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Abstract

We study a diffusion model of phase field type, consisting of a system of two
partial differential equations encoding the balances of microforces and microenergy;
the two unknowns are the order parameter and the chemical potential. By a careful
development of uniform estimates and the deduction of certain useful boundedness
properties, we prove existence and uniqueness of a global-in-time smooth solution
to the associated initial/boundary-value problem; moreover, we give a description
of the relative ω-limit set.
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2 Well-posedness and long-time for a nonstandard diffusion model

1 Problem setting

The Cahn-Hilliard system:

∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ), (1.1)

describes diffusion-driven phase-segregation processes in a two-phase material body. Here
ρ, with ρ(x, t) ∈ [0, 1], is an order parameter field interpreted as the scaled volumetric
density of one of the two phases, κ > 0 is a mobility coefficient, and µ is the chemical
potential ; f ′ stands for the derivative of a double-well potential f . Customarily, the two
equations (1.1) are combined so as to obtain the Cahn-Hilliard equation:

∂tρ = κ∆(−∆ρ + f ′(ρ)), (1.2)

a nonlinear high-order parabolic PDE for the order parameter that has been studied
estensively. With this procedure – we note for later reference – the chemical potential is
left in the background; in particular, there is no need to take an a priori decision about
its sign.

To achieve their generalization of (1.2), Fried & Gurtin and Gurtin [8, 10] propose:
(i) to regard the second of (1.1) as a balance of microforces:

div ξ + π + γ = 0, (1.3)

where the distance microforce per unit volume is split into an internal part π and an
external part γ, and the contact microforce per unit area of a surface oriented by its
normal n is measured by ξ · n in terms of the microstress vector ξ;1 (ii) to interpret the
first equation as a balance law for the order parameter :

∂tρ = − divh + σ, (1.4)

where the pair (h , σ) is the inflow of ρ; (iii) to restrict the admissible constitutive choices
for π, ξ,h , and the free energy density ψ, to those consistent in the sense of Coleman &
Noll [4] with an ad hoc version of the Second Law of continuum thermodynamics, namely
a postulated “dissipation inequality that accomodates diffusion”:

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0 (1.5)

(cf. eq. (3.6) in [10]). Within this framework, the following set of constitutive prescrip-
tions is shown acceptable:

ψ = ψ̂(ρ,∇ρ),
π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ),

ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ),
(1.6)

together with
h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ); (1.7)

1In [7], the microforce balance is stated under the form of a principle of virtual powers for microscopic
motions.
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moreover, it is shown that the tensor-valued mobility mapping M must satisfy the in-
equality:

∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

It follows from (1.3), (1.4), (1.6), and (1.7)1 that:

∂tρ = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ

))
+ σ

(cf. eq. (3.17) in [10]); in particular, the Cahn-Hilliard equation (1.2) is arrived at by
taking:

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1 , (1.8)

and both the external distance microforce γ and the order-parameter source term σ iden-
tically null.

One of us proposed in [15] a modified version of Fried & Gurtin’s derivation, in which
their step (i) is retained, but the order-parameter balance (1.4) and the dissipation in-
equality (1.5) are both dropped and replaced, respectively, by the microenergy balance

∂tε = e+ w, e := − divh + σ, w := −π ∂tρ+ ξ · ∇(∂tρ) (1.9)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh , σ := µ σ. (1.10)

The salient new feature of this approach to phase-segregation modeling is that the mi-
croentropy inflow (h , σ) is deemed proportional to the microenergy inflow (h , σ) through
the chemical potential µ, a positive field; consistently, the free energy is defined to be

ψ := ε− µ−1η, (1.11)

with chemical potential playing the same role as coldness in the deduction of the heat
equation.2 Combination of (1.9)-(1.11) gives:

∂tψ ≤ −η∂t(µ−1) + µ−1
h · ∇µ− π ∂tρ+ ξ · ∇(∂tρ), (1.12)

an inequality that replaces (1.5) in restricting à la Coleman & Noll the possible consti-
tutive choices.

On taking all of the constitutive mappings delivering π, ξ, η, and h , dependent in
principle on ρ,∇ρ, µ,∇µ, and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (1.13)

compatibility with (1.12) implies that we must have:

π̂(ρ,∇ρ, µ) = ∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,
η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ)= −µ2ρ,

(1.14)

2As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the
coldness - measures microscopic quiet ; likewise, as argued in [15], chemical potential can be seen as a
macroscopic measure of microscopic organization.
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together with

ĥ(ρ,∇ρ, µ,∇µ) = −Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

If we now choose for Ĥ the simplest expression H = κ1 , implying a constant and
isotropic mobility, and if we once again assume that the external distance microforce γ
and the source σ are null, then, with the use of (1.14) and (1.11), the microforce balance
(1.3) and the energy balance (1.9) become, respectively,

div(∇ρ) + µ− f ′(ρ) = 0 (1.15)

and

2ρ ∂tµ+ µ ∂tρ− κ∆µ = 0, (1.16)

a nonlinear system for the unknowns ρ and µ that we supplement with homogeneous
Neumann conditions at the body’s boundary:

∂νρ = ∂νµ = 0 (1.17)

(here ∂ν denotes the outward normal derivative), and with the initial conditions:

ρ|t=0 = ρ0 , µ|t=0 = µ0 . (1.18)

Needless to say, (1.15) is the same ‘static’ relation between µ and ρ as (1.1)2. Instead,
(1.16) is rather different from (1.1)1, for a number of reasons:

• (1.16) is nonlinear (whereas ∂tρ− κ∆µ = 0 is a linear equation);

• the time derivatives of ρ and µ are both present in (1.16);

• there are nonconstant factors in front of both ∂tµ and ∂tρ.

Moreover, it should be possible to show that the initial/boundary-value problem (1.15)-
(1.18) has solutions ρ ∈ [0, 1] and µ > 0.

We must confess that we boldly attacked this problem as is, prompted to optimism
by the successful outcome of a previous joint research effort [5, 6], in which we tackled
mathematically the system of Allen-Cahn type one arrives at via the approach in [15] for
processes of phase segregation in the absence of diffusion. Unfortunately, system (1.15)–
(1.18) turned out to be too difficult for us. Therefore, we decided to study a regularized
version of it, obtained by introducing two extra terms, ε ∂tµ in (1.16) and δ ∂tρ in the
left-hand side of (1.15), for small positive coefficients ε and δ.

The introduction of the first term is motivated by the desire to have a strictly positive
coefficient as a factor of ∂tµ in (1.16), in order to guarantee the parabolic structure of this
equation. As to the other term, on the one hand it gives (1.15) the form of an Allen-Cahn
equation with right-hand side µ; on the other hand, it assimilates our present model to
the so-called viscous Cahn-Hilliard equations (see, e.g., [2, 14, 16] and references therein).
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With these measures, and taking κ = 1 for simplicity, we write the following modified
version of problem (1.15)–(1.18), with inversion of the order of the differential equations:

(ε+ 2ρ)∂tµ+ µ ∂tρ−∆µ = 0 in Ω× (0,+∞), (1.19)

δ∂tρ−∆ρ+ f ′(ρ) = µ in Ω× (0,+∞), (1.20)

∂νµ = ∂νρ = 0 on Γ× (0,+∞), (1.21)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω, (1.22)

where Ω ⊂ R
3 is a bounded domain with a sufficiently smooth boundary Γ. We remark

that such a regularized system has the typical features of a phase field model, but with
a nonstandard equation (1.19) for the chemical potential µ, while quite often phase field
systems feature temperature and order parameter as variables.

By assuming, as we did in [5, 6], that f ′ is the sum of a strictly increasing C1 function f ′
1

with domain (0, 1) that is singular at the endpoints, and of a smooth bounded perturbation
f ′
2 (to allow for a double- or multi-well potential f), we prove the existence of a strong
solution (µ, ρ) to (1.19)–(1.22) satisfying µ ≥ 0 and 0 < ρ < 1 almost everywhere in
Ω × (0,+∞) (of course, the initial data have to meet the same requirements in Ω). Our
existence proof is rather standard; it is based on an approximation → a priori estimates →
passage-to-the-limit procedure. Under additional assumptions, by using certain delicate
iterative estimates, we also show that the component µ is bounded above; this is probably
the most difficult and technical part of the present paper. Boundedness of µ is expedient
to deduce that f ′(ρ) is bounded as well; as a consequence, ρ stays away from the threshold
values 0 and 1. These boundedness properties are very useful in proving uniqueness of
such solutions, since f ′(ρ) can be treated as a Lipschitz-continuous function of ρ.

