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Abstract. The notion of Compact Fourier Analysis (CFA) is discussed. The CFA allows
description of multigrid (MG) in a nutshell and offers a clear overview on all MG components. The
principal idea of CFA is to model the MG mechanisms by means of scalar generating functions and
matrix functions (block symbols). The formalism of the CFA approach is presented by describing
the symbols of the fine and coarse grid problems, the prolongation and restriction, the smoother,
and the coarse grid correction, resp. smoothing corrections. CFA uses matrix functions and their
features (e.g. product, inverse, adjoint, norm, spectral radius, eigenvectors, eigenvalues), and scalar
functions and their roots. This leads to an elementary description and allows for an easy analysis
of MG algorithms. A first application is to utilize the CFA for deriving MG as a direct solver, i.e.
an MG cycle that will converge in just one iteration step. Necessary and sufficient conditions that
have to be fulfilled by the MG components are given for obtaining MG functioning as a direct solver.
Furthermore, new general and practical smoothers and transfer operators that lead to efficient MG
methods are introduced. In addition, we study sparse approximations of the Galerkin coarse grid
operator yielding efficient and practicable MG algorithms (approximately direct solvers). Numerical
experiments demonstrate the theoretical results.
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1. Introduction. A crucial point for the efficiency of a multigrid (MG) method
is the appropriate choice of its components, which allows for an efficient interplay
between smoother and coarse grid correction. In many cases, this coordination can be
made by use of Local Fourier Analysis (LFA), which is an important quantitative tool
for the development of powerful MG methods [3, 24, 23, 13, 4]. This approach has been
generalized for structured matrices by employing generating functions expressing, e.g.
the symbol of the smoother, of the projection or of the standard discrete Laplace
operator in terms of trigonometric polynomials. It is based on the connection between
Toeplitz, resp. circulant matrices, and trigonometric functions. It was analyzed by S.
Serra Capizzano, R. Chan, T. Huckle, and coauthors in [10, 11, 5, 14, 18, 15, 20, 21].
In this paper we complete this formal approach in order to represent a full two-grid
step in terms of the block symbol, called also block generating (matrix) function.
Furthermore, we show how to use the block symbol formalism for a multigrid Fourier
analysis.

We consider the notion of Compact Fourier Analysis (CFA), which can be seen
as a reformulation and generalization of LFA based on matrix functions. Instead of
discrete operators on a grid we consider analytic matrix functions (block symbols)
of small order that capture the behavior of the full matrices [14]. This allows the
use of matrix features, such as product and eigendecomposition, for describing the
smoothing factor and the convergence of a multigrid method. CFA offers a more
elegant and easier to handle description than the LFA and a clear overview on all MG
components. The main properties of a structured matrix can be reduced to a simple
function and to its range [12, 15, 20]. We use CFA to
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- derive necessary conditions for smoothing property and convergence expressed
as characteristics of the underlying block symbol,

- determine all projections and smoothers that lead to MG as a direct solver,
- identify acceptable projections for an efficient MG method [1],
- design practicable MG components and improved MG algorithms, e.g such

that MG acts nearly as direct solver.
It is essential to emphasize that the block symbol reflects in the case of periodic

boundary conditions exactly the behavior of the full matrices. For other boundary
conditions it mirrors the properties of the full matrices up to a low-rank term. This
term is of order n(d−1)/d for d-dimensional problems and discretization matrix of size
n. So in 1D the low-rank perturbation caused by the boundary conditions is O(1), in
2D O(

√
n), and so on.

The paper is organized as follows. After the necessary introductory material,
we describe in sections 1.1 and 1.2 the formalism of CFA with a simple 1D example
and explain the connection between discretization stencil of the original PDE and
block symbol. Section 1.3 discusses how CFA can be used for determining smoothing
factors. Section 1.4 illustrates conditions for the MG convergence in terms of the
(block) symbols. Section 1.5 highlights the connection between LFA and CFA, as well
as their major differences. Especially, we show how to use CFA for r-level Fourier
analysis. In section 2 we derive necessary and sufficient conditions for MG functioning
as a direct solver. Section 3 is devoted to sparse approximations of the dense Galerkin
coarse grid operator, which lead with special combinations of smoother and projection
to MG as a nearly, i.e. approximately, direct solver. Section 4 is concerned with
numerical experiments based on the block symbol, which verify the theoretical results.
In section 5 we consider full V-cycles for the Poisson equation. Section 6 summarizes
the conclusions of this study. The appendices at the end aim at offering more insight
and understanding on the eigendecomposition of the block symbol, and particular
smoothers and projections. It is important to stress that these notions can be defined
for multilevel Toeplitz matrices with symbol f , and they can be extended also to
problems with varying coefficients, indefinite and anisotropic problems.

Notations and preliminary remarks. For simplifying a potential look-up we
present some of the notations used repeatedly throughout the paper in the following
list.

F, f block and scalar generating symbol of the original problem, resp.
fc scalar generating symbol of the coarse grid matrix
F+ block symbol of the adjoint matrix of F
BR, BP block symbol of restriction and prolongation, resp.
b1,R, b1,P first colum of BR, BP , resp.
bR, bP scalar symbol of restriction and prolongation, resp.
MR, ML block symbol of the pre- and postsmoother, resp.
SR, SL I −M−1

R F, I −M−1
L F, resp.

α, β 1 + exp(ix), 1 + exp(iy), resp.
SF,DM subblock, resp. diagonally modified smoother as rank-1-updates of F
FP full projection given by BR = BP = F+

Additionally, the term projection is used for describing both transfer operators if
distinction between restriction and prolongation is not necessary or when they are
applied symmetrically for defining the coarse grid matrix according to the Galerkin
principle as fc = bH1 Fb1. The corresponding scalar generating function and block
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symbol are denoted by b and B (first column b1). When a differentiation between pre-
and postsmoother is unnecessary or when we refer generally to an explicit smoother,
we denote it by M . The smoother given by M defines the smoothing iteration xk+1 =
xk +M−1(b−Axk) for the iterative solution of a linear system Ax = b. Similar is the
use of the denotation N for approximate inverse smoothers. The smoothers may be
considered as approximation M of the matrix A or as approximation N of its inverse.

It holds F−1 = (detF )−1 ·F+, so if the entries of F are trigonometric polynomials,
the same is true for F+. F+ is then also related to a sparse matrix. In the following,
square brackets [ ] will be used for stencils and parentheses ( ) for matrices. TGS
denotes the block symbol of the matrix describing the full error reduction by a two-
grid step. Analogously, CGC stands for the coarse grid correction.

Definition 1.1. A two-grid method is considered to be a direct (i.e. exact) solver
if the total error is removed after one iteration.

In other words, it must hold TGS = SνlL · CGC · S
νr
R = 0 (see (1.3) and (1.4)).

Evidently it is sufficient that SνlL · CGC = 0 or CGC · SνrR = 0. In this case, the
smoother and the projection interact in such a manner that the range of the one matrix
is in the nullspace of the other and the actually iterative MG solver degenerates to a
non-iterative, direct method. If the coarse system is the same as the original problem
up to a constant factor, then the same projection and smoother used on the fine level
again make the two-grid method a direct solver on each coarser level, hence the whole
MG method can be considered as a direct solver. More informations about MG as a
direct solver can be found in [23, 14, 4].

Theorem 1.2. [7, p. 72] A circulant matrix Cn has the decomposition Cn =
FHn ΛnFn, where Λn is the diagonal matrix containing the eigenvalues of Cn and Fn
is the Fourier matrix, which is unitary.

Definition 1.3. Let ω = exp(iθ) with θ ∈ [−π, π]. An n×n matrix Wn is called
ω-circulant if it has the spectral decomposition Wn = ΩnF

H
n ΛnFnΩHn = ΩnCnΩHn .

Fn is the Fourier matrix, Λn is diagonal containing the eigenvalues of Wn, Ωn =
diag(1, ω1/n, ..., ω(n−1)/n) and Cn denotes the circulant matrix from Theorem 1.2. An
ω-circulant Toeplitz matrix is also characterized by the condition that the last entry
in a row and the first entry in the next row differ by the factor ω.

