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CONTROLLABILITY OF ROLLING WITHOUT TWISTING OR

SLIPPING IN HIGHER DIMENSIONS

ERLEND GRONG

Abstract. We describe how the dynamical system of rolling two n-dimensional

connected, oriented Riemannian manifolds M and M̂ without twisting or slip-
ping, can be lifted to a nonholonomic system of elements in the product of the
oriented orthonormal frame bundles belonging to the manifolds. By consider-
ing the lifted problem and using properties of the elements in the respective
principal Ehresmann connections, we obtain sufficient conditions for the local
controllability of the system in terms of the curvature tensors and the sec-
tional curvatures of the manifolds involved. We also give some results for the

particular cases when M and M̂ are locally symmetric or complete.

1. Introduction

The rolling of two surfaces, without twisting or slipping, is a good illustration of
a nonholonomic mechanical system, whose properties are intimately connected with
geometry. It has therefore received much interest, and we can mention [1, 4, 5, 17]
and [2, Chapter 24] as examples of research produced in this area. In particular,
the treatment of rolling in [2, 4] was done by formulating it as an intrinsic problem,
independent of the imbedding of the surfaces into Euclidean space.

The generalization of this concept to that of an n-dimensional manifold rolling
without twisting or slipping on the n-dimensional Euclidean space, is well known
(see e.g. [13, p. 268], [10, Chapter 2.1]). It is usually formulated intrinsically, in
terms of frame bundles, and is an important tool in stochastic calculus on mani-
folds. A definition for two arbitrary n-dimensional manifolds rolling on each other
without twisting or slipping, first appeared in [20, App. B], however, this only dealt
with manifolds imbedded into Euclidean space. An intrinsic definition for rolling of
higher dimensional manifolds, that connected the definition in [20] with the intrin-
sic approach in [2, 4], was presented in [8]. Apart from appearing as mechanical
systems, rolling of higher dimensional manifolds can be also used as a tool in in-
terpolation theory. For demonstration of the “rolling and wrapping”-technique, we
refer to [11]. See also [21] for an example where this is applied in robot motion
planning.

For the rolling of two 2-dimensional manifolds, there is a beautiful correspon-
dence between the degree of control and the geometry of the manifolds [2, 4].
Essentially, we have complete control over our dynamical system if the respective

Gaussian curvatures M and M̂ do not coincide. Controllability in higher dimen-
sions has been addressed in some special cases [16, 23]. The first general result
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2 E. GRONG

on controllability in higher dimension is presented in [6], where it is shown that
the curvature tensors determine the brackets of the distribution obtained from the
constraints given by neither twisting, nor slipping. It is also proved that being able
to find a rolling to an arbitrary close configuration, connecting the same two points,
is a sufficient condition for complete controllability.

The objective of this paper will be to describe the connection between geome-
try and controllability for rolling of higher dimensional manifolds. We do this by
connecting the earlier mentioned viewpoint from stochastic calculus with the one
presented in [8].

This paper is organized as follows. In Section 2, we state the intrinsic defini-
tion of rolling. We present some of the theory of frame bundles, and develop our
notation there. We end this section by showing how we can lift our problem to
the oriented orthonormal frame bundles of the involved manifolds. We continue in
section Section 3, by doing computations on the lifted problem. By using properties
of the sections in the Ehresmann connections, we obtain formulas for computation
of the brackets of the rolling distribution. In Section 4 we project the results back
to our configuration space of relative positions of the manifolds. Section 4.2 con-
sist of conditions for controllability in terms of the Riemann curvature tensor and
the sectional curvature of the manifolds involved. We end this section with some
examples. Section 5 focuses on results concerning the rolling of locally symmetric
and complete manifolds. Section 6 contains a brief comment on how to general-
ize the concept of rolling without twisting or slipping to manifolds with an affine
connection, and why the results presented here also holds for a rolling of manifolds
with a torsion free affine connection.

The author would like to express his gratitude to Mauricio Godoy Molina for
many fruitful discussions concerning this subject.

2. Intrinsic definition of rolling and its relations to frame bundles

2.1. Intrinsic definition of rolling without twisting or slipping. Throughout

this paper, M and M̂ will denote connected, oriented, n-dimensional Riemannian
manifolds. Since in the special case n = 1, the conditions of rolling without twisting
or slipping become holonomic (see [8]), we will always assume that n ≥ 2. We adopt

the convention to equip objects (points, projection, etc.) related to M̂ with a hat
(ˆ). Objects related to both of them are usually denoted by a bar (¯), while objects
connected to M are not given any special distinction. The exception to this rule is
the Riemannian metric and the affine Levi-Civita connection which are respectively

denoted by 〈·, ·〉 and ∇ on both M and M̂ . The context will make it clear which
manifold these objects are related to. For a vector field X onM , we will write X |m
rather than X(m), and we will use similar notation for other sections of bundles.

For any pair of oriented inner product spaces V and V̂ , we let SO(V, V̂ ) denote

the space of all orientation preserving linear isometries from V to V̂ . This allows

us to define the SO(n)-fiber bundle Q over M × M̂ by

Q =
{
q ∈ SO

(
TmM,Tm̂M̂

)
: m ∈M, m̂ ∈ M̂

}
.

We can be sure that this fiber bundle is principal in the case when n = 2, but not
in general. The space Q represents all configurations or relative positions of M

and M̂ , so that the two manifolds lie tangent to each other at some pair of points.
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The isometry q : TmM → Tm̂M̂, represents a configuration where M at m lies

tangent to M̂ at m̂. The relative positioning of their tangent spaces is given by

how q maps TmM into Tm̂M̂ . A rolling then becomes a curve in the space of these
configurations.

Definition 1. Let π and π̂ denote the respective natural projections from Q to M

and M̂ . A rolling without twisting or slipping is an absolutely continuous curve

q : [0, τ ] → Q, with m(t) := π(q(t)), m̂(t) := π̂(q(t)),

satisfying the following conditions:

No slip condition: ˙̂m(t) = q(t)ṁ(t) for almost every t,
No twist condition: an arbitrary vector field X(t) is parallel along m(t)

if and only if q(t)X(t) is parallel along m̂(t).

From now on we will mostly refer to a rolling q(t) without twisting or slipping
as simply a rolling.

These two conditions can be described in terms of a distribution D of rank
n on Q. Consider the problem of finding the rolling q(t) between two different
configurations q0 and q1 such thatm(t) (and thereby also m̂(t)) has minimal length.
Here, by a distribution on Q, we mean a sub-bundle of TQ. This type of curves can
be viewed as optimal curves in an input-linear drift free optimal control problem or
length minimizers in a sub-Riemannian manifold. We will describe this structure
in more detail in Section 2.3. First, however, we will review some facts about
connections and frame bundles.

2.2. From principal bundles to oriented orthonormal frame bundles. Con-
sider a general principal G-bundle τ : P → M , where the Lie group G acts on the
right. We call the sub-bundle V := ker τ∗ of TP the vertical space of P . If g is the
Lie algebra of G, then for any element A ∈ g, we have a vector field σ(A) defined
by

(1) σ(A)|pφ =
d

dt

∣∣∣∣
t=0

φ (p · expG(tA)) , for any p ∈ P, φ ∈ C∞(P ).