As a final step, we deal with the long-time behavior of the system. We prove that each
element (µω, ρω) of the ω-limit set is a steady state solution of (1.19)–(1.22); therefore,
in particular, µω is a constant (cf. (1.19) and (1.21)). This concludes our description of
the contents of this paper. Needless to say, it would be interesting and challenging to
study the singular limit of the solutions to (1.19)–(1.22) as ε or δ tends to zero, or both
parameters do. We plan to undertake such a study in the near future.

2 Main results

In this section, we describe the mathematical problem under investigation, make our
assumptions precise, and state our results. First of all, we assume Ω to be a bounded
connected open set in R

3 with smooth boundary Γ (to treat the lower-dimensional cases
would only require minor changes). Moreover, for convenience we set:

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0 on Γ}, (2.1)

and we endow these spaces with their standard norms, for which we use the self-explanato-
ry notation ‖ · ‖V (but ‖ · ‖H denotes the norm of any power of H). We remark that the
embeddings W ⊂ V ⊂ H are compact, because Ω is bounded and smooth. Since V is
dense in H , we can identify H with a subspace of V ∗ in the usual way (i.e., so as to have
that V ∗〈u, v〉V = (u, v)H for every u ∈ H and v ∈ V ); the embedding H ⊂ V ∗ is also
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compact. As to the potential f , we assume that

f = f1 + f2, where functions f1, f2 : (0, 1) → R are such that (2.2)

f1 is C1 and convex, f2 is C2, f ′′
2 is bounded, (2.3)

lim
rց0

f ′
1(r) = −∞ , and lim

rր1
f ′
1(r) = +∞. (2.4)

For the initial data, we stipulate that

µ0 ∈ V and µ0 ≥ 0 a.e. in Ω; (2.5)

ρ0 ∈ W, 0 < ρ0 < 1 in Ω; and f ′(ρ0) ∈ H. (2.6)

We stress that the conditions in (2.6) imply that

ρ0 ∈ C0(Ω) and f(ρ0) ∈ H. (2.7)

Indeed, W ⊂ C0(Ω), assumptions (2.3) hold, and, by convexity, −c ≤ f1(ρ0) ≤ f1(1/2) +
f ′
1(ρ0)(ρ0 − 1/2) for some c ∈ R.

Our aim is to solve problem (1.19)–(1.22) in a strong sense, i.e., we want to find a pair
(µ, ρ) of such smooth functions satisfying suitable summability conditions and unilateral
constraints that (1.19)–(1.22) are made fully meaningful. Precisely, we fix a final time
T > 0, we set Q := Ω× (0, T ), and we require that:

µ ∈ H1(0, T ;H) ∩ L2(0, T ;W ), (2.8)

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.9)

µ ≥ 0 a.e. in Q, (2.10)

0 < ρ < 1 a.e. in Q and f ′(ρ) ∈ L∞(0, T ;H). (2.11)

Note that the boundary conditions (1.21) follow from (2.8)–(2.9), due to the definition
of W in (2.1). In conclusion, we look for (µ, ρ) satisfying (2.8)–(2.11) and fulfilling the
system

(ε+ 2ρ)∂tµ+ µ ∂tρ−∆µ = 0 a.e. in Q, (2.12)

δ∂tρ−∆ρ+ f ′(ρ) = µ a.e. in Q, (2.13)

µ(0) = µ0 and ρ(0) = ρ0 a.e. in Ω. (2.14)

Here is our main result.

Theorem 2.1. Assume that (2.2)–(2.4) and (2.5)–(2.6) are satisfied. Then, there exists
a pair (µ, ρ) satisfing (2.8)–(2.11) and solving problem (2.12)–(2.14).

Once existence is secured, one wonders about uniqueness. We are able to prove it for
solutions having the following additional properties:

µ ∈ L∞(Q); inf ρ > 0 and sup ρ < 1. (2.15)

Theorem 2.2. Assume that (2.2)–(2.4) and (2.5)–(2.6) are satisfied. Then, any two
solutions to problem (2.12)–(2.14) satisfing (2.8)–(2.11) and (2.15) coincide.
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Interestingly, the additional boundedness conditions for (µ, ρ) postulated above are ful-
filled whenever the data of the problem have similar boundedness properties, in addition
to (2.5)–(2.6).

Theorem 2.3. Assume that (2.2)–(2.6) and the following conditions are satisfied:

µ0 ∈ L∞(Ω); inf ρ0 > 0 and sup ρ0 < 1. (2.16)

Then, any pair (µ, ρ) satisfing (2.8)–(2.11) and solving problem (2.12)–(2.14) satisfies
(2.15) as well.

Remark 2.4. Even though the regularity of the solution given by (2.8)–(2.11) and (2.15)
is completely satisfactory for our purposes, we observe that some further smoothness can
be proved once the properties (2.15) are established. In that case, equation (2.13) can
be read in the form ∂tρ − ∆ρ = g with g ∈ L∞(Q), whence further regularity for ρ can
be derived, and a bootstrap procedure can start. Indeed, further regularity for ρ implies
that stronger properties for µ can be proved by (2.12). This improves the regularity of g
and leads to an increase of the regularity of ρ.

Once well-posedness on every finite time interval is ensured, one can study the long-
time behavior of the solution. In particular, one can try to characterize the ω-limit of any
trajectory (µ, ρ) in some topology. We choose the weak topology of H × V and define
such an ω-limit as follows:

ω(µ, ρ) =
{
(µω, ρω) :

(
µ(tn), ρ(tn)

)
→ (µω, ρω)

weakly in H × V for some sequence tn ր +∞
}
. (2.17)

Our last result gives a relationship between such an ω-limit and the set of steady states,
i.e., the set of the time-independent solutions (µs, ρs) to (2.12)–(2.13) with homogeneous
Neumann boundary condition satisfying natural regularity properties. Note that in such
a case µs must be harmonic, thus constant, since Ω is connected. Therefore, a steady
state is a pair (µs, ρs) such that µs is a nonnegative constant and ρs solves the following
problem:

ρs ∈ W, 0 < ρs < 1, f ′(ρs) ∈ H, and −∆ρs + f ′(ρs) = µs a.e. in Ω (2.18)

(there is no reason for ρs to be constant, since f is not required to be convex).

Theorem 2.5. Assume that conditions (2.2)–(2.4), (2.5)–(2.6), and (2.16), are satisfied.
Let (µ, ρ) be the corresponding solution satisfing (2.8)–(2.11) and (2.15). Then, the ω-limit
ω(µ, ρ) is nonempty, compact, and connected in the weak topology of H × V ; moreover,
each of its elements coincides with a steady state (µs, ρs) (that is to say, µs is a nonnegative
constant and ρs solves (2.18)).

Our paper is organized as follows. In the next section, we prove Theorem 2.1, while
Theorems 2.2 and 2.3 are proved in Section 4. Our last section is devoted to the proof of
Theorem 2.5.

Throughout the paper, we account for the well-known embedding V ⊂ Lq(Ω) for
1 ≤ q ≤ 6 and the related Sobolev inequality:

‖v‖Lq(Ω) ≤ C‖v‖V for every v ∈ V and 1 ≤ q ≤ 6, (2.19)
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where C depends on Ω only, since sharpness is not needed (the embedding V ⊂ Lq(Ω)
is compact if q < 6). Furthermore, we repeatedly make use of the well-known Hölder
inequality, the interpolation inequality

‖v‖Lr(Ω) ≤ ‖v‖ϑLp(Ω) ‖v‖1−ϑ
Lq(Ω) for v ∈ Lp(Ω) ∩ Lq(Ω),

where p, q, r ∈ [1,+∞], ϑ ∈ [0, 1], and
1

r
=
ϑ

p
+

1− ϑ

q
, (2.20)

and the elementary Young inequality

ab ≤ σa2 +
1

4σ
b2 for every a, b ≥ 0 and σ > 0. (2.21)

Finally, throughout the paper we use a small-case italic c for different constants, that may
only depend on Ω, the final time T , the shape of f , the properties of the data involved in
the statements at hand, and the coefficients ε and δ; a notation like cσ signals a constant
that depends also on the parameter σ. The reader should keep in mind that the meaning
of c and cσ might change from line to line and even in the same chain of inequalities,
whereas those constants we need to refer to are always denoted by capital letters, just
like C in (2.19).