Theorem 1.4 (The Sherman-Morrison formula [6, p. 137]). Let A be a nonsin-
gular matrix and u, v two n-vectors with vTA−1u 6= 1. Then

(A− uvT )−1 = A−1 +
A−1uvTA−1

1− vTA−1u
.

Model problem. The model problem for describing the block symbol formalism

and for the numerical results is the two dimensional Poisson equation

−uxx − uyy = g(x, y) (1.1)

in the unit square with Dirichlet boundary conditions. The derivatives in (1.1) are
replaced by second order finite differences leading to the linear system Ax = b, where
the matrix A is described in compact form by the 5-point stencil

A5 =

 −1
−1 4 −1

−1

 .
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Note, that a similar analysis can be performed also for more general stencils like
anisotropic or indefinite problems. However, for the sake of simplicity and without
loss of generality we focus mainly on (1.1).

1.1. Multigrid and the block symbol formalism: A first example. We
want to describe the generating function and the block symbol formalism for the
simple 1D Laplacian. The boundary value problem −uxx = g(x), x ∈ [a, b], u(a) =
u(b) = 0 in standard discretization leads to the stencil [−1 2 − 1] and the matrix
A = tridiag(−1, 2,−1). The full weighting restriction operator is related to the stencil
[1 2 1]. The scalar generating functions (called also scalar symbols or simply symbols)
to these two stencils are given by f(x) = − exp(ix) + 2 − exp(−ix) = 2(1 − cos(x))
and b(x) = 2(1 + cos(x)), respectively [14].

Remark 1.5. The projection symbol b(x) is closely related to the scaling function
in Wavelet theory [22]. The symbol for the scaling function has to have a zero at π
and the order of this zero determines the approximation quality of the representation.
The same holds for the the projection operator b(x) in multigrid. So the symbolic
approach used here is similar to the Wavelet formalism. But to deal with fine/coarse
grid points on more levels, we have to use a block symbol representation.

The corresponding block symbols can be derived by considering the Toeplitz tridi-
agonal matrices as block Toeplitz matrices with 2×2 blocks and related block stencil,
e.g. A = tridiag(−1, 2,−1) can be described in block stencil notation as[(

0 −1
0 0

)(
2 −1
−1 2

)(
0 0
−1 0

)]
,

when standard coarsening is used. This leads to the block generating function

F (x) = eix
(

0 −1
0 0

)
+

(
2 −1
−1 2

)
+ e−ix

(
0 0
−1 0

)
=

(
2 −α
−ᾱ 2

)
. (1.2)

The block symbol related to b(x) is the eix-circulant matrix B(x) =

(
2 α

ᾱ 2

)
.

From the block symbol B only the first column b1 is used to define the projection
from fine to coarse grid. Indeed, in the 1D case, there are two classes of grid points
in multigrid, which can be modeled by block symbols: grid points that appear also
on the coarse level (first index) and grid points that are only fine, but non-coarse
(second index). Hence it is clear that coarsening is equivalent to picking only the first
column/row in the block symbol.

Also smoothers can be described by block symbols. In the case of the 1D Lapla-
cian, the block symbol of the Jacobi smoother is diag(2, 2) and the Gauss-Seidel
smoother is related to the block symbol(

2 −eix
−1 2

)
= eix

(
0 −1
0 0

)
+

(
2 0
−1 2

)
,

which corresponds to the lower triangular part tridiag(−1, 2, 0). Furthermore, the
scalar symbol for the coarse grid problem according to the Galerkin approach is

fc(x) =
(

1 0
)
B(x)F (x)B(x)

(
1
0

)
= bH1 F (x)b1 = 4(1− cos(x)) = 2f(x).

Note that following [10] the symbol of the coarse grid matrix is also given by fc(x) =
1
2 (b2(x/2)f(x/2)+b2(x/2+π)f(x/2+π)). The error after one two-grid step TGS can
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be analyzed by the error reduction induced by the smoothing operator S = I−M−1A,
resp. I −M−1F as block symbol, and by the coarse grid correction

CGC = I − PA−1
c RTA or CGC = I − b1,P bH1,RF/fc, (1.3)

in the form

TGS = SνlL · CGC · S
νr
R (1.4)

with postsmoother SL and presmoother SR applied νl and νr times, respectively. The
scalar symbol of the coarse problem for general choice of prolongation and restriction
is given according to the Galerkin principle as fc = bH1,RFb1,P . The transfer operators

can be applied also symmetrically, leading in this case to CGC = I − b1bH1 F/fc and
fc = bH1 Fb1.

It is easy to see that b1,P belongs to the nullspace of CGC, while bH1,RF belongs
to the left nullspace of CGC.

CGC ·b1,P = (I−b1,P bH1,RF/fc) ·b1,P = b1,P −
b1,P b

H
1,RF

bH1,RFb1,P
b1,P = b1,P −b1,P = 0, (1.5)

bH1,RF · CGC = bH1,RF · (I − b1,P bH1,RF/fc) = bH1,RF − bH1,RF
b1,P b

H
1,RF

bH1,RFb1,P
= 0. (1.6)

1.2. Block symbols and stencils. First we investigate the relationship be-
tween PDE, stencil, matrix and block symbol for the general 2D case. The stencil
determines the series coefficients of the multilevel Toeplitz, resp. circulant matrix,
related to the discretization of the given constant coefficient PDE. Hence, related to
the two dimensional stencil

· · ·
· · · a1,1 a0,1 a−1,1 · · ·
· · · a1,0 a0,0 a−1,0 · · ·
· · · a1,−1 a0,−1 a−1,−1 · · ·

· · ·

 (1.7)

is the scalar 2D symbol

f(x, y) =

· · ·
· · · a1,1e

ix+iy + a0,1e
iy + a−1,1e

−ix+iy + · · ·
· · · a1,0e

ix + a0,0 + a−1,0e
−ix + · · ·

· · · a1,−1e
ix−iy + a0,−1e

−iy + a−1,−1e
−ix−iy + · · ·

· · ·

. (1.8)

For the block symbol we distinguish between odd and even numbered grid points in
each dimension. There are different ways to describe the connection between stencil,
matrix, and block symbol. First, like described in [14], we can replace all 1D Toeplitz
blocks by block symbols in x. This leads to a smaller Block Toeplitz matrix function
in x. We repeat this first step for this smaller matrix introducing the new variable y
and replacing the next block level by block symbols in x and y. For a twolevel Block
Toeplitz matrix this results in the description of the block symbol by a Fourier series
with coefficients given by matrices Fj,k in the form

F (x, y) =
∑
j,k

Fj,k exp(ijx+ iky) .
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A second approach can be applied only if the given matrix is a multilevel Toeplitz
matrix with known scalar symbol and we want to redefine the matrix as a multilevel
Block Toeplitz matrix with block symbol. In Appendix C we show that in this case the
block symbol F is a multilevel ω-circulant matrix. From the scalar generating function
f we extract e.g. odd/even scalar coefficients directly to derive the scalar generating
functions Fj,k(x, y), which are the entries in F . These methods are described in [14].
For 2D with the 5-point stencil A5 we get

F (x, y) =


4 −α −β 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4

 . (1.9)

In the theoretical considerations and numerical experiments in the rest of the
paper we use frequently the subblock smoother SF (cf. [14]), which for the model
problem (1.1) with discretization stencil A5, has block symbol

SF (x, y) =


4 0 0 0
−ᾱ 4 0 −β
−β̄ 0 4 −α
0 −β̄ −ᾱ 4

 .

More informations on how linear systems in the SF smoother can be solved efficiently
are given in Appendix A. The smoothing process with SF is closely related to the
F-smoothing discussed in [23, Paragraph A.5.1.2].

Additionally, we want to describe the direct connection between block symbol
and stencil. In 1D, the stencil is considered as blocks of pairs in the form[

· · · | 0 −1 | 2 −1 | 0 0 | · · ·
]
.

