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PARTICLE SYSTEMS AND KINETIC EQUATIONS MODELING
INTERACTING AGENTS IN HIGH DIMENSION

M. FORNASIER†‡ , J. HAŠKOVEC‡, AND J. VYBÍRAL‡

Abstract. In this paper we explore how concepts of high-dimensional data compression via
random projections onto lower-dimensional spaces can be applied for tractable simulation of cer-
tain dynamical systems modeling complex interactions. In such systems, one has to deal with a
large number of agents (typically millions) in spaces of parameters describing each agent of high
dimension (thousands or more). Even with today’s powerful computers, numerical simulations of
such systems are prohibitively expensive. We propose an approach for the simulation of dynami-
cal systems governed by functions of adjacency matrices in high dimension, by random projections
via Johnson-Lindenstrauss embeddings, and recovery by compressed sensing techniques. We show
how these concepts can be generalized to work for associated kinetic equations, by addressing the
phenomenon of the delayed curse of dimension, known in information-based complexity for optimal
numerical integration problems and measure quantization in high dimensions.

Key words. Dimensionality reduction, dynamical systems, flocking and swarming, Johnson-
Lindenstrauss embedding, compressed sensing, high-dimensional kinetic equations, delayed curse of
dimension, optimal integration of measures in high dimension.
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1. Introduction. The dimensionality scale of problems arising in our modern
information society has become very large and finding appropriate methods for dealing
with them is one of the great challenges of today’s numerical simulation. The most
notable recent advances in data analysis are based on the observation that in many
situations, even for very complex phenomena, the intrinsic dimensionality of the data
is significantly lower than the ambient dimension. Remarkable progresses have been
made in data compression, processing, and acquisition. We mention, for instance,
the use of diffusion maps for data clouds and graphs in high dimension [5, 6, 19, 20,
21, 43] in order to define low-dimensional local representations of data with small
distance distortion, and meaningful automatic clustering properties. In this setting
the embedding of data is performed by a highly nonlinear procedure, obtained by
computing the eigenfunctions of suitable normalized diffusion kernels, measuring the
probability of transition from one data point to another over the graph.

Quasi-isometrical linear embeddings of high-dimensional point clouds into low-
dimensional spaces of parameters are provided by the well-known Johnson-Lindenstrauss
Lemma [1, 25, 40]: any cloud of N points in Rd can be embedded by a random lin-
ear projection M nearly isometrically into Rk with k = O(ε−2 log(N )) (a precise
statement will be given below). This embedding strategy is simpler than the use of
diffusion maps, as it is linear, however it is “blind” to the specific geometry and local
dimensionality of the data, as the embedding dimension k depends exclusively on the
number of points in the cloud. In many applications, this is sufficient, as the number
of points N is supposed to be a power of the dimension d, and the embedding produces
an effective reduction to k = O(ε−2 log(N )) = O(ε−2 log(d)) dimensions. As clarified
in [3, 44], the Johnson-Lindenstrauss Lemma is also at the basis of the possibility
of performing optimal compressed and nonadaptive acquisition of high-dimensional
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data. In compressed sensing [12, 27] a vector x ∈ Rd is encoded in a vector y ∈ Rk by
applying a random projection M , which is modeling a linear acquisition device with
random sensors, i.e., y = Mx. From y it is possible to decode x approximately (see
Theorem 3.7 below) by solving the convex optimization problem

x# = arg min
Mz=y

(

‖z‖ℓd
1
:=

d∑

i=1

|zi|
)

,

with the error distortion

‖x# − x‖ℓd
1
≤ CσK(x)ℓd

1
,

where σK(x)ℓd
1
= infz:#supp (z)≤K ‖z − x‖ℓd

1
and K = O(k/(log(d/k) + 1)). We de-

note ΣK = {z ∈ Rd : #supp (z) ≤ K} the set of K-sparse vectors, i.e., the union of
K-dimensional coordinate subspaces in R

d. In particular, if x ∈ ΣK , then x# = x.
Hence, not only is M a Johnson-Lindenstrauss embedding, quasi-isometrical on point
clouds and K-dimensional coordinate subspaces, but also allows for the recovery of
the most relevant components of high-dimensional vectors, from low-dimensional en-
coded information. A recent work [4, 59] extends the quasi-isometrical properties of
the Johnson-Lindenstrauss embedding from point clouds and K-dimensional coordi-
nate subspaces to smooth compact Riemannian manifolds with bounded curvature.
Inspired by this work, in [39] the authors extend the principles of compressed sensing
in terms of point recovery on smooth compact Riemannian manifolds.

Besides these relevant results in compressing and coding-decoding high-dimensional
“stationary” data, dimensionality reduction of complex dynamical systems and high-
dimensional partial differential equations is a subject of recent intensive research.
Several tools have been employed, for instance, the use of diffusion maps for dynam-
ical systems [48], tensor product bases and sparse grids for the numerical solution of
linear high-dimensional PDEs [26, 10, 34, 35], the reduced basis method for solving
high-dimensional parametric PDEs [7, 9, 46, 53, 54, 56].
In this paper we shall further explore the connection between data compression and
tractable numerical simulation of dynamical systems. Eventually we address the so-
lutions of associated high-dimensional kinetic equations. We are specially interested
in dynamical systems of the type

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (1.1)

where we use the following notation:
• N ∈ N - number of agents,
• x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , where xi : [0, T ] → Rd, i = 1, . . . , N ,
• fi : R

N×N → Rd, i = 1, . . . , N,
• fij : R

N×N → R, i, j = 1, . . . , N ,
• D : Rd×N → RN×N , Dx := (‖xi − xj‖ℓd

2
)Ni,j=1 is the adjacency matrix of the

point cloud x.
We shall assume that the governing functions fi and fij are Lipschitz, but we shall
specify the details later on. The system (1.1) describes the dynamics of multiple com-
plex agents x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , interacting on the basis of their mutual
“social” distance Dx(t), and its general form includes several models for swarming and
collective motion of animals and micro-organisms, aggregation of cells, etc. Several
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relevant effects can be included in the model by means of the functions fi and fij ,
in particular, fundamental binary mechanisms of attraction, repulsion, aggregation,
self-drive, and alignment [13, 14, 22, 23, 50, 42]. Moreover, possibly adding stochastic
terms of random noise may also allow to consider diffusion effects [8, 14]. How-
ever, these models and motion mechanisms are mostly derived borrowing a leaf from
physics, by assuming the agents (animals, micro-organisms, cells etc.) as pointlike
and exclusively determined by their spatial position and velocity in Rd for d = 3+ 3.
In case we wished to extend such models of social interaction to more “sophisticated”
agents, described by many parameters (d ≫ 3 + 3), the simulation may become com-
putationally prohibitive. Our motivation for considering high-dimensional situations
stems from the modern development of communication technology and Internet, for
which we witness the development of larger and larger communities accessing infor-
mation (interactive databases), services (financial market), social interactions (social
networks) etc. For instance, we might be interested to simulate the behavior of cer-
tain subsets of the financial market where the agents are many investors, who are
characterized by their portfolios of several hundreds of investments. The behavior of
each individual investor depends on the dynamics of others according to a suitable
social distance determined by similar investments. Being able to produce meaningful
simulations and learning processes of such complex dynamics is an issue, which might
be challenged by using suitable compression/dimensionality reduction techniques.
The idea we develop in this paper is to randomly project the system and its initial
condition by Johnson-Lindenstrauss embeddings to a lower-dimensional space where
an independent simulation can be performed with significantly reduced complexity.
We shall show that the use of multiple projections and parallel computations allows
for an approximate reconstruction of the high-dimensional dynamics, by means of
compressed sensing techniques. After we explore the tractable simulation of the dy-
namical systems (1.1) when the dimension d of the parameter space is large, we also
address the issue of whether we can perform tractable simulations when also the num-
ber N of agents is getting very large. Unlike the control of a finite number of agents,
the numerical simulation of a rather large population of interacting agents (N ≫ 0)
can constitute a serious difficulty which stems from the accurate solution of a pos-
sibly very large system of ODEs. Borrowing the strategy from the kinetic theory of
gases [16], we want instead to consider a density distribution of agents, depending on
their d-parameters, which interact with stochastic influence (corresponding to classi-
cal collisional rules in kinetic theory of gases) – in this case the influence is “smeared”
since two individuals may interact also when they are far apart in terms of their
“social distance” Dx. Hence, instead of simulating the behavior of each individual
agent, we shall describe the collective behavior encoded by a density distribution µ,
whose evolution is governed by one sole mesoscopic partial differential equation. We
shall show that, under realistic assumptions on the concentration of the measure µ
on sets of lower dimension, we can also acquire information on the properties of the
high-dimensional measure solution µ of the corresponding kinetic equation, by con-
sidering random projections to lower dimension. Such approximation properties are
determined by means of the combination of optimal numerical integration principles
for the high-dimensional measure µ [33, 36] and the results previously achieved for
particle dynamical systems.
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1.1. Fundamental assumptions. We introduce the following notation for ℓp-
norms of vectors v ∈ Rd,

‖v‖ℓdp :=

(
d∑

i=1

|vi|p
)1/p

for 1 ≤ p < ∞,

and

‖v‖ℓd
∞

:= max
i=1,...,d

|vi|.

For matrices x ∈ Rn×m we consider the mixed norm

‖x‖ℓmp (ℓnq )
:= ‖(‖xi‖ℓnp )mi=1‖ℓmq ,

where xi ∈ Rn is the ith-column of the matrix x.
For the rest of the paper we impose three fundamental assumptions about Lips-

chitz and boundedness properties of fi and fij ,

|fi(a)− fi(b)| ≤ L‖a− b‖ℓN
∞

(ℓN
∞

), i = 1, . . . , N (1.2)

max
i=1,...,N

N∑

j=1

|fij(a)| ≤ L′, (1.3)

max
i=1,...,N

N∑

j=1

|fij(a)− fij(b)| ≤ L′′‖a− b‖ℓN
∞

(ℓN
∞

), (1.4)

for every a, b ∈ RN×N . Unfortunately, models of real-life phenomena would not
always satisfy these conditions, for instance models of financial markets or socio-
economic interactions can be expected to exhibit severely discontinuous behavior.
However, these assumptions are reasonable in certain regimes and allow us to prove
the concept we are going to convey in this paper, i.e., the possibility of simulating
high-dimensional dynamics by multiple independent simulations in low dimension.

1.2. Euler scheme, a classical result of stability and convergence, and
its complexity. We shall consider the system of ordinary differential equations of
the form (1.1) with the initial condition

xi(0) = x0
i , i = 1, . . . , N . (1.5)

The Euler method for this system is given by (1.5) and

xn+1
i := xn

i + h



fi(Dxn) +

N∑

j=1

fij(Dxn)xn
j



 , n = 0, . . . , n0 − 1. (1.6)

where h > 0 is the time step and n0 := T/h is the number of iterations. We consider
here the explicit Euler scheme exclusively for the sake of simplicity, for more sophisti-
cated integration methods might be used. We start with a classical result, which we
report in detail for the sake of the reader, and for simplicity we assume fij = 0 for all
i, j = 1, . . .N .

The simulation of the dynamical system (1.6) has a complexity which is at least
the one of computing the adjacency matrix Dx̃n at each discrete time tn, i.e., O(d×
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N2). The scope of the next sections is to show that, up to an ε-distortion, we can
approximate the dynamics of (1.1) by projecting the system into lower dimension and
by executing in parallel computations with reduced complexity. Computation of the
adjacency matrix in the new dimension requires only O(ε−2 log(N)×N2) operations.
Especially if the distortion parameter ε > 0 is not too small and the number of agents
is of a polynomial order in d, we reduce the complexity of computing the adjacency
matrix to O(log(d) ×N2).

2. Projecting the Euler method: dimensionality reduction of discrete
dynamical systems.

2.1. Johnson-Lindenstrauss embedding. We wish to project the dynamics
of (1.1) into a lower-dimensional space by employing a well-known result of Johnson
and Lindenstrauss [40], which we informally rephrase for our purposes as follows.

Lemma 2.1 (Johnson and Lindenstrauss). Let P be an arbitrary set of N points
in Rd. Given a distortion parameter ε > 0, there exists a constant

k0 = O(ε−2 log(N )),

such that for all integers k ≥ k0, there exists a k × d matrix M for which

(1 − ε)‖x− x̃‖2ℓd
2

≤ ‖Mx−Mx̃‖2ℓk
2

≤ (1 + ε)‖x− x̃‖2ℓd
2

, (2.1)

for all x, x̃ ∈ P. It is easy to see that the condition

(1− ε)‖p‖2ℓd
2

≤ ‖Mp‖2ℓk
2

≤ (1 + ε)‖p‖2ℓd
2

, p ∈ R
d, (2.2)

implies

(1− ε)‖p‖ℓd
2
≤ ‖Mp‖ℓk

2
≤ (1 + ε)‖p‖ℓd

2
, p ∈ R

d, (2.3)

for 0 < ε < 1, which will be used in the following sections. On the other hand, (2.3)
implies (2.2) with 3ε instead of ε.

Our aim is to apply this lemma to dynamical systems. As the mapping M from
Lemma 2.1 is linear and almost preserves distances between the points (up to the
ε > 0 distortion as described above), we restrict ourselves to dynamical systems
which are linear or whose non-linearity depends only on the mutual distances of the
points involved, as in (1.1).

Let us define the additional notation, which is going to be fixed throughout the
paper:

• d ∈ N - dimension (large),
• ε > 0 - the distortion parameter from Lemma 2.1,
• k ∈ N - new dimension (small),
• M ∈ Rk×d - randomly generated matrix as described below.

The only constructions of a matrix M as in Lemma 2.1 known up to now are
stochastic, i.e., the matrix is randomly generated and has the quasi-isometry property
(2.1) with high probability. We refer the reader to [25] and [1, Theorem 1.1] for two
typical versions of the Johnson-Lindenstrauss Lemma.

We briefly collect below some well-known instances of random matrices, which
satisfy the statement of Lemma 2.1 with high probability:

• k×d matrices M whose entries mi,j are independent realizations of Gaussian
random variables

mi,j ∼ N
(

0,
1

k

)

;
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• k × d matrices M whose entries are independent realizations of ± Bernoulli
random variables

mi,j :=

{

+ 1√
k
, with probability 1

2

− 1√
k
, with probability 1

2

Several other random projections suitable for Johnson-Lindenstrauss embeddings
can be constructed following Theorem 3.6 recalled below, and we refer the reader to
[44] for more details.

2.2. Uniform estimate for a general model. If M ∈ Rk×d is a matrix, we
consider the projected Euler method in Rk associated to the high-dimensional system
(1.5)-(1.6), namely

y0i := Mx0
i , (2.4)

yn+1
i := yni + h



Mfi(D′yn) +
N∑

j=1

fij(D′yn)ynj



 , n = 0, . . . , n0 − 1. (2.5)

We denote here D′ : Rk×N → RN×N , D′y := (‖yi − yj‖ℓk
2
)Ni,j=1, the adjacency matrix

of the agents y = (y1, . . . , yN) in Rk×N . The first result of this paper reads as follows.

Theorem 2.2. Let the sequences

{xn
i , i = 1, . . . , N and n = 0, . . . , n0} and {yni , i = 1, . . . , N and n = 0, . . . , n0}

be defined by (1.5)-(1.6) and (2.4)-(2.5) with fi and fij satisfying (1.2)–(1.4) and a
matrix M ∈ Rk×d with

‖Mfi(D′yn)−Mfi(Dxn)‖ℓk
2
≤ (1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd

2
, (2.6)

‖Mxn
j ‖ℓk2 ≤ (1 + ε)‖xn

j ‖ℓd2 , (2.7)

(1 − ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i −Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
(2.8)

for all i, j = 1, . . . , N and all n = 0, . . . , n0. Moreover, let us assume that

α ≥ max
j

‖xn
j ‖ℓd2 for all n = 0, . . . , n0, j = 1, . . . , N. (2.9)

Let

eni := ‖yni −Mxn
i ‖ℓk2 , i = 1, . . . , N and n = 0, . . . , n0 (2.10)

and set En := maxi e
n
i . Then

En ≤ εhnB exp(hnA), (2.11)

where A := L′ + 2(1 + ε)(L+ αL′′) and B := 2α(1 + ε)(L + αL′′).
We remark that conditions (2.6)-(2.8) are in fact satisfied as soon as M is a

suitable Johnson-Lindenstrauss embedding as in Lemma 2.1, for the choiceN = 2Nn0

and k = O(ε−2 log(N )).
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Proof. Using (2.10) and (1.5)-(1.6) and (2.4)-(2.5) combined with (2.6) and (2.7),
we obtain

en+1
i ≤ eni + h ‖Mfi(D′yn)−Mfi(Dxn)‖ℓk

2
+ h

∥
∥
∥
∥
∥
∥

N∑

j=1

fij(D′yn)ynj − fij(Dxn)Mxn
j

∥
∥
∥
∥
∥
∥
ℓk
2

≤ eni + h(1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ h

N∑

j=1

(

‖fij(D′yn)ynj − fij(D′yn)Mxn
j ‖ℓk

2
+ ‖fij(D′yn)Mxn

j − fij(Dxn)Mxn
j ‖ℓk

2

)

≤ eni + h(1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ h
N∑

j=1

(

|fij(D′yn)|enj + (1 + ε)‖xn
j ‖ℓd

2
· |fij(D′yn)− fij(Dxn)|

)

.

Taking the maximum on both sides, this becomes

En+1 ≤ En + h(1 + ε)max
i

‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ hEn max
i

N∑

j=1

|fij(D′yn)|+ h(1 + ε)α ·max
i

N∑

j=1

|fij(D′yn)− fij(Dxn)|.

We use (1.2)–(1.4) for a = D′yn and b = Dxn to estimate all the terms on the
right-hand side. This gives

En+1 ≤ En + h(1 + ε)L‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

) + hEnL′ + h(1 + ε)αL′′‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

≤ En(1 + hL′) + h(1 + ε)(L + αL′′)
[
‖D′yn −D′Mxn‖ℓN

∞
(ℓN

∞
) + ‖D′Mxn −Dxn‖ℓN

∞
(ℓN

∞
)

]

≤ En(1 + hL′) + 2h(1 + ε)(L+ αL′′)(En + αε),

where we used (2.8) in the last line. This, together with E0 = 0, leads to

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L+ αL′′) and B := 2α(1 + ε)(L+ αL′′).

2.3. Uniform estimate for the Cucker-Smale model. As a relevant exam-
ple, let us now show that Theorem 2.2 can be applied to the well-known Cucker-Smale
model, introduced and analyzed in [22, 23], which is described by

ẋi = vi ∈ R
d, (2.12)

v̇i =
1

N

N∑

j=1

g(‖xi − xj‖ℓd
2
)(vj − vi), i = 1, . . . , N. (2.13)

The function g : [0,∞) → R is given by g(s) = G
(1+s2)β , for β > 0, and bounded by

g(0) = G > 0. This model describes the emerging of consensus in a group of interacting
agents, trying to align (also in terms of abstract consensus) with their neighbors. One
of the motivations of the model from Cucker and Smale was to describe the formation
and evolution of languages [23, Section 6], although, due to its simplicity, it has been
eventually related mainly to the description of the emergence of flocking in groups of
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birds [22]. In the latter case, in fact, spatial and velocity coordinates are sufficient to
describe a pointlike agent (d = 3+3), while for the evolution of languages, one would
have to take into account a much broader dictionary of parameters, hence a higher
dimension d ≫ 3 + 3 of parameters, which is in fact the case of our interest in the
present paper.