3 Existence

In this section, we prove Theorem 2.1. Our method uses an approximation scheme based
on a time delay in the right-hand side of (2.13). Namely, we define the translation
operator Tτ : L1(0, T ;H) → L1(0, T ;H) depending on a time step τ > 0 by setting, for
v ∈ L1(0, T ;H) and for a.a. t ∈ (0, T ),

(Tτv)(t) := v(t− τ) if t > τ and (Tτv)(t) := µ0 if t < τ , (3.1)

and consider the problem obtained by replacing the right-hand side of (2.13) by Tτµ, i.e.,
we look for a pair (µτ , ρτ ) such that

(µτ , ρτ ) satisfies (2.8)–(2.11) (3.2)

(ε+ 2ρτ )∂tµτ −∆µτ + µτ ∂tρτ = 0 a.e. in Q (3.3)

δ∂tρτ −∆ρτ + f ′(ρτ ) = Tτµτ a.e. in Q (3.4)

µτ(0) = µ0 and ρτ (0) = ρ0 a.e. in Ω. (3.5)

For convenience, we allow τ to take just discrete values, namely, τ = T/N , where N is
any positive integer. Our existence proof consists in two parts. Firstly, we check that
problem (3.2)–(3.5) is well-posed (see the next lemma). Secondly, we let τ tend to 0. This
is done by proving a number of a priori estimates and using compactness and monotonicity
arguments.

Lemma 3.1. There exists a unique pair (µτ , ρτ ) solving problem (3.2)–(3.5).

Proof. Recall that τ = T/N . Hence, if we set tn := nτ for n = 0, . . . , N , we see that
problem (3.2)–(3.5) becomes equivalent to a finite sequence of N problems that can be
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solved step by step. However, instead of considering the natural time intervals [tn−1, tn],
n = 1, . . . , N , and glueing the solutions together, we solve N problems on the time
intervals In = [0, tn], n = 1, . . . , N , by constructing the solution directly on the whole
of In at each step. These problems are the following:

(ε+ 2ρn)∂tµn −∆µn + (∂tρn)µn = 0 and µn ≥ 0 a.e. in Ω× In (3.6)

∂νµn(t)|Γ = 0 for a.a. t ∈ In and µn(0) = µ0 (3.7)

0 < ρn < 1 and δ∂tρn −∆ρn + f ′(ρn) = Tτµn−1 a.e. in Ω× In (3.8)

∂νρn(t)|Γ = 0 for a.a. t ∈ In and ρn(0) = ρ0. (3.9)

Their solutions are required to satisfy the regularity properties induction obtained by
taking tn in place of T in (2.8)–(2.11). The operator Tτ that appears on the right-hand
side of (3.8) acts on functions that are not defined in the whole of (0, T ). However, its
meaning is still given by (3.1) if n > 1, while we simply set Tτµn−1 = µ0 if n = 1.

Clearly, the solution (µτ , ρτ ) we are looking for is simply given by (µN , ρN ). The above
problems can be solved inductively, because the right-hand side of (3.8) is known at each
step in the next lemma: one first solves problem (3.8)–(3.9) for ρn, and then problem
(3.6)–(3.7) for µn. We note that the former problem is quite standard; the latter is a
regular linear parabolic problem (the coefficient of ∂tµn is ≥ ε) provided that ∂tρn is
sufficiently smooth. That the inequality µn ≥ 0 holds is not obvious. The uniqueness of a
solution (µn, ρn) satisfying smoothness properties analogous to (2.8)–(2.11) is clear, and
the existence of a variational solution is expected. However, not even the desired regularity
is obviously guaranteed. Therefore, we provide a few arguments in this direction.

Proceeding at an as-low-as-possible level of formality, we introduce a problem depend-
ing on a positive parameter λ and approximating problem (3.8)–(3.9). To begin with, we
regularize f1 and f2 by constructing certain suitable C2 approximations f1,λ, f2,λ having
bounded first and second derivatives. Precisely, we assume that f ′′

2,λ is bounded uniformly
with respect to λ; moreover, on thinking of f ′

1 as a maximal monotone graph in R×R, we
assume that f1,λ is convex and that f ′

1,λ is similar to the Yosida regularization of f ′
1 (see,

e.g., [3, p. 28]), in order to preserve the main properties of the latter (such a regularization
is detailed, e.g., in [9, Section 3]). Finally, we set fλ = f1,λ + f2,λ. The approximating
problem is:

δ∂tρ
λ
n −∆ρλn + f ′

λ(ρ
λ
n) = Tτµn−1 a.e. in Ω× In, (3.10)

∂νρ
λ
n(t)|Γ = 0 for a.a. t ∈ In, and ρλn(0) = ρ0; (3.11)

it has a unique smooth solution, which satisfies sufficiently strong a priori estimates to
allow letting λ tend to zero in (3.10)–(3.11). This leads to a solution ρn to problem (3.8)–
(3.9), which can be used to solve problem (3.6)–(3.7). Needless to say, the desired regu-
larity for ρn will follow once we prove suitable estimates uniformly with respect to λ. We
confine ourselves to derive the highest-order estimate, the others being quite standard.

With a view toward assembling a proof by induction, we assume that

µn−1 ∈ H1(In−1;H) ∩ L∞(In−1;V ) and µn−1 ≥ 0 for n > 1 (3.12)

and we prove that

‖ρλn‖W 1,∞(In;H)∩H1(In;V )∩L∞(In;W ) + ‖f ′
1,λ(ρ

λ
n)‖L∞(In;H) ≤ cτ , (3.13)

µn ∈ H1(In;H) ∩ L∞(In;V ) ∩ L2(In;W ) and µn ≥ 0 (3.14)
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(as anticipated in closing Section 2, in (3.13) as well as in the following the symbol cτ
stands for one or another of a list of different constants that do not depend on λ, but
are allowed to depend on τ). We remark that the induction procedure can actually start,
because Tτµn−1 = µ0 if n = 1 and, moreover, properties (2.5) and (2.6) for µ0 and ρ0 are
fulfilled; these properties are also used at each step.

We omit stressing the dependences on n and λ, and write simply u and u0 for, re-
spectively, ∂tρ

λ
n and ∂tρ

λ
n(0). By differentiating (3.10) with respect to time, we see that u

solves the equation:

δ∂tu−∆u+ f ′′
1,λ(ρ

λ
n) u = ∂t(Tτµn−1)− f ′′

2,λ(ρ
λ
n) u a.e. in Ω× In, (3.15)

and satisfies both the Cauchy condition u(0) = u0 and homogeneous Neumann boundary
condition. Hence, by testing (3.15) by u and using the convexity of f1,λ, we immediately
obtain for t ∈ In that

δ

2
‖u(t)‖2H+

∫ t

0

∫

Ω

|∇u|2 ≤ δ

2
‖u0‖2H+

(
1+sup |f ′′

2,λ|
) ∫ t

0

∫

Ω

u2+‖∂t(Tτµn−1)‖2L2(In;H). (3.16)

Now, we observe that the last norm is finite, in view of our assumption (3.12), and that
|f ′′

2,λ| ≤ c. Moreover, due to (3.10), we have that δu0 = µ0 +∆ρ0 − f ′
λ(ρ0). Hence, u0 is

bounded in H , by (2.5)–(2.6) and our choice of the approximation fλ of f . Therefore,
thanks to the Gronwall lemma, we obtain:

‖u‖L∞(In;H)∩L2(In;V ) ≤ cτ , whence ‖ρλn‖W 1,∞(In;H)∩H1(In;V ) ≤ cτ .