This stencil is related to the block symbol

eix
(

0 −1
)

+
(

2 −1
)

+ e−ix
(

0 0
)

=
(

2 −α
)
.

In the same way we can write the shifted stencil (applied on the neighboring grid
point) [

· · · | 0 0 | −1 2 | −1 0 | · · ·
]
,

with block symbol

eix
(

0 0
)

+
(
−1 2

)
+ e−ix

(
−1 0

)
=
(
−ᾱ 2

)
.

Combining these two block symbols in a 2 × 2 matrix yields the block symbol for
A = tridiag(−1, 2,−1). In general, in 1D the rows of the block symbol F define two
- possibly different - stencils, that are related to two typical neighboring rows of the
matrix A and to the 2× 2 block structure of A.

The same approach can be applied in 2D. The stencil describes a typical row in
the matrix. In 2D with 4× 4 block symbol we could have four different stencils, resp.
four typical rows in the discretization matrix A or four different entries in the block
symbol. To derive the entries in the block symbol directly, we can use the stencil.
But in contrast to the relation of stencil and scalar symbol, cf. (1.7), (1.8), here we
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choose a center point in the stencil (in figure (1.1) there are four independent choices
namely entries 4, -1, -1, and 0 at neighboring positions); around this center point we
delete every second entry in each dimension. The resulting stencil can be transformed
into a scalar function like before, and this scalar function is one entry in the block
symbol.

For the 2D five-point stencil we choose e.g. as center point −1 and define a scalar
function by building a Fourier series collecting every second entry as displayed in
Figure 1.1. This gives the scalar function −1 − exp(ix) = −α. In the same way we
get all scalar functions of the block symbol F in (1.9).

0        0         0        0       0

0        -1        0        0       0

-1        4       -1       0       0    …

0        -1        0        0       0 

0         0 0        0       0 

…

…
…

Fig. 1.1. Connection between stencil and block symbol

The block symbols of general multilevel Toeplitz matrices can also be derived very
easily in a more technical way. Therefore, we first note that in 1D the block symbol
matrix function is defined by appropriate blocking and the related Fourier series as
described above. Furthermore, for higher dimensional problems we can set up the
scalar symbol directly out of the stencil (see (1.7) and (1.8)). This scalar function
can be rewritten as a sum of products of elementary terms, e.g. cos(j1x) cos(j2y)...,
where e.g. cos(j1x) is related to a 1D block symbol F1(x). Then, the block symbol
for the product is given by the tensor product F1(x)⊗F2(y)⊗ .... In this way, we can
set up the block symbol for any scalar symbol, resp. any multilevel Toeplitz matrix,
as sum of tensor products of 1D block symbols.

1.3. Using block symbols for determining smoothing factors. In the
scalar case the smoothing property is analyzed by considering the scalar symbol of
the smoothing correction s(x) = 1 − f(x)/m(x) for the high frequency components
(e.g. in 1D π/2 ≤ x ≤ π). To discuss the smoothing property for the block symbol
we consider S = I −M−1F on the subspace related to the nonsingular eigenvalues
[14]. Let uj , j = 0, ..., k − 1 be the eigenvectors of the k × k matrix function F ,
related to eigenvalues λj , j = 0, ..., k − 1. λ0(0) = 0 represents the singularity of F
while λj > 0 and bounded away from 0 for j = 1, ..., k − 1. The order k of the block
symbol F is defined in dependence on the dimension and the coarsening strategy as
k = kd · kt, where kd is the dimension of the problem and kt is the ratio of the coarse
to fine grid size in one dimension. Note that λ0, the scalar symbol f and detF have
the same zero of the same order at the origin (see Appendix C). Then, the smooth-
ing property can be determined by considering the projection of S on the subspace
spanned by u1, . . . , uk−1, namely the spectral radius of UH1 SU1 for x ∈ [−π, π], where
U1 = (u1 . . . uk−1).

In the general case we can analyse the k×k block symbol F more precisely. As in
1D, cf. (1.2), and as seen in the recursive derivation of the block symbol described in
[14], F is - up to a unitary diagonal similarity transform - a multilevel circulant matrix
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(number of levels depending on the dimension, block size depending on the projection:
every second, third, ... entry in each dimension). Hence, we can diagonalize F by a
unitary diagonal matrix and a multilevel Fourier transform (see also Appendix C).

In 1D the special block symbol F can be transformed via Dx := diag(1, α/|α|)
into the real circulant matrix (

2 −|α|
−|α| 2

)
:= C.

So, F is also an 1-level ω-circulant matrix with ω = ᾱ/α = exp(ix). Hence, C can be
diagonalized via the Fourier matrix F2 of order 2. Then

F = DxF
H
2 ΛF2D

H
x ,

where Λ is a diagonal matrix containing the eigenvalues λ0 = f(x/2) and λ1 =
f(x/2 + π) of F and C.

In 2D for the 5-point stencil we can apply the diagonal transformation

D = Dx ⊗Dy = diag(1, α/|α|, β/|β|, αβ/|αβ|)

for making F (x, y) real two-level circulant. Indeed,

DFDH =


4 −|α| −|β| 0
−|α| 4 0 −|β|
−|β| 0 4 −|α|

0 −|β| −|α| 4

 .

This block symbol corresponds to a block circulant matrix with circulant blocks,
with eigenvectors given by U = F2 ⊗ F2. The eigenvalues of F and C are then
λ00 = f(x/2, y/2), and generally λkj = f(x/2 + jπ, y/2 + kπ), j, k = 0, 1. Therefore,
λ00 has to have the same singularity as f and detF at the origin. The diagonal matrix
containing these eigenvalues is in the 2h-harmonic LFA the 4×4 matrix corresponding
to the coarse grid system [23, 24].

In order to determine the smoothing factor in the block symbol representation,
the corresponding block symbols must be diagonalized employing D and U . Note,
that D and U lead to an explicit representation of the eigenvectors of F , e.g. in our
2D example ujk, j, k = 0, 1. The spectral radius of the matrix function projected on
the eigenspace corresponding to the eigenvalues different from λ00 gives the smoothing
factor

max
x∈span{u10,u01,u11},||x||=1

xH(I −M−1F )x.

The analysis of the application of multistage smoothers on both sides can be done
similarly by converting the procedure illustrated in [23, Paragaph 7.4.2] into the anal-
ogous one with the CFA formalism.

1.4. Necessary Conditions for the projections for feasible MG in terms
of the block symbol. In the literature related to algebraic MG [19] and MG for
Toeplitz matrices there are described necessary conditions that have to be satisfied
by the restriction and prolongation operators, by the smoother, and by the coarse
grid problem in order to derive convergence. The following analysis uses the eigen-
decomposition of the k × k matrix function F and the different character of eigen-
values: eigenvalue λ0 ≡ f(x2 ,

y
2 ) with λ0(0, 0) = 0 and λj > 0, j = 1, ..., k − 1.
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Table 1.1
Norms and spectral radii of TGS(x, y) for the 5-point stencil and for various multigrid variants

with standard Galerkin coarsening, n=40 points, presmoother=GSRB, postsmoother=subblock

restriction prolongation norm spectral radius

constant constant 0.6979 0.4934
standard trivial 0.6993 0.4943

trivial standard 0.0063 0.0043

The eigenspace to eigenvector u0 is crucial for the coarse grid correction, and the
eigenspace to u1, ..., uk−1 for the smoothing property.

The CGC k×k block symbol has eigenvalue 1 of order k−1 and a single eigenvalue
1−bH1,RFb1,P /fc. F has one eigenvalue λ0 (≡ f(x/2) in 1D) with the same singularity
at the origin as f and detF . CGC has to reduce the error relative to the singularity,
and therefore ‖CGC · u0‖ < ‖u0‖ must hold, or - with (1.3) - (Fu0)/fc = λ0u0/fc
has to be bounded and different from zero. Hence, fc, λ0, f , and detF have to have
the same zeros (note that λ0, f and detF are equal up to a positive trigonometric
function).

