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Abstract

In this paper, we propose a method to simulate the microflows with Shakhov model
using the NRxx method developed in [4, 6, 5]. The equation under consideration is the
Boltzmann equation with force terms and the Shakhov model is adopted to achieve the
correct Prandtl number. As the focus of this paper, we derive a uniform framework
for different order moment systems on the wall boundary conditions, which is a major
difficulty in the moment methods. Numerical examples for both steady and unsteady
problems are presented to show the convergence in the number of moments.
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1 Introduction

In the kinetic theory, the degree of rarefaction of a gas is often characterized by the
dimensionless Knudsen number Kn = λ/L, where λ is the mean free path and L is
the relevant characteristic length. The classic Navier-Stokes-Fourier (NSF) equations are
accurate only when Kn < 0.01. However, the ongoing miniaturization of technical devices
requires modelling of gas in microscopic channels, for which the characteristic length L
is so small that even under normal density and temperature, the Knudsen number is
beyond the available region of NSF equations. Meanwhile, in the transitional regime
(0.1 < Kn < 10), the traditional no-slip wall boundary condition is no longer valid. In
order to match the physical experimentation, the interaction between wall and gas should
be carefully conducted. We refer the readers to [13] for more details.

For microflows, it is known that the Boltzmann equation with Maxwell boundary
conditions [15] is able to accurately describe the flow state. However, on the computational
perspective, the cost for solving Boltzmann equation directly is unacceptable in the general
case. Grad [7] did a pioneer work which extends Euler equations to a thirteen-moment
system, which opened a new way for modelling rarefied gas flow called as moment method.
However, it was discovered by Grad himself in [8] that this system fails to give smooth
shock profiles when the Mach number is larger than 1.65. To remedy this drawback, some
authors tend to construct a parabolic system similar to the NSF equations. In this field,
some methods such as Jin-Slemrod [12], COET [17] and R13 [9, 24] were subsequently
raised. Concurrently, increasing attention is attracted to systems with more than 13
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moments (e.g. [29, 21]). As a combination of these two directions, R20 and R26 equations
were respectively studied in [16] and [11]. In [4], a general method for numerically solving
the regularized moment equations of arbitrary order was proposed, and it was improved
in [5, 6] and abbreviated as NRxx method in [6] for convenience. On the other hand,
the boundary condition for the moment methods is a major obstacle for applications of
moment methods in the field of microflows. In Grad’s paper [7], the basic idea for the
modelling of Maxwell boundary conditions in the framework of moment method is raised.
The idea was also used in [28, 11] for R13 and R26 equations. However, for general moment
equations, the numerical method to process the boundary conditions for NRxx method is
unavailable yet.

The major concern of this paper is to supply suitable boundary conditions for NRxx
method. Before that, the NRxx method is first improved such that it is able to predict
stress and heat flux correctly in the dense case. This is achieved by replacing the BGK
collision model [2] used in [4, 5, 6] with the Shakhov model [19]. Recall that for the BGK
model, collision term can be analytically solved when using the NRxx method. Similarly,
analytical solution for each moment can also be obtained when using the Shakhov model.
At the same time, the force term is also applied to the NRxx method, and one can find
that this term only affects the momentum equation that it is turned to be trivial when
splitting method is employed.

As to the wall boundary conditions, we follow the idea of Grad [7] and try to ap-
proximate Maxwell boundary condition using moment method. The Maxwell boundary
condition is a linear combination of specular reflection and diffusive reflection. According
to Grad’s theory, only the moments of odd order in the normal microscopic velocity are
controlled by boundary conditions. These moments for the specularly reflective part van-
ish. For the diffusive reflection, the incidence part and the emergence part are considered
separately. For the incidence part, one need to calculate the moments of a distribution cut
off by a half space. Since the distribution is expressed by a finite expansion of Hermite
series, the cut-off turns out to be quite intricate. We eventually derive a simple recursive
formula to obtain these moments with careful investigation into the detailed expressions.
The obtained formula brings only slight increment of the computational cost. For the
emergence part, which is a half Maxwellian, the moments are obtained by direct integra-
tion, and the result is also given in a recursive form. The overall boundary condition is
the summation of both the specular part and diffusive part, which is rearranged into a
simple formulation. It is numerically implemented by first constructing a set of moments
satisfying the boundary conditions, and then approximating the flow state in the ghost cell
with a first order extrapolation of each moment. Thus, boundary conditions for the NRxx
method of all orders are collected into a uniform framework, which avoids separate and
involved implementation for different systems with sophisticated expressions [26, 28, 11].

A number of numerical examples are presented to show the validity of the boundary
conditions. Both steady and unsteady problems are studied. Numerical simulations up to
455-moment system are carried out. The classic symmetric planar Couette flow and force-
driven Poiseuille flow are investigated as examples for steady problems. All the numerical
results exhibit the convergence of the NRxx method as the number of moments increases.

The layout of this paper is as follows: in Section 2, we give a brief introduction to the
Boltzmann equation and the NRxx method. In Section 3, the Shakhov collision model
and the force-induced acceleration terms are coupled with the NRxx method. In Section
4, the derivation of boundary conditions are carried out. Numerical examples are shown
in Section 5, and some discussions on the validity and accuracy of the NRxx method are
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given in Section 6. Finally, we make some conclusion in Section 7.

2 The Boltzmann equation and the NRxx method

The Boltzmann equation is the basic equation in the kinetic theory, where a distri-
bution function f(t,x, ξ) is introduced to provide a statistical description for the motion
of molecules. Here t ∈ R

+ is the time, and x, ξ ∈ R
3 are the position and velocity of

particles. The Boltzmann equation reads

∂f

∂t
+ ξ · ∇xf + F · ∇ξf = Q(f, f), (2.1)

where F is the acceleration of particles caused by external forces. The detailed expression
of the collision term Q(f, f) is not presented here due to its complexity, but we stress
that Q(f, f) contains a five-dimensional integration which causes great difficulty in the
numerical simulation. Instead, simplified collision models such as the BGK model [2] and
the Shakhov model [19] are adopted in this paper. These models read:

1. BGK model:
∂f

∂t
+ ξ · ∇xf + F · ∇ξf =

1

τ
(fM − f); (2.2)

2. Shakhov model:

∂f

∂t
+ ξ · ∇xf + F · ∇ξf =

1

τ

{[

1 +
(1− Pr)(ξ − u) · q

5ρθ2

( |ξ − u|2
θ

− 5

)]

fM − f

}

.

(2.3)

Here ρ, u, θ and q denote the density, mean velocity, temperature and heat flux respec-
tively, and these macroscopic variables are related with the distribution function f by

ρ =

∫

R3

f dξ, u =
1

ρ

∫

R3

ξf dξ,

θ =
1

3ρ

∫

R3

|ξ − u|2f dξ, q =
1

2

∫

R3

|ξ − u|2(ξ − u)f dξ.