Here, expG : g → G is the group exponential. We remark that σ(A) is a section of
V and for any p ∈ P , the map g → Vp, A 7→ σ(A)|p is a linear isomorphism.

A sub-bundle E of TP is called a principal Ehresmann connection if TP =
E ⊕V and satisfy rg Ep = Ep·g, where rg denotes the right multiplication of g ∈ G.
Equivalently, we can consider a principal connection form, which is a g-valued one-
from satisfying the two conditions

r∗gω = Ad(g−1)ω, and ω(σ(A)|p) = A for any A ∈ g, p ∈ P.

There is a one-to-one correspondence between these two structures, in the sense
that kerω is a principal Ehresmann connection when ω is a principal connection
form, and for any principal Ehresmann connection E , we can define a principal
connection form by formula

ω(v) = A for v ∈ TpP if v − σ(A)|p ∈ Ep .

Related to a choice of Ehresmann connection E we also have horizontal lifts,
since the mapping τ∗|Ep

: Ep → Tτ(p)P is a linear isometry. For a vector v ∈ TmM ,

we define the horizontal lift hpv of v at p ∈ τ−1(m) as the unique element in Ep

which is projected to v by τ∗.
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Let us consider a particular principal bundle over a manifold M . For two vector

spaces V and V̂ , let GL(V, V̂ ) be the space of all linear isomorphisms from V to

V̂ . For any m ∈ M , we say that a frame at m is a choice of basis f1, . . . , fn for
TmM . Equivalently, we can consider a frame as a linear map f ∈ GL(Rn, TmM).
The correspondence between the two point of views, is given by

f(0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
1 in the jth coordinate

= fj .

We write Fm(M) = GL(Rn, TmM) for the space of frames in TmM . There is a
natural action of GL(n) on these spaces by composition on the right. Using this
action, we define the frame bundle τ̃ : F(M) → M as the principal GL(n)-bundle
with fiber over m being Fm(M).

Similarly, if M is an oriented Riemannian manifold, we can define the oriented
orthonormal frame bundle τ : F (M) → M as the principal SO(n)-bundle whose
fiber is Fm(M) := SO(Rn, TmM). Here, Rn is furnished with the standard orien-
tation and the Eucliean metric.

Let ∇ be an affine connection on M , seen as an operator on vector fields
(X,Y ) 7→ ∇XY. Then we can associate a principal Ehresmann connection E∇

on τ̃ : F(M) → M to ∇, by defining E∇ to be the distribution on F(M) consisting
of tangent vectors of smooth curves f(t) such that the vector fields f1(t), . . . , fn(t)
are all parallel along m(t) := τ̃ (f(t)). If M is Riemannian and oriented, and if ∇
is compatible with a metric, then E∇ can be defined as a distribution on F (M)
instead, since both positive orientation and orthonormality are preserved under
parallel transport.

We now go to the concrete case where ∇ is the Levi-Civita connection. Define
the tautological one-from θ = (θ1, . . . , θn) on F (M), as the R

n-valued one-form

θj |f = τ∗(♭fj), τ : F (M) → M,

where ♭ : TM → T ∗M is the isomorphism induced by the Riemannian metric.
In other words, if v ∈ TfF (M), then θj(v) = 〈fj , τ∗v〉. Denote the so(n)-valued
principal connection form corresponding to the Levi-Civita connection by ω. The
formulas for the differentials of θ and ω are given by the well-known Cartan equa-
tions. We express them in notations, that will be helpful for later purposes.

Let R be the Riemann curvature tensor, defined by

R(Y1, Y2, Y3, Y4) = 〈R(Y1, Y2)Y3, Y4〉 ,where R(Y1, Y2) = ∇Y1
∇Y2

−∇Y2
∇Y1

−∇[Y1,Y2].

Furthermore, use it to define the curvature form Ω = (Ωij), as the so(n)-valued
two-form

(2) Ωij(v1, v2) = R(τ∗v1, τ∗v2, fj , fi), v1, v2 ∈ TfF (M).

Then the following relations hold

(3)
dθj +

∑n
i=1 ωji ∧ θi = 0,

dωij +
∑n

k=1 ωik ∧ ωkj = Ωij ,

where ωij are the matrix entries of ω. These equations are going to be important
in order to understand the connections between geometry and the control system
of rolling manifolds.
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Remark 1. The Cartan equations can also be defined on the frame bundle corre-
sponding to a general affine connection. See, e.g., [14, 20] for details.

From now on, we will adopt the convention that whenever we mention R
n, it will

always come furnished with the standard orientation and the Euclidean metric.

2.3. The rolling distribution and the corresponding sub-Riemannian struc-

ture. The tangent vectors of all possible rollings form an n-dimensional distribu-
tion D on Q. We will call this distribution D the rolling distribution. A curve q(t)
is a rolling, if and only if, it is horizontal with respect to D, i.e. it is absolutely
continuous and q̇(t) ∈ Dq(t) for almost any t.

We present the following local description of D (see [8] for more details). Let us

write the projection of Q toM×M̂ , as π : Q→M×M̂. Given any sufficiently small
neighborhood U on M , let e be a local section of the oriented orthogonal frame

bundle F (M) with domain U . We write this local section as (e, U). Let (ê, Û) be a

similar local section of F (M̂). We can use these local sections to trivialize the fiber

bundle Q over U × Û , with the map

q ∈ SO(TmM,Tm̂M̂) 7→ (m, m̂, (qij)) ∈ U × Û × SO(n), qij := 〈êj , qej〉.

Then the distribution D|
π−1(U×Û), in the above coordinates, is spanned by the

vector fields

(4) ej := ej + qej +
∑

1≤α≤β≤n

(〈
eα,∇ej eβ

〉
−
〈
qeα,∇qej qeβ

〉)
W ℓ

αβ .

where j = 1, . . . , n. Here, ej is seen as a vector field on Q|
U×Û

= π−1(U × Û) and

qej stands for the vector field q 7→ q(ej |π(q)). The vector fields W ℓ
αβ are defined by

(5) W ℓ
αβ =

n∑

s=1

(
qsα

∂

∂qsβ
− qsβ

∂

∂qsα

)
.

The symbol ℓ here is not a parameter; it simply stands for “left” (an explanation
of this will follow in Remark 2).

Let us consider the optimal control problem finding of a rolling q(t) connecting
two configurations q0 and q1, such that the curve m(t) = π(q(t)) has minimal
length. We do this by introducing a metric 〈·, ·〉 on D, defined by

(6) 〈v1, v2〉 = 〈π∗v1, π∗v2〉, v1, v2 ∈ Dq.

With respect to this metric, the ej in (4) are a local orthonormal basis. Also, from
the definition of D, we have 〈v1, v2〉 = 〈π̂∗v1, π̂∗v2〉. Hence, minimizing the length
of m(t) is equivalent to minimizing the length of m̂(t) = π̂(q(t)) (this is can also be
seen from the no-slip condition).