Rewriting the above condition in terms of scalar symbols we get that

||b1bH1 Fu0/(b
H
1 Fb1)|| = ||λ0b1b

H
1 u0/(b

H
1 Fb1)|| = ||λ0b

H
1 b1/(b

H
1 Fb1)|| = f · fc,1/fc,f

should be bounded away from 0 and ∞. Hereby, fc,g is the coarse symbol derived
by applying the projection b with block symbol B and first column b1 on function g.
This gives direct conditions on the zeros of the projection b depending on the zeros
of f , cf. [1].

In the case of Galerkin coarse grid approach the coarse grid symbol should have
the same properties as the original function f , and therefore, it must hold

fc = bH1,RFb1,P = f · t (1.10)

for a trigonometric function t > 0. Note, that this criterion follows from the condition
that the scalar symbol bP bR must have zeros at the so called mirror points at least
of the order of the zero 0 of f . More information about the mirror points and their
importance for appropriate choices of transfer operators in MG can be found in [11, 8].
So there must not exist an x such that bP bR is zero at x and all its mirror points [11].

Furthermore, it is advisable to derive a CGC block symbol that is well defined and
bounded without poles: in the matrix b1,P b

H
1,RF/fc all coefficients have to be bounded.

It is sufficient to assure that bH1,RF/fc is bounded. Thereto we set bH1,RF/fc =: c̃H ,
where the vector c̃ is bounded and nonzero at the origin. Taking into account that fc
equals detF up to a bounded, strictly positive factor yields the condition

bH1,R = cHF+. (1.11)

In this case, the block symbol for CGC is bounded for all chosen b1,P . Similarly, for

b1,P = F+c (1.12)

we get that F · CGC · F−1 is bounded for each b1,R. In both cases c should be well-
defined such that b1,R and b1,P have scalar and bounded trigonometric polynomials as
entries in order to maintain the sparsity of the related matrices. Therefore, all efficient
projections are related to F+. For the special case bH1 = cHF+ = (1, 0, ..., 0)F+ the
derived projection is the so called full projection FP (see Appendix B).
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In Table 1.1 we see that the choices of restriction and prolongation given in the
first two rows do not yield satisfactory convergence properties because the entries in
the CGC symbol are not bounded. In this case in the vector bH1,RF/fc the zero of fc
is not matched by zeros of appropriate order in all entries of bH1,RF . On the contrary,
in the third row it is clear that a choice of transfer operators leading to bounded
CGC yields more effective two-grid corrections. The similar analysis with the help of
scalar generating functions is presented in [1] for general dimensions, where the same
conditions on boundedness of scalar functions are obtained.

The requests (1.10), (1.11) and (1.12) are satisfied if bR and bP have zeros at least
of the same order as f for x = 0 at the mirror points and are nonzero at the origin.
In general, the scalar symbols bP and bR are allowed to have additional zeros. In [11]
the necessary conditions in 2D for the projection b are described as:

1. b(0, 0) 6= 0, b(0, π) = b(π, 0) = b(π, π) = 0, and
2. b2(x, y) + b2(x, y + π) + b2(x+ π, y) + b2(x+ π, y + π) > 0 for all (x, y).

Considering the block symbol B(x, y) related to b(x, y), if the second condition is
violated for a pair (x1, y1), then this would result in B(2x1, 2y1) = 0 and therefore
cause an additional, not allowed zero in the coarse grid symbol.

1.5. LFA vs. CFA. In this section we would like to point out the strong
connection between LFA and CFA, as well as their differences. First we note that both
are tools for the quantitative analysis and the design of efficient multigrid methods.
An essential difference is that LFA is based on operators on grid functions of the
form exp(iθx/h), while CFA deals mainly with matrices of small order, whose entries
are scalar generating functions (symbols). CFA employs matrix functions and their
features (e.g. product, inverse, adjoint, norm, eigendecomposition, spectral radius),
and scalar generating functions and their roots. This characteristic allows for more
freedom and easier access with the block symbol.

The procedure described above for calculating smoothing factors with the aid of
CFA is equivalent to the smoothing analysis carried out with LFA in [23, Paragraph
4.5]. Both in LFA and CFA, the determination of two-grid convergence factors is
reduced to the calculation of norms and spectral radii of 4 × 4 matrices (in the 2D
case with standard coarsening). The block symbol is actually an intermediate step
between the full matrix and the 2h-harmonics LFA matrix. Indeed, given the dis-
cretization matrix of a specific problem, one is led to the block symbol according to
the strategy described in [14]. The diagonalization of the block symbol as outlined in
Appendix C yields the diagonal matrix containing the eigenvalues of the block symbol
of the original problem. These eigenvalues correspond to the LFA formal eigenvalues
defined in [23, Chapter 4]. With the CFA terminology one can represent the CGC
and the TGS, cf. (1.3), (1.4), resp., as matrix functions of small order and accom-
plish the computations with them. Their norms and eigenvalues coincide with the
corresponding LFA results.

Additionally, CFA allows for a discussion about the impact of the coarse grid
correction on damping the low-frequency error components. CFA facilitates also the
separate analysis and evaluation of projection operators. The corresponding results
have been demonstrated in [10, 1] in terms of scalar generating functions and their
roots. CFA enables the identification of admissible projections for a workable MG
method. The study of sparse approximations of the Galerkin coarse grid operator and
of sparse approximate inverse smoothers is also possible within the CFA framework.

The advantages of the block symbol are revealed by deploying the formalism to
the r-level Fourier Analysis (see [26]). In a first step for the given problem we set up
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the block symbol Fr (e.g. in 1D of size 2r−1, in 2D of size 4r−1). Furthermore, all
block symbols for the projections on each level have to be defined beforehand. In the
case of damped Jacobi smoothing now all symbols for CGC and the smoothing error
corrections can be arranged recursively in the standard form

TGS2 = SνLL,2 · (I − (bP,2b
H
R,2F2)/F1) · SνRR,2

and for l = 3, ..., r:

TGSl = SνLL,l · (I − bP,l(I − TGSl−1)F−1
l−1b

H
R,lFl) · S

νR
R,l .

The computations can be done, e.g. numerically for an equidistant discretization of
the interval [−π, π]. All matrices can be represented in sparse mode, and in the end
the matrix norm of TGSr describes one step of the error reduction of the V-cycle
operator.

The necessary block symbols of general multilevel Toeplitz matrices can be derived
very easily as described in section 1.2. The same technique can be applied for the block
symbols, related to the prolongation/restriction, and the Jacobi smoothers. A little bit
more complicated is the case of Gauss-Seidel smoothers. To set up the block symbol
for these triangular matrices we need on every level the block symbol Fourier series and
its coefficient matrices. Therefore, the fine grid block symbol and all projections have
to be stored according to their Fourier expansion. For the Galerkin system we have to
compute also the Fourier coefficients by building the product of all coefficient matrices
according to their position. On each level, out of the Fourier matrix coefficients we can
set up any Gauss-Seidel smoother like Red-Black or lexicographically Gauss-Seidel.

The r-level Fourier Analysis can be used as long as 2r−1, resp. 4r−1, is not too
large, because - depending on the smoother - we have to deal with norms of matrices
of size 2r−1, resp. 4r−1, that are built from sparse matrices. Therefore, in most cases
the maximum matrix size should be less than 1000, or r ≤ 11 in 1D, resp. r ≤ 6 in
2D.

2. Deriving multigrid as a direct solver. We aim at deriving a full classifica-
tion of all two-grid designs based on trigonometric polynomials that are related to MG
as a direct solver. In the theoretical proofs of this section we assume that conditions
(1.10), (1.11) and (1.12) are satisfied, so that a functioning MG algorithm is feasible.
Additionally, for the sake of practicability, the restriction and prolongation matrices
must be sparse, i.e. the vectors b1,R and b1,P must have trigonometric polynomials
as entries.

2.1. The case of explicit smoother M . In this subsection we analyze under
what conditions it is possible to derive two-grid as a direct solver, when an explicit
smoother M is used. The two-grid direct solver can be extended to an MG direct
solver if the coarse grid system is similar to the original, as explained in section 1
after Definition 1.1.