Let us show that the model is indeed of the type (1.1). We interprete the system
as a group of 2N agents in Rd, whose dynamics is given by the following equations

ẋi =

N∑

j=1

fx
ijvj ∈ R

d,

v̇i =

N∑

j=1

fv
ij(Dx)vj , i = 1, . . . , N

with fx
ij := δij , f

v
ii(Dx) := − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
), and fv

ij(Dx) :=
1

N
g(‖xi − xj‖ℓd

2
),

for i 6= j. The condition (1.2) is empty, (1.3) reads

L′ ≥ max(1, 2G) ≥ max
i

{

1,
2

N

N∑

k=1

g(‖xn
i − xn

k‖ℓd2 )
}

.

Finally,

max
i

2

N

N∑

j=1

∣
∣
∣g(‖xn

i − xn
j ‖ℓd

2
)− g(‖yni − ynj ‖ℓk

2
)
∣
∣
∣

≤ max
i

2‖g‖Lip
N

·
N∑

j=1

∣
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣
∣

≤ 2‖g‖Lip · ‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

shows that L′′ ≤ 2‖g‖Lip. The boundedness of the trajectories in the phase-space of
(2.12)-(2.13) at finite time has been proved, for instance, in [37], see also [13, Theorem
4.6]. The boundedness at finite time is clearly sufficient to define the constant α
appearing in Theorem 2.2, also because we are mainly interested in the dynamics
for short time, due to the error propagation. Of course the constant α might grow
with time, but, for instance, for the Cucker-Smale system it grows at most linearly
in time [14]; as in the error estimate (2.11) we have an exponential function in time
appearing, the possible linear growth can be considered a negligible issue; moreover,
as our numerical experiments show, see Section 3.5, the situation is much better
in practice, and suitable scaling, as indicated below, allows us to assume in several
circumstances that the constant α is uniformly bounded for all times. In fact, even
when we were interested in longer time or even asymptotical behavior, especially when
pattern formation is expected, then we would observe the following additional facts:
In the Cucker-Smale model the center of mass and the mean velocity are invariants
of the dynamics. Moreover the rate of communication between particles is given by
g(s) = G

(1+s2)β
. When β ≤ 1/2 it is know (see [14]) that the dynamics will converge

to a flocking configuration. In this case one can translate at the very beginning the
center of mass and the mean velocity to 0, and the system will keep bounded for all
times. Hence in this case the constant α can also be considered uniform for all times
(not only bounded at finite time).
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2.4. Least-squares estimate of the error for the Cucker-Smale model.
The formula (2.11) provides the estimate of the maximum of the individual errors, i.e.,
En := ‖(yni −Mxn

i )
N
i=1‖ℓN

∞
(ℓk

2
). In this section we address the stronger ℓN2 (ℓk2)-estimate

for the error. For generic dynamical systems (1.1) such estimate is not available in
general, and one has to perform a case-by-case analysis. As a typical example of
how to proceed, we restrict ourselves to the Cucker-Smale model, just recalled in the
previous section. The forward Euler discretization of (2.12)–(2.13) is given by

xn+1
i = xn

i + hvni , (2.14)

vn+1
i = vni +

h

N

N∑

j=1

g(‖xn
i − xn

j ‖ℓd
2
)(vnj − vni )

with initial data x0
i and v0i given. Let M be again a suitable random matrix in the

sense of Lemma 2.1. The Euler method of the projected system is given by the initial
conditions y0i = Mx0

i and w0
i = Mv0i and the formulas

yn+1
i = yni + hwn

i , (2.15)

wn+1
i = wn

i +
h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(wn

j − wn
i ).

We are interested in the estimates of the following quantities

enx,i := ‖yni −Mxn
i ‖ℓk2 , En

x :=

√
√
√
√ 1

N

N∑

i=1

(enx,i)
2 =

‖(yni −Mxn
i )

N
i=1‖ℓN2 (ℓk

2
)√

N
, (2.16)

env,i := ‖wn
i −Mvni ‖ℓk

2
, En

v :=

√
√
√
√ 1

N

N∑

i=1

(env,i)
2 =

‖(wn
i −Mvni )

N
i=1‖ℓN2 (ℓk

2
)√

N
. (2.17)

Theorem 2.3. Let the sequences {xn
i }, {vni }, {yni }, {wn

i }, {enx,i} and {env,i}, i =
1, . . . , N and n = 1, . . . , n0 be given by (2.14), (2.15), (2.16) and (2.17), respectively.
Let ε > 0 and let us assume, that the matrix M satisfies

(1− ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i −Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
and

(1− ε)‖vni − vnj ‖ℓd
2
≤ ‖Mvni −Mvnj ‖ℓk

2
≤ (1 + ε)‖vni − vnj ‖ℓd

2

for all i, j = 1, . . . , N and n = 0, . . . , n0.
Then the error quantities En

x and En
y introduced in (2.16) and (2.17) satisfy

√

(En
x )

2 + (En
v )

2 ≤ ε(1 + ε)hn‖g‖LipV X exp(hn‖A‖), (2.18)

where V := maxi,j,n ‖vni − vnj ‖ℓd2 , X := maxi,j,n ‖xn
i − xn

j ‖ℓd2 and

A =

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Proof. Using (2.14) and (2.15), we obtain

en+1
x,i ≤ enx,i + henv,i and En+1

x ≤ En
x + hEn

v .
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To bound the quantity En
v we have to work more. We add and subtract the term

g(‖yni − ynj ‖ℓk2 )(Mvnj −Mvni ) and apply (2.14) and (2.15). This leads to

en+1
v,i ≤ env,i +

h

N

N∑

j=1

(

‖g(‖yni − ynj ‖ℓk
2
)(wn

j − wn
i )± g(‖yni − ynj ‖ℓk

2
)(Mvnj −Mvni )

− g(‖xn
i − xn

j ‖ℓd
2
)(Mvnj −Mvni )‖ℓk

2

)

≤ env,i +
h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(env,j + env,i) (2.19)

+
(1 + ε)h‖g‖Lip

N
·

N∑

j=1

‖vnj − vni ‖ℓd
2
·
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣.

We estimate the first summand in (2.19)

h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(env,j + env,i) ≤

hG

N

[
Nenv,i +

N∑

j=1

env,j
]
= hGenv,i +

hG

N

N∑

j=1

env,j

and its ℓ2-norm with respect to i by Hölder’s inequality

h
√
NGEn

v +
hG

N

(
N∑

i=1

( N∑

j=1

env,j

)2
)1/2

≤ 2h
√
NGEn

v . (2.20)

To estimate the second summand in (2.19) we make use of
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣

≤
∣
∣‖xn

i − xn
j ‖ℓd2 − ‖Mxn

i −Mxn
j ‖ℓk2

∣
∣+
∣
∣‖Mxn

i −Mxn
j ‖ℓk2 − ‖yni − ynj ‖ℓk2

∣
∣

≤ ε‖xn
i − xn

j ‖ℓd2 + enx,i + enx,j.

We arrive at

(1 + ε)h‖g‖Lip
N

N∑

j=1

‖vnj − vni ‖ℓd2 (ε‖x
n
i − xn

j ‖ℓd2 + enx,i + enx,j)

≤ (1 + ε)h‖g‖LipV
N

{

ε

N∑

j=1

‖xn
i − xn

j ‖ℓd
2
+Nenx,i +

N∑

j=1

enx,j

}

.

The ℓ2-norm of this expression with respect to i is bounded by

(1 + ε)h‖g‖LipV
N






ε
( N∑

i=1

( N∑

j=1

‖xn
i − xn

j ‖ℓd2
)2)1/2

+N
( N∑

i=1

(enx,i)
2
)1/2

+
√
N

N∑

j=1

enx,j







≤ (1 + ε)h‖g‖LipV
√
N(εX + 2En

x ). (2.21)

Combining (2.19) with (2.20) and (2.21) leads to the recursive estimate

En+1
x ≤ En

x + hEn
v , (2.22)

En+1
v ≤ En

v + 2hGEn
v + h(1 + ε)‖g‖LipV {εX + 2En

x } ,
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which we put into the matrix form
(
En+1
x

En+1
v

)

≤ A′
(
En
x

En
v

)

+

(
0

(1 + ε)εh‖g‖LipV X

)

, (2.23)

where A′ is a 2× 2 matrix given by

A′ = Id+ hA :=

(
1 0
0 1

)

+ h

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Taking the norms on both sides of (2.23) leads to

√

(En+1
x )2 + (En+1

v )2 ≤ (1 + h‖A‖)
√

(En
x )

2 + (En
v )

2 + ε(1 + ε)h‖g‖LipV X,

which gives the least-squares error estimate (2.18).

3. Dimensionality reduction for continuous dynamical systems.

3.1. Uniform estimates for continuous dynamical systems. In this section
we shall establish the analogue of the above results for the continuous time setting of
dynamical systems of the type (1.1),

ẋi = fi(Dx) +

N∑

j=1

fij(Dx)xj , i = 1, . . . , N , (3.1)

xi(0) = x0
i , i = 1, . . . , N . (3.2)

We adopt again the assumptions about Lipschitz continuity and boundedness of the
right-hand side made in Section 2, namely (1.2), (1.3) and (1.4).

Theorem 3.1. Let x(t) ∈ Rd×N , t ∈ [0, T ], be the solution of the system (3.1)–
(3.2) with fi’s and fij’s satisfying (1.2)–(1.4), such that

max
t∈[0,T ]

max
i,j

‖xi(t)− xj(t)‖ℓd
2
≤ α . (3.3)

Let us fix k ∈ N, k ≤ d, and a matrix M ∈ Rk×d such that

(1− ε)‖xi(t)− xj(t)‖ℓd
2
≤ ‖Mxi(t)−Mxj(t)‖ℓk

2
≤ (1 + ε)‖xi(t)− xj(t)‖ℓd

2
,(3.4)

for all t ∈ [0, T ] and i, j = 1, . . . , N . Let y(t) ∈ Rk×N , t ∈ [0, T ] be the solution of
the projected system

ẏi = Mfi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N , (3.5)

such that for a suitable β > 0,

max
t∈[0,T ]

‖y(t)‖ℓN
∞

(ℓd
2
) ≤ β . (3.6)

Let us define the column-wise ℓ2-error ei(t) := ‖yi−Mxi‖ℓk
2
for i = 1, . . . , N and

E(t) := max
i=1,...,N

ei(t) = ‖y −Mx‖ℓN
∞

(ℓk
2
) .
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Then we have the estimate

E(t) ≤ εαt(L ‖M‖+ L′′β) exp [(2L ‖M‖+ 2βL′′ + L′)t] . (3.7)

Proof. Due to (1.2)–(1.4), we have for every i = 1, . . . , N the estimate

d

dt
ei =

〈yi −Mxi,
d
dt (yi −Mxi)〉

‖yi −Mxi‖ℓk
2

≤
∥
∥
∥
∥

d

dt
(yi −Mxi)

∥
∥
∥
∥
ℓk
2

≤ ‖Mfi(D′y)−Mfi(Dx)‖ℓk
2
+

N∑

j=1

‖fij(D′y)yj − fij(Dx)Mxj‖ℓk
2

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) +
N∑

j=1

(

‖fij(Dx)(Mxj − yj)‖ℓk
2
+ ‖(fij(Dx) − fij(D′y))yj‖ℓk

2

)

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) + L′ ‖Mx− y‖ℓN
∞

(ℓk
2
) + L′′ ‖Dx−D′y‖ℓN

∞
(ℓN

∞
) ‖y‖ℓN

∞
(ℓk

2
) .

The term ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) ≤ ‖D′y −D′Mx‖ℓN
∞

(ℓN
∞

) + ‖D′Mx−Dx‖ℓN
∞

(ℓN
∞

) is esti-
mated by

‖D′y −DMx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖yi − yj‖ℓk

2
− ‖Mxi −Mxj‖ℓk

2

∣
∣
∣
∣

≤ max
i,j

‖yi −Mxi‖ℓk
2
+ ‖yj −Mxj‖ℓk

2
≤ 2E(t) ,

and, using the assumption (3.4),

‖D′Mx−Dx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖Mxi −Mxj‖ℓk

2
− ‖xi − xj‖ℓd

2

∣
∣
∣
∣
≤ εmax

i,j
‖xi − xj‖ℓk

2
= ε ‖Dx‖ℓN

∞
(ℓN

∞
) .

Finally, by the a priori estimate (3.3) for ‖Dx‖ℓN
∞

(ℓN
∞

) and (3.6) for ‖y‖ℓN
∞

(ℓd
2
), we

obtain

d

dt
ei ≤ L ‖M‖ (2E(t) + εα) + L′E(t) + L′′β(2E(t) + εα)

= (2L ‖M‖+ 2βL′′ + L′)E(t) + εα(L ‖M‖+ L′′β) .

Now, let us split the interval [0, T ) into a union of finite disjoint intervals Ij =
[tj−1, tj), j = 1, . . . ,K for a suitable K ∈ N, such that E(t) = ei(j)(t) for t ∈ Ij .
Consequently, on every Ij we have

d

dt
E(t) = d

dt
ei(j)(t) ≤ (2L ‖M‖+ 2βL′′ + L′)E(t) + εα(L ‖M‖+ L′′β) ,

and the Gronwall lemma yields

E(t) ≤ [εα(L ‖M‖+ L′′β)(t− tj−1) + E(tj−1)] exp ((2L ‖M‖+ 2βL′′ + L′)(t− tj−1))

for t ∈ [tj−1, tj). A concatenation of these estimates over the intervals Ij leads finally
to the expected error estimate

E(t) ≤ εαt(L ‖M‖+ L′′β) exp [(2L ‖M‖+ 2βL′′ + L′)t] .
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3.2. A continuous Johnson-Lindenstrauss Lemma. Let us now go through
the assumptions we made in the formulation of Theorem 3.1 and discuss how they re-
strict the validity and applicability of the result. First of all, let us mention that (3.3)
and (3.6) can be easily proven to hold for locally Lipschitz right-hand sides fi and
fij on finite time intervals. Obviously, the critical point for the applicability of The-
orem 3.1 is the question how to find a matrix M satisfying the condition (3.4), i.e.,
being a quasi-isometry along the trajectory solution x(t) for every t ∈ [0, T ]. The an-
swer is provided by the following generalization of the Johnson-Lindenstrauss Lemma
(Lemma 2.1) for rectifiable C1-curves, by a suitable continuity argument. Let us
stress that our approach resembles the “sampling and ǫ-net” argument in [3, 4, 59] for
the extension of the quasi-isometry property of Johnson-Lindenstrauss embeddings to
smooth Riemmanian manifolds. From this point of view the following result can be
viewed as a specification of the work [4, 59].
We first prove an auxiliary technical result:

Lemma 3.2. Let 0 < ε < ε′ < 1, a ∈ Rd and let M : Rd → Rk be a linear
mapping such that

(1− ε)‖a‖ℓd
2
≤ ‖Ma‖ℓk

2
≤ (1 + ε)‖a‖ℓd

2
.

Let x ∈ Rd satisfy

‖a− x‖ ≤
(ε′ − ε)‖a‖ℓd

2

‖M‖+ 1 + ε′
. (3.8)

Then

(1 − ε′)‖x‖ℓd
2
≤ ‖Mx‖ℓk

2
≤ (1 + ε′)‖x‖ℓd

2
. (3.9)

Proof. If a = 0, the statement is trivial. If a 6= 0, we denote the right-hand side
of (3.8) by τ > 0 and estimate by the triangle inequality

‖Mx‖ℓk
2

‖x‖ℓd
2

=
‖M(x− a) +Ma‖ℓk

2

‖x− a+ a‖ℓd
2

≤
‖M‖ · ‖x− a‖ℓd

2
+ (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− ‖x− a‖ℓd

2

≤
‖M‖ · τ + (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− τ

≤ 1 + ε′ .

A similar chain of inequalities holds for the estimate from below.
Now we are ready to establish a continuous version of Lemma 2.1.
Theorem 3.3. Let ϕ : [0, 1] → Rd be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞ and N ≥ (
√
d+ 2) · γ

ε′ − ε
.

Let k be such that a randomly chosen (and properly normalized) projector M satisfies
the statement of the Johnson-Lindenstrauss Lemma 2.1 with ε, d, k and N arbitrary
points with high probability. Without loss of generality we assume that ‖M‖ ≤

√

d/k
within the same probability (this is in fact the case, e.g., for the examples of Gaussian
and Bernoulli random matrices reported in Section 2).

Then

(1− ε′)‖ϕ(t)‖ℓd
2
≤ ‖Mϕ(t)‖ℓk

2
≤ (1 + ε′)‖ϕ(t)‖ℓd

2
, for all t ∈ [0, 1] (3.10)
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holds with the same probability.

Proof. Let ti = i/N , i = 0, . . . ,N and put

Ti := arg maxξ∈[ti,ti+1]‖ϕ′(ξ)‖ℓd
2
, i = 0, . . . ,N − 1.

Let M : Rd → Rk be the randomly chosen and normalized projector (see Lemma 2.1).
Hence ‖M‖ ≤

√

d/k and

(1− ε′)‖ϕ(Ti)‖ℓd
2
≤ ‖M(ϕ(Ti))‖ℓk

2
≤ (1 + ε′)‖ϕ(Ti)‖ℓd

2
, i = 1, . . . ,N (3.11)

with high probability. We show that (3.10) holds with (at least) the same probability.

This follows easily from (3.11) and the following estimate, which holds for every
t ∈ [ti, ti+1],

‖ϕ(t)− ϕ(Ti)‖ℓd
2
≤
∫ Ti

t

‖ϕ′(s)‖ℓd
2
ds ≤

‖ϕ′(Ti)‖ℓd
2

N ≤
‖ϕ′(Ti)‖ℓd

2
(ε′ − ε)

γ(
√
d+ 2)

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

√
d+ 2

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

‖M‖+ 1 + ε′
.

The proof is then finished by a straightforward application of Lemma 3.2.
Remark 1. We show now that the condition

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞

is necessary, hence it is a restriction to the type of curves one can quasi-isometrically
project. Let d ≥ 3. It is known that there is a continuous curve ϕ : [0, 1] → [0, 1]d−1,
such that ϕ([0, 1]) = [0, 1]d−1, i.e., ϕ goes onto [0, 1]d−1. The construction of such a
space-filling curve goes back to Peano and Hilbert. After a composition with suitable
dilations and d-dimensional spherical coordinates we observe that there is also a sur-
jective continuous curve ϕ : [0, 1] → Sd−1, where Sd−1 denotes the ℓd2 unit sphere in
Rd.

As M was supposed to be a projection, (3.10) cannot hold for all t’s with ϕ(t) ∈
ker M 6= ∅.

Obviously, the key condition for applicability of Theorem 3.3 for finding a pro-
jection matrix M satisfying (3.4) is that

sup
t∈[0,T ]

max
i,j

‖ẋi − ẋj‖ℓd
2

‖xi − xj‖ℓd
2

≤ γ < ∞ . (3.12)

This condition is, for instance, trivially satisfied when the right-hand sides fi’s and
fij ’s have the following Lipschitz continuity:

‖fi(Dx) − fj(Dx)‖ℓd
2
≤ L′′′‖xi − xj‖ℓd

2
for all i, j = 1, . . . , N ,

|fi,k(Dx) − fj,k(Dx)| ≤ L′′′′‖xi − xj‖ℓd
2

for all i, j, k = 1, . . . , N.