Next, coming back to (3.10), we deduce that −∆ρλn + f ′
1,λ(ρ

λ
n) is bounded in L∞(In;H)

and hence, by a standard argument (for instance, by testing (3.10) by f ′
1,λ(ρ

λ
n)), that each

of −∆ρλn and f ′
1,λ(ρ

λ
n) is bounded. With this, given that the W -estimate follows from

elliptic theory, (3.13) is established, and we can let λ tend to zero. We obtain:

ρn ∈ W 1,∞(In;H) ∩H1(In;V ) ∩ L∞(In;W ), 0 < ρn < 1, and f ′
1(ρn) ∈ L∞(In;H).

At this point, we should prove (3.14). However, we confine ourselves to derive a formal es-
timate that clearly shows that the desired regularity for µn can be deduced by regularizing
the linear problem (3.6)–(3.7) (if the coefficient ∂tρn is replaced by a smooth function and
the initial datum is regularized, by the same token ∂tµn is an admissible test function).
For convenience, we write (3.6) in the form:

(ε+ 2ρn)∂tµn + µn −∆µn = (1− ∂tρn)µn;

next, we multiply this relation by ∂tµn and use the result in the calculation given below.
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Since ρn ≥ 0, we find, for t ∈ In,

ε

∫ t

0

∫

Ω

|∂tµn|2 +
1

2
‖µn(t)‖2V ≤

∫ t

0

∫

Ω

(ε+ 2ρn)|∂tµn|2 +
1

2
‖µn(t)‖2V

=

∫ t

0

∫

Ω

(ε+ 2ρn)|∂tµn|2 +
1

2
‖µ0‖2V +

1

2

∫ t

0

∫

Ω

∂t
(
|µn|2 + |∇µn|2

)

=
1

2
‖µ0‖2V +

∫ t

0

∫

Ω

(
(ε+ 2ρn)|∂tµn|2 + µn ∂tµn +∇µn · ∇∂tµn

)

=
1

2
‖µ0‖2V +

∫ t

0

∫

Ω

(1− ∂tρn)µn ∂tµn

≤ 1

2
‖µ0‖2V +

∫ t

0

‖1 + |∂tρn(s)|‖L4(Ω) ‖µn(s)‖L4(Ω) ‖∂tµn(s)‖L2(Ω) ds

≤ 1

2
‖µ0‖2V +

ε

2

∫ t

0

∫

Ω

|∂tµn|2 +
C2

2ε

∫ t

0

‖1 + |∂tρn(s)|‖2V ‖µn(s)‖2V ds,

by the Sobolev and Young inequalities (2.19) and (2.21). Then, the Gronwall lemma
yields that

‖∂tµn‖L2(In;H) + ‖µn‖L∞(In;V ) ≤ cM , (3.17)

where M is a constant satisfying M ≥ ‖u0‖V + ‖∂tρn‖L2(In;V ). By comparison in (3.8),
even ∆µn is estimated in L2(In;H), since a bound for µn∂tρn in the same space follows
from (3.17). By elliptic regularity, we derive the desired estimate for µn in L2(In;W ). So,
the first assertion in (3.14) is established; it remains for us to show that µn ≥ 0. This is
done by testing (3.6) by −µ−

n . We obtain, for t ∈ In, that

1

2

∫ t

0

∫

Ω

∂t
(
(ε+ 2ρn)|µ−

n |2
)
+

∫ t

0

∫

Ω

|∇µ−
n |2

=

∫ t

0

∫

Ω

(
(ε+ 2ρn)∂tµn(−µ−

n ) + (∂tρn)µn(−µ−
n ) +∇µn · ∇(−µn)

−
)
= 0.

As ρn ≥ 0 and µ0 ≥ 0, we deduce that

ε

∫

Ω

|µ−
n (t)|2 ≤

∫

Ω

(ε+ 2ρn(t))|µ−
n (t)|2 ≤

∫

Ω

(ε+ 2ρ0)|µ−
0 |2 = 0,

whence it immediately follows that µ−
n = 0, i.e., that µn ≥ 0. Thus, the lemma is proved.

�

Now that the well-posedness of problem (3.2)–(3.5) is established, we perform a num-
ber of a priori estimates of its solution. These estimates allow us to let τ tend to zero, so
as to prove our existence result for problem (2.12)–(2.14). In order to make the formulas
to come more readable, we shall omit the index τ in the calculations, waiting for writing
(µτ , ρτ ) only when each estimate is established.

First a priori estimate. We observe that ∂t
(
(ε/2)µ2 + ρµ2

)
=
(
(ε+ 2ρ)∂tµ+ µ ∂tρ

)
µ.

Thus, testing (3.3) by µ and integrating, we obtain, for t ∈ (0, T ), that

∫

Ω

(ε
2
µ2 + ρµ2

)
(t) +

∫ t

0

∫

Ω

|∇µ|2 =
∫

Ω

(ε
2
µ2
0 + ρ0µ

2
0

)
= c. (3.18)
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This implies that
‖µτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.19)

Second a priori estimate. This standard estimate for phase field equations can be
derived by testing (3.4) by ∂tρ. We get:

‖ρτ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖f(ρτ )‖L∞(0,T ;L1(Ω)) ≤ c. (3.20)

Third a priori estimate. We rewrite (3.4) as

−∆ρ+ f ′
1(ρ) = −δ∂tρ− f ′

2(ρ) + Tτµ, (3.21)

and notice that the right-hand side is bounded in L2(0, T ;H). Then, by applying a
standard procedure (for instance, testing by f ′

1(ρ)), and counting on elliptic regularity,
we deduce that

‖ρτ‖L2(0,T ;W ) + ‖f ′
1(ρτ )‖L2(0,T ;H) ≤ c. (3.22)

Fourth a priori estimate. To derive the next inequality, we prefer to proceed formally,
avoiding the λ-regularization we used in the proof of Lemma 3.1. As for (3.16), we obtain
the following estimate:

δ

2
‖∂tρ(t)‖2H +

∫ t

0

∫

Ω

|∇∂tρ|2

≤ δ

2
‖∆ρ0 − f ′

1(ρ0) + µ0‖2H + sup |f ′′
2,λ|

∫ t

0

∫

Ω

|∂tρ|2 +
∫ t

0

∫

Ω

(∂tTτµ) ∂tρ. (3.23)

Once this inequality is established, our procedure is rigorous. The estimate of the last
term requires now more care than before, because we aim to obtain bounds that are
uniform with respect to τ . We have:

∫ t

0

∫

Ω

(∂tTτµ) ∂tρ =

∫ t

τ

∫

Ω

∂tµ(s− τ) ∂tρ(s) ds =

∫ t−τ

0

∫

Ω

∂tµ(s) ∂tρ(s + τ) ds,

and we compute ∂tµ from (3.6). On recalling that ρ ≥ 0, we can continue as follows:

∫ t

0

∫

Ω

(∂tTτµ) ∂tρ =

∫ t−τ

0

∫

Ω

( 1

ε+ 2ρ

(
∆µ− µ ∂tρ

))
(s) ∂tρ(s+ τ) ds

=

∫ t−τ

0

∫

Ω

{
−
( ∇µ
ε+ 2ρ

)
(s) · ∇∂tρ(s + τ) + 2

∂tρ(s + τ)

(ε+ 2ρ(s))2
∇µ(s) · ∇ρ(s)

− ∂tρ(s)µ(s) ∂tρ(s + τ)
1

ε+ 2ρ(s)

}
ds

≤ 1

4

∫ t

0

∫

Ω

|∇∂tρ|2 + c‖µ‖2L2(0,T ;V )

+ c

∫ t−τ

0

‖∂tρ(s + τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

+ c

∫ t−τ

0

‖∂tρ(s + τ)‖L4(Ω) ‖µ(s)‖L4(Ω) ‖∂tρ(s)‖H ds. (3.24)
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We need to estimate the last two integrals. As to the first, we begin by using the Sobolev
inequality (2.19) and the elementary Young inequality (2.21). We find that

∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

≤ 1

8

∫ t−τ

0

‖∂tρ(s + τ)‖2V ds+ c

∫ t

0

‖∇µ(s)‖2H ‖∇ρ(s)‖2V ds

≤ 1

8

∫ t

0

∫

Ω

|∇∂tρ|2 +
1

8
‖∂tρ‖2L2(0,T ;H)