(2.4)

Besides, τ is the relaxation time and fM is the local Maxwellian which can be analytically
formulated by

fM =
ρ

(2πθ)3/2
exp

(

−|ξ − u|2
2θ

)

. (2.5)

In (2.3), Pr stands for the Prandtl number which is a constant. One can easily observe
that if Pr = 1, then the Shakhov model reduces to the BGK model, which agrees with the
common knowledge that the BGK model predicts an incorrect Prandtl number 1.

The NRxxmethod is a numerical tool for solving large moment equations. It originated
in [4] and was simplified in [5]. The basic idea is to expand the distribution function f
into the Hermite series:

f(t,x, ξ) =
∑

α∈N3

fα(t,x)Hθ,α

(

ξ − u(t,x)
√

θ(t,x)

)

, (2.6)
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where Hθ,α is the basis function defined as

Hθ,α(v) =
3
∏

d=1

1√
2π

θ−
αd+1

2 Heαd
(vd) exp

(

−v2d
2

)

, ∀α ∈ N
3, (2.7)

and Hen is the Hermite polynomials

Hen(x) = (−1)n exp

(

x2

2

)

dn

dxn
exp

(

−x2

2

)

. (2.8)

For convenience, we let Hen(x) ≡ 0 if n < 0. Thus Hθ,α(v) is zero when any of the
components of α is negative.

With the expansion (2.6), the coefficients fα can be considered as a set of infinite
moments, and we have the following relations:

f0 = ρ, fei = 0,

3
∑

d=1

f2ed = 0,

σij = fei+ej , σii = 2f2ei , qi = 2f3ei +

3
∑

d=1

f2ed+ei ,

(2.9)

where i, j = 1, 2, 3 and i 6= j, and σij is the stress tensor or pressure deviators, which can
be deduced from the distribution function f by

σij = pij −
1

3
δij

3
∑

d=1

pdd, with pij =

∫

R3

(ξi − ui)(ξj − uj)f dξ, i, j = 1, 2, 3. (2.10)

In order to implement (2.6) numerically, a positive integer M > 3 is chosen and only
the coefficients {fα(t,x)}|α|6M are stored. Due to the absence of higher order moments,
the resulting moment system is not closed. According to [5], the (M+1)-st order moments
are approximated by

fα = τ

{

1

ρ

D
∑

j=1

∂(ρθ)

∂xj
fα−ej +

θ

D





D
∑

j=1

∂uj
∂xj





D
∑

d=1

fα−2ed −
D
∑

j=1

[

θ
∂fα−ej

∂xj

+
D
∑

d=1

(

∂ud
∂xj

θfα−ed−ej +
1

2

∂θ

∂xj
(θfα−2ed−ej + (αj + 1)fα−2ed+ej )

)

]}

.

(2.11)

Here fα is taken as zero when any of α’s components is negative. The numerical scheme for
the force-free BGK model has been constructed in [6] based on the finite volume scheme
with linear reconstruction and the fractional step method. Suppose the problem is in 1D
and the grid is uniform with cell size ∆x. We denote the cell centers as xj , and then a
full time step of the scheme can be sketched as follows:

1. Determine the time step size ∆t.

2. Reconstruct the first M -th order moments for the distribution functions on cell
boundaries xj±1/2 with a conservative linear reconstruction.

3. Get the (M + 1)-st order moments for the distribution functions on cell boundaries
with a direct discretization of (2.11).
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4. Apply the HLL scheme to solve the purely advective equation ∂tf +ξ ·∇xf = 0 over
a time step of length ∆t.

5. Analytically solve the pure collision equation of the BGK model ∂tf = (fM − f)/τ
over a time step of length ∆t.

We refer the readers to [4, 5, 6] for details of the algorithm. Here we only note that the
Step 4 is nontrivial since two distributions cannot be added up directly, and in Step 5, the
reason why the collision-only equation can be directly solved is that fM can be expressed

in the Hermite series {Hθ,α} trivially as fM = f0Hθ,0

(

(ξ − u)/
√
θ
)

.

3 The NRxx method for Shakhov model with force terms

As is well known, the Prandtl number for monatomic gases is around 2/3, while the
BGK model gives a Prandtl number 1, which causes incorrect prediction of the stress
tensor σij or heat flux q for a dense gas. As a remedy, the Shakhov model was introduced
in [19] as a generalization of the BGK model. The difference between these two models
has been investigated in [31, 14]. In this section, we extend the NRxx method in [5] to
the Shakhov model, and the force terms in (2.3) is added.

3.1 The governing equations

The moment system for the Shakhov model (2.3) with moment set {fα(t,x)}|α|6M will
be deduced here. As in [5], the strategy is to expand (2.3) into Hermite series, and then
match the coefficients for the same basis functions. In order to simplify the notation, we
define

A =
∂f

∂t
+ ξ · ∇xf,

B = F · ∇ξf,

C =
1

τ

{[

1 +
(1− Pr)(ξ − u) · q

5ρθ2

( |ξ − u|2
θ

− 5

)]

fM − f

}

.

(3.1)

It has been deduced in [5] that the Hermite expansion of A is

A =
∑

α∈N3

{(

∂fα
∂t

+

3
∑

d=1

∂ud
∂t

fα−ed +
1

2

∂θ

∂t

3
∑

d=1

fα−2ed

)

+

3
∑

j=1

[

(

θ
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)

+

3
∑

d=1

∂ud
∂xj

(

θfα−ed−ej + ujfα−ed + (αj + 1)fα−ed+ej

)

+
1

2

∂θ

∂xj

3
∑

d=1

(

θfα−2ed−ej + ujfα−2ed + (αj + 1)fα−2ed+ej

)

]}

Hθ,α

(

ξ − u√
θ

)

.