Definition 2. A triple (Q,D, 〈·, ·〉), where Q is a connected manifold, D is a
distribution on Q and 〈·, ·〉 is a metric on D, is called a sub-Riemannian manifold.

The sub-Riemannian distance function d(q0, q1) between two points is defined as
the infimum of the length of all curves which are horizontal to D. We can view
rollings between configuration from q0 to q1 along a curve of minimal length as a
sub-Riemannian length minimizer in Q.

For the distance function to be finite, we need that every pair of configurations
q0 and q1 can be connected by a curve horizontal to D. In other words, we need to
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determine when rolling without twisting or slipping is a controllable system. Our
goal is to give sufficient conditions for this to hold, in terms of geometric invariants

onM and M̂ . We will leave the question of finding optimal curves for later research.

Remark 2. The vector fields W ℓ
αβ in (5) can be considered as a “locally left invari-

ant” basis of kerπ∗. It will be practical to also introduce a “locally right invariant”

analogue. Relative to two chosen local sections (e, U) and (ê, Û), define

(7) W r
αβ =

n∑

s=1

(
qβs

∂

∂qαs
− qαs

∂

∂qβs

)
, qij := 〈êi, qej〉.

Notice that W r
αβ =

∑n
l,s qαlqβsW

ℓ
ls.

2.4. Controllability and brackets. Given an initial configuration q0 ∈ Q, write
Oq0 for all points in Q that are reachable by a rolling starting from q0. This will
be the orbit of D at q0, which coincides with the reachable set of D, since D is
a distribution (see, e.g., [2, 15] for details). The Orbit Theorem [9, 22] tells us
that Oq0 is a connected, immersed submanifold of Q, but also that the size can be
approximated by the brackets of D. Define the C∞(Q)-module Lie D as the limit
of the process

D1 = Γ(D), Dk+1 = Dk + [D,Dk].

Γ(D) denotes the sections of D. Let Dk
q and LieqD be the subspaces of TqQ

obtained by evaluating respectively Dk and LieD at q. Then, for any q ∈ Oq0 ,

(8) Lieq D ⊆ Tq Oq0 .

In particular, it follows from (8), that if D is bracket generating at q, i.e., if
Lieq D = TqQ, then Oq0 is an open submanifold of Q, and we say that we have
local controllability at q0. If Oq0 = Q for one (and hence all) q0 ∈ Q, the system is
called completely controllable.

The least amount of control happens when Oq0 is n-dimensional submanifold.
As a consequence of the Orbit theorem and Frobenius theorem, this happens if and
only if D|Oq0

is involutive, that is, if LieqD = Dq, for every q ∈ Oq0 .
The focus of this paper will be to provide results of controllability, by investi-

gating when the distribution D will be bracket generating at a given point q.

Remark 3. When D is not bracket generating at q, LieqD will in general only give
us a lower bound for the size of Oq. However, if LieD is locally finitely generated
as a C∞(Q)-module, i.e., has a finite basis of vector field when restricted to a
sufficiently small neighborhood, then the equality holds in (8).

Remark 4. We will use the notation introduced here for distributions in general,
not just for the rolling distribution.

2.5. Relationship between frame bundles and rolling. Consider the linear
Lie algebra so(n). For integers α and β between 1 and n and not equal, let wαβ be
the matrix with 1 at entry αβ, -1 at entry βα, and zero at all other entries. Clearly
wαβ = −wβα. Define wαα = 0. The commutator bracket between these matrices
are given by

(9) [wαβ , wκλ] = δβ,κwαλ + δα,λwβκ − δα,κwβλ − δβ,λwακ,

The collection of all wαβ with α < β form a basis for so(n).
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Consider the principal bundle F (M) →M . We introduce the following notation.
Write σαβ for the vector fields on F (M) corresponding to wαβ in the sense of (1).
Let E be the principal Ehresmann connection corresponding to the affine Levi-Civita
connection on M , with corresponding principal connection form ω. As before, we
denote the tautological one-form by θ. By using horizontal lifts with respect to E ,
we can define vector fields Xj on F (M) by

(10) Xj |f := hffj ,

which satisfy θi(Xj) = δi,j . Hence, the tangent bundle of F (M) is trivial, since it is

spanned by {Xj}
n
j=1 and {σαβ}α<β. Finally, we define σ̂αβ , X̂j , ω̂ and θ̂ similarly

on F (M̂).

The configuration space Q may be identified with F (M)×F (M̂) quotiented out
by the diagonal action of SO(n). Let ̟ denote the principal SO(n)-bundle

̟ : F (M)× F (M̂) → F (M)× F (M̂)/ SO(n) ∼= Q.

Then ̟(f, f̂) = q, if f̂ = q ◦f. By viewing ω, ω̂, θ and θ̂ as forms on F (M)×F (M̂),
we are able to obtain the following result.

Theorem 1. Let

D = kerω ∩ ker ω̂ ∩ ker(θ − θ̂),

and let D be the rolling distribution. Then ̟∗ D = D, and the map is a linear
isomorphism on every fiber.

Proof. From its definition, it is clear that {Xj + X̂j}
n
j=1 is a basis for D.

Choose any pair of local section (e, U) and (ê, Û) of respectively F (M) and

F (M̂). Give F (M)×F (M̂)|
U×Û

local coordinates by associating the pair of frames

(f, f̂) to the element

(11)
(
m, m̂,

(
fij

)
,
(
f̂ij

))
∈ U × Û × SO(n)× SO(n),

if fj =
∑n

i=1 fijei|m and f̂ij =
∑n

i=1 f̂ij êi|m̂ holds.
Relative to this trivialization, we can define left and right vector field on each of

the SO(n)-factors. On the first, define

(12) Ψℓ
αβ =

n∑

s=1

(
fsα

∂

∂fsβ
− fsβ

∂

∂fsα

)
, Ψr

αβ =

n∑

s=1

(
fβs

∂

∂fαs
− fαs

∂

∂fβs

)
.

Notice that Ψr
αβ =

∑n
l,s=1 fαlfβsΨ

ℓ
ls. Remark also that Ψℓ

αβ is just the restriction

of σαβ to F (M) × F (M̂)|
U×Û

, while Ψr
αβ depends on the chosen local section e.

Define Ψ̂ℓ
αβ and Ψ̂r

αβ analogously on the second SO(n)-factor.