+ c

∫ t

0

‖µ(s)‖2V
(
‖ρ(s)‖2V + ‖∆ρ(s)‖2H

)
ds,

the last inequality holding because, thanks to elliptic regularity, ‖v‖W ≤ c(‖v‖V +‖∆v‖H)
for any v ∈ V such that ∆v ∈ H and ∂νv|Γ = 0. At this point, we recall that ρ is bounded
in H1(0, T ;H) ∩ L∞(0, T ;V ), and µ in L2(0, T ;V ), by (3.20) and (3.19). Moreover, we
notice that (3.21) entails (formally, by testing it by −∆ρ(s)):

‖∆ρ(s)‖2H ≤ δ2‖∂tρ(s)‖2H + c
(
1 + ‖Tτµ(s)‖2H

)

≤ δ2‖∂tρ(s)‖2H + c for a.a. s ∈ (0, T ),

the last inequality being a consequence of (3.19). Therefore, we can infer that

∫ t−τ

0

‖∂tρ(s + τ)‖L4(Ω) ‖∇µ(s)‖H ‖∇ρ(s)‖L4(Ω) ds

≤ 1

8

∫ t

0

∫

Ω

|∇∂tρ|2 + c+ c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds. (3.25)

Passing now to estimate the last integral in (3.24), we have that

∫ t−τ

0

‖∂tρ(s+ τ)‖L4(Ω) ‖µ(s)‖L4(Ω) ‖∂tρ(s)‖H ds

≤ 1

8

∫ t−τ

0

‖∂tρ(s+ τ)‖2V ds+ c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds

≤ 1

8

∫ t

0

∫

Ω

|∇∂tρ|2 +
1

8
‖∂tρ‖2L2(0,T ;H) + c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds

≤ 1

8

∫ t

0

∫

Ω

|∇∂tρ|2 + c+ c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds.

With this and (3.25), we see that (3.24) yields:

∫ t

0

∫

Ω

(∂tTτµ) ∂tρ ≤ c+
1

2

∫ t

0

∫

Ω

|∇∂tρ|2 + c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds,

so that (3.23) takes the form:

δ

2
‖∂tρ(t)‖2H +

1

2

∫ t

0

∫

Ω

|∇∂tρ|2 ≤ c+ c

∫ t

0

‖µ(s)‖2V ‖∂tρ(s)‖2H ds.
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Since µ has been estimated in L2(0, T ;V ), the Gronwall lemma can be applied, so as to
have that

‖∂tρτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.26)

Finally, the same argument as in the derivation of (3.22) yields that

‖ρτ‖L∞(0,T ;W ) + ‖f ′
1(ρτ )‖L∞(0,T ;H) ≤ c. (3.27)

Fifth a priori estimate. We formally test (3.3) by ∂tµ, and obtain:

ε

∫ t

0

∫

Ω

|∂tµ|2 +
1

2

∫

Ω

|∇µ(t)|2

≤ 1

2
‖∇µ0‖2H −

∫ t

0

∫

Ω

∂tρ µ ∂tµ

≤ c+
1

2ε

∫ t

0

‖∂tρ(s)‖2L4(Ω) ‖µ(s)‖2L4(Ω) ds+
ε

2

∫ t

0

‖∂tµ(s)‖2H ds

≤ c+ c

∫ t

0

‖∂tρs(s)‖2V
(
‖µ(s)‖2H + ‖∇µ(s)‖2H

)
ds+

ε

2

∫ t

0

‖∂tµ(s)‖2H ds

≤ c+ c

∫ t

0

‖∂tρs(s)‖2V ‖∇µ(s)‖2H ds+
ε

2

∫ t

0

‖∂tµ(s)‖2H ds,

where the last inequality follows from (3.26) and (3.19). Using (3.26) once more, we can
apply the Gronwall lemma and conclude that

‖µτ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (3.28)

Sixth a priori estimate. Recalling that 0 < ρ < 1, and using the Sobolev inequal-
ity (2.19), we get:

‖(ε+ 2ρ)∂tµ+ µ ∂tρ‖L2(0,T ;H)

≤ (ε+ 2)‖∂tµ‖L2(0,T ;H) + ‖µ‖L∞(0,T ;L4(Ω)) ‖∂tρ‖L2(0,T ;L4(Ω))

≤ c
(
‖∂tµ‖L2(0,T ;H) + ‖µ‖L∞(0,T ;V ) ‖∂tρ‖L2(0,T ;V )

)
.

Since the right-hand side is bounded by (3.28) and (3.26), a comparison in (3.3) shows
that ∆µ is bounded in L2(0, T ;H). Consequently, by elliptic regularity we deduce that

‖µτ‖L2(0,T ;W ) ≤ c. (3.29)

Conclusion. Collecting all the estimates we have proved, we see that

µτ → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

ρτ → ρ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ),

f ′
1(ρτ ) → ξ weakly star in L∞(0, T ;H),

at least for some subsequence τk ց 0. Thanks to the Aubin-Lions lemma (cf. [13, Thm. 5.1,
p. 58]) and to similar results to be found in [17, Sect. 8, Cor. 4], we also deduce the
following strong convergences:

µτ → µ strongly in C0([0, T ];H) ∩ L2(0, T ;V )

ρτ → ρ strongly in C0([0, T ];V ).
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In particular, having recourse to a well-known monotonicity technique (see, e.g., [1,
Lemma 1.3, p. 42]), we conclude that 0 < ρ < 1 and ξ = f ′

1(ρ) a.e. in Q. The
strong convergence shown above also entails that f ′

2(ρτ ) converges to f
′
2(ρ), e.g., strongly

in C0([0, T ];H) (because f ′
2 is Lipschitz continuous), and that Tτµτ converges to µ, e.g.,

strongly in L2(0, T ;H). Finally, a combination of the above weak and strong convergence
results with the Hölder and Sobolev inequalities yields that

µτ ∂tρτ → µ ∂tρ weakly in L1(0, T ;H),

ρτ ∂tµτ → ρ ∂tµ weakly in L2(0, T ;L3/2(Ω)).

Indeed, µτ → µ strongly in L2(0, T ;L4(Ω)), ∂tρτ → ∂tρ weakly in L2(0, T ;L4(Ω)), ρτ → ρ
strongly in C0([0, T ];L6(Ω)), and ∂tµτ → ∂tµ weakly in L2(0, T ;L2(Ω)). Therefore, it
is straightforward to conclude that the pair (µ, ρ) is a solution to problem (2.12)–(2.14)
having the desired regularity (2.8)–(2.11), that is to say, Theorem 2.1 is proved.

4 Uniqueness and boundedness

In this section, we prove Theorem 2.2 and Theorem 2.3. We first show our uniqueness
result.

Proof of Theorem 2.2. We take two solutions to problem (2.12)–(2.14) satisfying
(2.15) in addition to (2.8)–(2.11) and label their components with the subscripts 1 and 2;
in the following, the values of constants c may depend on these solutions. Moreover, we
choose constants such M ≥ 0 and r∗, r

∗ ∈ (0, 1) that µ ≤ M a.e. in Q and r∗ ≤ ρi ≤ r∗

a.e. in Q, for i = 1, 2. Finally, we denote by L the Lipschitz constant of the function
r 7→ r − f ′(r), r ∈ [r∗, r

∗]. Having done this, we write (2.12) for both solutions and take
the difference. Then, we set µ := µ1 − µ2 and ρ := ρ1 − ρ2, test the resulting equality
by µ, and integrate, using the boundary condition. Due to the identity:

{
(∂tρ1)µ1 + 2ρ1∂tµ1 − (∂tρ2)µ2 − 2ρ2∂tµ2

}
µ = ∂t(ρ1µ

2) + 2(∂tµ2) ρ µ+ µ2 (∂tρ)µ, (4.1)

we obtain:

∫

Ω

(ε
2
+ ρ1(t)

)
|µ(t)|2 +

∫ t

0

∫

Ω

|∇µ|2 = −2

∫ t

0

∫

Ω

(∂tµ2) ρ µ−
∫ t

0

∫

Ω

µ2 (∂tρ)µ. (4.2)

Furthermore, we write (2.13) for both solutions, take the difference, test the resulting
equality by ∂tρ, and add ρ ∂tρ to both sides, for convenience. Then, we integrate, using
the boundary condition, and easily obtain that