We will show in the examples below how condition (3.12) is verified in cases of dynami-
cal systems modeling standard social mechanisms of attraction, repulsion, aggregation
and alignment.
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3.3. Applicability to relevant examples of dynamical systems describ-
ing social dynamics. In this section we show the applicability of our dimensionality
reduction theory to well-known dynamical systems driven by “social forces” of align-
ment, attraction, repulsion and aggregation. Although these models were proposed as
descriptions of group motion in physical space, the fundamental social effects can be
considered as building blocks in the more abstract context of many-parameter social
dynamics. It has been shown [14, 50] that these models are able to produce meaning-
ful patterns, for instance mills in two spatial dimensions (see Figure 3.1), reproducing
the behavior of certain biological species. However, we should expect that in higher

Fig. 3.1. Mills in nature and in models

dimension the possible patterns produced by the combination of fundamental effects
can be much more complex.

3.3.1. The Cucker-Smale system (alignment effect). As shown in Sec-
tion 2, the Cucker and Smale flocking model (2.12)–(2.13) is of the type (1.1), satisfies
the Lipschitz continuity assumptions (1.2)–(1.4), and it is bounded at finite time, as
already discussed in Section 2.3. Therefore, to meet all the assumptions of Theo-
rem 3.1, we only need to check that it also satisfies the condition (3.12). However,
for this we need to consider a slightly different framework than in Section 2.3; instead
of considering the 2N d-dimensional variables (N position variables and N velocity
variables), we need to arrange the model as N variables in R2d, each variable consist-
ing of the position part (first d entries) and of the velocity part (the other d entries).
We have then

‖ẋi − ẋj‖ℓd
2
+ ‖v̇i − v̇j‖ℓd

2
≤ ‖vi − vj‖ℓd

2
+

1

N

N∑

k=1

∣
∣g(‖xi − xk‖ℓd

2
)− g(‖xj − xk‖ℓd

2
)
∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2
+

‖g‖Lip

N

N∑

k=1

∣
∣‖xi − xk‖ℓd

2
− ‖xj − xk‖ℓd

2

∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2
+

‖g‖Lip

N

(
N∑

k=1

‖vk‖ℓd
2

)

‖xi − xj‖ℓd
2

≤ ‖vi − vj‖ℓd
2
+ c‖xi − xj‖ℓd

2
,

for a suitable constant c depending on the initial data. We used here the a-priori

boundedness of the term 1
N

(
∑N

k=1 ‖vk‖ℓd2
)

, see [23] or [38] for details. Consequently,
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we can satisfy (3.12) with γ = max(1, c).

3.3.2. Second order dynamic model with self-propulsion and pairwise
interactions (self-drive, attraction, and repulsion effects). Another practi-
cally relevant model which fits into the class given by (1.1) is a second order dynamic
model with self-propulsion and pairwise interactions, [45, 50]:

ẋi = vi , (3.13)

v̇i = (a− b‖vi‖2ℓd
2

)vi −
1

N

∑

j 6=i

∇xi
U(‖xi − xj‖ℓd

2
) , i = 1, . . . , N, (3.14)

where a and b are positive constants and U : [0,∞) → R is a smooth potential. We
denote u(s) = U ′(s)/s and assume that u is a bounded, Lipschitz continuous function.
We again arrange the model as a system ofN variables in R

2d, each variable consisting
of the position part (first d entries) and of the velocity part (the other d entries).
Consequently, the model can be put into a form compliant with (1.1) as follows:

ẋi =

N∑

j=1

fxv
ij vj ,

v̇i =

N∑

j=1

fvv
ij (Dv)vj +

N∑

j=1

fvx
ij (Dx)xj ,

with fxv
ij = δij , f

vx
ii (Dx) = − 1

N

∑

j 6=i u(‖xi − xj‖ℓd
2
) and fvx

ij (Dx) = 1
N u(‖xi − xj‖ℓd

2
)

for i 6= j. Moreover, we may set fvv
ij (Dv) = δij(a−b‖vi‖2ℓd

2

) by introducing an auxiliary,

noninfluential constant zero particle (x0, v0) = (0, 0) with null dynamics, i.e., f∗⋆
0 = 0

and f∗⋆
0j = 0, where ∗, ⋆ ∈ {x, v}. Then, (1.2) is void, while (1.3) is satisfied by

max
i

∑

j

(|fxv
ij (Dx,Dv)| + |fvx

ij (Dx,Dv)| + |fvv
ij (Dx,Dv)|)

≤ 1 + a+ bmax
i

‖vi‖2ℓd
2

+ 2 ‖u‖L∞

≤ L′ ,

since the theory provides an apriori bound on βv := supt∈[0,T ] maxi ‖vi‖ℓd
2
, see [50].

Condition (1.4) for fxv
ij is void, while for fvv

ij it is satisfied by

max
i

∑

j

∣
∣fvv

ij (Dv)− fvv
ij (Dw)

∣
∣ ≤ bmax

i

∣
∣
∣‖vi‖2ℓd

2

− ‖wi‖2ℓd
2

∣
∣
∣

≤ bmax
i

(

‖vi‖ℓd
2
+ ‖wi‖ℓd

2

)

‖vi − wi‖ℓd
2

≤ L′′ ‖Dv −Dw‖ℓN
∞

(ℓN
∞

) ,

where we again use the apriori boundedness of βv. For f
vx
ij is (1.4) satisfied by

max
i

∑

j

∣
∣fvx

ij (Dx) − fvx
ij (Dy)

∣
∣ ≤ max

i

2

N

∑

j 6=i

∣
∣
∣u(‖xi − xj‖ℓd

2
)− u(‖yi − yj‖ℓd

2
)
∣
∣
∣

≤ max
i

2

N
‖u‖Lip

∑

j 6=i

∣
∣
∣‖xi − xj‖ℓd

2
− ‖yi − yj‖ℓd

2

∣
∣
∣

≤ 2 ‖u‖Lip ‖Dx−Dy‖ℓN
∞

(ℓN
∞

) .
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Finally, it can be easily checked that condition (3.12) is satisfied by

‖ẋi − ẋj‖ℓd
2
+ ‖v̇i − v̇j‖ℓd

2
≤ (1 + a+ 3bβ2

v)‖vi − vj‖ℓd
2
+
(

‖u‖L∞

+ 2βx ‖u‖Lip
)

‖xi − xj‖ℓd
2
,

where βx := supt∈[0,T ]maxi ‖xi‖ℓd
2
. We notice that also this model is bounded at

finite time as shown in [13, Theorem 3.10 (formula (22))], and therefore for any
fixed horizon time T , there is a constant α = α(T ) > 0 such that (2.9) and (3.3)
hold. In the paper [50] it is shown that this model tends to produce patterns of
different quality, in particular mills, double mills, and translating crystalline flocks
(see also Figure 3.1). These patterns were further studied in [15]. Starting from the
Liouville equation for the many-body problem the authors derive the corresponding
kinetic and macroscopic hydrodynamic equations. The kinetic theory approach leads
to the identification of macroscopic structures otherwise not recognized as solutions
of the hydrodynamic equations, such as double mills of two superimposed flows. The
authors found conditions allowing for the existence of such solutions and compared
them to the case of single mills. In [17] the authors utilize the methods of classical
statistical mechanics to connect the individual-based models of the type (3.13)–(3.14)
to their continuum formulations and determine criteria for the validity of the latter.
They show that H-stability of the interaction potential plays a fundamental role in
determining both the validity of the continuum approximation and the nature of
the aggregation state transitions. They perform a linear stability analysis of the
continuum model and compare the results to the simulations of the individual-based
one.

Without entering into further details, let us stress that mills and double mills are
uniformly bounded in time (and stable). Hence in these cases, we can assume that
actually the constant α is again bounded for all times. Moreover, when the dynamics
converges to a translating crystalline flocks, we may reason in a similar way as done
for the Cucker-Smale model (although in this case the pattern in unstable).

3.4. Recovery of the dynamics in high dimension from multiple simula-
tions in low dimension. The main message of Theorem 3.1 is that, under suitable
assumptions on the governing functions fi, fij , the trajectory of the solution y(t) of the
projected dynamical system (3.5) is at an ε error from the trajectory of the projection
of the solution x(t) of the dynamical system (3.1)-(3.2), i.e.,

yi(t) ≈ Mxi(t) or, more precisely, ‖Mxi(t)− yi(t)‖ℓk
2
≤ C(t)ε, t ∈ [0, T ]. (3.15)

We wonder whether this approximation property can allow us to “learn” proper-
ties of the original trajectory x(t) in high dimension.

3.4.1. Optimal information recovery of high-dimensional trajectory from
low-dimensional projections. In this section we would like to address the following
two fundamental questions:

(i) Can we quantify the best possible information of the high-dimensional tra-
jectory one can recover from one or more projections in lower dimension?

(ii) Is there any practical method which performs an optimal recovery?
The first question was implicitly addressed already in the 70’s by Kashin and later
by Garnaev and Gluskin [41, 32], as one can put in relationship the optimal recovery
from linear measurements with Gelfand width of ℓp-balls, see for instance [18]. It was
only with the development of the theory of compressed sensing [12, 27] that an answer
to the second question was provided, showing that ℓ1-minimization actually performs
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an optimal recovery of vectors in high dimension from random linear projections to
low dimension. We address the reader to [31, Section 3.9] for further details. In
the following we concisely recall the theory of compressed sensing and we apply it to
estimate the optimal information error in recovering the trajectories in high dimension
from lower dimensional simulations.

Again a central role here is played by (random) matrices with the so-called Re-
stricted Isometry Property RIP, cf. [11].

Definition 3.4 (Restricted Isometry Property). A k × d matrix M is said to
have the Restricted Isometry Property of order K ≤ d and level δ ∈ (0, 1) if

(1− δ)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + δ)‖x‖2ℓd
2

for all K-sparse x ∈ ΣK = {z ∈ R
d : #supp (z) ≤ K}.

Both the typical matrices used in Johnson-Lindenstrauss embeddings (cf. Lemma
2.1) and matrices with RIP used in compressed sensing are usually generated at
random. It was observed by [3] and [44], that there is an intimate connection between
these two notions. A simple reformulation of the arguments of [3] yields the following.

Theorem 3.5 (Baraniuk, Davenport, DeVore, and Wakin). Let M be a k × d
matrix drawn at random which satisfies

(1− δ/2)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + δ/2)‖x‖2ℓd
2

, x ∈ P

for every set P ⊂ Rd with #P ≤
(
12ed
δK

)K
with probability 0 < ν < 1. Then M

satisfies the Restricted Isometry Property of order K and level δ/3 with probability at
least equal to ν.

Combined with several rather elementary constructions of Johnson-Lindenstrauss
embedding matrices available in literature, cf. [1] and [25], this result provides a simple
construction of RIP matrices. The converse direction, namely the way from RIP
matrices to matrices suitable for Johnson-Lindenstrauss embedding was discovered
only recently in [44].

Theorem 3.6 (Krahmer and Ward). Fix η > 0 and ε > 0, and consider a finite
set P ⊂ Rd of cardinality |P| = N . Set K ≥ 40 log 4N

η , and suppose that the k × d

matrix M̃ satisfies the Restricted Isometry Property of order K and level δ ≤ ε/4.
Let ξ ∈ Rd be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}d . Then
with probability exceeding 1− η,

(1− ε)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + ε)‖x‖2ℓd
2

.

uniformly for all x ∈ P, where M := M̃ diag(ξ), where diag(ξ) is a d × d diagonal
matrix with ξ on the diagonal.

We refer to [51] for additional details.
Remark 2. Notice that M as constructed in Theorem 3.6 is both a Johnson-

Lindenstrauss embedding and a matrix with RIP, because

(1− δ)‖x‖2ℓd
2

= (1− δ)‖ diag(ξ)x‖2ℓd
2

≤ ‖ M̃ diag(ξ)
︸ ︷︷ ︸

:=M

x‖2ℓk
2

≤ (1 + δ)‖ diag(ξ)x‖2ℓd
2

= (1 + δ)‖x‖2ℓd
2

.

The matrices considered in Section 2 satisfy with high probability the RIP with

K = O
(

k

1 + log(d/k)

)

.
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Equipped with the notion of RIP matrices we may state the main result of the
theory of compressed sensing, as appearing in [28], which we shall use for the recovery
of the dynamical system in Rd.

Theorem 3.7. Assume that the matrix M ∈ Rk×d has the RIP of order 2K and
level

δ2K <
2

3 +
√

7/4
≈ 0.4627.

Then the following holds for all x ∈ Rd. Let the low-dimensional approximation
y = Mx+ η be given with ‖η‖ℓk

2
≤ Cε. Let x# be the solution of

min
z∈Rd

‖z‖ℓd
1

subject to ‖Mz − y‖ℓk
2
≤ ‖η‖ℓk

2
. (3.16)

Then

‖x− x#‖ℓd
2
≤ C1ε+ C2

σK(x)ℓd
1√

K

for some constants C1, C2 > 0 that depend only on δ2K , and σK(x)ℓd
1
= infz:#supp (z)≤K ‖z−

x‖ℓd
1
is the best-K-term approximation error in ℓd1.

This result says that provided the stability relationship (3.15), we can approximate

the individual trajectories xi(t), for each t ∈ [0, T ] fixed, by a vector x#
i (t) solution

of an optimization problem of the type (3.16), and the accuracy of the approximation
depends on the best-K-term approximation error σK(xi(t))ℓd

1
. Actually, the results

in [12, 27] in connection with [18, 41, 32], state also that this is asymptotically the
best one can hope for. One possibility to improve the recovery error is to increase
the dimension k (leading to a smaller distortion parameter ε > 0 in the Johnson-
Lindenstrauss embedding). But we would like to explore another possibility, namely
projecting and simulating in parallel and independently the dynamical system L-times
in the lower dimension k

ẏℓi = M ℓfi(D′yℓ) +
N∑

j=1

fij(D′yℓ)yℓj , yℓi (0) = M ℓx0
i , ℓ = 1, . . . , L. (3.17)

Let us give a brief overview of the corresponding error estimates. The number of
points needed in each of the cases is N ≈ N × n0, where N is the number of agents
and n0 = T/h is the number of iterations.

• We perform 1 projection and simulation in Rk: Then ε = O
(√

logN
k

)

, K =

O
(

k
1+log(d/k)

)

and an application of Theorem 3.7 leads to

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
k

+
σK(xi(t))ℓd

1√
K

)

. (3.18)

Here, C′(t) combines both the constants from Theorem 3.7 and the time-
dependent C(t) from (3.15). So, to reach the precision of order C′(t)ǫ > 0, we

have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ and

σK(xi(t))ℓd
1√

K
≤ ǫ.

We then need k ×N2 operations to evaluate the adjacency matrix.
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• We perform 1 projection and simulation in RL×k: Then ε′ = O
(√

logN
Lk

)

and

K ′ = O
(

Lk
1+log(d/Lk)

)

and an application of Theorem 3.7 leads to

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
Lk

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.19)

The given precision of order C′(t)ǫ > 0, may be then reached by choosing

k, L ∈ N large enough, such that
√

logN
Lk ≤ ǫ and

σK′ (xi(t))ℓd
1√

K′
≤ ǫ. We then

need Lk ×N2 operations to evaluate the adjacency matrix.
• We perform L independent and parallel projections and simulations in Rk:
Then we assemble the following system corresponding to (3.17)

Mx =









M1

M2

. . .

. . .
ML









xi =









y1i
y2i
. . .
. . .
yLi









−









η1i
η2i
. . .
. . .
ηLi









,

where for all ℓ = 1, . . . , L the matrices M ℓ ∈ Rk×d are (let us say) ran-
dom matrices with each entry generated independently with respect to the
properly normalized Gaussian distribution as described in Section 2. Then
M/

√
L is a Lk × d matrix with Restricted Isometry Property of order K ′ =

O
(

Lk
1+log(d/Lk)

)

and level δ < 0.4627. The initial distortion of each of the

projections is still ε = O
(√

logN
k

)

. Therefore, by applying Theorem 3.7, we

can compute x#
i (t) such that

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
k

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.20)

Notice that the computation of x#
i (t) can also be performed in parallel, see,

e.g., [29]. The larger is the number L of projections we perform, the larger
is K ′ and the smaller is the second summand in (3.20); actually σK′(xi(t))ℓd

1

vanishes for K ′ ≥ d. Unfortunately, the parallelization can not help to reduce
the initial distortion ε > 0. To reach again the precision of order C′(t)ǫ > 0,

we have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ. Then we

chose L ≥ 1 large enough such that
σK′ (xi(t))ℓd

1√
K′

≤ ǫ. We again need k × N2

operations to evaluate the adjacency matrix.

In all three cases, we obtain the estimate

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(

ε+
σK(xi(t))ℓd

1√
K

)

, (3.21)

where the corresponding values of ε > 0 andK together with the number of operations
needed to evaluate the adjacency matrix may be found in the following table.
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ε K number of operations

1 projection into Rk O
(√

logN
k

)

O
(

k
1+log(d/k)

)

k ×N2

1 projection into RL×k O
(√

logN
Lk

)

O
(

Lk
1+log(d/Lk)

)

Lk ×N2

L projections into Rk O
(√

logN
k

)

O
(

Lk
1+log(d/Lk)

)

k ×N2

3.4.2. Optimal recovery of trajectories on smooth manifolds. In recent
papers [4, 59, 39], the concepts of compressed sensing and optimal recovery were
extended to vectors on smooth manifolds. These methods could become very useful in
our context if (for any reason) we would have an apriori knowledge that the trajectories
xi(t) keep staying on or near such a smooth manifold. Actually this is the case, for
instance in molecular dynamics, where simulations, e.g. in the form of the coordinates
of the atoms in a molecule as a function of time, lie on or near an intrinsically-low-
dimensional set in the high-dimensional state space of the molecule, and geometric
properties of such sets provide important information about the dynamics, or about
how to build low-dimensional representations of such dynamics [52, 58]. In this case,
by using appropriate recovery methods as described in [39], we could recover high-
dimensional vectors from very low dimensional projections with much higher accuracy.
However, this issue will be addressed in a following paper.

3.5. Numerical experiments. In this section we illustrate the practical use
and performances of our projection method for the Cucker-Smale system (2.12)–(2.13).

3.5.1. Pattern formation detection in high dimension from lower di-
mensional projections. As already mentioned, this system models the emergence
of consensus in a group of interacting agents, trying to align with their neighbors. The
qualitative behavior of its solutions is formulated by this well known result [22, 23, 38]:

Theorem 3.8. Let (xi(t), vi(t)) be the solutions of (2.12)–(2.13). Let us define

the fluctuation of positions around the center of mass xc(t) = 1
N

∑N
i=1 xi(t), and,

resp., the fluctuation of the rate of change around its average vc(t) =
1
N

∑N
i=1 vi(t) as

Λ(t) =
1

N

N∑

i=1

‖xi(t)− xc(t)‖2ℓd
2

, Γ(t) =
1

N

N∑

i=1

‖vi(t)− vc(t)‖2ℓd
2

.

Then if either β ≤ 1/2 or the initial fluctuations Λ(0) and Γ(0) are small enough
(see [22] for details), then Γ(t) → 0 as t → ∞.

The phenomenon of Γ(t) tending to zero as t → ∞ is called flocking or emergence
of consensus. If β > 1/2 and the initial fluctuations are not small, it is not known
whether a given initial configuration will actually lead to flocking or not, and the only
way to find out the possible formation of consensus patterns is to perform numerical
simulations. However, these can be especially costly if the number of agents N and
the dimension d are large; the algorithmic complexity of the calculation is O(d×N2).
Therefore, a significant reduction of the dimension d, which can be achieved by our
projection method, would lead to a corresponding reduction of the computational
cost.