Theorem 2.1. Let b1,P be a given prolongation. Two-grid is a direct solver,
when a presmoother MR is used, if and only if

MR = F + (Fb1,P )dH , (2.1)

where d is an arbitrary vector built of scalar functions so that MR is well defined.
Proof. Suppose that two-grid is functioning as a direct solver. Since CGC has an

one-dimensional nullspace, I−M−1
R F has to eliminate all the remaining components,
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hence it should be of rank 1. Therefore, we can suppose that MR − F = cdH for
arbitrary vectors c and d of appropriate dimensions. According to Theorem 1.4 we
have

M−1
R = F−1 − F−1cdHF−1

γ
,

where γ = 1 + dHF−1c. Multiplication by F from the right yields

M−1
R F = I − F−1cdH

γ
⇔ I −M−1

R F = (F−1c)
dH

γ
.

Since we presume a direct solver it holds

CGC · (I −M−1
R F ) = 0 ⇔ CGC · (F−1c)

dH

γ
= 0.

Taking into account that CGC · b1,P = 0 always applies, cf. (1.5), a straightforward
choice for prolongation is b1,P = F−1c, which implies c = Fb1,P and the presmoother
is defined as M = F + (Fb1,P )dH .

Now suppose MR = F + (Fb1,P )dH . Like before, we see that

M−1
R = F−1 − F−1FbdHF−1

1 + dHF−1Fb
= F−1 − bdHF−1

1 + dHb
.

It holds

CGC · (I −M−1
R F ) = (I − bbHF/fc)(I − (F−1 − bdHF−1

1 + dHb
)F ) = 0,

so the presmoother MR given by (2.1) leads to two-grid as a direct solver

Similarly we can prove the following Theorem.

Theorem 2.2. Let b1,R be a given restriction. Two-grid is a direct solver, when
a postsmoother ML is used, if and only if

ML = F + cbH1,RF, (2.2)

where c is an arbitrary vector built of scalar functions so that ML is well defined.

However, the expressions (2.1) and (2.2) for M have the drawback that for
bounded c, resp. d, M is equally ill-conditioned as F and M−1 is as complicated
to compute as F−1. A possibility to overcome this peculiarity is to introduce the ad-
ditional constant detF and to incorporate it appropriately in the above expressions
for M via d, resp. c.

Corollary 2.3. Let bH1,R = eHF+ and let c = e · (detF )−1 be the vector of
Theorem 2.2, where e is a vector with trigonometric polynomial entries, not parallel
to u0. Then ML = F + eeH leads to two-grid as a direct solver, ML > 0 and ML is
well conditioned.

Proof. From Theorem 2.2 we have that the postsmoother has to be of the form
(2.2) for a given restriction b1,R and an arbitrary vector c, in order to derive two-grid
as a direct solver. Hence

ML = F + cbH1,RF = F +
e

detF
eHF+F = F +

e

detF
eH(detF ) ·F−1F = F +eeH > 0.
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The next corollary can be proved in a similar fashion.

Corollary 2.4. Let bH1,P = F+e and let d = e · (detF )−1 be the vector of
Theorem 2.1, where e is a vector with trigonometric polynomial entries, not parallel
to u0. Then MR = F + eeH leads to two-grid as a direct solver, MR > 0 and MR is
well conditioned.

For the choice e := e1 = (1, 0, ..., 0)H the resulting projection is the full projection
FP (see Appendix B), and we define F + re1e

T
1 as the diagonally modified smoother

DM. Hence, in view of Corollaries 2.3 and 2.4, these two components lead to two-grid
as a direct solver

Remark 2.5. The results of Corollaries 2.3 and 2.4 can hold also for non sym-
metric construction of the smoother, i.e. M = F + uvH . For example, the subblock

smoother is constructed as SF = F + uvH , where u =
(
−1 0 0 0

)T
and v =(

0 −α −β 0
)
.

The subblock smoother combined appropriately with the full projection FP leads
to a two-grid direct solver. The full projection was introduced in [14] and can also be
described by the scalar symbol

bfull(x, y) := f(x, y + π)f(x+ π, y)f(x+ π, y + π) . (2.3)

Specifically, in Appendix B we prove that the projection related to (2.3) is equivalent
to FP given by b = eT1 F

+.

2.2. The case of approximate inverse smoother N . In this paragraph we
demonstrate conditions for deriving two-grid as a direct solver, when an approximate
inverse smoother N is used. We consider only the case of postsmoother application,
since the case of presmoother can be handled absolutely similarly.

Lemma 2.6. Let b1,R be a given restriction. Two-grid with approximate inverse
postsmoother SL = I −NLF is a direct solver if and only if

SL = a · bH1,RF, (2.4)

for some vector a of appropriate dimension. In this case it holds

F+ = d ·NL + ã · bH1,R, (2.5)

where d = detF and ã = d · a.
Proof. Suppose that (2.4) holds. For a direct solver with approximate inverse

postsmoother it is required SL ·CGC = 0, where CGC is given by (1.3). Indeed, the
choice SL = a · bH1,RF leads to SL ·CGC = 0 for any arbitrary vector a of appropriate
dimension:

SL · CGC = abH1,RF

(
I −

b1,P b
H
1,RF

bH1,RFb1,P

)
= abH1,RF −

abH1,RFb1,P b
H
1,RF

bH1,RFb1,P
= 0.

If two-grid is a direct solver, then SL must have rank one, as explained in the proof
of Theorem 2.1. Hence we can suppose that SL = a · cH for arbitrary vectors a and
c. Considering (1.6) we can select c = Fb1,R and the result follows straightforwardly.

For the second part of the enunciation we have SL = I−NLF = abH1,RF ⇔ NL =

F−1 − abH1,R ⇔ NL = 1
dF

+ − abH1,R ⇔ F+ = dNL + ãbH1,R, where ã = d · a.
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Theorem 2.7. An approximate inverse postsmoother leading to two-grid as a
direct solver is given by bH1,R = F+e4, with e4 = (0, 0, 0, 1)T , and(

F−1
1 03×1

01×3 0

)
,

where F1 is the upper left 3× 3 block of the block symbol F . In this case, the decom-
position (2.5) for the adjoint matrix holds, where ã = (−U−1

1 c, 1)T , U1 is the upper
left 3× 3 block of the upper triangular matrix U of the LU factorization of F , c is the
upper right 3× 1 column vector of U .

Proof. Let d := detF . We consider the LU factorization F = L · U , where L is
lower triangular with ones on the diagonal and U is upper triangular. It holds

FF+ = LUF+ = dI ⇒ UF+ ≡
(

U1 c
01×3 γ

)
F+ = dL−1,

where γ is a scalar and U1 is a 3 × 3 upper triangular matrix. Multiplication of the

last equation from the left by

(
U−1

1 03×1

01×3 0

)
yields

(
I U−1

1 c
01×3 0

)
F+ = d

(
U−1

1 03×1

01×3 0

)
L−1. (2.6)

Taking into account that F+ is of the form (2.5), equation (2.6) can be written as{(
I 03×1

01×3 1

)
+

(
03×3 U−1

1 c
01×3 −1

)}
F+ = d

(
U−1

1 03×1

01×3 0

)
L−1

⇔ F+ = d

(
U−1

1 03×1

01×3 0

)
L−1 +

(
−U−1

1 c
1

)(
F+

41 F+
42 F+

43 F+
44

)
.

From Lemma 2.6 it is easy to see that

NL =

(
U−1

1 03×1

01×3 0

)
L−1 =

(
F−1

1 03×1

01×3 0

)
and b1,R = F+e4.

lead to a two-grid direct solver.

The corresponding results for the presmoother can be proved analogously.
Lemma 2.8. Let b1,P be a given prolongation. Two-grid with approximate inverse

presmoother SR = I −NRF is a direct solver if and only if

SR = b1,P · a,

for some vector a of appropriate dimension. In this case it holds

(I − b1,P · a)F+ = d ·NR, (2.7)

where d = detF .