δ

∫ t

0

∫

Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2V =

∫ t

0

∫

Ω

(
(ρ1 − f ′(ρ1))− (ρ2 − f ′(ρ2)) + µ

)
∂tρ

≤ L

∫ t

0

∫

Ω

|ρ| |∂tρ|+
∫ t

0

∫

Ω

|µ| |∂tρ|. (4.3)
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Now, adding (4.2) and (4.3) and taking into account that ρ1 is nonnegative, we get

ε

2

∫

Ω

|µ(t)|2 +
∫ t

0

∫

Ω

|∇µ|2 + δ

∫ t

0

∫

Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2V

≤ 2

∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖L4(Ω) ‖µ(s)‖L4(Ω) ds+

∫ t

0

‖µ2(s)‖L∞(Ω) ‖∂tρ(s)‖H ‖µ(s)‖H ds

+ L

∫ t

0

‖ρ(s)‖H ‖∂tρ(s)‖H ds+
∫ t

0

‖µ(s)‖H ‖∂tρ(s)‖H ds. (4.4)

To estimate the first integral on the right-hand side, we use the Sobolev inequality (2.19)
with q = 4 and C the Sobolev constant, and we invoke the elementary Young inequal-
ity (2.21) to obtain that

∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖L4(Ω) ‖µ(s)‖L4(Ω) ds ≤ C2

∫ t

0

‖∂tµ2(s)‖H ‖ρ(s)‖V ‖µ(s)‖V ds

≤ 1

2

∫ t

0

‖µ(s)‖2V ds+
C4

2

∫ t

0

‖∂tµ2(s)‖2H ‖ρ(s)‖2V ds

=
1

2

∫ t

0

∫

Ω

|∇µ|2 + c

∫ t

0

∫

Ω

|µ|2 + c

∫ t

0

‖∂tµ2(s)‖2H ‖ρ(s)‖2V ds.

The remainder of the right-hand side of (4.4) is estimated as follows:

∫ t

0

‖µ2(s)‖L∞(Ω) ‖∂tρ(s)‖H ‖µ(s)‖H ds

+ L

∫ t

0

‖ρ(s)‖H ‖∂tρ(s)‖H ds+
∫ t

0

‖µ(s)‖H ‖∂tρ(s)‖H ds

≤ δ

2

∫ t

0

∫

Ω

|∂tρ|2 + c

∫ t

0

(
‖µ(s)‖2H + ‖ρ(s)‖2V

)
ds.

Combining these estimates with (4.4), we immediately get

ε

2

∫

Ω

|µ(t)|2 + 1

2

∫ t

0

∫

Ω

|∇µ|2 + δ

2

∫ t

0

∫

Ω

|∂tρ|2 +
1

2
‖ρ(t)‖2V

≤ c

∫ t

0

(
1 + ‖∂tµ2(s)‖2H

)
‖ρ(s)‖2V ds+ c

∫ t

0

‖µ(s)‖2H ds.

Since the function s 7→ ‖∂tµ2(s)‖2H belongs to L1(0, T ), we can apply the Gronwall lemma
and deduce that both µ and ρ vanish. Hence, the two solutions coincide. �

We now turn to proving our boundedness result.

Proof of Theorem 2.3. Let (µ, ρ) be any solution to problem (2.8)–(2.11) and (2.12)–
(2.14) whose initial data have, in addition to (2.5)–(2.6) , the further properties (2.16).
We show that the boundedness claims in (2.15) actually hold true.

With a view to proving that µ satisfies the specified lower bound, we set:

µ∗
0 := ‖µ0‖L∞(Ω) = sup ess

x∈Ω
µ0(x) ; (4.5)
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we take any real constant k such that k ≥ µ∗
0; and we introduce the auxiliary function

χ
k ∈ L∞(Q) defined for a.a. (x, t) ∈ Q by the formula:

χ
k(x, t) = 1 if µ(x, t) > k, and χ

k(x, t) = 0 otherwise.

Then, we test (2.12) by (µ − k)+ and integrate over Ω × (0, t) for any t ∈ (0, T ). The
result is:

∫

Ω

(ε
2
+ ρ(t)

) ∣∣(µ(t)− k
)+∣∣2 +

∫ t

0

∫

Ω

|∇(µ− k)+|2

=

∫ t

0

∫

Ω

∂tρ |(µ− k)+|2 −
∫ t

0

∫

Ω

∂tρ µ (µ− k)+ = −
∫ t

0

∫

Ω

k ∂tρ (µ− k)+.

Given that ρ is nonnegative, this equality and the Hölder inequality with ad hoc exponents
lead to:

ε

2
‖(µ(t)− k)+‖2H +

∫ t

0

∫

Ω

|∇(µ− k)+|2

≤ k

∫ t

0

‖χk(s)‖L7/2(Ω) ‖∂tρ(s)‖L14/3(Ω) ‖(µ− k)+(s)‖L2(Ω) ds.

Now, we use the Gronwall-Bellman lemma as in [3, Lemma A.4, p. 156], and find that

{
ε‖(µ− k)+‖2C0([0,T ];H) +

∫ T

0

∫

Ω

|∇(µ− k)+|2
}1/2

≤ k√
ε

∫ T

0

‖χk(t)‖L7/2(Ω) ‖∂tρ(t)‖L14/3(Ω) dt

≤ k√
ε
‖∂tρ‖L7/3(0,T ;L14/3(Ω)) ‖χk‖L7/4(0,T ;L7/2(Ω)) .

Next, we observe that the interpolation inequality (2.20) (with p = 2, q = 6, r = 14/3,
and ϑ = 1/7), together with the Sobolev inequality (2.19), gives that

‖v‖L7/3(0,T ;L14/3(Ω)) ≤
(∫ T

0

‖v(t)‖1/3L2(Ω) ‖v(t)‖2L6(Ω) dt
)3/7

= ‖v‖1/7L∞(0,T ;H)

(∫ T

0

‖v(t)‖2L6(Ω)

)3/7

= ‖v‖1/7L∞(0,T ;H) ‖v‖
6/7

L2(0,T ;L6(Ω))

≤ c‖v‖1/7L∞(0,T ;H) ‖v‖
6/7

L2(0,T ;V ),

and we denote by D0 the rightmost side of this inequality chain, when evaluated for
v = ∂tρ. We also remark that

‖χk‖L7/4(0,T ;L7/2(Ω)) =
{∫ T

0

(∫

Ω

|χk(x, t)|7/2 dx
)1/2

dt
}4/7

=
{∫ T

0

(∫

Ω

|χk(x, t)|4 dx
)1/2

dt
} 1

2
· 8
7

= ‖χk‖8/7L2(0,T ;L4(Ω)).

Hence, our estimate for (µ− k)+ yields the following basic inequality:

|||(µ− k)+||| ≤ kD1‖χk‖8/7L2(0,T ;L4(Ω)) for every k ≥ µ∗
0, (4.6)
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where D1 = D0/min{ε, 1}, and where the norm |||·||| is defined by

|||v|||2 := sup
t∈[0,T ]

‖v(t)‖2H +

∫

Q

|∇v|2 for v ∈ C0([0, T ];H) ∩ L2(0, T ;V ).

We notice that the Sobolev inequality (2.19) implies that

‖v‖L2(0,T ;L4(Ω)) ≤ D2|||v||| for every v ∈ C0([0, T ];H) ∩ L2(0, T ;V ), (4.7)

where D2 depends on Ω and T , only. At this point, we select a sequence {kj} depending
on a real parameter m > 1 as follows:

kj :=M
(
2− 2−j

)
for j = 0, 1, . . . , with M := mµ∗

0; (4.8)

note that k0 =M > µ∗
0. Then, owing to (4.6) and (4.7), it is not difficult to check that

(
kj+1 − kj

)
‖χkj+1

‖L2(0,T ;L4(Ω)) ≤ ‖(µ− kj)
+‖L2(0,T ;L4(Ω)) ≤ D2|||(µ− kj)

+|||
≤ kj D1D2‖χkj‖

8/7

L2(0,T ;L4(Ω)). (4.9)

Therefore, if we set
Sj := ‖χkj‖L2(0,T ;L4(Ω)) for j = 0, 1, . . . ,

then the following inequality holds:

Sj+1 ≤
kj

kj+1 − kj
D1D2S

8/7
j ≤ 4D1D2 2

jS
8/7
j for j = 0, 1, . . . .