Restricted to F (M) × F (M̂)|
U×Û

and in the local coordinates (11), the vector

fields Xj and X̂j can be written as

(13) Xj =
n∑

s=1

fsj

(
es −

∑

α<β

Γα
sβΨ

r
αβ

)
, X̂j =

n∑

s=1

f̂sj

(
ês −

∑

α<β

Γ̂α
sβΨ̂

r
αβ

)
,

where Γα
iβ = 〈eα,∇eieβ〉 and Γ̂α

iβ = 〈êα,∇êi êβ〉.
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We now turn to the image of T (F (M)×F (M̂)|
U×Û

) under̟∗. Define qij , ej ,W
ℓ
αβ

andW r
αβ on Q|

U×Û
as in Section 2.3. Remark 2 allows us to rewrite ej on the form

ej = ej + qej +
∑

α<β

(
Γα
jβW

ℓ
αβ −

n∑

s=1

qsjΓ̂
α
sβW

r
αβ

)

Locally the mapping ̟ can be described as

̟ :
(
m, m̂, (fij), (f̂ij)

)
7→ (m, m̂, (qij)) , qij =

n∑

s=1

f̂isfjs.

and the action on the tangent vectors is given by formulas

̟∗ :

ei 7→ ei
êi 7→ êi

Ψr
αβ 7→ −W ℓ

αβ

Ψ̂r
αβ 7→ W r

αβ

.

From this it is clear that ̟∗ D = D and that the map is injective of each fiber,
since

ej = ̟∗

n∑

s=1

fjs

(
Xs + X̂s

)
.

�

From the form of the distribution D, we obtain the following interpretation of
rolling without twisting or slipping.

Corollary 1. Let q(t) be a rolling without twisting or slipping. Let (f(t), f̂(t)) be

any lifting of q(t) to a curve in F (M)× F (M̂) that is horizontal to D, and define

m(t) and m̂(t) as the respective projections to M and M̂ . Then (f(t), f̂(t)) satisfy
the following

(i) (No twist condition) Every vector field fj(t) is parallel along m(t). Every

vector field f̂j(t) is parallel along m̂(t).
(ii) (No slip condition) For almost every t,

f−1(t)
(
ṁ(t)

)
= f̂−1(t)

(
˙̂m(t)

)
.

Furthermore, if (f(t), f̂(t)) is any absolutely continuous curve in F (M)×F (M̂),

satisfying (i) and (ii), then ̟(f(t), f̂(t)) is a rolling without twisting or slipping.

Proof. (i) follows from the definition of the principal Ehresmann connections kerω

and ker ω̂. (ii) is exactly the requirement for a curve to be in ker(θ − θ̂). �

The main advantage of the viewpoint given in Theorem 1, is that it will help us
to compute LieqD.

Corollary 2. ̟∗ D
k
q = Dk

q for any q ∈ Q, k ∈ N.

Proof. We only need to show this locally. Introduce local coordinates as in the
proof of Theorem 1 and let ej be as in (4). Then

[ei, ej ] = ̟∗

[
n∑

s=1

fis

(
Xs + X̂s

)
,

n∑

s=1

fjs

(
Xs + X̂s

)]
,
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and since
∑n

s=1 fis

(
Xs + X̂s

)
is a local basis for D, it follows that D2 = ̟∗ D

2

locally. The rest follows by induction. �

Since [Xi, X̂j] = 0, computations of brackets of D, and hence of brackets D, can
be reduced to mostly computing brackets of sections in the Ehresmann connections
corresponding to the Levi-Civita connections of the manifolds involved.

2.6. Remark on previous descriptions of rolling using frame bundles. The
description of rolling given in Theorem 1, looks very similar to the definition of
rolling without twisting or slipping found in [4] for dimension 2. Here, the descrip-

tion of a rolling is in terms of the distribution D̃ := D⊕ ker̟∗, which can also be
described as

(14) D̃ = ker(ω − ω̂) ∩ ker(θ − θ̂).

In [4], a rolling of a pair of 2-dimensional manifold is defined as a curve in Q, that

is horizontal to ̟∗D̃, where D̃ is defined in terms of (14).

We could have used D̃ for our computation, since clearly ̟∗D̃
k

q = Dk
q also, and

D is bracket generating at a point q ∈ Q if and only if D̃ is bracket generating at

any (and hence every) (f, f̂) ∈ ̟−1(q). However, since [Dk, ker̟∗] ⊂ Dk +ker̟∗,
the additional brackets are not of any interest.

The definition of rolling or “rolling without slipping” in probability theory is
defined on frame bundles [10], and is equivalent to considering curves in F (M) ×

F (M̂) that are horizontal to D for the special case when M̂ is Rn with the Euclidean
metric and standard orientation.

3. Brackets of D

3.1. Tensors on M and associated vector fields. We introduce a general type
of vector fields associated to tensors. By giving a general formula for the brackets
of these, we essentially determine all the brackets of D. Let T be a tensor on M .
We will only consider tensors defined on vectors. To any tensor k-tensor on M , we
can associate the functions

E i1,...ik(T ) : F (M) 7→ R

f 7→ T (fi1 , . . . , fik)
, 1 ≤ is ≤ n.

If k = 2+ l, and T is antisymmetric in the first two arguments, we can define vector
fields on F (M) by

W i1,...,il(T ) =
∑

1≤α<β≤n

E α,β,i1,...,il(T )σαβ ,

If T̂ is a tensor on M̂ , we define E i1,...ik(T̂ ) and W i1,...,il(T̂ ) similarly as respec-

tively functions and vector fields on F (M̂).

Lemma 1. Let Xk be defined as in (10).
(a) For any l-tensor T ,

Xk E i1,...,il(T ) = E i1,...,il,k(∇T ).

(b) For any 2 + l-tensor T , that is antisymmetric in the first two arguments

[Xk,W i1,...,il(T )] = W i1,...,il,k(∇T )−

n∑

s=1

E s,k,i1,...,il(T )Xs.
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Proof. (a) We use a local representation of Xj. Consider the formula given in
(13), and write

∑n
s=1 fsjes as just fj . Since Ψℓ

αβ is just the representation
of σαβ in local coordinates, we can write Xj as

Xj = fj −
∑

1≤α≤n

〈fα,∇fjfβ〉σαβ .

In this notation, remark first that σαβfi = δβ,ifα − δα,ifβ, which gives us

∑

1≤α<β≤n

〈fα,∇fkfβ〉σαβfij =
1

2

n∑

α,β=1

〈fα,∇fkfβ〉 (δβ,ijfα − δα,ijfβ)

=
n∑

α=1

〈
fα,∇fkfij

〉
fα = ∇fkfij .

Then the result follows from realizing that

Xk E i1,...,il(T ) = fkT (fi1 , . . . , fil)−
∑

1≤α<β≤n

〈fα,∇fkfβ〉 σαβT (fi1 , . . . , fil)

= fkT (fi1 , . . . , fil)− T (∇fkfi1 , . . . , fil)− T (fi1 ,∇fkfi2 , . . . , fil)

− · · · − T (fi1 , fi2 , . . . ,∇fkfil)

= ∇T (fil , . . . , fil , fk).

(b) The brackets [σαβ , σκλ] are, by definition, given by the same relations as
described in (9). We will continue by the following computations.