(3.2)

Using the differential relation of the Hermite polynomials, we have

∂

∂ξd
Hθ,α

(

ξ − u√
θ

)

= −Hθ,α+ed

(

ξ − u√
θ

)

. (3.3)
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Thus the Hermite expansion of the force term B can be easily deduced as

B = −
∑

α∈N3

3
∑

d=1

Fdfα−edHθ,α

(

ξ − u√
θ

)

. (3.4)

The expansion of the collision term C can also be obtained by direct calculation. The
result is

C =
1

τ





1− Pr

5

3
∑

i=1

3
∑

j=1

qiHθ,ei+2ej

(

ξ − u√
θ

)

−
∑

|α|>2

fαHθ,α

(

ξ − u√
θ

)



 . (3.5)

Putting (3.2)(3.4) and (3.5) into the Boltzmann-Shakhov equation A+B = C and extract-
ing coefficients for all basis functions, with a slight rearrangement, we get the following
general moment equations for Shakhov model:

∂fα
∂t

+

3
∑

d=1





∂ud
∂t

+

3
∑

j=1

uj
∂ud
∂xj

− Fd



 fα−ed +
1

2





∂θ

∂t
+

3
∑

j=1

uj
∂θ

∂xj





3
∑

d=1

fα−2ed

+

3
∑

j,d=1

[

∂ud
∂xj

(

θfα−ed−ej + (αj + 1)fα−ed+ej

)

+
1

2

∂θ

∂xj

(

θfα−2ed−ej + (αj + 1)fα−2ed+ej

)

]

+

3
∑

j=1

(

θ
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)

=
1

τ





1− Pr

5

3
∑

i,j=1

δij(α)qi − δ(α)fα



 ,

(3.6)

where δij(α) and δ(α) are defined by

δij(α) =

{

1, if α = ei + 2ej ,
0, otherwise,

δ(α) =

{

1, if |α| ≥ 2,
0, otherwise.

(3.7)

Now we will explore something more from (3.6). Noting that fej = 0, ∀j = 1, 2, 3, the
following relation can be obtained if we put α = 0 into (3.6):

∂f0
∂xj

+
3
∑

j=1

(

uj
∂f0
∂xj

+ f0
∂uj
∂xj

)

= 0. (3.8)

This is the mass conservation law. If we set α = ed, d = 1, 2, 3, the equations are

f0





∂ud
∂t

+

3
∑

j=1

uj
∂ud
∂xj

− Fd



+ f0
∂θ

∂xd
+ θ

∂f0
∂xd

+

3
∑

j=1

(δjd + 1)
∂fed+ej

∂xj
= 0. (3.9)

This equation can be simplified as

f0





∂ud
∂t

+

3
∑

j=1

uj
∂ud
∂xj

− Fd



+

3
∑

j=1

∂pjd
∂xj

= 0. (3.10)

Now we consider the case of |α| > 2. Substituting (3.10) into (3.6), the temporal differen-
tiation of u can be eliminated. In order to eliminate the temporal differentiation of θ, we
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multiply (2.3) by |ξ − u|2 on both sides and then integrate on R
3 with respect to ξ. The

result is

f0





∂θ

∂t
+

3
∑

j=1

uj
∂θ

∂xj



+
2

3

3
∑

j=1

(

∂qj
∂xj

+

3
∑

d=1

pjd
∂ud
∂xj

)

= 0. (3.11)

Note that the force term does not appear in this equation, since

∫

R3

|ξ − u|2 ∂f
∂ξj

dξ = −2

∫

R3

(ξj − uj)f dξ = 0. (3.12)

Thus, the final form of equations for |α| > 2 reads

∂fα
∂t

− 1

f0

3
∑

d=1

3
∑

j=1

∂pjd
∂xj

fα−ed −
1

3f0

3
∑

j=1

(

∂qj
∂xj

+

3
∑

d=1

pjd
∂ud
∂xj

)

3
∑

d=1

fα−2ed

+
3
∑

j,d=1

[

∂ud
∂xj

(

θfα−ed−ej + (αj + 1)fα−ed+ej

)

+
1

2

∂θ

∂xj

(

θfα−2ed−ej + (αj + 1)fα−2ed+ej

)

]

+
3
∑

j=1

(

θ
∂fα−ej

∂xj
+ uj

∂fα
∂xj

+ (αj + 1)
∂fα+ej

∂xj

)

=
1

τ





1− Pr

5

3
∑

i,j=1

δij(α)qi − δ(α)fα



 .

(3.13)

In order to get a closed system, we collect (2.11), (3.10), (3.11) and (3.13) with 2 6 |α| 6 M
together. Then the governing system for the NRxx method with Shakhov model and force
terms is formed.

Remark 1. In the Shakhov model, the equation (2.11), the prediction of fα with |α| = M+1
derived for the BGK model, is still available. In [5], (2.11) is deduced in the following two
steps:

1. Determine the orders of magnitude for all fα using Maxwellian iteration.

2. For |α| = M + 1, remove all the high order terms in the equations containing only
−fα/τ in their right hand sides.

The Maxwellian iteration can also be applied to (3.13), and after the first iteration step,
we immediately get

fα = O(τ), |α| = 2, or α = ei + 2ej , i, j = 1, 2, 3, (3.14)

and other moments with |α| > 2 remain to be zero. This result is the same as that we
have derived in the BGK model. We note that for |α| > 3 and α = (1, 1, 1), (3.13) is just
the corresponding equation for the BGK model. Thus, in the view of order of magnitude,
the subsequent iterations are identical to the BGK case. Moreover, when M > 3, which
we have assumed in the last section, step 2 is also identical for both models. Hence (2.11)
still applies for the Shakhov model.

3.2 The numerical approach

The acceleration F only appears in (3.10) in the governing system, thus a splitting
method can be applied as follows:

7



1. Transportation: solve the force-free Shakhov equation over a time step of length ∆t.

2. Acceleration: solve ∂tu = F over a time step of length ∆t.

In order to solve the force-free Shakhov equation, another splitting of the convection and
collision part is needed. For the convection part, the method is identical to that used in
the BGK model. We refer the readers to [4, 6] for details. For the collision part, since a
new collision model is adopted, the procedure is slightly different.

Now we consider the pure collision model, where ρ,u and θ are not changed while time
evolves. Therefore, the collision terms only exist in (3.13) with |α| > 2. Two cases are
considered below:

(1) α = ei + 2ej , i, j = 1, 2, 3. In these cases, the pure collision equations are written
as

∂fei+2ej

∂t
=

(1− Pr)qi − 5fei+2ej

5τ

=
1

τ





1− Pr

5



2f3ei +

3
∑

j=1

fei+2ej



− fei+2ej



 , i, j = 1, 2, 3.

(3.15)

In the general case, τ only depends on ρ and θ. Thus it is invariant in the collision-only
system. This turns (3.15) into a linear ordinary differential system with 9 equations, which
can be analytically integrated as

fei+2ej (t) =
1

5
qi(t0) exp

(

−Pr(t− t0)

τ

)

−
(

1

5
qi(t0)− fei+2ej(t0)

)

exp

(

− t− t0
τ

)

, (3.16)

where t0 denotes the initial time.
(2) Other cases. For other α’s, the collision-only equation is the same as the BGK

model:
∂fα
∂t

= −1

τ
fα. (3.17)

The solution is

fα(t) = fα(t0) exp

(

− t− t0
τ

)

. (3.18)

When (3.16) and (3.18) are used in the numerical scheme, we replace t and t0 with tn+1

and tn respectively. Note that when τ is independent of u, the acceleration and collision
do not coupled with each other, thus the splitting is applied only once rather than twice.
This makes it more efficient when the Strang splitting is employed.