Using [12, Lemma 5.6, p. 95], we conclude that Sj → 0 as j → ∞, provided that

S0 = ‖χk0‖L2(0,T ;L4(Ω)) ≤ (4D1D2)
−72−49. (4.10)

On the other hand, we notice that χk0 = χ
M , and we recall that M > µ∗

0 and m =M/µ∗
0,

by (4.8). Moreover, we observe that χM = 1 < (µ−µ∗
0)/(M −µ∗

0) when µ > M , and that
χ
M = 0 otherwise. Therefore, using (4.7) and (4.6) with k = k0 =M , we have:

S0 ≤
1

M − µ∗
0

‖(µ− µ∗
0)

+‖L2(0,T ;L4(Ω)) ≤
D2

M − µ∗
0

|||(µ− µ∗
0)

+|||

D1D2

m− 1
‖χµ∗

0
‖8/7L2(0,T ;L4(Ω)) ≤

D1D2

m− 1
|Ω| 14 · 87 T 1

2
· 8
7 .

We are now in a position to choose m := 1 +D1D2|Ω|2/7T 4/7(4D1D2)
7249. Then, m > 1

and (4.10) is satisfied. Consequently,

‖χ2M‖L2(0,T ;L4(Ω)) = lim
j→∞

Sj = 0,

due to Beppo Levi’s Monotone Convergence Theorem. This implies that µ ≤ 2M a.e.
in Q , and the boundedness of µ claimed in (2.15) is established.

We are left with the task of proving that the limitations for ρ in (2.15) do hold. We
find it convenient to set: ρ∗ := infΩ ρ0 (recall that we assumed ρ∗ to be strictly positive).
Moreover, we rewrite (2.13) in the form:

δ∂tρ−∆ρ+ f ′
1(ρ) = g, where g := µ− f ′

2(ρ), (4.11)
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and we notice that g ∈ L∞(Q), in view of the above proof and (2.3). Consequently, in
view also of (2.4), we can choose r∗ ∈ (0, ρ∗) such that f ′

1(r∗) ≤ g a.e. in Q. Then, we
test (4.11) by −(ρ− r∗)

− and deduce that

δ

2

∫

Ω

|(ρ− r∗)
−(t)|2 +

∫ t

0

∫

Ω

|∇(ρ− r∗)
−|2 −

∫ t

0

∫

Ω

(
f ′
1(ρ)− f ′

1(r∗)
)
(ρ− r∗)

−

=

∫ t

0

∫

Ω

(
f ′
1(r∗)− g

)
(ρ− r∗)

− ≤ 0.

We conclude that (ρ − r∗)
− = 0 and ρ ≥ r∗ a.e. in Q. In a similar way, for a suitable

r∗ < 1, we show that ρ ≤ r∗ a.e. in Q by testing (4.11) by (ρ − 1 + r∗)+. We conclude
that solutions satisfy all of the requirements stated in (2.15). �

5 Long-time behavior

In this section, we prove Theorem 2.5. To this end, we fix any solution (µ, ρ) to problem
(2.12)–(2.14). Our proof of the properties of the ω-limit ω(µ, ρ) relies on a number of
a priori estimates for (µ, ρ), and on a well-known tool. For (µω, ρω) any element of
ω(µ, ρ), and {tn} a corresponding time sequence of type (2.17), we set

µn(t) := µ(tn + t), ρn(t) := ρ(tn + t) for t ≥ 0, (5.1)

and we study the sequence {(µn, ρn)} on a fixed finite time interval [0, T ]. Clearly, the
pair (µn, ρn) enjoys the same regularity as (µ, ρ), and solves the equations

(ε+ 2ρn)∂tµn + µn ∂tρn −∆µn = 0 a.e. in Q (5.2)

δ∂tρn −∆ρn + f ′(ρn) = µn a.e. in Q; (5.3)

moreover, it satisfies the homogeneous Neumann boundary conditions and the Cauchy
conditions:

µn(0) = µ(tn) and ρn(0) = ρ(tn) a.e. in Ω. (5.4)

Our argument also relies on two basic identities, to be proved in the next lemma.

Lemma 5.1. The following identities hold:

δ(∂tρ)
2 − ∂tρ∆ρ+ f ′(ρ) ∂tρ = ε∂tµ+ 2∂t(ρµ)−∆µ a.e. in Q; (5.5)

δ

∫ t

0

‖∂tρ(s)‖2H ds+
1

2
‖∇ρ(t)‖2H +

∫

Ω

f(ρ(t))

=
1

2
‖∇ρ0‖2H +

∫

Ω

f(ρ0) + ε

∫

Ω

µ(t)− ε

∫

Ω

µ0 + 2

∫

Ω

(ρµ)(t)− 2

∫

Ω

ρ0µ0, (5.6)

for every t ∈ [0, T ].

Proof. We have from (2.12) that

µ ∂tρ = ∆µ− ε∂tµ− 2ρ ∂tµ = ∆µ− ε∂tµ− 2∂t(ρµ) + 2∂tρ µ .
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By a simple rearrangement, we deduce that

µ ∂tρ = ε∂tµ+ 2∂t(ρµ)−∆µ.

On the other hand, multiplication of (2.13) by ∂tρ yields:

δ(∂tρ)
2 − ∂tρ∆ρ+ f ′(ρ) ∂tρ = µ ∂tρ,

so that (5.5) immediately follows by comparison. Next, identity (5.6) is arrived at by
integrating (5.5) over Ω× (0, t) and by noting that, in view of the homogeneous Neumann
boundary condition, ∆µ does not contribute to the integral. �

We proceed with proving some a priori estimates. In so doing, we depart from our
general rule, and write c for constants that do not depend on the final time T , although
they are allowed to depend on the element (µω, ρω) of the ω-limit under consideration.
Whenever a dependence of c on the parameter T cannot be excluded, we stress this
possibility by writing cT . Morever, without any loss of generality, we assume that ε ≤ 1.

First a priori estimate. Just as we did for (3.18), we immediately deduce that

∫ t

0

‖∇µ(s)‖2H ds+
ε

2
‖µ(t)‖2H +

∫

Ω

(ρµ2)(t) ≤ c for every t > 0. (5.7)

This implies, in particular, that
∫ +∞

0

‖∇µ(t)‖2H dt < +∞ and ‖µn‖L∞(0,T ;H) ≤ c. (5.8)

Second a priori estimate. We recall (5.6) and estimate some terms of its right-hand
side. We have:

ε

∫

Ω

µ(t) + 2

∫

Ω

(ρµ)(t) ≤ ε1/2
∫

Ω

µ(t) + 2

∫

Ω

(ρ1/2µ)(t) ≤ 2|Ω|+ ε‖µ(t)‖2H +

∫

Ω

(ρµ2)(t).

On the other hand, (5.7) holds and f is bounded from below. Hence, (5.6) yields:

δ

∫ t

0

‖∂tρ(s)‖2H ds+
1

2
‖∇ρ(t)‖2H ≤ c for every t > 0, (5.9)

whence we have that
∫ +∞

0

‖∂tρ(t)‖2H dt < +∞ and ‖ρn‖L∞(0,T ;V ) ≤ c. (5.10)

Third a priori estimate. We formally test (2.13) by −∆ρ and integrate over Ω ×
(tn, tn + t). Due to the convexity of f1 and the boundedness of f ′′

2 (compare with the
derivation of (3.16)), we get

δ

2
‖∇ρ(tn + t)‖2H +

∫ tn+t

tn

∫

Ω

|∆ρ|2

≤ δ

2
‖∇ρ(tn)‖2H + c

∫ tn+t

tn

∫

Ω

|∇ρ|2 + 1

2

∫ tn+t

tn

∫

Ω

|∆ρ|2 + 1

2

∫ tn+t

tn

∫

Ω

|µ|2.
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We note that the first term on the right-hand side is bounded, since ρ(tn) is weakly
convergent to ρω in V . Hence, owing to (5.9) and (5.7), we can conclude that

‖∇ρ(tn + t)‖2H +

∫ tn+t

tn

∫

Ω

|∆ρ|2 ≤ cT for every t ∈ [0, T ] and every n.