[Xk,W i1,...,il(T )]

=
1

2

n∑

κ,λ=1

Xk (E κ,λ,i1,...,il(T ))σκλ −
1

4

n∑

α,β,κ,λ=1

〈fα,∇fkfβ〉E κ,λ,i1,...,il(T ) [σαβ , σκλ]

−
1

2

n∑

κ,λ=1

E κ,λ,i1,...,il(T )σκλfk +
1

4

n∑

α,β,κ,λ=1

E κ,λ,i1,...,il(T )σκλ (〈fα,∇fkfβ〉)σαβ

=
1

2

n∑

κ,λ=1

E κ,λ,i1,...,il(∇T )σκλ

+
1

2

n∑

κ,λ=1

(T (∇fkfκ, fλ, fi1 , . . . , fil) + T (fκ,∇fkfλ, fi1 , . . . , fil))σκλ

−

n∑

s=1

E s,k,i1,...,il(T )fs +
1

2

n∑

α,β,s=1

E s,α,i1,...,il(T ) (〈fs,∇fkfβ〉)σαβ

+
1

2

n∑

α,β,s=1

E s,k,i1,...,il(T ) (〈fα,∇fsfβ〉)σαβ

+
1

2

n∑

α,β,s=1

E s,β,i1,...,il(T )σwκλ
(〈fα,∇fkfs〉) σαβ

= W i1,...,il,k(∇T )−

n∑

s=1

E s,k,i1,...,il(T )Xs

�
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The next lemma gives an explanation for the introduction of the above notation.

Lemma 2. [Xi, Xj ] = −W ij(R) for i, j = 1 . . . n.

Proof. This lemma is an easy consequence of the Cartan equations. Since ker θ ∩
kerω only contains the zero section of TF (M), we can show equality in the above
equation by evaluating the left and right hand side by θ and ω and see that it
produces the same result. Evaluating the left hand side, we get

θ([Xi, Xj ]) = −dθ(Xi, Xj) = 0,

ω([Xi, Xj ]) = −dω(Xi, Xj) =
∑

1≤α<β≤n

Ω(Xi, Xj)

= −
∑

1≤α<β≤n

R(fα, fβ , fi, fj)wα,β .

which is obviously what we get from evaluating the right hand side. �

Remark 5. Combining these two lemmas, we get a way to express the commuta-
tors of the Ehresmann connection. Let E = kerω be the Ehresmann connection
corresponding to the Levi-Civita connection. Then

Ek+2 = Ek+1 +span
{
W i1,...,ik+2

(∇kR)
}n

i1,...,ik+2=1
,

for k ≥ 0. As a consequence of this, we get the well know Ambrose-Singer theorem,
see [3],[18, App C], that the subalgebra spanned by elements ω|f

(
W i1,...,ik+2

(∇kR)
)

is contained in the homology algebra at f .

We adopt the convention that if the elements in the collection are vector fields,
“span” means the span over smooth functions (so in Remark 5, it means over
C∞(F (M))). If the elements are vectors, the span is over the real numbers.

3.2. Obtaining the brackets for D. Computing the brackets on D is a bit more
complicated than each individual Ehresmann connection, since it is harder to know

whether or not two vectors fields are equal mod span{Xj + X̂j}
n
j=1 rather than just

mod span{Xj}
n
j=1. We illustrate this by computing the two next brackets.

Lemma 3. (a) [Xk, [Xi, Xj]] = −W ijk(∇R) +
∑n

s=1 E skij(R)Xs.
(b) Let R2 be the 6-tensor on M defined by

R2(Yα, Yβ , Yi1 , Yi2 , Yi3 , Yi4) = R(R(Yα, Yβ)Yi1 , Yi2 , Yi3 , Yi4).

Then

[Xl, [Xk, [Xi, Xj ]] =− W ijkl(∇
2R) + W lkij(R

2)

+

n∑

s=1

(E ijslk(∇R)− E ijskl(∇R))Xs.

The reason for the notation R2 will be clearer in Section 5.1.
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Proof. Statement (a) follows directly from Lemma 1. By Lemma 1 we also have

[Xl, [Xk, [Xi, Xj ]]]

=− W ijkl(∇
2R) +

n∑

s=1

E slijk(∇R)Xs +

n∑

s=1

E skijl(∇R)Xs +

n∑

s=1

E skij(R)W ls(R)

=− W ijkl(∇
2R) + W lkij(R

2) +

n∑

s=1

(E ijslk(∇R)− E ijskl(∇R))Xs.

�

We can continue this procedure, computing more of the brackets using Lemma 1.
However, these will become more and more complicated. Also, for a general pair of
manifolds, it is hard to determine which brackets actually give us something new,
that is, something that could not be expressed as linear combinations of previously
obtained vectors. Rather than giving the total picture, we will therefore focus on
giving some sufficient conditions, which are usually more simple to check.

4. Sufficient conditions for controllability

Let R and R̂ be the curvature tensor on M and M̂ respectively. Define a new
4-tensor of elements in D, by

R = π∗(R)− π̂∗(R̂).

Remark that R may also be seen as a bilinear map of two elements in
∧2

D. Use

∇R to denote the 5-tensor on D, defined by π∗(∇R)− π̂∗(∇R̂). Finally, introduce

a bundle morphism R :
∧2

D →
∧2

D∗, so that

(15) R(ξ1)(ξ2) = R
(
ξ2 , ξ2

)
ξ1, ξ2 ∈

2∧
Dq.

4.1. Projection of the results on D. From the discussion in previous section,
we have the following formulations for the brackets of D.

Lemma 4. Let (e, U) and (ê, Û) be two local sections of F (M) and F (M̂), respec-
tively. Then on Q|

U×Û
, in terms of the notation introduced in Section 2.3,

D2 = D1 ⊕ span

{ ∑

1≤α<β≤n

R(eα, eβ , ei, ej)W
ℓ
αβ

}n

i,j=1

D3 = D2 + span

{ ∑

1≤α<β≤n

∇R(eα, eβ , ei, ej , ek)W
ℓ
αβ + qR(ei, ej)ek − R̂(qei, qej)qek

+
∑

1≤α<β≤n

〈
qeα,∇qR(ei,ej)ek−R̂(qei,qej)qek

qeβ

〉}n

i,j,k=1

.

Proof. The formula for D2 follows directly from Lemma 2 and the local formulation
of ̟∗ given in the proof of Theorem 1. To see how the expression for D3 follows
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from Lemma 3 (a), observe first that
n∑

s=1

(
E skij(R)Xs + E skij(R̂)X̂s

)
= −

n∑

s=1

(
E ijks(R)Xs + E ijks(R̂)X̂s

)

=

n∑

s=1

(
E ijks(R)− E ijks(R̂)

)
X̂s (mod D).

Furthermore

̟∗

n∑

s,µ,λ,κ,=1

fiµfjλfkκ

(
E µλκs(R)− E µλκs(R̂)

)
X̂s

= qR(ei, ej)ek − R̂(qei, qej)qek −
n∑

1≤α<β≤n

〈
qeα,∇qR(ei,ej)ekqeβ

〉
W ℓ

αβ

−

n∑

1≤α<β≤n

〈
qeα,∇R(qei,qej)qekqeβ

〉
W ℓ

αβ .