4 Boundary conditions

In the moment methods, the boundary condition is always a complicated issue when
simulating microflows. As discussed in [7, 20, 26, 28, 11] and the references therein, delicate
derivations and careful numerical techniques are needed for a solid wall. In this section, a
numerical way for dealing with boundary conditions in the NRxx method is introduced,
which appears to be uniform for all orders of moment systems.
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4.1 The kinetic boundary condition

In the kinetic theory, the most extensively used boundary condition is the one proposed
by Maxwell in [15]. According to the common hyperbolic theory, for (2.3), the boundary
condition is only needed when ξ · n < 0, where n is the outer normal vector of the
boundary. For a point x on the wall, supposing the velocity and temperature of the wall
to be uW (t,x) and θW (t,x) at time t, Maxwell proposed the following boundary condition:

f(t,x, ξ) =

{

χfW
M (t,x, ξ) + (1− χ)f(t,x, ξ∗), CW · n < 0,

f(t,x, ξ), CW · n > 0,
(4.1)

where χ ∈ [0, 1] is a parameter for different gases and walls, and

ξ∗ = ξ − 2(CW · n)n, CW = ξ − uW (t,x), (4.2)

fW
M (t,x, ξ) =

ρW (t,x)

(2πθW (t,x))3/2
exp

(

−|ξ − uW (t,x)|2
2θW (t,x)

)

. (4.3)

The functions uW (t,x) and θW (t,x) are prescribed and stand for the wall velocity and
temperature at time t and position x, and ρW (t,x) ensures the conservation of the mass
at the wall, that is,

∫

R3

(CW · n)f(t,x, ξ) dξ

= χ

(∫

CW ·n<0
(CW · n)fW

M (t,x, ξ) dξ +

∫

CW ·n>0
(CW · n)f(t,x, ξ) dξ

)

= 0.

(4.4)

For this boundary condition, the normal velocity of gas on the boundary is the same
as the normal velocity of the wall. However, in the case of shear flow, velocity slip and
temperature jump will appear on the boundary.

4.2 The boundary conditions for the NRxx method

The boundary condition can be derived by taking moments on both sides on (4.1).
Before that, we define

Cθ,α =
(2π)3/2θ|α|+3

α1!α2!α3!
, ∀θ > 0, α ∈ N

3. (4.5)

This definition leads to

gα = Cθ,α

∫

R3

g(ξ)Hθ,α(v) exp(|v|2/2) dv, (4.6)

where v = (ξ−u)/
√
θ and g(ξ) is a distribution function expanded into Hermite series as

g(ξ) =
∑

α∈N3 gαHθ,α(v). In order to simplify the calculation, we suppose n = (0, 1, 0)T .
Thus, taking moments for (4.1) requires half-space integration

Cθ,α

∫

ξ2>uW
2

g(ξ)Hθ,α(v) exp(|v|2/2) dv. (4.7)

Suppose anM -th order system is used in the NRxxmethod; that is, an (M+1)-st order
approximation of the distribution can be obtained through (2.11). This approximation is
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directly used in (4.7) so that the integral can be actually worked out. Concretely speaking,
(4.7) is approximated as

∑

|β|6M+1

gβCθ,α

∫

ξ2>uW
2

Hθ,α(v)Hθ,β(v) exp(|v|2/2) dv. (4.8)

Since u2 = uW2 on the boundary, the region of integration can be written as {v2 > 0}.
Thus, we only need to calculate

Iα,β(θ) = Cθ,α

∫

v2>0
Hθ,α(v)Hθ,β(v) exp(|v|2/2) dv. (4.9)

The details can be found in Appendix B, and the result is

Iα,β(θ) = S(α2, β2)θ
α2−β2

2 · δα1β1
δα3β3

(4.10)

and

S(m,n) =















1/2, m = n = 0,
K(1, n − 1), m = 0 and n 6= 0,
K(m, 0), m 6= 0 and n = 0,
K(m,n) + S(m− 1, n − 1) · n/m, otherwise,

(4.11)

where

K(m,n) =
(2π)−1/2

m!
Hem−1(0)Hen(0). (4.12)

The above deduction leads to the following proposition:

Proposition 1. Suppose g(v) is a function defined on R
3 which can be denoted by a finite

expansion of Hermite basis functions

g(v) =
∑

|α|6M+1

gαHθ,α(v). (4.13)

for some θ > 0. Let g̃(v) be a half-space cut-off of g(v) as

g̃(v) =

{

g(v), v2 > 0,
0, v2 < 0.

(4.14)

Then g̃ can also be expanded into Hermite series as

g̃(v) =
∑

α∈N3

∑

|β|6M+1

gβIα,β(θ)Hθ,α(v), (4.15)

where Iα,β(θ) is defined in (4.10)—(4.12).

Proof. It is already known in [4] that {Hθ,α(v)}α∈N3 is an orthogonal basis of the weighted
L2 space L2(R3; exp(|v|2/2) dv). Since

∫

R3

|g̃(v)|2 exp(|v|2/2) dv =

∫

v2>0
|g(v)|2 exp(|v|2/2) dv

6

∫

R3

|g(v)|2 exp(|v|2/2) dv =
∑

|α|6M+1

C−1
θ,α|gα|2 < +∞,

(4.16)

g̃(v) also lies in L2(R3; exp(|v|2/2) dv). Thus the validity of (4.15) can be naturally
obtained.
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The following proposition depicts the sparsity of Iα,β.

Proposition 2. If Iα,β(θ) is nonzero, then (1) α1 = β1; (2) α3 = β3; (3) α2 − β2 is zero
or odd. When α = β, Iα,β(θ) is equal to 1/2.

Proof. If Iα,β(θ) is nonzero, (4.10) directly gives α1 = β1 and α3 = β3. If α2 − β2 is a
nonzero even integer, K(α2, β2) is zero since Hen(0) is zero when n is odd. In order to
prove Iα,β(θ) = 0 in this case, according to (4.10), we only need to prove S(α2, β2) = 0.
This can be done by induction:

(1) If α2 = 0 or β2 = 0, α2 and β2 must be both even but one of them must be positive.
Equation (4.11) shows S(α2, β2) = 0 directly.

(2) Suppose S(α2−1, β2−1) = 0. Then, according to the last case in (4.11), S(α2, β2)
is also zero.

Finally, when α = β, (4.10) gives Iα,β(θ) = S(α2, β2). The subsequent proof can also
be done by induction, since S(0, 0) = 1/2 and K(n, n) = 0 for n > 0.

According to Proposition 2, we find that only (⌈α2/2⌉ + 1) terms are nonzero in the
summation (4.8). This greatly reduces the computational cost.

