitrarily, which implies a stronger
fact, namely a connected (2s(G) + 3)-search strategy can be constructed with any vertex
of G playing the role of the homebase. This provides an efficient algorithm for converting
a search strategy into a connected one with an arbitrary homebase.

◦ An efficient method is given for calculating a connected pathwidth of width at most
2k + 1, provided that a graph G and its path decomposition of width k are given.

◦ It is a strong assumption that the algorithm requires a path decomposition to be given,
because calculating pw(G) is a hard problem in general. However, this algorithm can
be used to approximate the connected pathwidth for the classes of graphs for which the
approximate algorithms for pathwidth exist.



D. Dereniowski 427

References
1 L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by mobile

agents. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on parallel
algorithms and architectures, pages 200–209, New York, NY, USA, 2002. ACM.

2 L. Barrière, P. Fraigniaud, N. Santoro, and D.M. Thilikos. Connected and internal graph
searching. Technical report, Technical Report, UPC Barcelona, 2002.

3 L. Barrière, P. Fraigniaud, N. Santoro, and D.M. Thilikos. Searching is not jumping. In
WG ’03: Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 34–45, 2003.

4 D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey).
DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 5:33–49, 1991.

5 H.L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.
6 D. Dereniowski. Connected searching of weighted trees. In MFCS, 2010. (to appear).
7 Fedor V. Fomin, Pierre Fraigniaud, and Dimitrios M. Thilikos. The price of connectedness

in expansions. Technical report, Technical Report, UPC Barcelona, 2004.
8 F.V. Fomin and D.M. Thilikos. An annotated bibliography on guaranteed graph searching.

Theor. Comput. Sci., 399(3):236–245, 2008.
9 P. Fraigniaud and N. Nisse. Connected treewidth and connected graph searching. In Proc. of

the 7th Latin American Symposium on Theoretical Informatics (LATIN’06), LNCS, volume
3887, pages 479–490, Valdivia, Chile, 2006.

10 P. Fraigniaud and N. Nisse. Monotony properties of connected visible graph searching. Inf.
Comput., 206(12):1383–1393, 2008.

11 J. Gustedt. On the pathwidth of chordal graphs. Discrete Appl. Math., 45(3):233–248,
1993.

12 T. Kashiwabara and T. Fujisawa. Np-completeness of the problem of finding a minimum-
clique-number interval graph containing a given graph as a subgraph. In Proc. IEEE Inter.
Symp. Circuits and Systems, pages 657–660, 1979.

13 N.G. Kinnersley. The vertex separation number of a graph equals its path-width. Inf.
Process. Lett., 42(6):345–350, 1992.

14 L.M. Kirousis and C.H. Papadimitriou. Interval graphs and searching. Discrete App. Math.,
55:181–184, 1985.

15 L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling. Theor. Comput. Sci.,
47(2):205–218, 1986.

16 N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadimitriou. The com-
plexity of searching a graph. J. ACM, 35(1):18–44, 1988.

17 R. Mihai and I. Todinca. Pathwidth is NP-hard for weighted trees. In FAW ’09: Proceedings
of the 3d International Workshop on Frontiers in Algorithmics, pages 181–195, Berlin,
Heidelberg, 2009. Springer-Verlag.

18 R. Möhring. Graph problems related to gate matrix layout and PLA folding. In E. Mayr,
H. Noltemeier, and M. Syslo eds, Computational Graph Theory, Computing Supplementum,
volume 7, pages 17–51, 1990.

19 N. Nisse. Connected graph searching in chordal graphs. Discrete Applied Math.,
157(12):2603–2610, 2008.

20 S.L. Peng, M.T. Ko, C.W. Ho, T.S. Hsu, and C.Y. Tang. Graph searching on chordal
graphs. In ISAAC ’96: Proceedings of the 7th International Symposium on Algorithms and
Computation, pages 156–165, London, UK, 1996. Springer-Verlag.

21 N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

22 B. Yang, D. Dyer, and B. Alspach. Sweeping graphs with large clique number. Discrete
Mathematics, 309(18):5770–5780, 2009.

STACS’11


	Introduction
	Preliminaries and basic definitions
	The algorithm
	The approximation guarantee of the algorithm
	Conclusions