�

Corollary 3. Define a bundle morphism Ξ : D ⊕
∧2

D → D∗ by

Ξ(v, ξ) = ιv ◦ R(ξ), v ∈ Dq, ξ ∈

2∧
Dq,

where ιv : η 7→ η(v, ·) for any v ∈ Dq and two form η. Then dimD3
q ≥ n +

rankΩ|q + rankΞ|q.

Proof. Given point q ∈ Q, introduce local coordinates in a neighborhood of q, in
the way demonstrated in Section 2.3. We will also keep the same notation from the
previous mentioned section. Then, all we need to show is that for a given q ∈ Q,
the dimension of

(16) span {qR(ei, ej)ek(π(q)) −R(qei, qej)qek(π̂(q))}
n

i,j,k=1 ⊂ Tπ̂(q)M̂,

is equal to rankΞq.
Introduce isomorphisms ♭ : D → D∗ and ♯ : D∗ → D, relative to the metric

defined in (6). Use the same symbols for the isomorphisms between the tangent

bundle and the cotangent bundle onM and M̂ , induced by their respective metrics.
Observe that

Ξ(ek, ei ∧ ej) = π∗
(
♭(R(ei, ej)ek)

)
− π̂∗

(
♭(R̂(qei, qej)qek

)

= ♭Y − ♭Z,

where

Y =R(ei, ej)ek + qR(ei, ej)ek

+
∑

1≤α<β≤n

(〈
eα,∇R(ei,ej)ekeβ

〉
−
〈
qeα,∇qR(ei,ej)ekqeβ

〉)
W ℓ

αβ ,

Z = q−1R̂(qei, qej)qek + R̂(qei, qej)qek

+
∑

1≤α<β≤n

(〈
eα,∇q−1R̂(qei,qej)qek

eβ

〉
−
〈
qeα,∇R̂(qei,qej)qek

qeβ

〉)
W ℓ

αβ .
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From this, it becomes clear that π̂∗♯ is a bijective linear map from the image of Ξq

to (16). �

4.2. Sufficient condition in terms of the curvature tensor and sectional

curvature. As mentioned before, there is a strong connection between controlla-
bility and geometry in the two dimensional case.

Theorem 2 ([2, 4]). For q ∈ Q, let κq denote the Gaussian curvature of M at

π(q), and let κ̂q denote the Gaussian curvature of M̂ at π̂(q). Then

dimOq = 5, if and only if κ − κ̂ 6≡ 0 on Oq .

If κ − κ̂ ≡ 0 on Oq, then dimOq = 2.

The “if and only if” in the above theorem follows from the fact that in two
dimensions, the rolling distribution D at a point q, is either bracket generating or
involutive. This does not hold in higher dimensions, however, but we are able to
present the following generalization.

Definition 3. The smallest integer k such that Dk
q = Lieq D is called the step of

D at q.

Theorem 3. Let R be as defined in (15). Then, for any element q, q0 ∈ Q, the
following holds.

(a) dimOq0 = n if an only if R|Oq0
≡ 0.

(b) If Rq is an isomorphism, then D is bracket generating of step 3 at q.

Hence, if Oq0 contains a point q, so that R|q is an isomorphism, then
Oq0 is an open submanifold.

Remark 6. The statement in Theorem 3 (a) was also presented in [6, Cor. 5.28]. By
combining [6, Cor. 5.26] with [6, Prop. 5.17], and doing some simple calculations,
we can also obtain the result of Theorem 3(b), however, this is not stated. The
proof is presented here, since the approach in [6] differ from ours, and since the
results were obtained independently.

Proof. Statement (a) becomes obvious from Lemma 4. To prove (b), let π(q) =

(m, m̂), where π : Q → M × M̂ is the projection. Pick respective local sections

(e, U) and (ê, Û) of F (M) and F (M̂) around m and m̂ and use them to introduce
the local coordinates defined in Section 2.3. Since R|q is an isomorphism, we know
that

span

{ ∑

1≤α<β≤n

R(eα, eβ , ei, ej)W
ℓ
αβ

∣∣∣
q

}n

i,j=1

= span
{
W ℓ

ij(q)
}n

i,j=1
,

span

{(
qR(ei, ej)ek − R̂(qei, qej)qek

) ∣∣∣
q

}n

i,j,k=1

= span
{
qei(m)

}n

i=1
.

Lemma 4 then tells us that

D3
q = span{ej(q), qei(m),W ℓ

αβ(q)}
n
i,j,αβ=1

= span{ej(m), êi(m̂),W ℓ
αβ(q)}

n
i,j,αβ=1 = TqQ.

�
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To state that Rq is an isomorphism is equivalent to claiming that Rq induces a

pseudo-inner product on
∧2Dq, i.e. a nondegenerate bilinear map. Therefore, we

have the following way we can check if R is an isomorphism at q.

Corollary 4. Choose any orthonormal basis {vj} of TmM,m = π(q). Compute

the determinant of the n(n−1)
2 × n(n−1)

2 matrix

det
(
R(vα, vβ , vi, vj)− R̂(qvα, qvβ , qvi, qvj)

)
,

1 ≤ α < β ≤ n are row indices, 1 ≤ i < j ≤ n are column indices,

If this determinant is nonzero, then we have local controllability at q.

From this we obtain the following corollary.

Corollary 5. Define a function κq on 2-dimensional planes L in Dq by the formula

κq(L) = κπ(q)(π∗L)− κ̂π̂(q)(π̂∗L),

where κm and κ̂m̂ denotes the respective sectional curvatures of M and M̂ at the
indicated points. Then

(a) dimOq0 = n if an only if κq ≡ 0 for any q ∈ Oq0 .
(b) If κq > 0 or κq < 0, then D is bracket generating of step 3 at q.

Proof. If κq ≡ 0, then Rq is 0 also. Similarly, if κp > 0 (resp. κp < 0) for every L,

then −Rq (resp. Rq) will be an inner product on
∧2

Dq.

To see this, for the case κq > 0, we only need to show that Rq(ξ, ξ) < 0, whenever

ξ ∈
∧2

Dq is nonzero. Pick an orthonormal basis basis v1, . . . , vn of Dq. Write

Lij := span{vi, vj}.

In this basis, we have that if ξ =
∑

1≤i<j≤n aijvi ∧ vj is nonzero, then

Rq(ξ, ξ) = −
∑

1≤i<j≤n

a2ijκq(Lij) > 0.

The case κq < 0 is treated similarly. �

Remark 7. All the conditions stated here, are sufficient conditions for local con-
trollability. However, if they hold in all points, they will naturally be sufficient
conditions for complete controllability.

4.3. Examples.

Example 1. We start with two known examples, to verify our results and demon-
strate their effectiveness of obtaining information on controllability.

(a) If M is a sphere of radius r and M̂ = R
n is the n dimensional Euclidean

space, then M has constant sectional curvature 1
r2
, while M̂ has constant

sectional curvature 0. It follows that κq ≡ 1
r2

for any q ∈ Q. Hence D is
bracket generating at all points, and the system is completely controllable.