We illustrate this fact by a numerical experiment, where we choose N = 1000
and d = 200, i.e., every agent i is determined by a 200-dimensional vector xi of its
state and a 200-dimensional vector vi giving the rate of change of its state. The
initial datum (x0, v0) is generated randomly, every component of x0 being drawn
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Fig. 3.2. Numerical results for β = 1.5: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

independently from the uniform distribution on [0, 1] and every component of v0 being
drawn independently from the uniform distribution on [−1, 1]. We choose β = 1.5,
1.62 and 1.7, and with every of these values we perform the following set of simulations:

1. Simulation of the original system in 200 dimensions.
2. Simulations in lower dimensions k: the initial condition (x0, v0) is projected

into the k-dimensional space with a random Johnson-Lindenstrauss projection
matrix M with Gaussian entries. The dimension k takes the values 150, 100,
50, 25, 10, 5, and 2. For every k, we perform the simulation twenty times,
each time with a new random projection matrix M .

All the simulations were implemented in MATLAB, using 1500 steps of the forward
Euler method with time step size 0.02. The paths of Γ(t) from the twenty experiments
with k = 100 and k = 25 or k = 10 are shown in the first rows of Figs. 3.2, 3.3 and,
resp., 3.4 for β = 1.5, 1.62 and, resp., 1.7.

The information we are actually interested in is whether flocking takes place, in
other words, whether the fluctuations of velocities Γ(t) tend to zero. Typically, after an
initial phase, the graph of Γ(t) gives a clear indication either about exponentially fast
convergence to zero (due to rounding errors, “zero” actually means values of the order
10−30 in the simulations) or about convergence to a positive value. However, in certain
cases the decay may be very slow and a very long simulation of the system would be
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Fig. 3.3. Numerical results for β = 1.62: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 25 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

needed to see if the limiting value is actually zero or not. Therefore, we propose the
following heuristic rules to decide about flocking from numerical simulations:

• If the value of Γ at the final time t = 30 is smaller than 10−10, we conclude
that flocking took place.

• If the value of Γ(30) is larger than 10−3, we conclude that flocking did not
take place.

• Otherwise, we do not make any conclusion.

In the second rows of Figs. 3.2, 3.3 and 3.4 we present the initial and final values of Γ of
the twenty simulations for all the dimensions k, together with the original dimension
d = 200. In accordance with the above rules, flocking takes place if the final value
of Γ lies below the lower dashed line, does not take place if it lies above the upper
dashed line, otherwise the situation is not conclusive. The results are summarized in
Table 3.1.

Experience gained with a large amount of numerical experiments shows the fol-
lowing interesting fact: The flocking behavior of the Cucker-Smale system is very
stable with respect to the Johnson-Lindenstrauss projections. Usually, the projected
systems show the same flocking behavior as the original one, even if the dimension is
reduced dramatically, for instance from d = 200 to k = 10 (see Figs 3.2 and 3.4). This
stability can be roughly explained as follows: Since the flocking behavior depends
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Fig. 3.4. Numerical results for β = 1.7: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

mainly on the initial values of Γ and Λ, which are statistical properties of the random
distributions used for the generation of initial data, and since N is sufficiently large,
the concentration of measure phenomenon takes place. Its effect is that the initial
values of the fluctuations of the projected data are very close to the original ones, and
thus the flocking behavior is (typically) the same. There is only a narrow interval of
values of β (in our case this interval is located around the value β = 1.62), which is
a borderline region between flocking and non-flocking, and the projections to lower
dimensions spoil the flocking behavior, see Fig 3.3. Let us note that in our simulations
we were only able to detect cases when flocking took place in the original system, but
did not take place in some of the projected ones. Interestingly, we never observed the
inverse situation, a fact which we are not able to explain satisfactorily. In fact, one
can make other interesting observations, deserving further investigation. For instance,
Figs. 3.2 and 3.3 show that if the original system exhibits flocking, then the curves of
Γ(t) of the projected systems tend to lie above the curve of Γ(t) of the original one.
The situation is reversed if the original system does not flock, see Fig. 3.4.

From a practical point of view, we can make the following conclusion: To obtain an
indication about the flocking behavior of a highly dimensional Cucker-Smale system,
it is typically satisfactory to perform a limited number of simulations of the system
projected into a much lower dimension, and evaluate the statistics of their flocking
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β = 1.5 β = 1.62 β = 1.7
dim pos neg n/a
200 1 0 0
150 20 0 0
100 20 0 0
50 20 0 0
25 20 0 0
10 14 0 6
5 4 4 12
2 3 8 9

dim pos neg n/a
200 1 0 0
150 20 0 0
100 20 0 0
50 13 0 7
25 1 1 18
10 0 18 2
5 0 19 1
2 0 18 2

dim pos neg n/a
200 0 1 0
150 0 20 0
100 0 20 0
50 0 20 0
25 0 20 0
10 0 20 0
5 0 20 0
2 0 20 0

Table 3.1
Statistics of the flocking behaviors of the systems in the original dimension d = 200 and in

the projected dimensions. With β = 1.5 and β = 1.62, the original system (d = 200) exhibited
flocking behavior. With β = 1.5, even after random projections into 25 dimensions, the system
exhibited flocking in all 20 repetitions of the experiment, and still in 14 cases in dimension 10. With
β = 1.62, the deterioration of the flocking behavior with decreasing dimension was much faster,
and already in dimension 25 the situation was not conclusive. This is related to the fact that the
value β = 1.62 was chosen to intentionally bring the system close to the borderline between flocking
and non-flocking. Finally, with β = 1.7, the original system did not flock, and, remarkably, all the
projected systems (even to two dimensions) exhibit the same behavior.

behavior. If the result is the same for the majority of simulations, one can conclude
that the original system very likely has the same flocking behavior as well.

Fig. 3.5. Numerical results showing the time evolution of the relative error of projection (left
panel) and relative error of recovery via ℓ1-minimization (right panel) of the v-variables.

3.5.2. Numerical validation of the high and low dimensional approxi-
mation properties. Finally, we show how the relative error of projection and re-
covery evolves in time. We consider an initial datum (x0, v0) ∈ RN×d × RN×d for
the Cucker-Smale system with N = d = 200 and randomly generated entries from
the normal distribution. The parameter β = 0.4, therefore, the system will exhibit
flocking. First we project the system into k = 20, 40, 60, 100, 140, 180 dimensions and
calculate the relative error of the projection of the v-variables, given by





∑N
i=1 ‖Mvi − vj‖2ℓk

2
∑N

i=1 ‖Mvi‖2ℓk
2





1/2

.
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We observe that the maximal relative error (for k = 20) is around 14%, which we
consider as a very good result. Moreover, in all 9 cases, the error first increases, but
after t ≃ 22 it starts decreasing, which is a consequence of the flocking behavior and
concentration of measure, see the graphics in Figure 3.5 on the left. This clearly shows
that the worst-case estimate of Theorem 2.2 with exponential growth in time is overly
pessimistic.

In our second experiment, we take a randomly generated initial condition with
N = d = 200 and 80% of the entries set to zero. Then, we take L projections of the
system into 20 dimensions, with L = 1, 2, 3, 5, 7, 9, and reconstruct the v-trajectories
using ℓ1-minimization, as described in Section 3.4.1. In the graphics in Figure 3.5 on
the right, we plot the relative errors, given by





∑N
i=1 ‖ṽi − vi‖2ℓk

2
∑N

i=1 ‖vi‖2ℓk
2





1/2

,

where ṽi are the recovered trajectories. Again, we observe that the errors grow much
slower than exponentially, and after t ≃ 15 they even tend to stay constant or slightly
decrease.

4. Mean-field limit and kinetic equations in high dimension. In the pre-
vious sections we were concerned with tractable simulation of the dynamical systems
of the type (1.1) when the dimension d of the parameter space is large. Another source
of possible intractability in numerical simulations appears in the situation where the
number of agents N is very large. In general, large N imposes even a much more se-
vere limitation than large d, since the computational complexity of (1.1) is O(d×N2).
Therefore, in the next sections we consider the so-called mean-field limit of (1.1) as
N → ∞, where the evolution of the system is described by time-dependent probability
measures µ(t) on R

d, representing the density distribution of agents, and satisfying
mesoscopic partial differential equations of the type (4.1). This strategy originated
from the kinetic theory of gases, see [16] for classical references. We show how our
projection method can be applied for dimensionality reduction of the corresponding
kinetic equations and explain how the probability measures can be approximated by
atomic measures. Using the concepts of delayed curse of dimension and measure
quantization known from optimal integration problems in high dimension, we show
that under the assumption that the measure concentrates along low-dimensional sub-
spaces (and more generally along low-dimensional sets or manifolds), it can be ap-
proximated by atomic measures with sub-exponential (with respect to d) number of
atoms. Through such approximation, we shall show that we can approximate suitable
random averages of the solution of the original partial differential equation in high
dimension by tractable simulations of corresponding solutions of lower-dimensional
kinetic equations.

Another interesting approach to the problem of efficient numerical simulation of
large group dynamics is the so-called “equation-free” approach, see e.g. [47]. Here,
convenient coarse-grained variables that account for rapidly developing correlations
during initial transients are chosen, in order to perform efficient computations of
coarse-grained steady states and their bifurcation analysis. The big advantage of the
equation-free approach is that the coarse-grained dynamics can be explored without
the assumption of the continuum limit equation as we consider here. The premise of
the method is that coarse-grained governing equations conceptually exist, but are not
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explicitly available in closed form. The main idea is that short bursts of appropri-
ately initialized microscopic (fine-scale) simulations and the projection of the results
onto coarse-grained variables result in time-steppers (mappings) for those variables
(which is effectively the same as the discretization of the unavailable equations). One
then processes the results of the short simulations to estimate various coarse-grained
quantities (such as time derivatives, action of Jacobians, residuals) to perform rele-
vant coarse-grained level numerical computations, as if those quantities were obtained
from coarse-grained governing equations.

4.1. Formal derivation of mean-field equations. In this section we briefly
explain how the mean-field limit description corresponding to (1.1) can be derived.
This is given, under suitable assumptions on the family of the governing functions
FN = {fi, fij : i, j = 1, . . . N}, by the general formula

∂µ

∂t
+∇ · (HF [µ]µ) = 0, (4.1)

where HF [µ] is a field in Rd, determined by the sequence F = (FN )N∈N.
In order to provide an explicit example, we show how to formally derive the mean

field limit of systems of the type

ẋi = vi , (4.2)

v̇i =

N∑

j=1

fvv
ij (Dx,Dv)vj +

N∑

j=1

fvx
ij (Dx)xj , (4.3)

with

fvx
ij (Dx) = −δij

N

∑

k 6=i

u(‖xi − xk‖ℓd
2
) +

1− δij
N

u(‖xi − xj‖ℓd
2
) ,

fvv
ij (Dx,Dv) = δij

(

h(‖vi‖2ℓd
2

)− 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
)

)

+
1− δij
N

g(‖xi − xj‖ℓd
2
) .

Note that for suitable choices of the functions h, g, u this formalism includes both the
Cucker-Smale model (2.12)–(2.13) and the self-propulsion and pairwise interaction
model (3.13)–(3.14). We define the empirical measure associated to the solutions
xi(t), vi(t) of (4.2)–(4.3) as

µN (t) := µN (t, x, v) =
1

N

N∑

i=1

δxi(t)(x)δvi(t)(v) .

Taking a smooth, compactly supported test function ξ ∈ C∞
0 (R2d) and using (4.2)–

(4.3), one easily obtains by a standard formal calculation (see [14])

d

dt
〈µN (t), ξ〉 = d

dt

(

1

N

N∑

i=1

ξ(xi(t), vi(t))

)

(4.4)

=

∫

R2d

∇xξ(x, v) · v dµN (t, x, v) +

∫

R2d

∇vξ(x, v) · H[µN (t)](x, v) dµN (t, x, v) ,

with

H[µ](x, v) = h(‖v‖ℓd
2
)v +

∫

R2d

g(‖x− y‖ℓd
2
)(w − v) dµ(y, w) +

∫

R2d

u(‖x− y‖ℓd
2
)(y − x) dµ(y, w) .
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We now assume weak convergence of a subsequence of (µN (t))N∈N to a time-dependent
measure µ(t) = µ(t, x, v) and boundedness of its first order moment, which indeed can
be established rigorously for the Cucker-Smale and the self-propulsion and pairwise
interaction systems (see [38], [50]). Then, passing to the limit N → ∞ in (4.4), one
obtains in the strong formulation that µ is governed by

∂µ

∂t
(t, x, v) + v · ∇xµ(t, x, v) +∇v · (H[µ(t)](x, v)µ(t, x, v)) = 0 ,

which is an instance of the general prototype (4.1).
Using the same formal arguments as described above, one can easily derive mean

field limit equations corresponding to (1.1) with different choices of the family F .

4.2. Monge-Kantorovich-Rubinstein distance and stability. In several
relevant cases, and specifically for the Cucker-Smale and the self-propulsion and pair-
wise interaction systems [13], solutions of equations of the type (4.1) are stable with
respect to suitable distances. We consider the space P1(R

d), consisting of all proba-
bility measures on R

d with finite first moment. In P1(R
d) and for solutions of (4.1), a

natural metric to work with is the so-called Monge-Kantorovich-Rubinstein distance
(also called Wasserstein distance) [57],

W1(µ, ν) := sup{|〈µ− ν, ξ〉| =
∣
∣
∣
∣

∫

Rd

ξ(x)d(µ − ν)(x)

∣
∣
∣
∣
, ξ ∈ Lip(Rd),Lip(ξ) ≤ 1}.

(4.5)
We further denote Pc(R

d) the space of compactly supported probability measures on
Rd. In particular, throughout the rest of this paper, we will assume that for any
compactly supported measure valued weak solutions µ(t), ν(t) ∈ C([0, T ],Pc(R

d)) of
(4.1) we have the following stability inequality

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.6)

where C(t) is a positive increasing function of t with C(0) > 0, independent of the
dimension d. We address the interested reader to [13, Section 4] for a sample of general
conditions on the vector field H[F ](µ) which guarantee stability (4.6) for solutions of
equations (4.1).

4.3. Dimensionality reduction of kinetic equations. Provided a high-dimensional
measure valued solution to the equation

∂µ

∂t
+∇ · (HF [µ]µ) = 0, µ(0) = µ0 ∈ Pc(R

d) , (4.7)

we will study the question whether its solution can be approximated by suitable
projections in lower dimension.

Given a probability measure µ ∈ P1(R
d), its projection into Rk by means of a

matrix M : Rd → Rk is given by the push-forward measure µM := M#µ,

〈µM , ϕ〉 := 〈µ, ϕ(M ·)〉 for all ϕ ∈ Lip(Rk). (4.8)

Let us mention two explicit and relevant examples:
• If µN = 1

N

∑N
i=1 δxi

is an atomic measure, we have 〈µN
M , ϕ〉 = 〈µN , ϕ(M ·)〉 =

1
N

∑N
i=1 ϕ(Mxi). Therefore,

µN
M =

1

N

N∑

i=1

δMxi
. (4.9)
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• If µ is absolutely continuous with respect to the Lebesgue measure, i.e., it is a
function in L1(Rd), the calculation requires a bit more effort: Let us consider
M † the pseudo-inverse matrix of M . Recall that M † = M∗(MM∗)−1 is a
right inverse of M , and M †M is the orthogonal projection onto the range of
M∗. Moreover, x = M †Mx+ ξx, where ξx ∈ kerM for all x ∈ R

d. According
to these observations, we write

∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗⊕kerM

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗

∫

kerM

ϕ(Mv)µ(M †Mv + v⊥)dv⊥dv

Note now that M|ranM∗ : ranM∗ → ranM h Rk is an isomorphism, hence y =

Mv implies the change of variables dv = det(M|ranM∗)−1dy = det(MM∗)−1/2dy.
Consequently, we have
∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗

∫

kerM

ϕ(Mv)µ(M †Mv + v⊥)dv⊥dv

=

∫

Rk

(
1

det(MM∗)1/2

∫

kerM

µ(M †y + v⊥)dv⊥
)

ϕ(y)dy ,

and

µM (y) =
1

det(MM∗)1/2

∫

kerM

µ(M †y + v⊥)dv⊥.

According to the notion of push-forward, we can consider the measure valued function
ν ∈ C([0, T ],Pc(R

k)), solution of the equation

∂ν

∂t
+∇ · (HFM

[ν]ν) = 0, ν(0) = (µ0)M ∈ Pc(R
k), (4.10)

where (µ0)M = M#µ0 and FM = ({Mfi, fij , i, j = 1, . . . , N})N∈N. As for the
dynamical system (3.5), also equation (4.10) is fully defined on the lower-dimensional
space Rk and depends on the original high-dimensional problem exclusively by means
of the initial condition.

The natural question at this point is whether the solution ν of (4.10) provides
information about the solution µ of (4.7). In particular, similarly to the result of
Theorem 3.1, we will examine whether the approximation

ν(t) ≈ µM (t), t ∈ [0, T ],

in Monge-Kantorovich-Rubinstein distance is preserved in finite time. We depict the
expected result by the following diagram:

µ(0)
t−→ µ(t)

↓ M ↓ M

ν(0) = (µ0)M
t−→ ν(t) ≈ µM (t) .
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This question will be addressed by approximation of the problem by atomic measures
and by an application of Theorem 3.1 for the corresponding dynamical system, as
concisely described by

µ
W1(µ, µ

N ).ε−→ µN

↓ M ↓ M

ν ≈ µM
W1(ν, ν

N ).ε−→ νN ≈ µN
M

Let us now recall the framework and general assumptions for this analysis to be
performed. We assume again that for all N ∈ N the family FN = {fi, fij : i, j =
1, . . .N} is composed of functions satisfying (1.2)-(1.4). Moreover, we assume that
associated to F = (FN )N∈N and to

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (4.11)

we can define a mean-field equation

∂µ

∂t
+∇ · (H[F ](µ)µ) = 0, µ(0) = µ0 ∈ Pc(R

d), (4.12)

such that for any compactly supported measure valued weak solutions µ(t), ν(t) ∈
C([0, T ],Pc(R

d)) of (4.1) we have the following stability

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.13)

where C(t) is a positive increasing function of t, independent of the dimension d.
We further require that corresponding assumptions, including stability, hold for the
projected system (2.5) and kinetic equation (4.10). Then we have the following ap-
proximation result:

Theorem 4.1. Let us assume that µ0 ∈ Pc(R
d) and there exist points {x0

1, . . . , x
0
N} ⊂

R
d, for which the atomic measure µN

0 = 1
N

∑N
i=1 δx0

i
approximates µ0 up to ε > 0 in

Monge-Kantorovich-Rubinstein distance, in the following sense

W1(µ0, µ
N
0 ) ≤ ε, N = N k(ε) for k(ε) ≤ d and k(ε) → d for ε → 0. (4.14)

Requirement (4.14) is in fact called the delayed curse of dimension as explained below
in detail in Section 4.5. Depending on ε > 0 we fix also

k = k(ε) = O(ε−2 log(N)) = O(ε−2 log(N )k(ε)).

Moreover, let M : Rd → Rk be a linear mapping which is a continuous Johnson-
Lindenstrauss embedding as in (3.4) for continuous in time trajectories xi(t) of (4.11)
with initial datum xi(0) = x0

i . Let ν ∈ C([0, T ],Pc(R
k)) be the weak solution of

∂ν

∂t
+∇ · (H[FM ](ν)ν) = 0, (4.15)

ν(0) = (µ0)M ∈ Pc(R
k), (4.16)

where (µ0)M = M#µ0. Then

W1(µM (t), ν(t)) ≤ C(t)‖M‖ε, t ∈ [0, T ], (4.17)
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where C(t) is an increasing function of t, with C(0) > 0, which is at most polynomially
growing with the dimension d.

Proof. Let us define νN (t) the solution to equation (4.15) with initial datum
νN (0) = (µN

0 )M , or, equivalently, thanks to (4.9)

νN (t) =
1

N

n∑

i=1

δyi(t),

where yi(t) is the solution of

ẏi = fi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N .