Now let us return to the boundary conditions. According to Grad’s theory [7, 9],
in order to ensure the continuity of boundary conditions when χ → 0, only a subset
of moments {fα | |α| 6 M + 1 and α2 is odd} should be used to formulate boundary
conditions. This will be completed in the following three subsections. Later in this section,
for conciseness, the variables t and x are omitted in our statement if not specified, and all
spatially dependent functions are considered to be on the boundary.

4.2.1 Determination of ρW

For simplicity, we factorize the right hand side of (4.1) into three parts and consider
each part independently. Define

p(ξ) =

{

fW
M (ξ), ξ2 < uW2 ,
0, ξ2 > uW2 ,

q(ξ) =

{

f(ξ), ξ2 > uW2 ,
0, ξ2 < uW2 ,

r(ξ) = q(ξ) + q(ξ∗).

(4.17)
Then (4.1) can be rewritten as

f(ξ) = χp(ξ) + χq(ξ) + (1− χ)r(ξ). (4.18)

Suppose the Hermite expansion of f is

f(ξ) =
∑

|α|6M+1

fαHθ,α

(

ξ − u√
θ

)

. (4.19)

Then q(ξ) can also be expanded into Hermite series according to Proposition 1 and 2 as

q(ξ) =
∑

α∈N3

qαHθ,α

(

ξ − u√
θ

)

. (4.20)

Substituting (4.3) and (4.20) into (4.4), ρW can be worked out as

ρW =

√

2π

θW
qe2 =

√

2π

θW

⌈M/2⌉
∑

k=0

S(1, 2k)θ1/2−kf2ke2 , (4.21)

where the expression of qe2 is derived from (4.10), (4.15) and Proposition 2.
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4.2.2 The moments of p and r

Now the moments for q(ξ) have been calculated in (4.20), we still need to get Hermite
expansions of p(ξ) and r(ξ). We suppose that p(ξ) can be expanded under the basis
{

Hθ,α

(

(ξ − u)/
√
θ
)}

α∈N3 as

p(ξ) =
∑

α∈N3

pαHθ,α

(

ξ − u√
θ

)

. (4.22)

Then, according to (4.3), the coefficients can be formulated by

pα = Cθ,α

∫

v2<0

ρW

(2πθW )3/2
exp

(

−|ξ − uW |2
2θW

)

Hθ,α(v) exp

( |v|2
2

)

dv, (4.23)

where ξ =
√
θv + u. Define

Js(x) =
1

s!
θ

s+1

2

∫ +∞

−∞

1√
2πθW

exp

(

−|
√
θy − x|2
2θW

)

Hes(y) dy, (4.24)

J̃s(x) =
1

s!
θ

s+1

2

∫ 0

−∞

1√
2πθW

exp

(

−|
√
θy − x|2
2θW

)

Hes(y) dy. (4.25)

Then pα can be expressed by

pα = ρWJα1
(uW1 − u1)J̃α2

(uW2 − u2)Jα3
(uW3 − u3). (4.26)

Js(x) and J̃s(x) can be calculated recursively as

Js(x) =
1

s

[

(θW − θ)Js−2(x) + xJs−1(x)
]

, s > 1; (4.27)

J̃s(x) =
1

s

[

(θW − θ)J̃s−2(x) + xJ̃s−1(x)
]

−Hs(x), s > 1; (4.28)

Hs(x) = − s− 2

s(s− 1)
θHs−2(x), s > 2. (4.29)

The starting values are

J−1(x) = 0, J0(x) = 1, (4.30)

J̃−1(x) = 0, J̃0(x) =
1

2
erfc

(

x√
2θW

)

, (4.31)

H0(x) = 0, H1(x) =

√

θW

2π
exp

(

− x2

2θW

)

, (4.32)

The detailed derivation of (4.27)-(4.32) can be found in the Appendix C. Noting that
u2 = uW2 , (4.26) can be further simplified as

pα = ρWJα1
(uW1 − u1)Ĵα2

Jα3
(uW3 − u3), (4.33)

where

Ĵs =
1

s
(θW − θ)Ĵs−2 − Ĥs, s > 1, Ĥs = − s− 2

s(s− 1)
θĤs−2, s > 2,

Ĵ−1 = Ĥ0 = 0, Ĵ0 = 1/2, Ĥ1 =

√

θW

2π
.

(4.34)
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Here we emphasize that due to equation (4.21), all pα’s are only related with {f2ke2}06k6⌈M/2⌉

besides u, uW , θ and θW .
Now we turn to the moments of r(ξ). Note that only the moments with odd α2

are needed. However, r(ξ) is an even function with respect to CW
2 , which causes all its

moments with odd α2 vanished. This indicates that r(ξ) can be simply neglected when
discussing the boundary conditions.

4.2.3 Construction of boundary conditions

Now we take moments with odd α2 on both sides of (4.18). Making use of Proposition
2, we have

fα = χpα + χqα = χpα +
1

2
χfα + χ

K2(α)
∑

k=0

S(α2, 2k)θ
α2/2−kfα+(2k−α2)e2 , (4.35)

where K2(α) = ⌈(M − α1 − α3)/2⌉. A simple rearrangement gives

fα =
2χ

2− χ



pα +

K2(α)
∑

k=0

S(α2, 2k)θ
α2/2−kfα+(2k−α2)e2



 . (4.36)

Equations (4.36) with |α| 6 M+1 and odd α2, together with u2 = uW2 form the boundary
conditions of the dynamic moment equations. Recalling

pα = pα(u,u
W , θ, θW , f0, f2e2 , · · · , f2⌈M/2⌉e2), (4.37)

one can find that the terms which appear on the left hand side of (4.36) never appear on
its right hand side. Thus, if an arbitrary distribution function denoted as (4.19) is given,
we can define a functional F b which maps (4.19) to another distribution f b(ξ):

f b(ξ) =
∑

|α|6M+1

f b
αHθb,α

(

ξ − ub

√
θb

)

, (4.38)

where ub = (u1, u
W
2 , u3), θ

b = θ, and

f b
α =

{

fα, if α2 is even,
the right hand side of (4.36), if α2 is odd.

(4.39)

Thus f b
α satisfies the boundary condition. The mapping F b will be used in the numerical

implementation of boundary conditions.
At the end of this section, we prove that ub and θb are the corresponding velocity

and temperature of the distribution function f b(ξ). This is equivalent to the following
proposition:

Proposition 3. If a distribution f(ξ) with expression (4.19) satisfies

fe1 = fe2 = fe3 =

3
∑

d=1

f2ed = 0, (4.40)

then f b = F b(f) with expression (4.38) also satisfies

f b
e1 = f b

e2 = f b
e3 =

3
∑

d=1

f b
2ed

= 0. (4.41)
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Proof. Equation (4.39) gives

f b
e1 = fe1 , f b

e3 = fe3 , f b
2ed

= f2ed, d = 1, 2, 3. (4.42)

Thus it only remains to prove f b
e2 = 0. According to (4.30), (4.33) and (4.34), pe2 can

actually be expressed by

pe2 = ρWJ0(u
W
1 − u1)Ĵ1J0(u

W
3 − u3) = ρW [(θW − θ)Ĵ−1 − Ĥ1] = −ρW

√

θW

2π
. (4.43)

Since K2(e2) = ⌈M/2⌉, the above equation together with (4.21) and (4.36) immediately
gives f b

e2 = 0.