(b) If M and M̂ are the spheres with respective radii r and r̂, then

κq ≡
1

r2
−

1

r̂2
,

for any q ∈ Q. Hence the system is completely controllable if and only if
r 6= r̂. When r = r̂, D becomes an involutive distribution.
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To compare, see [8, 23] for a former proof of the controllability of (a), and [16] for
a treatment of the example in (b).

Example 2. More generally, if M is any manifold with only strictly positive or
strictly negative sectional curvature, rolling on n-dimensional Euclidean space, then
this system is completely controllable (we will later show that this only needs to
hold in one point of M).

Example 3. Let M = S2 × R be the subset the Euclidian space R
4,

{
(x0, x1, x2, x4) ∈ R

4 : x20 + x21 + x22 = 1
}
.

Define a local section on the subset U = {(x0, x1, x2, x3) ∈ M : x2 > 0}, with the
orthonormal vector fields

e1 = −
√
x21 + x22

(
−∂x0

+
x0

x21 + x22
(x1∂x1

+ x2∂x2
)

)
,

e2 =
x2√
x21 + x22

(
−∂x1

+
x1
x2
∂x2

)
, e3 = ∂x3

.

(a) Let us first consider M rolling on R
4. The rolling distribution can locally

be describes by

D1 = span{e1, e2, e3}.

e1 = e1 + qe1, e2 = e2 + qe2 +
x0√
x21 + x22

W12, e3 = e3 + qe3.

D is then of step 3 for any q ∈ U and

D2 = D1 ⊕ span{W12}, D3 = D2 ⊕ span{qe1, qe2}

Since D3 is locally finitely generated, we know that dimOq = 6 for any
q ∈ U (and for symmetry reasons, every q ∈ Q).

(b) Let M roll on a copy of itself. Consider the rotation matrix (qij) =
(〈ei, qej〉). Give (qij) the coordinates

(qij) =

(
cos θ cosϕ sin θ cosψ − cos θ sinϕ sinψ sin θ sinψ + cos θ sinϕ cosψ

− sin θ cosϕ cos θ cosψ + sin θ sinϕ cosψ cos θ sinψ − sin θ sinϕ cosψ

− sinϕ − sinψ cosϕ cosϕ cosψ

)
.

The vector fields spanning D are locally given by

e1 = e1 + qe1 −
x0 (sin θ cosψ + cos θ sinϕ sinψ)√

x21 + x22
V,

e2 = e2 + qe2 +
x0√
x21 + x22

W12 −
x0 (cos θ cosψ + sin θ sinϕ sinψ)√

x21 + x22
V,

e3 = e2 + qe2 +
x0 cosϕ sinψ√

x21 + x22
V,

V := cosϕ cosψW12 − cosϕ sinψW13 − sinϕW23.

The matrix −
(
R(eα, eβ, ei, ej)

)
, i < j, α < β is then given by

(
1 − cos

2 ϕ cos
2 ψ − cos

2 ϕ sinψ cosψ cosϕ sinϕ cosψ

− cos
2 ϕ sinψ cosψ − cos

2 ϕ sin
2 ψ cosϕ sinϕ sinψ

cosϕ sinϕ cosψ cosϕ sinϕ sinψ − sin
2 ϕ

)
.



CONTROLLABILITY OF ROLLING IN HIGHER DIM. 17

It is easily checked that this matrix has rank 2, except when sinϕ = sinψ =
0. Restricted to the subset of Q where the latter equation hold, that is, the
configurations where the two copies of the line

λ = {(0, 0, 0, x3) ∈M},

lie tangent to each other, D is involutiove and the orbits are 3 dimensional.
On the other points, we have that

D2 = D1 ⊕ span{W12, V }, D3 = D2 ⊕ span{qe1, qe2, qe3}.

so the orbits have dimension 8, or codimension 1.
This example illustrates that if we are rolling manifolds of dimension

higher than two, the dimension of Oq does not only depend on the connect-
ing pair of points π(q) = (m, m̂).

5. Particular cases

We present some special results for when the manifolds involved in the rolling
are particular nice. We will first deal with locally symmetric spaces, then present
some results for rolling on complete spaces. Remark that all of these results are
applicable to the case of rolling on R

n, since this is both locally symmetric and
complete.

5.1. Locally symmetric spaces. Recall the definition of Ω from (2).

Proposition 1. Let M be locally symmetric and let M̂ be flat (R̂ ≡ 0). Then D
is at most of step 3. D is bracket generating at q ∈ Q if and only if

Ω|π(q) :

2∧
Dq → so(n),

is a linear isomorphism.

Proof. Consider the bundle D, and let Xj and X̂j be defined as in (10). Since M̂

is flat [Xi + X̂i, Xi + X̂j ] = [Xi, Xj ]. Then

[Xi, Xj ] = −W ij(R), [Xk, [Xi, Xj]] =

n∑

s=1

E skij(R)Xs,

[Xl, [Xk, [Xi, Xj]]] = −

n∑

s=1

E skij(R)W sl(R) ∈ D2,

Hence, D2
(f,f̂)

+ker̟∗(f,f̂) = T(f,f̂)

(
F (M)× F̂ (M)

)
only if

span
{

W ij(R)
∣∣
(f,f̂)

}n

i,j=1
= span

{
σij

∣∣
(f,f̂)

}n

i,j=1
.

and this also implies that span{σij ,
∑n

s=1 E skij(R)Xs} = span{σij , fj}, which gives
us the desired result. �

When M̂ is not flat, the results become a little bit more complicated, and require
us to introduce some notation. Let Rl denote the 2l+ 2-tensor defined by R1 = R
and

Rl(Yα, Yβ , Yi1 , Yi2 , . . . , Yi2l−1
, Y2l) := Rl−1(R(Yα, Yβ)Yi1 , Yi2 , . . . , Yi2l−1

, Y2l).

Lemma 5. If ∇R = 0, then ∇Rl = 0 for any l ≥ 1.
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Proof. We give the proof by induction. Assume that ∇Rk = 0 for 1 ≤ k < l. Let
m(t) be any smooth curve in M . Let v1(t), . . . , vn(t) be parallel vector fields along
m(t). Then

d

dt
Rl(vα, vβ , vi1 , vi2 , . . . , v2l−1, v2l)

=
d

dt

n∑

s=1

R(vα, vβ , vil , vs)R
l−1(vs, vi2 , . . . , v2l−1, v2l) = 0.

Hence ∇Rl = 0 also. �

We introduce a notation related to Rl, similar to what we did for R. Use R̂l

for the analogues tensor on M̂ , and write R
l
for the tensor on D defined by R

l
=

π∗(Rl)− π̂∗(R̂l).

Proposition 2. Let M and M̂ both be locally symmetric. Then D is bracket
generating at q if and only if

(17)
⋃

l≥1

span

{ ∑

1≤α<β≤n

R
l
(eα, eβ, ei1 , . . . , ei2l)Wαβ

∣∣
q

}
= kerπ∗|q.