We estimate

W1(µM (t), ν(t)) ≤ W1(µM (t), (µN (t))M ) +W1((µ
N (t))M , νN (t)) +W1(ν

N (t), ν(t)).

By using the definition of push-forward (4.8) and (4.14), the first term can be esti-
mated by

W1(µM (t), (µN (t))M ) = sup{〈µM (t)− (µN (t))M , ϕ〉 : Lip(ϕ) ≤ 1}
= sup{〈µ(t)− µN (t), ϕ(M ·)〉 : Lip(ϕ) ≤ 1}
≤ ‖M‖W1(µ(t), µ

N (t)) ≤ ‖M‖C(t)ε.

We estimate now the second term

W1((µ
N (t))M , νN (t)) = sup{〈(µN (t))M − νN (t), ϕ〉 : Lip(ϕ) ≤ 1}

= sup{ 1

N

N∑

i=1

(ϕ(Mxi(t)) − ϕ(yi(t))) : Lip(ϕ) ≤ 1}

≤ 1

N

N∑

i=1

‖Mxi(t)− yi(t)‖ℓk
2
.

We recall the uniform approximation of Theorem 3.1,

‖Mxi(t)− yi(t)‖ℓk
2
≤ D(t)ε , i = 1, . . . , N,

where D(t) is the time-dependent function on the right-hand-side of (3.7). Hence

W1(µM (t), (µN (t))M ) ≤ D(t)ε.

We address now the upper estimate of the third term, by the assumed stability of the
lower dimensional equation (4.10)

W1(ν
N (t), ν(t)) ≤ C(t)W1(ν

N (0), ν(0))

= C(t)W1((µ
N
0 )M , (µ0)M )

≤ C(t)‖M‖W (µN
0 , µ0) ≤ C(t)‖M‖ε.

We can fix C(t) = 2C(t)‖M‖+D(t), and, as observed in Theorem 3.3, we can assume

without loss of generality that ‖M‖ ≤
√

d
k . Hence, C(t) depends at most polynomially

with respect to the dimension d.
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4.4. Approximation of probability measures by atomic measures and
optimal integration. In view of the fundamental requirement (4.14) in Theorem
4.1, given µ0 ∈ Pc(R

d), we are interested to establish an upper bound to the best pos-
sible approximation in Monge-Kantorovich-Rubinstein distance by means of atomic
measures µN

0 = 1
N

∑N−1
i=0 δx0

i
with N atoms, i.e.,

EN (µ0) := inf
µN
0
= 1

N

∑N−1

i=0
δ
x0
i

W1(µ0, µ
N
0 ) (4.18)

= inf
{x0

0
,...,x0

N−1
}⊂Rd

sup
{
|
∫

Rd

ξ(x)dµ0(x)−
1

N

N−1∑

i=0

ξ(x0
i )| : ξ ∈ Lip(Rd),Lip(ξ) ≤ 1

}
.

In fact, once we identify the optimal points {x0
0, . . . , x

0
N−1}, we can use them as initial

conditions xi(0) = x0
i for the dynamical system (4.11), and by using the stability

relationship (4.6), we obtain

W1(µ(t), µ
N (t)) ≤ C(T )W1(µ0, µ

N
0 ), t ∈ [0, T ] , (4.19)

where µN (t) = 1
N

∑N−1
i=0 δxi(t), meaning that the solution of the partial differential

equation (4.1) keeps optimally close to the particle solution of (4.11) also for suc-
cessive time t > 0. Note that estimating (4.18) as a function of N is in fact a very
classical problem in numerical analysis well-known as optimal integration with its
high-dimensional behaviour being a relevant subject of the field of Information Based
Complexity [49, 55].

The numerical integration of Lipschitz functions with respect to the Lebesgue
measure and the study of its high-dimensional behaviour goes back to Bakhvalov [2],
but much more is known nowadays. We refer to [33] and [36] for the state of the art
of quantization of probability distributions.

The scope of this section is to recall some facets of these estimates and to refor-
mulate them in terms of W1 and EN . We emphasize that here and in what follows,
we consider generic compactly supported probability measures µ, not necessarily ab-
solutely continuous with respect to the Lebesgue measure. We start first by assuming
d = 1, i.e., we work with a univariate measure µ ∈ Pc(R) with support suppµ ⊂ [a, b]
and σ := b− a > 0. We define the points x0, . . . , xN−1 as the quantiles of the proba-
bility measure µ, i.e., x0 := a and

i

N
=

∫ xi

−∞
dµ(x), i = 1, . . . , N − 1. (4.20)

This is notationally complemented by putting xN := b. Note that by definition
∫ xi+1

xi
dµ(x) = 1

N , i = 0, . . . , N − 1, and we have

∣
∣
∣
∣
∣

∫

R

ξ(x)dµ(x) − 1

N

N−1∑

i=0

ξ(xi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N−1∑

i=0

∫ xi+1

xi

(ξ(x) − ξ(xi))dµ(x)

∣
∣
∣
∣
∣

≤
N−1∑

i=0

∫ xi+1

xi

|ξ(x) − ξ(xi)| dµ(x) (4.21)

≤ Lip(ξ)

N

N−1∑

i=0

(xi+1 − xi) =
σLip(ξ)

N
.
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Hence it is immediate to see that

EN(µ) = inf
µN= 1

N

∑N−1

i=0
δ
x0
i

W1(µ, µ
N ) ≤ σ

N
.

We would like to extend this estimate to higher dimension d > 1. However, for
multivariate measures µ there is no such an easy upper bound, see [33] and [36] for
very general statements, and for the sake of simplicity we restrict here the class of
measures µ to certain special cases. As a typical situation, we address tensor product
measures and sums of tensor products.

Lemma 4.2. Let µ1, . . . , µd ∈ P1(R) with W1(µ
j , µj,Nj ) ≤ εj , j = 1, . . . , d for

some N1, . . . , Nd ∈ N, ε1, . . . , εd > 0 and µj,Nj := 1
Nj

∑Nj−1
i=0 δxj

i
. Let N =

∏d
i=1 Ni.

Then

W1(µ
1 ⊗ · · · ⊗ µd, µN ) ≤

d∑

j=1

εj ,

where

µN :=
1

N

∑

x∈X

δx and X :=
d∏

j=1

{xj
0, . . . , x

j
Nj−1}.

Proof. The proof is based on a simple argument using a telescopic sum. For
j = 1, . . . , d+ 1 we put

Vj :=
1

∏d
i=j Ni

Nj−1
∑

ij=0

· · ·
Nd−1∑

id=0

∫

Rj−1

ξ(x1, . . . , xj−1, x
j
ij
, . . . , xd

jd
)dµ1(x1) . . . dµ

j−1(xj−1).

Of course, if j = 1, then the integration over Rj−1 is missing and if j = d + 1 then
the summation becomes empty. Now

∫

Rd

ξ(x)dµ(x) − 1
∏d

i=1 Ni

N1−1∑

i1=0

· · ·
Nd−1∑

id=0

ξ(x1
i1 , . . . , x

d
id
) =

d∑

j=1

(Vj+1 − Vj)

together with the estimate |Vj+1 − Vj | ≤ εj finishes the proof.
Lemma 4.2 says, roughly speaking, that the tensor products of sampling points of

univariate measures are good sampling points for the tensor product of the univariate
measures. Next lemma deals with sums of measures.

Lemma 4.3. Let µ1, . . . , µL ∈ P1(R
d) with W1(µl, µ

N
l ) ≤ εl, l = 1, . . . , L for

some N ∈ N, ε1, . . . , εL > 0 and µN
l := 1

N

∑N−1
i=0 δxl,i

. Then

W1

(µ1 + · · ·+ µL

L
, µLN

)

≤ 1

L

L∑

l=1

εl,

where

µLN :=
1

LN

∑

x∈X

δx =
1

L

L∑

l=1

µN
l and X :=

L⋃

l=1

{xl,0, . . . , xl,N−1}.
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Proof. We use the homogeneity of the Monge-Kantorovich-Rubinstein distance
W1(aµ, aν) = aW1(µ, ν) for µ, ν ∈ P1(R

d) and a ≥ 0 combined with its subadditivity
W1(µ1+µ2, ν1+ ν2) ≤ W1(µ1, ν1)+W1(µ2, ν2) for µ1, µ2, ν1, ν2 ∈ P1(R

d). We obtain

W1

(µ1 + · · ·+ µL

L
,
µN
1 + · · ·+ µN

L

L

)

≤ 1

L

L∑

l=1

W1(µl, µ
N
l ) ≤ 1

L

L∑

l=1

εl.

Next corollary follows directly from Lemma 4.2 and Lemma 4.3.
Corollary 4.4. (i) Let µ1, . . . , µd ∈ P1(R) and N1, . . . , Nd ∈ N. Then

EN (µ1 ⊗ · · · ⊗ µd) ≤
d∑

j=1

ENj
(µj), where N := N1 · · ·Nd.

(ii) Let µ1, . . . , µL ∈ P1(R
d) and N ∈ N. Then

ELN

(µ1 + · · ·+ µL

L

)

≤ 1

L

L∑

l=1

EN (µl).

4.5. Delayed curse of dimension. Although Lemma 4.2, Lemma 4.3 and
Corollary 4.4 give some estimates of the Monge-Kantorovich-Rubinstein distance be-
tween general and atomic measures, the number of atoms needed may still be too
large to allow the assumption (4.14) in Theorem 4.1 to be fulfilled. Let us for exam-
ple consider the case, where µ1 = · · · = µd in Lemma 4.2 and ε1 = · · · = εd =: ε.
Then, of course, N1 = · · · = Nd =: N and we observe, that the construction given in
Lemma 4.2 gives an atomic measure, which approximates µ up to the error dε using
N d atoms, hence with an exponential dependence on the dimension d. This effect is
another instance of the well-known phenomenon of the curse of dimension.

However, in many real-life high-dimensional applications the objects of study
(in our case the measure µ ∈ Pc(R

d)) concentrate along low-dimensional subspaces
(or, more general, along low-dimensional manifolds) [5, 6, 19, 20, 21]. The number
of atoms necessary to approximate these measures behaves in a much better way,
allowing the application of (4.14) and Theorem 4.1. To clarify this effect, let us
consider µ = µ1 ⊗ · · · ⊗ µd with suppµj ⊂ [aj , bj ] and define σj = bj − aj . Let us
assume, that σ1 ≥ σ2 ≥ · · · ≥ σd > 0 is a rapidly decreasing sequence. Furthermore,
let ε > 0. Then we define k := k(ε) to be the smallest natural number, such that

d∑

k=k(ε)+1

σk ≤ ε/2

and put Nk = 1 for k ∈ {k(ε) + 1, . . . , d}. The numbers N1 = · · · = Nk(ε) = N are
chosen large enough so that

1

N

k(ε)
∑

k=1

σk ≤ ε/2.
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Then Lemma 4.2 together with (4.20) state that there is an atomic measure µN with

N = N k(ε) atoms, such that

W1(µ, µ
N ) ≤

d∑

k=1

σk

Nk
≤ ε/2 + ε/2. (4.22)

Hence, at the cost of assuming that the tensor product measure µ is concentrated
along a k(ε)-dimensional coordinate subspace, we can always approximate the mea-
sure µ with accuracy ε by using an atomic measure supported on points whose number
depends exponentially on k = k(ε) ≪ d. However, if we liked to have ε → 0, then
k(ε) → d and again we are falling under the curse of dimension. This delayed kicking
in of the need of a large number of points for obtaining high accuracy in the ap-
proximation (4.22) is in fact the so-called delayed curse of dimension, expressed by
assumption (4.14), a concept introduced first by Curbera in [24], in the context of
optimal integration with respect to Gaussian measures in high dimension.

Let us only remark, that the discussion above may be easily extended (with help
of Lemma 4.3) to sums of tensor product measures. In that case we obtain as atoms
the so-called sparse grids, cf. [10]. Using suitable change of variables, one could also
consider measures concentrated around (smooth) low-dimensional manifolds, but this
goes beyond the scope of this work, see [33] for a broader discussion.
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[8] F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz
forces and swarming, Math. Models Methods Appl. Sci., to appear.

[9] A. Buffa, Y. Maday, A. T. Patera, C. Prudhomme and G. Turinici, A priori convergence
of the greedy algorithm for the parameterized reduced basis, preprint.

[10] H. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 147–269.
[11] E. J. Candès, The restricted isometry property and its implications for compressed sensing,

Compte Rendus de l’Academie des Sciences, Paris, Serie I, 346 (2008), pp. 589–592.
[12] E. J. Candès, T. Tao and J. Romberg, Robust uncertainty principles: exact signal recon-

struction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52
(2006), pp. 489–509.



36 M. FORNASIER, J. HAŠKOVEC AND J. VYBÍRAL
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PARTICLE SYSTEMS AND KINETIC EQUATIONS MODELING
INTERACTING AGENTS IN HIGH DIMENSION

M. FORNASIER†‡ , J. HAŠKOVEC‡, AND J. VYBÍRAL‡

Abstract. In this paper we explore how concepts of high-dimensional data compression via
random projections onto lower-dimensional spaces can be applied for tractable simulation of cer-
tain dynamical systems modeling complex interactions. In such systems, one has to deal with a
large number of agents (typically millions) in spaces of parameters describing each agent of high
dimension (thousands or more). Even with today’s powerful computers, numerical simulations of
such systems are prohibitively expensive. We propose an approach for the simulation of dynami-
cal systems governed by functions of adjacency matrices in high dimension, by random projections
via Johnson-Lindenstrauss embeddings, and recovery by compressed sensing techniques. We show
how these concepts can be generalized to work for associated kinetic equations, by addressing the
phenomenon of the delayed curse of dimension, known in information-based complexity for optimal
numerical integration problems and measure quantization in high dimensions.

Key words. Dimensionality reduction, dynamical systems, flocking and swarming, Johnson-
Lindenstrauss embedding, compressed sensing, high-dimensional kinetic equations, delayed curse of
dimension, optimal integration of measures in high dimension.

AMS subject classifications. 34C29, 35B35, 35Q91, 35Q94, 60B20, 65Y20.

1. Introduction. The dimensionality scale of problems arising in our modern
information society has become very large and finding appropriate methods for dealing
with them is one of the great challenges of today’s numerical simulation. The most
notable recent advances in data analysis are based on the observation that in many
situations, even for very complex phenomena, the intrinsic dimensionality of the data
is significantly lower than the ambient dimension. Remarkable progresses have been
made in data compression, processing, and acquisition. We mention, for instance,
the use of diffusion maps for data clouds and graphs in high dimension [5, 6, 19, 20,
21, 43] in order to define low-dimensional local representations of data with small
distance distortion, and meaningful automatic clustering properties. In this setting
the embedding of data is performed by a highly nonlinear procedure, obtained by
computing the eigenfunctions of suitable normalized diffusion kernels, measuring the
probability of transition from one data point to another over the graph.

Quasi-isometrical linear embeddings of high-dimensional point clouds into low-
dimensional spaces of parameters are provided by the well-known Johnson-Lindenstrauss
Lemma [1, 25, 40]: any cloud of N points in Rd can be embedded by a random lin-
ear projection M nearly isometrically into Rk with k = O(ε−2 log(N )) (a precise
statement will be given below). This embedding strategy is simpler than the use of
diffusion maps, as it is linear, however it is “blind” to the specific geometry and local
dimensionality of the data, as the embedding dimension k depends exclusively on the
number of points in the cloud. In many applications, this is sufficient, as the number
of points N is supposed to be a power of the dimension d, and the embedding produces
an effective reduction to k = O(ε−2 log(N )) = O(ε−2 log(d)) dimensions. As clarified
in [3, 44], the Johnson-Lindenstrauss Lemma is also at the basis of the possibility
of performing optimal compressed and nonadaptive acquisition of high-dimensional
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data. In compressed sensing [12, 27] a vector x ∈ Rd is encoded in a vector y ∈ Rk by
applying a random projection M , which is modeling a linear acquisition device with
random sensors, i.e., y = Mx. From y it is possible to decode x approximately (see
Theorem 3.7 below) by solving the convex optimization problem

x# = arg min
Mz=y

(

‖z‖ℓd
1
:=

d∑

i=1

|zi|
)

,

with the error distortion

‖x# − x‖ℓd
1
≤ CσK(x)ℓd

1
,

where σK(x)ℓd
1
= infz:#supp (z)≤K ‖z − x‖ℓd

1
and K = O(k/(log(d/k) + 1)). We de-

note ΣK = {z ∈ Rd : #supp (z) ≤ K} the set of K-sparse vectors, i.e., the union of
K-dimensional coordinate subspaces in R

d. In particular, if x ∈ ΣK , then x# = x.
Hence, not only is M a Johnson-Lindenstrauss embedding, quasi-isometrical on point
clouds and K-dimensional coordinate subspaces, but also allows for the recovery of
the most relevant components of high-dimensional vectors, from low-dimensional en-
coded information. A recent work [4, 59] extends the quasi-isometrical properties of
the Johnson-Lindenstrauss embedding from point clouds and K-dimensional coordi-
nate subspaces to smooth compact Riemannian manifolds with bounded curvature.
Inspired by this work, in [39] the authors extend the principles of compressed sensing
in terms of point recovery on smooth compact Riemannian manifolds.

Besides these relevant results in compressing and coding-decoding high-dimensional
“stationary” data, dimensionality reduction of complex dynamical systems and high-
dimensional partial differential equations is a subject of recent intensive research.
Several tools have been employed, for instance, the use of diffusion maps for dynam-
ical systems [48], tensor product bases and sparse grids for the numerical solution of
linear high-dimensional PDEs [26, 10, 34, 35], the reduced basis method for solving
high-dimensional parametric PDEs [7, 9, 46, 53, 54, 56].
In this paper we shall further explore the connection between data compression and
tractable numerical simulation of dynamical systems. Eventually we address the so-
lutions of associated high-dimensional kinetic equations. We are specially interested
in dynamical systems of the type

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (1.1)

where we use the following notation:
• N ∈ N - number of agents,
• x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , where xi : [0, T ] → Rd, i = 1, . . . , N ,
• fi : R

N×N → Rd, i = 1, . . . , N,
• fij : R

N×N → R, i, j = 1, . . . , N ,
• D : Rd×N → RN×N , Dx := (‖xi − xj‖ℓd

2
)Ni,j=1 is the adjacency matrix of the

point cloud x.
We shall assume that the governing functions fi and fij are Lipschitz, but we shall
specify the details later on. The system (1.1) describes the dynamics of multiple com-
plex agents x(t) = (x1(t), . . . , xN (t)) ∈ Rd×N , interacting on the basis of their mutual
“social” distance Dx(t), and its general form includes several models for swarming and
collective motion of animals and micro-organisms, aggregation of cells, etc. Several
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relevant effects can be included in the model by means of the functions fi and fij ,
in particular, fundamental binary mechanisms of attraction, repulsion, aggregation,
self-drive, and alignment [13, 14, 22, 23, 50, 42]. Moreover, possibly adding stochastic
terms of random noise may also allow to consider diffusion effects [8, 14]. How-
ever, these models and motion mechanisms are mostly derived borrowing a leaf from
physics, by assuming the agents (animals, micro-organisms, cells etc.) as pointlike
and exclusively determined by their spatial position and velocity in Rd for d = 3+ 3.
In case we wished to extend such models of social interaction to more “sophisticated”
agents, described by many parameters (d ≫ 3 + 3), the simulation may become com-
putationally prohibitive. Our motivation for considering high-dimensional situations
stems from the modern development of communication technology and Internet, for
which we witness the development of larger and larger communities accessing infor-
mation (interactive databases), services (financial market), social interactions (social
networks) etc. For instance, we might be interested to simulate the behavior of cer-
tain subsets of the financial market where the agents are many investors, who are
characterized by their portfolios of several hundreds of investments. The behavior of
each individual investor depends on the dynamics of others according to a suitable
social distance determined by similar investments. Being able to produce meaningful
simulations and learning processes of such complex dynamics is an issue, which might
be challenged by using suitable compression/dimensionality reduction techniques.
The idea we develop in this paper is to randomly project the system and its initial
condition by Johnson-Lindenstrauss embeddings to a lower-dimensional space where
an independent simulation can be performed with significantly reduced complexity.
We shall show that the use of multiple projections and parallel computations allows
for an approximate reconstruction of the high-dimensional dynamics, by means of
compressed sensing techniques. After we explore the tractable simulation of the dy-
namical systems (1.1) when the dimension d of the parameter space is large, we also
address the issue of whether we can perform tractable simulations when the number
N of agents is getting very large. Unlike the control of a finite number of agents,
the numerical simulation of a rather large population of interacting agents (N ≫ 0)
can constitute a serious difficulty which stems from the accurate solution of a pos-
sibly very large system of ODEs. Borrowing the strategy from the kinetic theory of
gases [16], we want instead to consider a density distribution of agents, depending on
their d-parameters, which interact with stochastic influence (corresponding to classi-
cal collisional rules in kinetic theory of gases) – in this case the influence is “smeared”
since two individuals may interact also when they are far apart in terms of their
“social distance” Dx. Hence, instead of simulating the behavior of each individual
agent, we shall describe the collective behavior encoded by a density distribution µ,
whose evolution is governed by one sole mesoscopic partial differential equation. We
shall show that, under realistic assumptions on the concentration of the measure µ
on sets of lower dimension, we can also acquire information on the properties of the
high-dimensional measure solution µ of the corresponding kinetic equation, by con-
sidering random projections to lower dimension. Such approximation properties are
determined by means of the combination of optimal numerical integration principles
for the high-dimensional measure µ [33, 36] and the results previously achieved for
particle dynamical systems.
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1.1. Fundamental assumptions. We introduce the following notation for ℓp-
norms of vectors v ∈ Rd,

‖v‖ℓdp :=

(
d∑

i=1

|vi|p
)1/p

for 1 ≤ p < ∞,

and

‖v‖ℓd
∞

:= max
i=1,...,d

|vi|.