By comparison with (2.13), and by exploiting elliptic regularity, we deduce that

∫ tn+t

tn

‖f ′
1(ρ)‖2H dt+

∫ tn+t

tn

‖ρ(t)‖2W dt ≤ cT .

In terms of ρn, all this reads:

‖ρn‖L2(0,T ;W ) ≤ cT and ‖f ′
1(ρn)‖L2(0,T ;H) ≤ cT . (5.11)

Fourth a priori estimate. By rewriting (5.2) in the form

∂tµn = −µn ∂tρn
ε+ 2ρn

+
∆µn

ε+ 2ρn
, (5.12)

and owing to the homogeneous Neumann boundary condition, we are entitled to write
the following equation in V ∗ in the framework of the Hilbert triplet (V,H, V ∗):

∫

Ω

∂tµ(t) v = −
∫

Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)
−

∫

Ω

∇µn(t) · ∇
v

ε+ 2ρn(t)
, (5.13)

for a.a. t ∈ (0, T ) and for every v ∈ V . Starting from this equation, we can prove
a bound for ∂tµn in Lp(0, T ;V ∗) for some p > 1. For a while, we argue for a.a. t ∈
(0, T ) and estimate each term on the right-hand side separately. Owing to the Sobolev
inequality (2.19), we get

∣∣∣
∫

Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)

∣∣∣ ≤ ε−1‖µn(t)‖L4(Ω) ‖∂tρ(t)‖L2(Ω) ‖v‖L4(Ω)

≤ c‖µn(t)‖L4(Ω) ‖∂tρ(t)‖L2(Ω) ‖v‖V . (5.14)

On the other hand, using the interpolation inequality (2.20) and the Sobolev inequality
once more, we obtain that

‖µn(t)‖L4(Ω) ≤ ‖µn(t)‖3/4L6(Ω) ‖µn(t)‖1/4L2(Ω) ≤ c‖µn(t)‖3/4V ‖µn(t)‖1/4H .

Consequently, by accounting for the L∞ bound of (5.8), we derive from (5.14) that

∣∣∣
∫

Ω

µn(t) ∂tρn(t) v

ε+ 2ρn(t)

∣∣∣ ≤ c‖µn(t)‖3/4V ‖∂tρ(t)‖H ‖v‖V . (5.15)

This takes care of the first addendum in on the right-hand side of (5.13). As to the second,
we have: ∣∣∣

∫

Ω

∇µn(t) · ∇
v

ε+ 2ρn(t)

∣∣∣ ≤ ‖µn(t)‖V ‖∇
(
(ε+ 2ρn(t))

−1 v
)
‖H , (5.16)
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where it remains for us to estimate the last norm. By applying the Leibniz rule and
making use of the Hölder interpolation and the Sobolev inequalities, we get:

‖∇((ε+ 2ρn(t))
−1 v)‖H ≤ 2ε−2‖v∇ρn(t)‖H + ε−1‖∇v‖H

≤ c
(
‖v‖L4(Ω) ‖∇ρn(t)‖L4(Ω) + ‖∇v‖H

)
≤ c

(
‖∇ρn(t)‖L4(Ω) + 1

)
‖v‖V

≤ c
(
‖∇ρn(t)‖3/4L6(Ω) ‖∇ρn(t)‖

1/4

L2(Ω) + 1
)
‖v‖V ≤ c

(
‖ρn(t)‖3/4W ‖ρn(t)‖1/4V + 1

)
‖v‖V .

Hence, on accounting for the L∞ bound of (5.10), we see that (5.16) becomes:

∣∣∣
∫

Ω

∇µn(t) · ∇
v

ε+ 2ρn(t)

∣∣∣ ≤ c‖µn(t)‖V
(
‖ρn(t)‖3/4W + 1

)
‖v‖V . (5.17)

Since v ∈ V is arbitrary, by combining (5.13), (5.15), and (5.17), we arrive at:

‖∂tµn(t)‖V ∗ ≤ c
(
‖µn(t)‖3/4V ‖∂tρ(t)‖H + ‖µn(t)‖V ‖ρn(t)‖3/4W + ‖µn(t)‖V

)
, (5.18)

for a.a. t ∈ (0, T ) and for every n; by estimating each term on the right-hand side, we are
going to find some p > 1 such that

‖∂tµn‖Lp(0,T ;V ∗) ≤ cT . (5.19)

Now, due to (5.8), the last term is bounded in L2(0, T ). As to the first, we observe that
the functions

t 7→ ‖µn(t)‖3/4V and t 7→ ‖∂tρ(t)‖H
are bounded, respectively, in L8/3(0, T ) by (5.8), and in L2(0, T ) by (5.10); hence, their
product is bounded in L8/7(0, T ), by the Hölder inequality. Finally, the middle term
of (5.18) can be treated in a similar way, with the use of (5.8) and the first inequality
in (5.11). Therefore, (5.19) does hold, with p = 8/7.

Conclusion. Our estimates (5.8), (5.10), and (5.19) ensure that (µ, ρ) is a bounded
and weakly continuous (H, V )-valued function. Hence, the first part of the statement in
Theorem 2.5 follows from the general theory (see, e.g., [11, p. 12]). We pass to the study
of the ω-limit.

Recalling (5.11) and using standard weak and weak star compactness results, we see
that there is a triplet (µ∞, ρ∞, φ∞) such that

µn → µ∞ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (5.20)

ρn → ρ∞ weakly star in H1(0, T ;H)∩L∞(0, T ;V ) ∩ L2(0, T ;W ), (5.21)

f ′
1(ρn) → φ∞ weakly in L2(0, T ;H), (5.22)

at least for some subsequence. Our first aim is to prove that µ∞ is a nonnegative constant,
i.e., that µ∞(x, t) = µs for a.a. (x, t) ∈ Q for some µs ∈ [0,+∞); and, to prove that ρ∞
is time independent, i.e., that ρ∞(t) = ρs for a.a. t ∈ (0, T ) for some ρs ∈ W . Secondly,
we want to prove that the pair (µs, ρs) found in such a way is indeed a steady state and
coincides with the given pair (µω, ρω).

From the first bounds of (5.8) and (5.10), we immediately deduce that

|∇µn| → 0 and ∂tρn → 0 strongly in L2(0, T ;H).
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This implies that µ∞ is space independent and ρ∞ is time independent. Thus, we can
write ρ∞(t) = ρs for a.a. t ∈ (0, T ), for some ρs ∈ W . Moreover, (5.21) implies strong
convergence:

ρn → ρ∞ strongly in C0([0, T ];H)∩L2(0, T ;V ) (5.23)

(see, e.g., [17, Sect. 8, Cor. 4]). Therefore, f ′
2(ρn) converges to f ′

2(ρ∞), e.g., strongly in
L2(0, T ;H), and it is clear that

−∆ρ∞ + φ∞ = µ∞ − f ′
2(ρ∞) a.e. in Q. (5.24)

Collecting (5.23) and (5.22), and recalling Lemma 1.3, p. 42, in [1], we conclude that
0 < ρ∞ < 1 and φ∞ = f ′

1(ρ∞) a.e. in Q. Therefore, (5.24) becomes:

0 < ρs < 1 and −∆ρs + f ′(ρs) = µ∞ a.e. in Q,

and we deduce that µ∞ is time independent as well. Thus, µ∞(x, t) = µs for a.a. (x, t) ∈ Q
for some constant µs. Furthermore, µs is nonnegative, since µn ≥ 0 for every n. This
concludes the proof that (µs, ρs) is a steady state.

It remains for us to show that (µs, ρs) coincides with (µω, ρω). From (5.23) we see
that ρn(0) converges strongly in H to ρ∞(0) = ρs; on the other hand, ρn(0) = ρ(tn)
converges weakly in V to ρω, by assumption; hence, ρs = ρω. A similar argument holds
for µs and µω, because µn converges strongly in C0([0, T ];V ∗). Indeed, µn is bounded
in L∞(0, T ;H), by (5.8); on the other hand, (5.19) holds with p = 8/7 > 1, and the
embedding H ⊂ V ∗ is compact; hence, the desired convergence follows from [17, Sect. 8,
Cor. 4]. This completes the proof of Theorem 2.5.
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