Theorem 2.9. An approximate inverse presmoother leading to two-grid as a
direct solver is given by b1,P = F+e4, with e4 = (0, 0, 0, 1)T , and(

F−1
1 03×1

01×3 0

)
,
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where F1 is the upper left 3× 3 block of the block symbol F . In this case, (2.7) holds
for the adjoint matrix, where b1,P = (−U−1

1 c, 1)T , U1 is the upper left 3× 3 block of
the upper triangular matrix U of the LU factorization of F , c is the upper right 3× 1
block of U , U is the upper triangular matrix of the LU factorization of F .

Remark 2.10. The projection F+e1 in combination with the smoother defined
by the inverse of F3, the right lower subblock of F (see Appendix A), leads to a direct
solver. This approximate inverse smoother is closely related to the subblock smoother
SF.

Remark 2.11. The solution of linear systems in F1 has to be done via an iterative
solver like the preconditioned conjugate gradient (pcg) algorithm and is similar to
solving the subblock smoother SF (see Appendix A).

3. Sparse approximations of the Galerkin coarse grid operator. As al-
ready demonstrated, cf. e.g. [4, 13, 23], the MG algorithms with coarsening based
on the Galerkin principle may lead to efficient solvers for various choices of MG com-
ponents. However, this coarsening strategy has the disadvantage that it may lead to
coarse grid matrices that become thicker in every next grid, without preserving the
sparsity of the initial problem. Possible remedies for this issue have been proposed,
cf. e.g. [2, 25]. Additionally we aim at offering a solution with the help of CFA and
at eliminating the drawback of the direct solver, which is its stencil growth. Our goal
is to produce sparse matrices on coarser levels via stencil collapsing and to be able to
apply then recursively always the same scheme. Naturally, this causes the loss of the
direct solver. But we can obtain efficient methods, which work as approximate direct
solvers, as we will see in the sequel.

Hence it is interesting to specify sparse approximations of the thick Galerkin
coarse grid operator fc = bHFb derived by the full projection FP, that lead to a
considerable reduction of the computational complexity and allow to use the same
smoothers and projections on every level. It is favorable that the replacement of the
coarse grid matrix Ac is the same as the original matrix A up to a constant factor
and of different dimension. Then the quotient f

fc
would be constant. But in general

this is not the case. Therefore it is interesting to study sparse approximations of fc of
the form f

g , where g is the scalar generating function corresponding to a structured
sparse matrix G, i.e. g is a trigonometric polynomial.

According to the proposed approach, Ac is replaced approximately by G−1Ã,
where Ã has the same stencil as A but smaller size. Then on the coarser grid the
residual equation Ace = r must be solved, or approximately G−1Ãe = r ⇔ Ãe = Gr.
Hence, in this manner we need to solve on every grid a linear system with a matrix
similar to the original matrix, yet of smaller dimension. The right hand side is formed
by a cheap matrix-vector multiplication.

The benefit of this approach is that the coarse grid system is similar to the fine
and this results in a practicable algorithm. For instance, for the discretization with
the 5-point stencil on the fine grid it is known that, when the standard full-weighting
projection is employed, all coarse grid matrices are given by the thicker 9-point stencil
[13, Paragraph 3.7, Exercise 3.9.4] and [23, Example A.2.1]. The methods developed
in the following allow the use of the same matrix on every level.

To that end we calculate ming ‖g − f
fc
‖. This is the scalar counterpart of the

matrix method proposed in [16] for identifying the modified sparse approximate in-
verse smoother. As an example we consider g1(x, y) = a0 + a1(cosx+ cos y) and the
discretization matrix A described in compact form by the 5-point stencil A5. Let
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h(x, y) := cosx+ cos y. Then we consider

min
a0,a1

‖g1 −
f

fc
‖22 = min

a0,a1

∫ π

0

∫ π

0

(
a0 + a1h−

f

fc

)2

dxdy .

This minimization problem for computing the first two Fourier coefficients of f/fc
is solved numerically with Maple. A similar approach can be applied as well for
approximations of the Galerkin operator with trigonometric polynomials of higher
order. We consider also

g2(x, y) = g1(x, y) + a2(cos(x− y) + cos(x+ y)),
g3(x, y) = g2(x, y) + a3(cos 2x+ cos 2y),
g4(x, y) = g3(x, y) + a4(cos(2x− y) + cos(x− 2y) + cos(2x+ y) + cos(x+ 2y))

and the constant case g0(x, y) = a0. We use the following denotation: trigonometric
polynomials of degrees 1,2,3,4,5 are called the trigonometric polynomials that have
the forms g0, g1, g2, g3, g4, respectively.

The goal of this approach is furthermore to derive efficient MG methods which
work as approximately direct solvers. As approximately direct solvers we declare MG
methods that lead to satisfactory enough errors, i.e. of order 10−6, after application
of 2 or 3 V-cycles. The appropriate computer program was developed to this end
in a hybrid (i.e. symbolic and numerical) environment. For degrees d = 1, . . . , 5
of the approximating trigonometric polynomial and for k = 1, 2, 3 applications of
the smoothers there has been an exhaustive search over all possible MG components
(pre- and postsmoother, restriction, prolongation). The corresponding methods have
been tested with respect to the norm and spectral radius of TGS(x, y). For pre-
and postsmoothers there have been examined: subblock smoother, Red-Black Gauss-
Seidel (GS-RB), GS with lexicographic ordering (GS-LEX) and ω-Jacobi (ω-JAC)
with the optimal relaxation parameter ω = 0.8. Possible restrictions were: full,
standard (full weighting), trivial and constant.

Table 3.1 shows the best results that appeared with respect to spectral radius of
TGS(x, y), and also for which restriction. The best results are always obtained with
the full prolongation combined appropriately with a standard restriction and with the
use of the subblock smoother as pre- and postsmoother. We see that the approximat-
ing trigonometric polynomials of degrees 1, . . . , 4 yield approximately direct solvers,
while the approximation of degree 5 gives significantly better results. These values
can always be further improved by multiple applications of the smoothers.

It is also interesting to mention that approximations of the Galerkin coarse grid
operator with higher order trigonometric polynomials don’t always improve the overall
convergence quality. For instance, in Table 3.1 we observe that the increase of the
degree from d = 1 to d = 2 doesn’t lead to an improvement of the results. Similarly,
from d = 3 to d = 4. The explanation is that with the proposed approach ming ‖g− f

fc
‖

is determined, which finds an optimal approximation of f/fc, but does not necessarily
guarantee that min ‖Sl · CGC · Sr‖ is attained.

Hence, we can conclude that it is advisable to use sparse approximations of the
Galerkin operators of order d = 1, 3, 5. For d = 1 we obtain satisfactory results while
preserving at the same time the sparsity of the original problem. For d = 5 we have
the clearly best results, yet with some encumbrance of the sparsity, which is however
definitely not lost. An average situation between these two extreme cases is for d = 3.

Remark 3.1. The numerical results for our model problem indicate that ap-
proximations of the Galerkin coarse-grid operator with trigonometric polynomials g of
degree d = 5 yield always the most efficient solvers. Although g is related in this case
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Table 3.1
Optimal spectral radii of TGS(x, y) for various restrictions, full prolongation and subblock pre-

and postsmother, for approximation of the Galerkin coarse grid scalar symbol with trigonometric
polynomials of degree d, n=50 grid points, ν is the number of pre- and postsmoother applications.

d restriction ν = 1 ν = 2 ν = 3

1 trivial 0.0316 0.0315 0.0314
2 standard 0.0425 0.0423 0.0421
3 trivial 0.0127 0.0127 0.0126
4 standard 0.0155 0.0154 0.0154
5 trivial 0.0066 0.0042 0.0031

to a matrix that is less sparse than the coarse grid matrix itself, the practicability is
not harmed at all because the proposed approach does not include any explicit matrix
inversion. Furthermore, with this technique the sparsity of the stencil describing the
problem on coarser levels is preserved.