For matrices x ∈ Rn×m we consider the mixed norm

‖x‖ℓmp (ℓnq )
:= ‖(‖xi‖ℓnp )mi=1‖ℓmq ,

where xi ∈ Rn is the ith-column of the matrix x.
For the rest of the paper we impose three fundamental assumptions about Lips-

chitz and boundedness properties of fi and fij ,

|fi(a)− fi(b)| ≤ L‖a− b‖ℓN
∞

(ℓN
∞

), i = 1, . . . , N (1.2)

max
i=1,...,N

N∑

j=1

|fij(a)| ≤ L′, (1.3)

max
i=1,...,N

N∑

j=1

|fij(a)− fij(b)| ≤ L′′‖a− b‖ℓN
∞

(ℓN
∞

), (1.4)

for every a, b ∈ RN×N . Unfortunately, models of real-life phenomena would not
always satisfy these conditions, for instance models of financial markets or socio-
economic interactions can be expected to exhibit severely discontinuous behavior.
However, these assumptions are reasonable in certain regimes and allow us to prove
the concept we are going to convey in this paper, i.e., the possibility of simulating
high-dimensional dynamics by multiple independent simulations in low dimension.

1.2. Euler scheme, a classical result of stability and convergence, and
its complexity. We shall consider the system of ordinary differential equations of
the form (1.1) with the initial condition

xi(0) = x0
i , i = 1, . . . , N . (1.5)

The Euler method for this system is given by (1.5) and

xn+1
i := xn

i + h



fi(Dxn) +
N∑

j=1

fij(Dxn)xn
j



 , n = 0, . . . , n0 − 1. (1.6)

where h > 0 is the time step and n0 := T/h is the number of iterations. We con-
sider here the explicit Euler scheme exclusively for the sake of simplicity, for more
sophisticated integration methods might be used.

The simulation of the dynamical system (1.6) has a complexity which is at least
the one of computing the adjacency matrix Dx̃n at each discrete time tn, i.e., O(d×
N2). The scope of the next sections is to show that, up to an ε-distortion, we can
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approximate the dynamics of (1.1) by projecting the system into lower dimension and
by executing in parallel computations with reduced complexity. Computation of the
adjacency matrix in the new dimension requires only O(ε−2 log(N)×N2) operations.
Especially if the distortion parameter ε > 0 is not too small and the number of agents
is of a polynomial order in d, we reduce the complexity of computing the adjacency
matrix to O(log(d) ×N2).

2. Projecting the Euler method: dimensionality reduction of discrete
dynamical systems.

2.1. Johnson-Lindenstrauss embedding. We wish to project the dynamics
of (1.1) into a lower-dimensional space by employing a well-known result of Johnson
and Lindenstrauss [40], which we informally rephrase for our purposes as follows.

Lemma 2.1 (Johnson and Lindenstrauss). Let P be an arbitrary set of N points
in Rd. Given a distortion parameter ε > 0, there exists a constant

k0 = O(ε−2 log(N )),

such that for all integers k ≥ k0, there exists a k × d matrix M for which

(1 − ε)‖x− x̃‖2ℓd
2

≤ ‖Mx−Mx̃‖2ℓk
2

≤ (1 + ε)‖x− x̃‖2ℓd
2

, (2.1)

for all x, x̃ ∈ P. It is easy to see that the condition

(1− ε)‖p‖2ℓd
2

≤ ‖Mp‖2ℓk
2

≤ (1 + ε)‖p‖2ℓd
2

, p ∈ R
d, (2.2)

implies

(1− ε)‖p‖ℓd
2
≤ ‖Mp‖ℓk

2
≤ (1 + ε)‖p‖ℓd

2
, p ∈ R

d, (2.3)

for 0 < ε < 1, which will be used in the following sections. On the other hand, (2.3)
implies (2.2) with 3ε instead of ε.

Our aim is to apply this lemma to dynamical systems. As the mapping M from
Lemma 2.1 is linear and almost preserves distances between the points (up to the ε > 0
distortion as described above), we restrict ourselves to dynamical systems which are
quasi-linear or whose non-linearity depends only on the mutual distances of the points
involved, as in (1.1).

Let us define the additional notation, which is going to be fixed throughout the
paper:

• d ∈ N - dimension (large),
• ε > 0 - the distortion parameter from Lemma 2.1,
• k ∈ N - new dimension (small),
• M ∈ Rk×d - randomly generated matrix as described below.

The only constructions of a matrix M as in Lemma 2.1 known up to now are
stochastic, i.e., the matrix is randomly generated and has the quasi-isometry property
(2.1) with high probability. We refer the reader to [25] and [1, Theorem 1.1] for two
typical versions of the Johnson-Lindenstrauss Lemma.

We briefly collect below some well-known instances of random matrices, which
satisfy the statement of Lemma 2.1 with high probability:

• k×d matrices M whose entries mi,j are independent realizations of Gaussian
random variables

mi,j ∼ N
(

0,
1

k

)

;
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• k × d matrices M whose entries are independent realizations of ± Bernoulli
random variables

mi,j :=

{

+ 1√
k
, with probability 1

2

− 1√
k
, with probability 1

2

Several other random projections suitable for Johnson-Lindenstrauss embeddings
can be constructed following Theorem 3.6 recalled below, and we refer the reader to
[44] for more details.

2.2. Uniform estimate for a general model. If M ∈ Rk×d is a matrix, we
consider the projected Euler method in Rk associated to the high-dimensional system
(1.5)-(1.6), namely

y0i := Mx0
i , (2.4)

yn+1
i := yni + h



Mfi(D′yn) +
N∑

j=1

fij(D′yn)ynj



 , n = 0, . . . , n0 − 1. (2.5)

We denote here D′ : Rk×N → RN×N , D′y := (‖yi − yj‖ℓk
2
)Ni,j=1, the adjacency matrix

of the agents y = (y1, . . . , yN) in Rk×N . The first result of this paper reads as follows.

Theorem 2.2. Let the sequences

{xn
i , i = 1, . . . , N and n = 0, . . . , n0} and {yni , i = 1, . . . , N and n = 0, . . . , n0}

be defined by (1.5)-(1.6) and (2.4)-(2.5) with fi and fij satisfying (1.2)–(1.4) and a
matrix M ∈ Rk×d with

‖Mfi(D′yn)−Mfi(Dxn)‖ℓk
2
≤ (1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd

2
, (2.6)

‖Mxn
j ‖ℓk2 ≤ (1 + ε)‖xn

j ‖ℓd2 , (2.7)

(1 − ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i −Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
(2.8)

for all i, j = 1, . . . , N and all n = 0, . . . , n0. Moreover, let us assume that

α ≥ max
j

‖xn
j ‖ℓd2 for all n = 0, . . . , n0, j = 1, . . . , N. (2.9)

Let

eni := ‖yni −Mxn
i ‖ℓk2 , i = 1, . . . , N and n = 0, . . . , n0 (2.10)

and set En := maxi e
n
i . Then

En ≤ εhnB exp(hnA), (2.11)

where A := L′ + 2(1 + ε)(L+ αL′′) and B := 2α(1 + ε)(L + αL′′).
We remark that conditions (2.6)-(2.8) are in fact satisfied as soon as M is a

suitable Johnson-Lindenstrauss embedding as in Lemma 2.1, for the choiceN = 2Nn0

and k = O(ε−2 log(N )).
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Proof. Using (2.10) and (1.5)-(1.6) and (2.4)-(2.5) combined with (2.6) and (2.7),
we obtain

en+1
i ≤ eni + h ‖Mfi(D′yn)−Mfi(Dxn)‖ℓk

2
+ h

∥
∥
∥
∥
∥
∥

N∑

j=1

fij(D′yn)ynj − fij(Dxn)Mxn
j

∥
∥
∥
∥
∥
∥
ℓk
2

≤ eni + h(1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ h

N∑

j=1

(

‖fij(D′yn)ynj − fij(D′yn)Mxn
j ‖ℓk

2
+ ‖fij(D′yn)Mxn

j − fij(Dxn)Mxn
j ‖ℓk

2

)

≤ eni + h(1 + ε) ‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ h
N∑

j=1

(

|fij(D′yn)|enj + (1 + ε)‖xn
j ‖ℓd

2
· |fij(D′yn)− fij(Dxn)|

)

.

Taking the maximum on both sides, this becomes

En+1 ≤ En + h(1 + ε)max
i

‖fi(D′yn)− fi(Dxn)‖ℓd
2

+ hEn max
i

N∑

j=1

|fij(D′yn)|+ h(1 + ε)α ·max
i

N∑

j=1

|fij(D′yn)− fij(Dxn)|.

We use (1.2)–(1.4) for a = D′yn and b = Dxn to estimate all the terms on the
right-hand side. This gives

En+1 ≤ En + h(1 + ε)L‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

) + hEnL′ + h(1 + ε)αL′′‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

≤ En(1 + hL′) + h(1 + ε)(L + αL′′)
[
‖D′yn −D′Mxn‖ℓN

∞
(ℓN

∞
) + ‖D′Mxn −Dxn‖ℓN

∞
(ℓN

∞
)

]

≤ En(1 + hL′) + 2h(1 + ε)(L+ αL′′)(En + αε),

where we used (2.8) in the last line. This, together with E0 = 0, leads to

En ≤ εhnB exp(hnA),

where A := L′ + 2(1 + ε)(L+ αL′′) and B := 2α(1 + ε)(L+ αL′′).

2.3. Uniform estimate for the Cucker-Smale model. As a relevant exam-
ple, let us now show that Theorem 2.2 can be applied to the well-known Cucker-Smale
model, introduced and analyzed in [22, 23], which is described by

ẋi = vi ∈ R
d, (2.12)

v̇i =
1

N

N∑

j=1

g(‖xi − xj‖ℓd
2
)(vj − vi), i = 1, . . . , N. (2.13)

The function g : [0,∞) → R is given by g(s) = G
(1+s2)β , for β > 0, and bounded by

g(0) = G > 0. This model describes the emerging of consensus in a group of interacting
agents, trying to align (also in terms of abstract consensus) with their neighbors. One
of the motivations of the model from Cucker and Smale was to describe the formation
and evolution of languages [23, Section 6], although, due to its simplicity, it has been
eventually related mainly to the description of the emergence of flocking in groups of
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birds [22]. In the latter case, in fact, spatial and velocity coordinates are sufficient to
describe a pointlike agent (d = 3+3), while for the evolution of languages, one would
have to take into account a much broader dictionary of parameters, hence a higher
dimension d ≫ 3 + 3 of parameters, which is in fact the case of our interest in the
present paper.

Let us show that the model is indeed of the type (1.1). We interprete the system
as a group of 2N agents in Rd, whose dynamics is given by the following equations

ẋi =

N∑

j=1

fx
ijvj ∈ R

d,

v̇i =

N∑

j=1

fv
ij(Dx)vj , i = 1, . . . , N

with fx
ij := δij , f

v
ii(Dx) := − 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
), and fv

ij(Dx) :=
1

N
g(‖xi − xj‖ℓd

2
),

for i 6= j. The condition (1.2) is empty, (1.3) reads

L′ ≥ max(1, 2G) ≥ max
i

{

1,
2

N

N∑

k=1

g(‖xn
i − xn

k‖ℓd2 )
}

.

Finally,

max
i

2

N

N∑

j=1

∣
∣
∣g(‖xn

i − xn
j ‖ℓd

2
)− g(‖yni − ynj ‖ℓk

2
)
∣
∣
∣

≤ max
i

2‖g‖Lip
N

·
N∑

j=1

∣
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣
∣

≤ 2‖g‖Lip · ‖D′yn −Dxn‖ℓN
∞

(ℓN
∞

)

shows that L′′ ≤ 2‖g‖Lip. The boundedness of the trajectories in the phase-space of
(2.12)-(2.13) at finite time has been proved, for instance, in [37], see also [13, Theorem
4.6]. The boundedness at finite time is clearly sufficient to define the constant α
appearing in Theorem 2.2, also because we are mainly interested in the dynamics
for short time, due to the error propagation. Of course the constant α might grow
with time, but, for instance, for the Cucker-Smale system it grows at most linearly
in time [14]; as in the error estimate (2.11) we have an exponential function in time
appearing, the possible linear growth can be considered a negligible issue; moreover,
as our numerical experiments show, see Section 3.5, the situation is much better
in practice, and suitable scaling, as indicated below, allows us to assume in several
circumstances that the constant α is uniformly bounded for all times. In fact, even
when we were interested in longer time or even asymptotical behavior, especially when
pattern formation is expected, then we would observe the following additional facts:
In the Cucker-Smale model the center of mass and the mean velocity are invariants
of the dynamics. Moreover the rate of communication between particles is given by
g(s) = G

(1+s2)β
. When β ≤ 1/2 it is know (see [14]) that the dynamics will converge

to a flocking configuration. In this case one can translate at the very beginning the
center of mass and the mean velocity to 0, and the system will keep bounded for all
times. Hence in this case the constant α can also be considered uniform for all times
(not only bounded at finite time).
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2.4. Least-squares estimate of the error for the Cucker-Smale model.
The formula (2.11) provides the estimate of the maximum of the individual errors, i.e.,
En := ‖(yni −Mxn

i )
N
i=1‖ℓN

∞
(ℓk

2
). In this section we address the stronger ℓN2 (ℓk2)-estimate

for the error. For generic dynamical systems (1.1) such estimate is not available in
general, and one has to perform a case-by-case analysis. As a typical example of
how to proceed, we restrict ourselves to the Cucker-Smale model, just recalled in the
previous section. The forward Euler discretization of (2.12)–(2.13) is given by

xn+1
i = xn

i + hvni , (2.14)

vn+1
i = vni +

h

N

N∑

j=1

g(‖xn
i − xn

j ‖ℓd
2
)(vnj − vni )

with initial data x0
i and v0i given. Let M be again a suitable random matrix in the

sense of Lemma 2.1. The Euler method of the projected system is given by the initial
conditions y0i = Mx0

i and w0
i = Mv0i and the formulas

yn+1
i = yni + hwn

i , (2.15)

wn+1
i = wn

i +
h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(wn

j − wn
i ).

We are interested in the estimates of the following quantities

enx,i := ‖yni −Mxn
i ‖ℓk2 , En

x :=

√
√
√
√ 1

N

N∑

i=1

(enx,i)
2 =

‖(yni −Mxn
i )

N
i=1‖ℓN2 (ℓk

2
)√

N
, (2.16)

env,i := ‖wn
i −Mvni ‖ℓk

2
, En

v :=

√
√
√
√ 1

N

N∑

i=1

(env,i)
2 =

‖(wn
i −Mvni )

N
i=1‖ℓN2 (ℓk

2
)√

N
. (2.17)

Theorem 2.3. Let the sequences {xn
i }, {vni }, {yni }, {wn

i }, {enx,i} and {env,i}, i =
1, . . . , N and n = 1, . . . , n0 be given by (2.14), (2.15), (2.16) and (2.17), respectively.
Let ε > 0 and let us assume, that the matrix M satisfies

(1− ε)‖xn
i − xn

j ‖ℓd
2
≤ ‖Mxn

i −Mxn
j ‖ℓk

2
≤ (1 + ε)‖xn

i − xn
j ‖ℓd

2
and

(1− ε)‖vni − vnj ‖ℓd
2
≤ ‖Mvni −Mvnj ‖ℓk

2
≤ (1 + ε)‖vni − vnj ‖ℓd

2

for all i, j = 1, . . . , N and n = 0, . . . , n0.
Then the error quantities En

x and En
y introduced in (2.16) and (2.17) satisfy

√

(En
x )

2 + (En
v )

2 ≤ ε(1 + ε)hn‖g‖LipV X exp(hn‖A‖), (2.18)

where V := maxi,j,n ‖vni − vnj ‖ℓd2 , X := maxi,j,n ‖xn
i − xn

j ‖ℓd2 and

A =

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Proof. Using (2.14) and (2.15), we obtain

en+1
x,i ≤ enx,i + henv,i and En+1

x ≤ En
x + hEn

v .
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To bound the quantity En
v we have to work more. We add and subtract the term

g(‖yni − ynj ‖ℓk2 )(Mvnj −Mvni ) and apply (2.14) and (2.15). This leads to

en+1
v,i ≤ env,i +

h

N

N∑

j=1

(

‖g(‖yni − ynj ‖ℓk
2
)(wn

j − wn
i )± g(‖yni − ynj ‖ℓk

2
)(Mvnj −Mvni )

− g(‖xn
i − xn

j ‖ℓd
2
)(Mvnj −Mvni )‖ℓk

2

)

≤ env,i +
h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(env,j + env,i) (2.19)

+
(1 + ε)h‖g‖Lip

N
·

N∑

j=1

‖vnj − vni ‖ℓd
2
·
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣.

We estimate the first summand in (2.19)

h

N

N∑

j=1

g(‖yni − ynj ‖ℓk
2
)(env,j + env,i) ≤

hG

N

[
Nenv,i +

N∑

j=1

env,j
]
= hGenv,i +

hG

N

N∑

j=1

env,j

and its ℓ2-norm with respect to i by Hölder’s inequality

h
√
NGEn

v +
hG

N

(
N∑

i=1

( N∑

j=1

env,j

)2
)1/2

≤ 2h
√
NGEn

v . (2.20)

To estimate the second summand in (2.19) we make use of
∣
∣‖xn

i − xn
j ‖ℓd

2
− ‖yni − ynj ‖ℓk

2

∣
∣

≤
∣
∣‖xn

i − xn
j ‖ℓd2 − ‖Mxn

i −Mxn
j ‖ℓk2

∣
∣+
∣
∣‖Mxn

i −Mxn
j ‖ℓk2 − ‖yni − ynj ‖ℓk2

∣
∣

≤ ε‖xn
i − xn

j ‖ℓd2 + enx,i + enx,j.