4.3 Numerical implementation of boundary conditions

In a finite volume scheme, the boundary conditions is often applied by ghost cell
techniques. Suppose the distribution function of the cell on the boundary is denoted as
(4.19). The distribution function of the ghost cell can be constructed as follows:

1. Apply F b on f(ξ) and suppose the result is (4.38);

2. Construct the ghost cell distribution as

fghost(ξ) =
∑

|α|6M+1

(2f b
α − fα)Hθ,α

(

ξ − (2ub − u)√
θ

)

. (4.44)

Now we consider the time complexity of this operation. Suppose NM = (M +2)(M +
3)(M + 4)/6 is the number of moments involved in the boundary condition. Obviously,
(4.44) requires O(NM ) operations. For the calculation of F b(f), we list the cost as follows:

1. Half-space cut-off of f (4.20): O(MNM ) operations;

2. Calculation of ρW (4.21): O(1) operations;

3. Calculation of pα (4.33): O(NM ) operations;

4. Evaluation of (4.39): O(NM ) operations.

Thus, the total computational cost is O(MNM ), while the time complexity is O(NM ) if
no boundary condition is considered. However, since this procedure only takes place on
the boundary, it produces little increment of the computational time in real computation.

Remark 2. Proposition 3 indicates the conservation of mass on the boundary when using
the HLL numerical flux as in [6]. One can find that when uW2 = 0, saying a special
reference coordinate system is used, the minimum and maximum signal speeds in need of
the HLL flux are opposite numbers. Together with ρghost = ρ, ughost2 = −u2, the mass
conservation of the HLL scheme follows naturally.

5 Numerical examples

In this section, three numerical examples are presented to validate our algorithm. In
all these examples, a hard sphere gas is assumed, for which the relaxation time is defined
as

τ =
5

16

√

2π

θ

Kn

ρ
(5.1)
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following [3], where Kn is the Knudsen number. The CFL number is always 0.95. And for
all the tests, the wall is set to be a fully diffusive one (χ = 1) with θW = 1. The POSIX
multithreading technique is utilized in our simulation, and at most 8 CPU cores are used.

5.1 The beginning of a shock wave’s formation

The first example is a simulation of the interaction of a coming flow with a diffusive
wall. The computational domain is [−5, 0] and the global Knudsen number Kn used in
(5.1) is set to be 0.5. The left boundary is a free boundary, and the right is a stationary
diffusive wall parallel to the xz-plane. The initial condition is given by

ρ0(y) = 1.0, u0(y) = (0, 0.5, 0)T , θ0(y) = 1.0, ∀y ∈ [−5, 0], (5.2)

and the gas is in equilibrium everywhere. A left-going shock wave will form after a suf-
ficiently long time. Here we stop the computation at t = 1.0 in order to check the
validity of the boundary condition. For a reference solution, we solve the Shakhov equa-
tion (2.3) directly using a Conservative Discrete Velocity Method (CDVM) introduced in
[27]. For the computation of both NRxx method and CDVM, a uniform mesh with 500
grids are used to discretize the domain. For CDVM, the computational velocity domain
is [−10, 10] × [−10, 10] × [−10, 10] and discretized by 50× 100× 50 grids.

Figure 1 and 2 are the results for CDVM and NRxx method for M = 3 to 12. Only
the part y ∈ [−3, 0] is shown since all variables for the remaining part are almost constant.
Since a large Knudsen number is considered, predictions from lower order moment equa-
tions give very large deviations, so the necessity of high order moment theory is obvious.
As the number of moments increases, all profiles get closer and closer to the results of
CDVM. When M reaches 11, the density and temperature plots agree with the CDVM
results very well, and the errors in σ22 and q2 are much smaller than the low order cases,
though it is still observable. It is reasonable that higher order moments converge more
slowly than lower order moments, which is also observed in [11].

5.2 Planar Couette flow

The planar Couette flow is a classic benchmark test in the field of microflows. The
moment method for this problem has been investigated in a lot of papers such as [25, 18,
26, 10, 28, 11]. Here we consider the symmetric Couette flow. The gas lies between two
plates parallel to the xz-plane. Two plates move in the opposite direction with constant
velocities within their own planes. A steady state can be obtained for a fully developed
flow.

In this example, the computational domain is [−0.5, 0.5]. The velocities of the left and
right plates are

uW
L = (−0.6296, 0, 0)T , uW

R = (0.6296, 0, 0)T . (5.3)

The initial state is a global equilibrium with

ρ0(y) = 1, u0(y) = 0, θ0(y) = 1, ∀y ∈ [−0.5, 0.5]. (5.4)

The steady state can be achieved if the computational time is sufficiently long. Also,
both the NRxx method and CDVM are applied to this problem. Three different Knudsen
numbers, Kn = 0.1, 0.5, 1.0, are investigated. For CDVM, the computational velocity
domain is chosen as [−10, 10]× [−10, 10]× [−10, 10], and 50×50×50 grids are used. Here
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(f) M = 8

Figure 1: Density and temperature plots for the problem in section 5.1. The left axis is
for the dashed lines, and the right axis is for the solid lines (to be continued).

we note that such discretization may not produce numerical results accurate enough as
the reference solution, but the computation is already extremely slow.

Numerical results for Kn = 0.1 are shown in Figure 3 and 4. In this case, most
lines agree with each other. The convergence in the number of moments can be observed,
however, due to the numerical error from both NRxx method and CDVM, small deviations
between the CDVM results and the possible limit of the NRxx method can be found.
One can disclose that lower order NRxx results deviate from the CDVM results more
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(j) M = 12

Figure 1: Density and temperature plots for the problem in section 5.1. The left axis is
for the dashed lines, and the right axis is for the solid lines.

than higher order ones. This correctly reflects the behavior of NRxx method under low
Knudsen numbers, as is also found by [4].

Now a larger Knudsen number Kn = 0.5 is considered, and the results are given in
Figure 5 and 6. In this case, the results for odd and even orders evidently break into two
groups, and they approach closer to the CDVM results separately. This can be also find
in Figure 1 and 2. For ρ and θ, the even group gives better results, while for σ12 and
σ22, the odd group is more accurate. The reason remains to be further explored. The two
subfigures in Figure 6 clearly exhibit the convergence. In [28, 11], it was discovered that
the normal stress σ22 is difficult to match by R13 and R26 equations. Here one may find
that when the number of moments is increasing, the quality of the approximation to this
quantity is improved continuously. In case of M = 9, the profile agrees with the CDVM
result quite well, and when M = 10, the relative difference is below 5%.