Instead of approximating the Galerkin coarse function directly in an optimal way,
we can use the CFA tool in order to determine trigonometric polynomials g̃j of degree
j that minimize the two-grid error, e.g. in connection with damped Jacobi smoothing

(I − ωlF )νl(I − b1bH1 F/(f/g̃j))(I − ωrF )νr . (3.1)

First let us assume that g̃j = ã0 = constant. In order to determine the optimal
constant ã0 we are minimizing the TGS (3.1) for ωl = ωr = 0.8, νl = νr = 2,
and b1 the full prolongation and restriction. Numerical computations lead to the
solution g̃0 = ã0 = 3.7175/642. In the same way we can determine the optimal
trigonometric polynomials g̃1 = (2.425 + 0.7506 · (cos(x) + cos(y)))/642 and g̃2 =
(2.6251 + 0.4624 · (cos(x) + cos(y)) + 0.2020 · (cos(x− y) + cos(x+ y)))/642. Here, g̃0

leads to 0.0634 as maximum value of the spectral norm of the TGS block symbol (3.1)
with full projection, 2 presmoothing steps with SF and 2 postsmoothing steps with
optimally damped Jacobi smoother. g̃1 gives error reduction 0.0167, and g̃2 leads to
0.0106. We will compare the two different methods based on approximation fc, resp.
TGS, later on in section 5. But note, that this optimization is derived by considering
the two-grid analysis. Hence it may fail if considering more levels and should be
replaced by an r-level analysis as introduced in section 1.5.

4. Experimental Results based on the Block Symbol. Table 4.1 presents
for the 2D 5-point stencil the norms and spectral radii of TGS(x, y) for various schemes
based on the block symbol. Such computations reflect also the behavior of the full
matrices, which is sufficiently well captured by the block symbol [14]. In the following,
for pre- and postsmoothing we apply the identical method, and the same holds for
restriction and prolongation. The first line shows the results for the standard choice
of optimal MG components, which is the use of the Red-Black Gauss-Seidel smoother
and of the full weighting projection. In the second line we see that the use of the
subblock smoother instead of GS-RB leads to slightly better results. And in the third
line it is evident that the combined use of the subblock smoother together with the
full projection leads to a direct solver.

Remark 4.1. The MG components devised and analyzed in this work (cf. also
the Appendices) can be exploited and extended also for more general problems, e.g.
with nonconstant coefficients:

− The subblock smoother SF is always defined and it is obtained directly from
the characterization of fine/coarse points. In the block symbol we replace the
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Table 4.1
Norms and spectral radii of TGS(x, y) for various multigrid variants with standard Galerkin

coarsening, n=40 points.

smoother projection norm spectral radius

GS-RB standard 0.0703 0.0311
subblock standard 0.0409 0.0258
subblock full 1.6024e-14 1.1269e-14

column (or row) representing the coarse grid points by the diagonal entry only.
Hence, in the original matrix A for each coarse grid point a column (or row)
has to be replaced by zeros up to the diagonal entry. Similarly, for the DM
smoother the diagonal entries related to coarse grid points have to be enlarged
by r > 0.

− The full projection is determined always from the original stencil by sign con-
version. For each stencil at a grid point we define the local stencils derived
by changing the sign in each second entry. The projection results as a com-
bination of the product of the related matrices and the trivial injection (see
Appendix B).

− The approximation of the Galerkin coarse system, e.g. min ||fc−f/g|| can be
formulated as a sparse matrix problem min ||AcG−A||F [16].

5. Experimental results for V-cycle convergence for the 2D Poisson
equation. So far we have examined only the block symbol for the Poisson equation,
which served as a model problem for presenting the CFA formalism and features and
for testing the new MG components. In this section we will compare the derived MG
components for solving the original 2D linear systems for the 5-point stencil by V-
cycles. We always use random right hand side of length (27− 1)2 and coarsest matrix
size ≤ 8. We compare standard linear prolongation with full restriction, optimally
damped Jacobi smoother with subblock smoother SF defined in section 2.1 and the
diagonally modified smoother DM from Corollaries 2.3 and 2.4. Furthermore, for
the full projection we consider the different Galerkin coarse system approximations
described in section 3. The general benefits of the use of the developed approximate
direct solver based on full projection, subblock or diagonally modified smoother, and
approximating the Galerkin coarse grid matrix are that less V-cycles are needed.
Furthermore, mostly simple matrix-vector products are needed which may lead to
better parallel performance.

Following Figure 5.1 we see that the combination of full projection FP, subblock
smoother SF and sparsification of the coarse matrix leads to an efficient MG method
with faster convergence than standard MG. The additional costs are a more costly
projection (around a factor 2 more expensive than full weighting projection), the addi-
tional matrix-vector product of the Galerkin approxiamtion matrix G with the actual
residual vector. Solving the subblock smoother for the 5-point stencil is comparable
to one Jacobi step (see Appendix A). In the new setting the sparse original matrix A
is always used on all levels; this simplifies the implementation and saves costs.

Figure 5.2 shows that with the diagonally modified smoother also in combination
with standard coarsening we get much faster convergence. Furthermore, with the
parameter r we can decide on the number of necessary V-cycle steps.

Furthermore, following Table 5.1 with the choice of r we can distribute the com-
putations between costs for the smoother and number of V-cycle steps. For small
r we derive an approximate direct solver with a smoother that has relatively large
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Fig. 5.1. Comparison of the optimally damped standard Jacobi smoother with the subblock
smoother combined with full projection and approximation of the coarse Galerkin coarse system.
We always apply 2 steps of optimal damped Jacobi postsmoother. Dashed: Jacobi with 2,4,6,8,10,12
presmoothing steps. circle: Approximate direct solver with 2 steps subblock presmoother and trigono-
metric approximation gj of the coarse grid matrix with 1,2,3,4, or 5 coefficients. +: Approximate
direct solver with two steps subblock presmoother and triginometric approximation of the coarse grid
matrix based on the TGS block symbol g̃j with 1,2, or 3 coefficients.
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Fig. 5.2. For full weighting projection comparison of standard Jacobi (dashed like Figure 5.1)
with the diagonally modified smoother. 2 post/presmoothing steps are applied with r = 4, 1, 0.5.

Table 5.1
Comparison of different data for the DM smoother. Condition number for different precondi-

tioners, block symbol two-grid error with 2 post/presmoothing steps, and residual after one step of
the full V-cycle with full weighting projection and 2 post/presmoothing steps.

r cond(GS-prec.) cond(Block-GS-prec.) smooth. factor TGS-error V-cycle residual

0.5 13.7 8.8 0.09 0.011 0.004
1 7.7 4.9 0.15 0.022 0.010
2 4.7 3.2 0.25 0.043 0.023
3 3.8 3.0 0.32 0.063 0.035
4 3.3 3.0 0.37 0.081 0.044
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condition number. For larger r we need more V-cycle steps based on an easy to solve
smoother.

Remark 5.1. The smoothers that are used in this section have to be solved by
iterative methods, e.g. the preconditioned conjugate gradient method. But such tech-
niques are meanwhile very common in MG theory, see [9]. Furthermore, the smoothers
are well conditioned and in many cases we have very efficient preconditioners at hand.
Hence, only a small number of iterations is necessary. The cg algorithm applied on
A is usually not considered as an efficient smoother because it is too democratic in
the sense that it solves also for low-frequency components. By introducing cg applied
on the modified problems SF or DM we force cg to work mainly on high frequency
components which should improve the smoothing efficiency of the cg method.

6. Conclusions. A compact Fourier analysis was devised for studying MG meth-
ods and for designing new efficient MG algorithms. The CFA is principally based on
the block symbol. The connection between LFA and CFA is established, however the
latter is easier to handle, offers a better overview and is suitable for analyzing all MG
components, e.g. by r-level Fourier analysis. The block symbol is an intermediate
step between the full matrix and the 2h-harmonics LFA matrix. Furthermore, the
block symbol of the multilevel Toeplitz matrix is a multilevel ω-circulant matrix with
eigenvalues given by the scalar symbol.