We arrive at

(1 + ε)h‖g‖Lip
N

N∑

j=1

‖vnj − vni ‖ℓd2 (ε‖x
n
i − xn

j ‖ℓd2 + enx,i + enx,j)

≤ (1 + ε)h‖g‖LipV
N

{

ε

N∑

j=1

‖xn
i − xn

j ‖ℓd
2
+Nenx,i +

N∑

j=1

enx,j

}

.

The ℓ2-norm of this expression with respect to i is bounded by

(1 + ε)h‖g‖LipV
N






ε
( N∑

i=1

( N∑

j=1

‖xn
i − xn

j ‖ℓd2
)2)1/2

+N
( N∑

i=1

(enx,i)
2
)1/2

+
√
N

N∑

j=1

enx,j







≤ (1 + ε)h‖g‖LipV
√
N(εX + 2En

x ). (2.21)

Combining (2.19) with (2.20) and (2.21) leads to the recursive estimate

En+1
x ≤ En

x + hEn
v , (2.22)

En+1
v ≤ En

v + 2hGEn
v + h(1 + ε)‖g‖LipV {εX + 2En

x } ,
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which we put into the matrix form
(
En+1
x

En+1
v

)

≤ A′
(
En
x

En
v

)

+

(
0

(1 + ε)εh‖g‖LipV X

)

, (2.23)

where A′ is a 2× 2 matrix given by

A′ = Id+ hA :=

(
1 0
0 1

)

+ h

(
0 1

2(1 + ε)‖g‖LipV 2G

)

.

Taking the norms on both sides of (2.23) leads to

√

(En+1
x )2 + (En+1

v )2 ≤ (1 + h‖A‖)
√

(En
x )

2 + (En
v )

2 + ε(1 + ε)h‖g‖LipV X,

which gives the least-squares error estimate (2.18).

3. Dimensionality reduction for continuous dynamical systems.

3.1. Uniform estimates for continuous dynamical systems. In this section
we shall establish the analogue of the above results for the continuous time setting of
dynamical systems of the type (1.1),

ẋi = fi(Dx) +

N∑

j=1

fij(Dx)xj , i = 1, . . . , N , (3.1)

xi(0) = x0
i , i = 1, . . . , N . (3.2)

We adopt again the assumptions about Lipschitz continuity and boundedness of the
right-hand side made in Section 2, namely (1.2), (1.3), and (1.4).

Theorem 3.1. Let x(t) ∈ Rd×N , t ∈ [0, T ], be the solution of the system (3.1)–
(3.2) with fi’s and fij’s satisfying (1.2)–(1.4), such that

max
t∈[0,T ]

max
i,j

‖xi(t)− xj(t)‖ℓd
2
≤ α . (3.3)

Let us fix k ∈ N, k ≤ d, and a matrix M ∈ Rk×d such that

(1− ε)‖xi(t)− xj(t)‖ℓd
2
≤ ‖Mxi(t)−Mxj(t)‖ℓk

2
≤ (1 + ε)‖xi(t)− xj(t)‖ℓd

2
,(3.4)

for all t ∈ [0, T ] and i, j = 1, . . . , N . Let y(t) ∈ Rk×N , t ∈ [0, T ] be the solution of
the projected system

ẏi = Mfi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N , (3.5)

such that for a suitable β > 0,

max
t∈[0,T ]

‖y(t)‖ℓN
∞

(ℓd
2
) ≤ β . (3.6)

Let us define the column-wise ℓ2-error ei(t) := ‖yi−Mxi‖ℓk
2
for i = 1, . . . , N and

E(t) := max
i=1,...,N

ei(t) = ‖y −Mx‖ℓN
∞

(ℓk
2
) .
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Then we have the estimate

E(t) ≤ εαt(L ‖M‖+ L′′β) exp [(2L ‖M‖+ 2βL′′ + L′)t] . (3.7)

Proof. Due to (1.2)–(1.4), we have for every i = 1, . . . , N the estimate

d

dt
ei =

〈yi −Mxi,
d
dt (yi −Mxi)〉

‖yi −Mxi‖ℓk
2

≤
∥
∥
∥
∥

d

dt
(yi −Mxi)

∥
∥
∥
∥
ℓk
2

≤ ‖Mfi(D′y)−Mfi(Dx)‖ℓk
2
+

N∑

j=1

‖fij(D′y)yj − fij(Dx)Mxj‖ℓk
2

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) +
N∑

j=1

(

‖fij(Dx)(Mxj − yj)‖ℓk
2
+ ‖(fij(Dx) − fij(D′y))yj‖ℓk

2

)

≤ L ‖M‖ ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) + L′ ‖Mx− y‖ℓN
∞

(ℓk
2
) + L′′ ‖Dx−D′y‖ℓN

∞
(ℓN

∞
) ‖y‖ℓN

∞
(ℓk

2
) .

The term ‖D′y −Dx‖ℓN
∞

(ℓN
∞

) ≤ ‖D′y −D′Mx‖ℓN
∞

(ℓN
∞

) + ‖D′Mx−Dx‖ℓN
∞

(ℓN
∞

) is esti-
mated by

‖D′y −DMx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖yi − yj‖ℓk

2
− ‖Mxi −Mxj‖ℓk

2

∣
∣
∣
∣

≤ max
i,j

‖yi −Mxi‖ℓk
2
+ ‖yj −Mxj‖ℓk

2
≤ 2E(t) ,

and, using the assumption (3.4),

‖D′Mx−Dx‖ℓN
∞

(ℓN
∞

) = max
i,j

∣
∣
∣
∣
‖Mxi −Mxj‖ℓk

2
− ‖xi − xj‖ℓd

2

∣
∣
∣
∣
≤ εmax

i,j
‖xi − xj‖ℓk

2
= ε ‖Dx‖ℓN

∞
(ℓN

∞
) .

Finally, by the a priori estimate (3.3) for ‖Dx‖ℓN
∞

(ℓN
∞

) and (3.6) for ‖y‖ℓN
∞

(ℓd
2
), we

obtain

d

dt
ei ≤ L ‖M‖ (2E(t) + εα) + L′E(t) + L′′β(2E(t) + εα)

= (2L ‖M‖+ 2βL′′ + L′)E(t) + εα(L ‖M‖+ L′′β) .

Now, let us split the interval [0, T ) into a union of finite disjoint intervals Ij =
[tj−1, tj), j = 1, . . . ,K for a suitable K ∈ N, such that E(t) = ei(j)(t) for t ∈ Ij .
Consequently, on every Ij we have

d

dt
E(t) = d

dt
ei(j)(t) ≤ (2L ‖M‖+ 2βL′′ + L′)E(t) + εα(L ‖M‖+ L′′β) ,

and the Gronwall lemma yields

E(t) ≤ [εα(L ‖M‖+ L′′β)(t− tj−1) + E(tj−1)] exp ((2L ‖M‖+ 2βL′′ + L′)(t− tj−1))

for t ∈ [tj−1, tj). A concatenation of these estimates over the intervals Ij leads finally
to the expected error estimate

E(t) ≤ εαt(L ‖M‖+ L′′β) exp [(2L ‖M‖+ 2βL′′ + L′)t] .
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3.2. A continuous Johnson-Lindenstrauss Lemma. Let us now go through
the assumptions we made in the formulation of Theorem 3.1 and discuss how they re-
strict the validity and applicability of the result. First of all, let us mention that (3.3)
and (3.6) can be easily proven to hold for locally Lipschitz right-hand sides fi and
fij on finite time intervals. Obviously, the critical point for the applicability of The-
orem 3.1 is the question how to find a matrix M satisfying the condition (3.4), i.e.,
being a quasi-isometry along the trajectory solution x(t) for every t ∈ [0, T ]. The an-
swer is provided by the following generalization of the Johnson-Lindenstrauss Lemma
(Lemma 2.1) for rectifiable C1-curves, by a suitable continuity argument. Let us
stress that our approach resembles the “sampling and ǫ-net” argument in [3, 4, 59] for
the extension of the quasi-isometry property of Johnson-Lindenstrauss embeddings to
smooth Riemmanian manifolds. From this point of view the following result can be
viewed as a specification of the work [4, 59].
We first prove an auxiliary technical result:

Lemma 3.2. Let 0 < ε < ε′ < 1, a ∈ Rd and let M : Rd → Rk be a linear
mapping such that

(1− ε)‖a‖ℓd
2
≤ ‖Ma‖ℓk

2
≤ (1 + ε)‖a‖ℓd

2
.

Let x ∈ Rd satisfy

‖a− x‖ ≤
(ε′ − ε)‖a‖ℓd

2

‖M‖+ 1 + ε′
. (3.8)

Then

(1 − ε′)‖x‖ℓd
2
≤ ‖Mx‖ℓk

2
≤ (1 + ε′)‖x‖ℓd

2
. (3.9)

Proof. If a = 0, the statement is trivial. If a 6= 0, we denote the right-hand side
of (3.8) by τ > 0 and estimate by the triangle inequality

‖Mx‖ℓk
2

‖x‖ℓd
2

=
‖M(x− a) +Ma‖ℓk

2

‖x− a+ a‖ℓd
2

≤
‖M‖ · ‖x− a‖ℓd

2
+ (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− ‖x− a‖ℓd

2

≤
‖M‖ · τ + (1 + ε)‖a‖ℓd

2

‖a‖ℓd
2
− τ

≤ 1 + ε′ .

A similar chain of inequalities holds for the estimate from below.
Now we are ready to establish a continuous version of Lemma 2.1.
Theorem 3.3. Let ϕ : [0, 1] → Rd be a C1 curve. Let 0 < ε < ε′ < 1,

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞ and N ≥ (
√
d+ 2) · γ

ε′ − ε
.

Let k be such that a randomly chosen (and properly normalized) projector M satisfies
the statement of the Johnson-Lindenstrauss Lemma 2.1 with ε, d, k and N arbitrary
points with high probability. Without loss of generality we assume that ‖M‖ ≤

√

d/k
within the same probability (this is in fact the case, e.g., for the examples of Gaussian
and Bernoulli random matrices reported in Section 2).

Then

(1− ε′)‖ϕ(t)‖ℓd
2
≤ ‖Mϕ(t)‖ℓk

2
≤ (1 + ε′)‖ϕ(t)‖ℓd

2
, for all t ∈ [0, 1] (3.10)
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holds with the same probability.

Proof. Let ti = i/N , i = 0, . . . ,N and put

Ti := arg maxξ∈[ti,ti+1]‖ϕ′(ξ)‖ℓd
2
, i = 0, . . . ,N − 1.

Let M : Rd → Rk be the randomly chosen and normalized projector (see Lemma 2.1).
Hence ‖M‖ ≤

√

d/k and

(1− ε′)‖ϕ(Ti)‖ℓd
2
≤ ‖M(ϕ(Ti))‖ℓk

2
≤ (1 + ε′)‖ϕ(Ti)‖ℓd

2
, i = 1, . . . ,N (3.11)

with high probability. We show that (3.10) holds with (at least) the same probability.

This follows easily from (3.11) and the following estimate, which holds for every
t ∈ [ti, ti+1],

‖ϕ(t)− ϕ(Ti)‖ℓd
2
≤
∫ Ti

t

‖ϕ′(s)‖ℓd
2
ds ≤

‖ϕ′(Ti)‖ℓd
2

N ≤
‖ϕ′(Ti)‖ℓd

2
(ε′ − ε)

γ(
√
d+ 2)

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

√
d+ 2

≤
‖ϕ(Ti)‖ℓd

2
(ε′ − ε)

‖M‖+ 1 + ε′
.

The proof is then finished by a straightforward application of Lemma 3.2.
Remark 1. We show now that the condition

γ := max
ξ∈[0,1]

‖ϕ′(ξ)‖ℓd
2

‖ϕ(ξ)‖ℓd
2

< ∞

is necessary, hence it is a restriction to the type of curves one can quasi-isometrically
project. Let d ≥ 3. It is known that there is a continuous curve ϕ : [0, 1] → [0, 1]d−1,
such that ϕ([0, 1]) = [0, 1]d−1, i.e., ϕ goes onto [0, 1]d−1. The construction of such a
space-filling curve goes back to Peano and Hilbert. After a composition with suitable
dilations and d-dimensional spherical coordinates we observe that there is also a sur-
jective continuous curve ϕ : [0, 1] → Sd−1, where Sd−1 denotes the ℓd2 unit sphere in
Rd.

As M was supposed to be a projection, (3.10) cannot hold for all t’s with ϕ(t) ∈
ker M 6= ∅.

Obviously, the key condition for applicability of Theorem 3.3 for finding a pro-
jection matrix M satisfying (3.4) is that

sup
t∈[0,T ]

max
i,j

‖ẋi − ẋj‖ℓd
2

‖xi − xj‖ℓd
2

≤ γ < ∞ . (3.12)

This condition is, for instance, trivially satisfied when the right-hand sides fi’s and
fij ’s have the following Lipschitz continuity:

‖fi(Dx) − fj(Dx)‖ℓd
2
≤ L′′′‖xi − xj‖ℓd

2
for all i, j = 1, . . . , N ,

|fi,k(Dx) − fj,k(Dx)| ≤ L′′′′‖xi − xj‖ℓd
2

for all i, j, k = 1, . . . , N.

We will show in the examples below how condition (3.12) is verified in cases of dynami-
cal systems modeling standard social mechanisms of attraction, repulsion, aggregation
and alignment.
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3.3. Applicability to relevant examples of dynamical systems describ-
ing social dynamics. In this section we show the applicability of our dimensionality
reduction theory to well-known dynamical systems driven by “social forces” of align-
ment, attraction, repulsion, aggregation, and self-drive. Although these models were
proposed as descriptions of group motion in physical space, the fundamental social
effects can be considered as building blocks in the more abstract context of many-
parameter social dynamics. It has been shown [14, 50] that these models are able to
produce meaningful patterns, for instance mills in two spatial dimensions (see Fig-
ure 3.1), reproducing the behavior of certain biological species. However, we should

Fig. 3.1. Mills in nature and in models

expect that in higher dimension the possible patterns produced by the combination
of fundamental effects can be much more complex.

3.3.1. The Cucker-Smale system (alignment effect). As shown in Sec-
tion 2, the Cucker and Smale flocking model (2.12)–(2.13) is of the type (1.1), satisfies
the Lipschitz continuity assumptions (1.2)–(1.4), and it is bounded at finite time, as
already discussed in Section 2.3. Therefore, to meet all the assumptions of Theo-
rem 3.1, we only need to check that it also satisfies the condition (3.12). However,
for this we need to consider a slightly different framework than in Section 2.3; instead
of considering the 2N d-dimensional variables (N position variables and N velocity
variables), we need to arrange the model as N variables in R2d, each variable consist-
ing of the position part (first d entries) and of the velocity part (the other d entries).
We have then

‖ẋi − ẋj‖ℓd
2
+ ‖v̇i − v̇j‖ℓd

2
≤ ‖vi − vj‖ℓd

2
+

1

N

N∑

k=1

∣
∣g(‖xi − xk‖ℓd

2
)− g(‖xj − xk‖ℓd

2
)
∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2
+

‖g‖Lip

N

N∑

k=1

∣
∣‖xi − xk‖ℓd

2
− ‖xj − xk‖ℓd

2

∣
∣‖vk‖ℓd

2

≤ ‖vi − vj‖ℓd
2
+

‖g‖Lip

N

(
N∑

k=1

‖vk‖ℓd
2

)

‖xi − xj‖ℓd
2

≤ ‖vi − vj‖ℓd
2
+ c‖xi − xj‖ℓd

2
,

for a suitable constant c depending on the initial data. We used here the a-priori

boundedness of the term 1
N

(
∑N

k=1 ‖vk‖ℓd2
)

, see [23] or [38] for details. Consequently,
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we can satisfy (3.12) with γ = max(1, c).

3.3.2. Second order dynamic model with self-propulsion and pairwise
interactions (self-drive, attraction, and repulsion effects). Another practi-
cally relevant model which fits into the class given by (1.1) is a second order dynamic
model with self-propulsion and pairwise interactions, [45, 50]:

ẋi = vi , (3.13)

v̇i = (a− b‖vi‖2ℓd
2

)vi −
1

N

∑

j 6=i

∇xi
U(‖xi − xj‖ℓd

2
) , i = 1, . . . , N, (3.14)

where a and b are positive constants and U : [0,∞) → R is a smooth potential. We
denote u(s) = U ′(s)/s and assume that u is a bounded, Lipschitz continuous function.
We again arrange the model as a system ofN variables in R

2d, each variable consisting
of the position part (first d entries) and of the velocity part (the other d entries).
Consequently, the model can be put into a form compliant with (1.1) as follows:

ẋi =

N∑

j=1

fxv
ij vj ,

v̇i =

N∑

j=1

fvv
ij (Dv)vj +

N∑

j=1

fvx
ij (Dx)xj ,

with fxv
ij = δij , f

vx
ii (Dx) = − 1

N

∑

j 6=i u(‖xi − xj‖ℓd
2
) and fvx

ij (Dx) = 1
N u(‖xi − xj‖ℓd

2
)

for i 6= j. Moreover, we may set fvv
ij (Dv) = δij(a−b‖vi‖2ℓd

2

) by introducing an auxiliary,

noninfluential constant zero particle (x0, v0) = (0, 0) with null dynamics, i.e., f∗⋆
0 = 0

and f∗⋆
0j = 0, where ∗, ⋆ ∈ {x, v}. Then, (1.2) is void, while (1.3) is satisfied by

max
i

∑

j

(|fxv
ij (Dx,Dv)| + |fvx

ij (Dx,Dv)| + |fvv
ij (Dx,Dv)|)

≤ 1 + a+ bmax
i

‖vi‖2ℓd
2

+ 2 ‖u‖L∞

≤ L′ ,

since the theory provides an apriori bound on βv := supt∈[0,T ] maxi ‖vi‖ℓd
2
, see [50].