The severe case Kn = 1.0 is also studied. Similar results with the case Kn = 0.5 are
obtained in Figure 7 and 8, while the magnitude of the difference is much larger. For σ22,
now the relative difference for M = 9 is about 10%. But the rate of convergence is still
encouraging — compared with the result with M = 4, the error is halved.

17



0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(a) M = 3

0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(b) M = 4

0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(c) M = 5

0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(d) M = 6

0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(e) M = 7

0

0.05

0.1

0.15

0.2

 

 

−3 −2.5 −2 −1.5 −1 −0.5 0

−0.2

−0.1

0

0.1

0.2

0.3

PSfrag replacements

σ22, NRxx
σ22, CDVM
q2, NRxx
q2, CDVM

(f) M = 8

Figure 2: Stress and heat flux plots for the problem in section 5.1. The left axis is for the
dashed lines, and the right axis is for the solid lines (to be continued).

5.3 Force-driven Poiseuille flow

This is another example which is frequently used to verify the boundary conditions
of moment methods [28, 11]. Similar with the Couette flow, the gas also lies between
two parallel plates, but the plates are stationary and an external constant force parallel
to the plates causes the flow to reach a non-stationary steady state. In our settings, the
computational domain is again [−0.5, 0.5], and the Knudsen number is set to be 0.1. The
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Figure 2: Stress and heat flux plots for the problem in section 5.1. The left axis is for the
dashed lines, and the right axis is for the solid lines.

force introduces an acceleration

F = (0.2555, 0, 0)T . (5.5)

The initial condition is the same as the Couette flow. These settings are the non-
dimensional form of the test in [32], where the DSMC result is carried out, and this
example is also considered in [30, 11]. Since it is quite difficult for us to exert the force
term in CDVM, we have to use the DSMC result in [32] for comparison in spite of the
difference in the collision model.

The numerical results are presented in Figure 9 and 10. For all the profiles, the
convergence in the number of moments is legible, while the NRxx results do not converge
to the results of DSMC. This may due to the difference between the collision terms of
Shakhov model and DSMC. Taking the temperature plot (Figure 9(c)) as an example,
the result of M = 3 matches DSMC result best, since when M = 3, the collision term of
Shakhov model is almost the same as that of DSMC. While when the number of moments
increases, the collision term deviates away from DSMC’s gradually. Here the accuracy of
collision models is not the topic of this paper. Even though, two results are very close
quantitatively, which indicates the correctness of the boundary conditions and the Prandtl
number of the NRxx method.

19



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

 

 

PSfrag replacements

M = 3
M = 4
M = 5
M = 6
M = 7
M = 8
M = 9
M = 10

CDVM

DSMC

(a) Density, ρ

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
1.02

1.03

1.04

1.05

1.06

1.07

1.08

 

 

PSfrag replacements

M = 3
M = 4
M = 5
M = 6
M = 7
M = 8
M = 9
M = 10

CDVM

DSMC

(b) Temperature, θ

Figure 3: Density and temperature plots for the planar Couette flow with Kn = 0.1 (to
be continued)

6 Some discussions on the NRxx method

6.1 Order of accuracy

For the macroscopic equations, a basic quantity describing its ability is the order of
accuracy with respect the Knudsen number. The definition of order of accuracy can be
found in textbook [22]:

A set of equations is said to be accurate of order λ0, when the pressure deviator
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Figure 4: Shear and normal stress plots for the planar Couette flow with Kn = 0.1

σij and the heat flux qi are known within the order O(ελ0).

Here ε is a small parameter proportional to the relaxation time τ . As we have discussed
in Remark 1, in the view of order of magnitude, the process of Maxwellian iteration for
the Shakhov model is identical to the BGK model. Hence, for an arbitrary M > 3, the
leading order term of fα with |α| = M + 1 is known from the corresponding moment
equations (see [5] for details). And it has been deduced in [5] that fα ∼ O(τ ⌈|α|/3⌉) for all
|α| > 4. Thus, from the analytical form of the moment equations (3.13), we immediately
have that fα with |α| = M is known up to (⌈(M + 1)/3⌉ + 1)-th order. Subsequently, fα
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Figure 5: Density and temperature plots for the planar Couette flow with Kn = 0.5

with |α| = M − 1 is know up to (⌈(M + 1)/3⌉ + 2)-th order, and this can be done until
|α| = 2. The general result is

Proposition 4. For the moment equations described in Section 3.1, fα has (⌈4(M +
1)/3⌉ − |α|)-th order accuracy if 2 6 |α| 6 M .

Now, using (2.9) and the definition of order of accuracy, we conclude that the NRxx
equations have the order of accuracy ⌈(4M − 5)/3⌉.

For boundary value problems, such discussion is only valid in the bulk. In the Knudsen
layer, which is known to be of width O(Kn), we need to use X = x/Kn as the spatial
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Figure 6: Shear and normal stress plots for the planar Couette flow with Kn = 0.5

variable while investigating the accuracy of moment equations. In this case, if we consider
a steady state problem, the small parameter no longer appears in the governing equations
(3.13). This means the order of magnitude for fα does not increase as |α| increases, as
has been found in [23].
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Figure 7: Density and temperature plots for the planar Couette flow with Kn = 1.0

6.2 The validity of NRxx method for large Knudsen number and in the

Knudsen layer

As we have discussed above, there are two cases when the order of accuracy is not so
meaningful for describing the accuracy of the NRxx method:

1. In the case of Kn ∼ O(1), there are no “small parameters” in our concept.

2. In the Knudsen layer, the orders of magnitude of moments do not increase as they
behave in the bulk.

24



−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.328

−0.326

−0.324

−0.322

−0.32

−0.318

−0.316

−0.314

−0.312

 

 

PSfrag replacements

M = 3
M = 4
M = 5
M = 6
M = 7
M = 8
M = 9
M = 10

CDVM

DSMC

(a) Shear stress, σ12

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.075

−0.07

−0.065

−0.06

−0.055

−0.05

−0.045

 

 

PSfrag replacements

M = 3
M = 4
M = 5
M = 6
M = 7
M = 8
M = 9
M = 10

CDVM

DSMC

(b) Normal stress, σ22

Figure 8: Shear and normal stress plots for the planar Couette flow with Kn = 1.0

Nevertheless, we can still consider the NRxx method as a solver for Boltzmann equation
with spectral expansion in the velocity space, and the method should be valid when fα
decays sufficiently fast as |α| increases. Now we follow [23] and give the average absolute
values of the moments with the same order for different Kn and different M in Figure 11.
The result is based on the Couette flow problem in Section 5.2, and the NRxx solution at
x = −0.5 is used in the these plots.