The CFA, which was first introduced in [14], is elaborated further in this work
and more general and theoretical results are given. We present the CFA framework
and the necessary conditions in terms of the block symbol that have to be satisfied
by the projections for deriving functioning MG methods. We characterize generally
the various smoothers that lead to MG as a direct solver in terms of given transfer
operators. The results on direct solver hold for every stencil, type of discretization
and also for anisotropic and indefinite problems (e.g. Helmholtz equation). The paper
develops templates, like the full projection and the subblock smoother, and shows how
to incorporate them efficiently in MG. It turns out that the ideal projections are closely
related to F+, the adjoint of the block symbol F of the original matrix. The ideal
smoothers are rank-1 perturbations of F .

A procedure for approximating the dense Galerkin coarse grid operator with
sparse matrices was developed, leading to practicable approximately direct solvers.
The various numerical experiments confirm the theoretical results and the superiority
of the use of the full projection and of the subblock smoother, which can be applied
successfully also to problems of real-life applications with practical interest.

Appendix A. The subblock smoother.
Lemma A.1. The lower right 3× 3 block F3 of SF is positive definite.
Proof. For the subblock F3 holds F3 ≥ 0, since F ≥ 0. The proof will be done

by contradiction. Suppose the F3 is singular. This is possible only for the root of the
symbol (x, y) = (0, 0). In that case there exists an eigenvector a for which F3a = 0
holds. Then a is part of the eigenvector b of F for which Fb = 0. This eigenvector b
corresponds to the eigenvalue λ0 = f(x2 ,

y
2 ), or that is to say, b is the vector (1, 1, 1, 1)T ,

up to an ω-circulant diagonal transformation. But for the resulting subvector a of
length 3 F3a

H is not 0, and this is a contradiction.
In order to efficiently use the subblock smoother, we have to solve a linear sys-

tem with matrix SF . To solve a linear system in the subblock smoother we mainly
have to solve a linear system in the well conditioned F3. For the 5-point stencil it
holds cond(F3) = 3 + 2

√
2. The condition number of the symmetric Gauss-Seidel

preconditioned F3 matrix is 2.
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For the solution of linear systems with the subblock smoother we can further
reduce the matrix F3 4 0 −β

0 4 −α
−β̄ −ᾱ 4

 =

 4 0 0
0 4 0
−β̄ −ᾱ s

 ·
1 0 −β/4

0 1 −α/4
0 0 1


with Schur complement

s = 1− |α|2/16 + |β|2/16 = (16− |α|2 − |β|2)/16 = (6− cos(x)− cos(y))/8 .

Therefore, for solving F3 we mainly have to solve the linear system in the matrix to
scalar symbol s with condition number bounded by 2. With symmetric Gauss-Seidel
the condition number for the matrix representing s can further be reduced to 1.5.
Hence, in case of the 5-point stencil the cost for smoothing with the subblock matrix
is not essentially higher than for other standard smoothers.

Appendix B. The full projection.
In this paper the full projection bfull, which was introduced in [14], is used for

deriving new efficient MG methods. An alternative formulation of the Definition 2.3
is that the full projection results for every scalar symbol f from the product of shifted
versions of f related to the mirror points. A description of the full projection in
matrix form can be found in [17]. The block symbol for the full projection can be
described according to Lemma B.1.

Lemma B.1. In 2D with reduction to half size in each dimension, the block symbol
of the full projection is F+, where F is the block symbol of the original problem.

Proof. For the scalar symbol f(x, y) ≡ f0,0(x, y) in 2D with projection on every
second entry in each dimension, we define the three functions f0,1(x, y) = f(x, y+π),
f1,0(x, y) = f(x + π, y) and f1,1(x, y) = f(x + π, y + π). Sums and differences of
these four scalar functions build the entries in the multilevel ω-circulant block symbol
F (x, y) as described in [14]. Furthermore, following Appendix C this special structure
yields det(F (x, y)) = f0,0(x/2, y/2) · f0,1(x/2, y/2) · f1,0(x/2, y/2) · f1,1(x/2, y/2).

Let bfull(x, y) := f0,1(x, y) · f1,0(x, y) · f1,1(x, y). Then the block symbol for
f0,0 · bfull = det(F (2x, 2y)) is equal to det(F (x, y)) · I, because for functions in 2x
and 2y - in view of [14] - the nondiagonal entries in the block symbol are 0, and the
main diagonal entries reproduce the scalar function up to a scaling factor 2 in x and
y. Therefore it holds F (x, y) · Bfull(x, y) = det(F (x, y)), and hence Bfull(x, y) =
F+(x, y).

Appendix C. Analysis of the block symbol.
Lemma C.1. The block symbol of a symmetric multilevel Toeplitz matrix with

scalar symbol f(x, y, ...) a trigonometric polynomial, is a multilevel ω-circulant matrix
function F (x, y, ., , , ) with eigenvectors depending only on the size of the block symbol
and given by a diagonally transformed multidimensional Fourier matrix. Furthermore,
the eigenvalues are given by evaluating f(x, y, ...) at positions ((x + 2πj1)/k), (y +
2πj2)/k, ...) for j1, j2, ... = 0, 1, ..., k − 1.

Proof. First, let us consider the 1D case. Obviously, the block symbol has an
ω-circulant structure because blocks that lie outside the central, constant block are
inserted with an additional factor exp(ijx) in view of the Fourier series representation
of the block symbol. To prove this result in a rigorous way, in view of the Toeplitz
structure of the block symbol F we only have to evaluate the first row of this matrix.
The entries of the first row are trigonometric polynomials built from every k-th entry



22 T. K. HUCKLE AND C. KRAVVARITIS

in the Fourier expansion of the original scalar symbol, starting with coefficients r =
0, 1, ..., k − 1. Therefore, these entries are given by

eirx/k
(
f(
x

k
) + e2iπr/kf(

x+ 2π

k
) + ...+ e2iπr(k−1)/kf(

x+ 2π(k − 1)

k
)
)
/k

for r = 0, 1, ..., k − 1. Hence, the resulting Toeplitz matrix is ω-circulant with
ω = exp(ix) because the last entry in the each row has to be multiplied by exp(ix)
in order to be equal to the first entry in the next row. Therefore, the ω-circulant
block symbol is transformed into a circulant matrix by the similarity transform via
the diagonal matrix Dx = diag(exp(irx/k)r=0,..,k−1) (see Theorem 1.2 and Definition
1.3). The eigenvectors of F (x) are columns of the one-dimensional Fourier matrix Fk
of length k scaled by Dx.
The eigenvalues of a circulant matrix with first row c0, ..., ck−1 are given by the
trigonometric polynomial p(x) built by these coefficients, evaluated equidistantly
at p(2πij/k), j = 0, 1, ..., k − 1. Evaluation of this formula gives the eigenvalues
f((x+ 2iπr)/k), r = 0, 1, ..., k − 1.
The higher dimensional case can be reduced to the 1D case. First note that then the
scalar symbol is written as a sum of products of elementary terms exp(ij1x) exp(ij2y)...
which translates in the block symbol as a sum of tensor products of matrix functions
F1(x) ⊗ F2(y) ⊗ .... Obviously, each addend in this matrix function itself is a multi-
level (exp(ix), exp(iy), ..)-circulant matrix diagonalized by the product of the diagonal
matrix Dx ⊗Dy ⊗ ... and the appropriate multidimensional Fourier matrix. We can
apply this eigenvector matrix on the original block symbol given by this sum of tensor
products in order to diagonalize F . This leads to the diagonal matrix of eigenval-
ues of F written as sum of tensor products of 1D diagonal matrices in x, y, ..., resp..
Therefore, all eigenvalues can be written in the form g((x+ 2πj1)/k, (y+ 2πj2)/k, ...)
with some function g. Furthermore, the first eigenvalue g(x/k, y/k, ..) is related to
the first column of all ones of the Fourier matrix. Like in the 1D case the sum over all
entries in the first row of F results in f(x/k, y/k, ...) because all shifted terms cancel
out in this summation. This shows f = g which concludes the proof.

In view of the eigenvalues of F it also holds
det(F ) =

∏k−1
j1,j2,..,=0 f((x+ 2πj1)/k)f(y + 2πj2)/k)....
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