Proof. We will look at the brackets of D. From Lemma 5, we know that for any
l ≥ 1, [

Xi1 ,
[
Xi2 ,

[
· · ·

[
Xi2l−1

, Xi2l

]
· · ·

]
= (−1)l W i1,...,i2l(R

l),

[
Xi1 ,

[
Xi2 ,

[
· · ·

[
Xi2l , Xi2l+1

]
· · ·

]
= (−1)l+1

n∑

s=1

E s,i1,...,i2l+1
(Rl)Xs.

Analogues relations hold for the brackets of X̂j. Projecting the even brackets to
TqQ, we get the left hand side of (17), which has to be equal to all of kerπ∗|q in
order for D to be bracket generating. Conversely, if (17) holds, then the projection
of the odd brackets will span TqQ together with kerπ∗|q and Dq. �

5.2. Rolling on a complete manifold. The fact that one of the manifolds is
complete, makes it easier to give statements about complete controllability. The
reason for this, can be summed up in the following Lemma.

Lemma 6. Assume that M̂ is complete. Let t 7→ m(t) be any absolutely continuous
curve in M with domain [0, τ ]. Let q0 ∈ Q be any point with π(q0) = m(0).

Then there is a rolling t 7→ q(t) of M on M̂ , so that

q(0) = q0, π ◦ q(t) = m(t) for any t ∈ [0, τ ].

Proof. If we assume first that both M and M̂ are complete, then such a rolling q(t)
exist. The proof for this can be found in [2, p. 386]. This proof is done for the

case when M and M̂ are two dimensional, but can, with simple modifications, be
generalized to higher dimensions.

Assume now that M is not complete. Let f(t) be a lifting of m(t) to a curve
in F (M) that is horizontal to the Ehresmann connection, i.e. each fj(t) is parallel
along m(t). Define the curve in R

n by,

m̃(t) =

∫ t

0

f−1(s)
(
ṁ(s)

)
ds.
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Let f̃(t) be a lifting of m̃(t) to a curve F (Rn), so that each f̃j(t) is parallel along

m̃(t). Then, from Corollary 1, q̃(t) = ̟(f(t), f̃(t)) is a rolling of M on R
n.

Let q̃0 := q̃(0). Since both R
n and M̂ are complete, we know that there is a

rolling q̂(t) of Rn on M̂ along m̃(t), so that q̂(0) = q0 ◦ q̃
−1
0 . We can then obtain

our desired rolling by defining q(t) = q̂(t) ◦ q̃(t). �

Proposition 3. Let the manifold M̂ be complete. Assume that there is a point
m ∈ M , so that Dq is bracket generating for every point q ∈ π−1(m). Then the
system is completely controllable.

Proof. Let q0 be any element in Q. From Lemma 6 we know that there is a rolling
q(t) from q0 to some point q1 ∈ π−1(m). Hence Oq0 = Oq1 . But since D is bracket
generating in q1, Oq1 is an open submanifold. Since q0 was arbitrary, we have local
controllability at every point, so Oq0 = Q for any q0 ∈ Q. �

Corollary 6. Let M̂ be a manifold that is both complete and flat. Assume that
there is a point m ∈M , so that for some (and hence any) orthonormal basis {vj}

n
j=1

of TmM ,

det (R(vα, vβ , vi, vj)) 6= 0.

1 ≤ α < β ≤ 1 are row indices, 1 ≤ i < j ≤ 1 are column indices.

Then the system is completely controllable.

Example 4. Let M be the surface in R
3, defined by

M = {(x1, x2, x3) ∈ R
3 :

√
x22 + x23 = 1− f(x1), |x1| <

3
2},

where

f(x1) =

{
0 if |x1| ≤ 1

e
−

1
(|x1|−1)2 if 1 < |x1| <

3
2

.

Define the following orthonormal basis on M ,

e1 =
1√

1 + f ′(x1)2

(
∂x1

−
f ′(x1)

1− f(x1)
(x2∂x2

+ x3∂x3
)

)
,

e2 =
1

1− f(x1)
(−x3∂x2

+ x2∂x3
).

All Christoffel symbols are determined by

Γ1
12 = 〈e1,∇e1e2〉 = 0, Γ1

22 = 〈e1,∇e2e2〉 =
f ′(x1)

(1− f(x1))
√
1 + f ′(x1)2

.

and from this we can compute the Gaussian curvature

κ(x) =
f ′′(x1)

(1 + f ′(x1)2)2(1− f(x1))
.

Inserting the value of f(x) we obtain that κ(x) = 0 for |x1| ≤ 1, but strictly positive
for 1 < |x1| <

3
2 .

It follows that , if we rollM onR
2, the system is completely controllable. Observe

that in this case

LieD = span
{
e1 + qe1, e2 + qe2 + Γ1

22W12, f(x1)W12, f(x1)qe1, f(x1)qe2
}
,

fails to be locally finitely generated around points fulfilling |x1| = 1.
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6. Further generalization of rolling without twisting or slipping

Up until now, we have only been concerned with rolling two Riemannian mani-
folds on each other without twisting or slipping. The definition can easily be gen-
eralized to manifolds with an affine connection. We introduce the generalization
here.

Let M and M̂ be two connected manifolds, with respective affine connections ∇

and ∇̂. Then a rolling without twisting or slipping can be seen as an absolutely
continuous curve q(t) into the manifold

Q =
{
q ∈ GL(Tm, Tm̂M̂) : m ∈M, m̂ ∈ M̂

}
.

satisfying (no slip condition) and (no twist condition) from section 2.1.
Reexamining the proofs, it turns out that the description of many of the results

we had for rolling related to the Levi-Civita connection, generalizes to general
connections. We will describe this here briefly.

Define the tautological one-form on F(M) as the R
n-valued one-form obtained

by

θ(v) = f−1(v), v ∈ Tf F(M).

Define θ̂ similarly, while ω and ω̂ are defined in terms of the connection. We will

also choose Riemannian structures on M and M̂ in order to present the results
in a similar way and make them easier to compare, but these do not need to be
compatible with the connections.

The rolling distribution D, will still be an n dimensional distribution, and the
relation in Theorem 1 is still valid. D is locally spanned by vector fields

ej = ej + qej +

n∑

α,β=1

(〈
eα,∇ejeβ

〉
−
〈
qeα, ∇̂qej qeβ

〉)
Eℓ

ij .

where Eℓ
ij =

∑
s=1 qri

∂
∂qrj

.

The study of controllability becomes harder, since torsion may appear in the
equations (3). However, this is actually the only complication. Let ǫαβ ∈ gl(n,R)
be the matrix with only 1 in at entry αβ and zero otherwise. Define Xj as in
equation (10). If we then modify the definition of W i1,...,il(T ) to

W i1,...,il(T ) =

n∑

α,β=1

E α,β,i1,...,il(T )σ(ǫαβ),

now defined for any tensor T , then Lemma 1 still holds for any connection. Since
all of our results follow from Lemma 1 and 2, it follows that our results also holds
for any pair of manifolds with torsion free connections.
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