In these figures, we find that even when the Knudsen number is as large as 10, the
magnitudes of moments still decay very fast. Thus, the NRxx method can still be consid-
ered to be valid and efficient. Although the methodology of regularization which is based
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Figure 9: Density, velocity and temperature plots for the planar Poiseuille flow
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Figure 10: Stress and heat flux plots for the planar Poiseuille flow
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on a small τ is not valid any more, the regularization term (2.11) is simply a prediction
of higher order moments. Such prediction differs from Grad equations’ guess fα = 0, but
also has a uniform expression for all Knudsen numbers. When M goes to infinity, the
regularization term is expected to vanish since fα decays. On the other hand, this term
smooths the profiles of the macroscopic variables, thus avoids the appearance of some
unphysical phenomena such as subshocks (see [5]). This indicates the meaningfulness of
regularization for practical use.

7 Concluding remarks

A uniform numerical scheme for coupling the NRxx method and the wall boundary
conditions are developed in this paper, and the NRxx method is extended to apply the
force term and predict correct Prandtl number by using the Shakhov collision model. To
validate the proposed method, both steady and unsteady problems are simulated. We are
currently working on applying the NRxx method to 2D problems.
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Appendix

A Some properties of Hermite polynomials

The Hermite polynomials defined in (2.8) are a set of orthogonal polynomials over the
domain (−∞,+∞). Their properties can be found in many mathematical handbooks such
as [1]. Some useful ones are listed below:

1. Orthogonality:

∫

R

Hem(x)Hen(x) exp(−x2/2) dx = m!
√
2πδm,n;

2. Recursion relation: Hen+1(x) = xHen(x)− nHen−1(x);

3. Differential relation: He ′n(x) = nHen−1(x).

And the following equality can be derived from the last two relations:

[Hen(x) exp(−x2/2)]′ = −Hen+1(x) exp(−x2/2). (A.1)
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B Calculation of half-space integration

The detailed calculation of Iα,β(θ) (4.9) will be presented. Using the definition of
Hθ,α(v) (2.7), eq. (4.9) can be rewritten as

Iα,β(θ) =

3
∏

k=1

[

(2π)−1/2

αk!
θ

αk−βk
2

∫ +∞

lk

Heαk
(vk)Heβk

(vk) exp

(

−|vk|2
2

)

dvk

]

, (B.1)

where

lk =

{

−∞, k = 1, 3,
0, k = 2.

(B.2)

Applying the orthogonality of Hermite polynomials to (B.1), we have

Iα,β(θ) =

[

(2π)−1/2

α2!
θ

α2−β2
2

∫ +∞

0
Heα2

(v2)Heβ2
(v2) exp

(

−|v2|2
2

)

dv2

]

·δα1β1
δα3β3

, (B.3)

Now it is obvious that (4.10) holds if

S(m,n) =
1√
2πm!

∫ +∞

0
Hem(x)Hen(x) exp(−x2/2) dx. (B.4)

Some simple cases can be directly worked out as

S(0, 0) =
1√
2π

∫ +∞

0
exp(−x2/2) dx = 1/2,

S(0, n) =
1√
2π

∫ +∞

0
Hen(x) exp(−x2/2) dx =

1√
2π

Hen−1(0), n 6= 0,

S(m, 0) =
1√
2πm!

∫ +∞

0
Hem(x) exp(−x2/2) dx =

1√
2πm!

Hem−1(0), m 6= 0.

(B.5)

This agrees with the first three cases of (4.11). Form 6= 0 and n 6= 0, we use the differential
relation of Hermite polynomials and get

S(m,n) = − 1√
2πm!

∫

x∈[0,+∞)
Hen(x) d[Hem−1(x) exp(−x2/2)]

=
1√
2πm!

[

Hem−1(0)Hen(0) + n

∫ +∞

0
Hem−1(x)Hen−1(x) exp(−x2/2) dx

]

=
1√
2πm!

Hem−1(0)Hen(0) + n/m · S(m− 1, n − 1).

(B.6)

This is the last case in (4.11).

C Expansion of the half-Maxwellian

This section is devoted to the detailed calculation of pα defined in (4.23). Due to
(4.26), only (4.24) and (4.25) need to be evaluated. We first consider Js(x) with s > 1.
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By applying the recursion relation of Hermite polynomials, we get

Js(x) =
1

s!
θ

s+1

2

∫ +∞

−∞

1√
2πθW

exp

(

−|
√
θy − x|2
2θW

)

[yHes−1(y)− (s− 1)Hes−2(y)] dy

= −θ

s
Js−2(x) +

x

s
Js−1(x)

+
θW

s!
θ

s−1

2

∫ +∞

−∞

1√
2πθW

exp

(

−|
√
θy − x|2
2θW

)

(

θ

θW
y − x

θW

√
θ

)

Hes−1(y) dy.

(C.1)

For the underlined term, we use integration by parts and the differential relation of Hermite
polynomials, and get

Js(x) = −θ

s
Js−2(x) +

x

s
Js−1(x)

+
θW

s
· 1

(s− 2)!
θ

s−1

2

∫ +∞

−∞

1√
2πθW

exp

(

−|
√
θy − x|2
2θW

)

Hes−2(y) dy

=
1

s

[

(θW − θ)Js−2(x) + xJs−1(x)
]

.

(C.2)

When s = 0 or s = −1, the integral (4.27) can be directly worked out as (4.30) since
He0(y) ≡ 1 and He−1(y) ≡ 0.

The calculation of (4.25) is almost the same as (4.24). The only difference is that a
boundary term will appear when integrating by parts. So the result becomes

J̃s(x) =
1

s

[

(θW − θ)J̃s−2(x) + xJ̃s−1(x)
]

− 1

s!

√

θW

2π
θ

s−1

2 Hes−1(0) exp

(

− x2

2θW

)

, s > 1

(C.3)
with initial conditions (4.31). Define

Hs(x) =
1

s!

√

θW

2π
θ

s−1

2 Hes−1(0) exp

(

− x2

2θW

)

. (C.4)

Then (4.28) and (4.32) are natural. For s > 1, the recursion relation of Hs can be deduced
as

Hs(x) =
θ

s(s− 1)
· 1

(s − 2)!

√

θW

2π
θ

s−3

2 [0 ·Hes−2(0) − (s− 2)Hes−3(0)] exp

(

− x2

2θW

)

= − s− 2

s(s− 1)
θHs−2(x).

(C.5)
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Figure 11: Average values of {|fα|}|α|=k for k = 1 to 9. The results are based the NRxx
solutions of the Couette flow.
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