Condition (1.4) for fxv
ij is void, while for fvv

ij it is satisfied by

max
i

∑

j

∣
∣fvv

ij (Dv)− fvv
ij (Dw)

∣
∣ ≤ bmax

i

∣
∣
∣‖vi‖2ℓd

2

− ‖wi‖2ℓd
2

∣
∣
∣

≤ bmax
i

(

‖vi‖ℓd
2
+ ‖wi‖ℓd

2

)

‖vi − wi‖ℓd
2

≤ L′′ ‖Dv −Dw‖ℓN
∞

(ℓN
∞

) ,

where we again use the apriori boundedness of βv. For f
vx
ij is (1.4) satisfied by

max
i

∑

j

∣
∣fvx

ij (Dx) − fvx
ij (Dy)

∣
∣ ≤ max

i

2

N

∑

j 6=i

∣
∣
∣u(‖xi − xj‖ℓd

2
)− u(‖yi − yj‖ℓd

2
)
∣
∣
∣

≤ max
i

2

N
‖u‖Lip

∑

j 6=i

∣
∣
∣‖xi − xj‖ℓd

2
− ‖yi − yj‖ℓd

2

∣
∣
∣

≤ 2 ‖u‖Lip ‖Dx−Dy‖ℓN
∞

(ℓN
∞

) .
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Finally, it can be easily checked that condition (3.12) is satisfied by

‖ẋi − ẋj‖ℓd
2
+ ‖v̇i − v̇j‖ℓd

2
≤ (1 + a+ 3bβ2

v)‖vi − vj‖ℓd
2
+
(

‖u‖L∞

+ 2βx ‖u‖Lip
)

‖xi − xj‖ℓd
2
,

where βx := supt∈[0,T ]maxi ‖xi‖ℓd
2
. We notice that also this model is bounded at

finite time as shown in [13, Theorem 3.10 (formula (22))], and therefore for any
fixed horizon time T , there is a constant α = α(T ) > 0 such that (2.9) and (3.3)
hold. In the paper [50] it is shown that this model tends to produce patterns of
different quality, in particular mills, double mills, and translating crystalline flocks
(see also Figure 3.1). These patterns were further studied in [15]. Starting from the
Liouville equation for the many-body problem the authors derive the corresponding
kinetic and macroscopic hydrodynamic equations. The kinetic theory approach leads
to the identification of macroscopic structures otherwise not recognized as solutions
of the hydrodynamic equations, such as double mills of two superimposed flows. The
authors found conditions allowing for the existence of such solutions and compared
them to the case of single mills. In [17] the authors utilize the methods of classical
statistical mechanics to connect the individual-based models of the type (3.13)–(3.14)
to their continuum formulations and determine criteria for the validity of the latter.
They show that H-stability of the interaction potential plays a fundamental role in
determining both the validity of the continuum approximation and the nature of
the aggregation state transitions. They perform a linear stability analysis of the
continuum model and compare the results to the simulations of the individual-based
one.

Without entering into further details, let us stress that mills and double mills are
uniformly bounded in time (and stable). Hence in these cases, we can assume that
actually the constant α is again bounded for all times. Moreover, when the dynamics
converges to a translating crystalline flocks, we may reason in a similar way as done
for the Cucker-Smale model (although in this case the pattern in unstable).

3.4. Recovery of the dynamics in high dimension from multiple simula-
tions in low dimension. The main message of Theorem 3.1 is that, under suitable
assumptions on the governing functions fi, fij , the trajectory of the solution y(t) of the
projected dynamical system (3.5) is at an ε error from the trajectory of the projection
of the solution x(t) of the dynamical system (3.1)-(3.2), i.e.,

yi(t) ≈ Mxi(t) or, more precisely, ‖Mxi(t)− yi(t)‖ℓk
2
≤ C(t)ε, t ∈ [0, T ]. (3.15)

We wonder whether this approximation property can allow us to “learn” proper-
ties of the original trajectory x(t) in high dimension.

3.4.1. Optimal information recovery of high-dimensional trajectory from
low-dimensional projections. In this section we would like to address the following
two fundamental questions:

(i) Can we quantify the best possible information of the high-dimensional tra-
jectory one can recover from one or more projections in lower dimension?

(ii) Is there any practical method which performs an optimal recovery?
The first question was implicitly addressed already in the 70’s by Kashin and later
by Garnaev and Gluskin [41, 32], as one can put in relationship the optimal recovery
from linear measurements with Gelfand width of ℓp-balls, see for instance [18]. It was
only with the development of the theory of compressed sensing [12, 27] that an answer
to the second question was provided, showing that ℓ1-minimization actually performs
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an optimal recovery of vectors in high dimension from random linear projections to
low dimension. We address the reader to [31, Section 3.9] for further details. In
the following we concisely recall the theory of compressed sensing and we apply it to
estimate the optimal information error in recovering the trajectories in high dimension
from lower dimensional simulations.

Again a central role here is played by (random) matrices with the so-called Re-
stricted Isometry Property RIP, cf. [11].

Definition 3.4 (Restricted Isometry Property). A k × d matrix M is said to
have the Restricted Isometry Property of order K ≤ d and level δ ∈ (0, 1) if

(1− δ)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + δ)‖x‖2ℓd
2

for all K-sparse x ∈ ΣK = {z ∈ R
d : #supp (z) ≤ K}.

Both the typical matrices used in Johnson-Lindenstrauss embeddings (cf. Lemma
2.1) and matrices with RIP used in compressed sensing are usually generated at
random. It was observed by [3] and [44], that there is an intimate connection between
these two notions. A simple reformulation of the arguments of [3] yields the following.

Theorem 3.5 (Baraniuk, Davenport, DeVore, and Wakin). Let M be a k × d
matrix drawn at random which satisfies

(1− δ/2)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + δ/2)‖x‖2ℓd
2

, x ∈ P

for every set P ⊂ Rd with #P ≤
(
12ed
δK

)K
with probability 0 < ν < 1. Then M

satisfies the Restricted Isometry Property of order K and level δ/3 with probability at
least equal to ν.

Combined with several rather elementary constructions of Johnson-Lindenstrauss
embedding matrices available in literature, cf. [1] and [25], this result provides a simple
construction of RIP matrices. The converse direction, namely the way from RIP
matrices to matrices suitable for Johnson-Lindenstrauss embedding was discovered
only recently in [44].

Theorem 3.6 (Krahmer and Ward). Fix η > 0 and ε > 0, and consider a finite
set P ⊂ Rd of cardinality |P| = N . Set K ≥ 40 log 4N

η , and suppose that the k × d

matrix M̃ satisfies the Restricted Isometry Property of order K and level δ ≤ ε/4.
Let ξ ∈ Rd be a Rademacher sequence, i.e., uniformly distributed on {−1, 1}d . Then
with probability exceeding 1− η,

(1− ε)‖x‖2ℓd
2

≤ ‖Mx‖2ℓk
2

≤ (1 + ε)‖x‖2ℓd
2

.

uniformly for all x ∈ P, where M := M̃ diag(ξ), where diag(ξ) is a d × d diagonal
matrix with ξ on the diagonal.

We refer to [51] for additional details.
Remark 2. Notice that M as constructed in Theorem 3.6 is both a Johnson-

Lindenstrauss embedding and a matrix with RIP, because

(1− δ)‖x‖2ℓd
2

= (1− δ)‖ diag(ξ)x‖2ℓd
2

≤ ‖ M̃ diag(ξ)
︸ ︷︷ ︸

:=M

x‖2ℓk
2

≤ (1 + δ)‖ diag(ξ)x‖2ℓd
2

= (1 + δ)‖x‖2ℓd
2

.

The matrices considered in Section 2 satisfy with high probability the RIP with

K = O
(

k

1 + log(d/k)

)

.
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Equipped with the notion of RIP matrices we may state the main result of the
theory of compressed sensing, as appearing in [28], which we shall use for the recovery
of the dynamical system in Rd.

Theorem 3.7. Assume that the matrix M ∈ Rk×d has the RIP of order 2K and
level

δ2K <
2

3 +
√

7/4
≈ 0.4627.

Then the following holds for all x ∈ Rd. Let the low-dimensional approximation
y = Mx+ η be given with ‖η‖ℓk

2
≤ Cε. Let x# be the solution of

min
z∈Rd

‖z‖ℓd
1

subject to ‖Mz − y‖ℓk
2
≤ ‖η‖ℓk

2
. (3.16)

Then

‖x− x#‖ℓd
2
≤ C1ε+ C2

σK(x)ℓd
1√

K

for some constants C1, C2 > 0 that depend only on δ2K , and σK(x)ℓd
1
= infz:#supp (z)≤K ‖z−

x‖ℓd
1
is the best-K-term approximation error in ℓd1.

This result says that provided the stability relationship (3.15), we can approximate

the individual trajectories xi(t), for each t ∈ [0, T ] fixed, by a vector x#
i (t) solution

of an optimization problem of the type (3.16), and the accuracy of the approximation
depends on the best-K-term approximation error σK(xi(t))ℓd

1
. Actually, the results

in [12, 27] in connection with [18, 41, 32], state also that this is asymptotically the
best one can hope for. One possibility to improve the recovery error is to increase
the dimension k (leading to a smaller distortion parameter ε > 0 in the Johnson-
Lindenstrauss embedding). But we would like to explore another possibility, namely
projecting and simulating in parallel and independently the dynamical system L-times
in the lower dimension k

ẏℓi = M ℓfi(D′yℓ) +
N∑

j=1

fij(D′yℓ)yℓj , yℓi (0) = M ℓx0
i , ℓ = 1, . . . , L. (3.17)

Let us give a brief overview of the corresponding error estimates. The number of
points needed in each of the cases is N ≈ N × n0, where N is the number of agents
and n0 = T/h is the number of iterations.

• We perform 1 projection and simulation in Rk: Then ε = O
(√

logN
k

)

, K =

O
(

k
1+log(d/k)

)

and an application of Theorem 3.7 leads to

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
k

+
σK(xi(t))ℓd

1√
K

)

. (3.18)

Here, C′(t) combines both the constants from Theorem 3.7 and the time-
dependent C(t) from (3.15). So, to reach the precision of order C′(t)ǫ > 0, we

have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ and

σK(xi(t))ℓd
1√

K
≤ ǫ.

We then need k ×N2 operations to evaluate the adjacency matrix.
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• We perform 1 projection and simulation in RL×k: Then ε′ = O
(√

logN
Lk

)

and

K ′ = O
(

Lk
1+log(d/Lk)

)

and an application of Theorem 3.7 leads to

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
Lk

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.19)

The given precision of order C′(t)ǫ > 0, may be then reached by choosing

k, L ∈ N large enough, such that
√

logN
Lk ≤ ǫ and

σK′ (xi(t))ℓd
1√

K′
≤ ǫ. We then

need Lk ×N2 operations to evaluate the adjacency matrix.
• We perform L independent and parallel projections and simulations in Rk:
Then we assemble the following system corresponding to (3.17)

Mx =









M1

M2

. . .

. . .
ML









xi =









y1i
y2i
. . .
. . .
yLi









−









η1i
η2i
. . .
. . .
ηLi









,

where for all ℓ = 1, . . . , L the matrices M ℓ ∈ Rk×d are (let us say) ran-
dom matrices with each entry generated independently with respect to the
properly normalized Gaussian distribution as described in Section 2. Then
M/

√
L is a Lk × d matrix with Restricted Isometry Property of order K ′ =

O
(

Lk
1+log(d/Lk)

)

and level δ < 0.4627. The initial distortion of each of the

projections is still ε = O
(√

logN
k

)

. Therefore, by applying Theorem 3.7, we

can compute x#
i (t) such that

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(√

logN
k

+
σK′(xi(t))ℓd

1√
K ′

)

. (3.20)

Notice that the computation of x#
i (t) can also be performed in parallel, see,

e.g., [29]. The larger is the number L of projections we perform, the larger
is K ′ and the smaller is the second summand in (3.20); actually σK′(xi(t))ℓd

1

vanishes for K ′ ≥ d. Unfortunately, the parallelization can not help to reduce
the initial distortion ε > 0. To reach again the precision of order C′(t)ǫ > 0,

we have to choose k ∈ N large enough, such that
√

logN
k ≤ ǫ. Then we

chose L ≥ 1 large enough such that
σK′ (xi(t))ℓd

1√
K′

≤ ǫ. We again need k × N2

operations to evaluate the adjacency matrix.

In all three cases, we obtain the estimate

‖xi(t)− x#
i (t)‖ℓd2 ≤ C′(t)

(

ε+
σK(xi(t))ℓd

1√
K

)

, (3.21)

where the corresponding values of ε > 0 andK together with the number of operations
needed to evaluate the adjacency matrix may be found in the following table.
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ε K number of operations

1 projection into Rk O
(√

logN
k

)

O
(

k
1+log(d/k)

)

k ×N2

1 projection into RL×k O
(√

logN
Lk

)

O
(

Lk
1+log(d/Lk)

)

Lk ×N2

L projections into Rk O
(√

logN
k

)

O
(

Lk
1+log(d/Lk)

)

k ×N2

3.4.2. Optimal recovery of trajectories on smooth manifolds. In recent
papers [4, 59, 39], the concepts of compressed sensing and optimal recovery were
extended to vectors on smooth manifolds. These methods could become very useful in
our context if (for any reason) we would have an apriori knowledge that the trajectories
xi(t) keep staying on or near such a smooth manifold. Actually this is the case, for
instance in molecular dynamics, where simulations, e.g. in the form of the coordinates
of the atoms in a molecule as a function of time, lie on or near an intrinsically-low-
dimensional set in the high-dimensional state space of the molecule, and geometric
properties of such sets provide important information about the dynamics, or about
how to build low-dimensional representations of such dynamics [52, 58]. In this case,
by using appropriate recovery methods as described in [39], we could recover high-
dimensional vectors from very low dimensional projections with much higher accuracy.
However, this issue will be addressed in a following paper.

3.5. Numerical experiments. In this section we illustrate the practical use
and performances of our projection method for the Cucker-Smale system (2.12)–(2.13).

3.5.1. Pattern formation detection in high dimension from lower di-
mensional projections. As already mentioned, this system models the emergence
of consensus in a group of interacting agents, trying to align with their neighbors. The
qualitative behavior of its solutions is formulated by this well known result [22, 23, 38]:

Theorem 3.8. Let (xi(t), vi(t)) be the solutions of (2.12)–(2.13). Let us define

the fluctuation of positions around the center of mass xc(t) = 1
N

∑N
i=1 xi(t), and,

resp., the fluctuation of the rate of change around its average vc(t) =
1
N

∑N
i=1 vi(t) as

Λ(t) =
1

N

N∑

i=1

‖xi(t)− xc(t)‖2ℓd
2

, Γ(t) =
1

N

N∑

i=1

‖vi(t)− vc(t)‖2ℓd
2

.

Then if either β ≤ 1/2 or the initial fluctuations Λ(0) and Γ(0) are small enough
(see [22] for details), then Γ(t) → 0 as t → ∞.

The phenomenon of Γ(t) tending to zero as t → ∞ is called flocking or emergence
of consensus. If β > 1/2 and the initial fluctuations are not small, it is not known
whether a given initial configuration will actually lead to flocking or not, and the only
way to find out the possible formation of consensus patterns is to perform numerical
simulations. However, these can be especially costly if the number of agents N and
the dimension d are large; the algorithmic complexity of the calculation is O(d×N2).
Therefore, a significant reduction of the dimension d, which can be achieved by our
projection method, would lead to a corresponding reduction of the computational
cost.

We illustrate this fact by a numerical experiment, where we choose N = 1000
and d = 200, i.e., every agent i is determined by a 200-dimensional vector xi of its
state and a 200-dimensional vector vi giving the rate of change of its state. The
initial datum (x0, v0) is generated randomly, every component of x0 being drawn
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Fig. 3.2. Numerical results for β = 1.5: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

independently from the uniform distribution on [0, 1] and every component of v0 being
drawn independently from the uniform distribution on [−1, 1]. We choose β = 1.5,
1.62 and 1.7, and with every of these values we perform the following set of simulations:

1. Simulation of the original system in 200 dimensions.
2. Simulations in lower dimensions k: the initial condition (x0, v0) is projected

into the k-dimensional space by a random Johnson-Lindenstrauss projection
matrix M with Gaussian entries. The dimension k takes the values 150, 100,
50, 25, 10, 5, and 2. For every k, we perform the simulation twenty times,
each time with a new random projection matrix M .

All the simulations were implemented in MATLAB, using 1500 steps of the forward
Euler method with time step size 0.02. The paths of Γ(t) from the twenty experiments
with k = 100 and k = 25 or k = 10 are shown in the first rows of Figs. 3.2, 3.3 and,
resp., 3.4 for β = 1.5, 1.62 and, resp., 1.7.

The information we are actually interested in is whether flocking takes place, in
other words, whether the fluctuations of velocities Γ(t) tend to zero. Typically, after an
initial phase, the graph of Γ(t) gives a clear indication either about exponentially fast
convergence to zero (due to rounding errors, “zero” actually means values of the order
10−30 in the simulations) or about convergence to a positive value. However, in certain
cases the decay may be very slow and a very long simulation of the system would be
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Fig. 3.3. Numerical results for β = 1.62: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 25 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

needed to see if the limiting value is actually zero or not. Therefore, we propose the
following heuristic rules to decide about flocking from numerical simulations:

• If the value of Γ at the final time t = 30 is smaller than 10−10, we conclude
that flocking took place.

• If the value of Γ(30) is larger than 10−3, we conclude that flocking did not
take place.

• Otherwise, we do not make any conclusion.

In the second rows of Figs. 3.2, 3.3 and 3.4 we present the initial and final values of Γ of
the twenty simulations for all the dimensions k, together with the original dimension
d = 200. In accordance with the above rules, flocking takes place if the final value
of Γ lies below the lower dashed line, does not take place if it lies above the upper
dashed line, otherwise the situation is not conclusive. The results are summarized in
Table 3.1.

Experience gained with a large amount of numerical experiments shows the fol-
lowing interesting fact: The flocking behavior of the Cucker-Smale system is very
stable with respect to the Johnson-Lindenstrauss projections. Usually, the projected
systems show the same flocking behavior as the original one, even if the dimension is
reduced dramatically, for instance from d = 200 to k = 10 (see Figs 3.2 and 3.4). This
stability can be roughly explained as follows: Since the flocking behavior depends
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Fig. 3.4. Numerical results for β = 1.7: First row shows the evolution of Γ(t) of the system
projected to dimension k = 100 (left) and k = 10 (right) in the twenty realizations, compared to the
original system (bold dashed line). Second row shows the initial values Γ(t = 0) and final values
Γ(t = 30) in all the performed simulations.

mainly on the initial values of Γ and Λ, which are statistical properties of the random
distributions used for the generation of initial data, and since N is sufficiently large,
the concentration of measure phenomenon takes place. Its effect is that the initial
values of the fluctuations of the projected data are very close to the original ones, and
thus the flocking behavior is (typically) the same. There is only a narrow interval of
values of β (in our case this interval is located around the value β = 1.62), which is
a borderline region between flocking and non-flocking, and the projections to lower
dimensions spoil the flocking behavior, see Fig 3.3. Let us note that in our simulations
we were only able to detect cases when flocking took place in the original system, but
did not take place in some of the projected ones. Interestingly, we never observed the
inverse situation, a fact which we are not able to explain satisfactorily. In fact, one
can make other interesting observations, deserving further investigation. For instance,
Figs. 3.2 and 3.3 show that if the original system exhibits flocking, then the curves of
Γ(t) of the projected systems tend to lie above the curve of Γ(t) of the original one.
The situation is reversed if the original system does not flock, see Fig. 3.4.

From a practical point of view, we can make the following conclusion: To obtain an
indication about the flocking behavior of a highly dimensional Cucker-Smale system,
it is typically satisfactory to perform a limited number of simulations of the system
projected into a much lower dimension, and evaluate the statistics of their flocking
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β = 1.5 β = 1.62 β = 1.7
dim pos neg n/a
200 1 0 0
150 20 0 0
100 20 0 0
50 20 0 0
25 20 0 0
10 14 0 6
5 4 4 12
2 3 8 9

dim pos neg n/a
200 1 0 0
150 20 0 0
100 20 0 0
50 13 0 7
25 1 1 18
10 0 18 2
5 0 19 1
2 0 18 2

dim pos neg n/a
200 0 1 0
150 0 20 0
100 0 20 0
50 0 20 0
25 0 20 0
10 0 20 0
5 0 20 0
2 0 20 0

Table 3.1
Statistics of the flocking behaviors of the systems in the original dimension d = 200 and in

the projected dimensions. With β = 1.5 and β = 1.62, the original system (d = 200) exhibited
flocking behavior. With β = 1.5, even after random projections into 25 dimensions, the system
exhibited flocking in all 20 repetitions of the experiment, and still in 14 cases in dimension 10. With
β = 1.62, the deterioration of the flocking behavior with decreasing dimension was much faster,
and already in dimension 25 the situation was not conclusive. This is related to the fact that the
value β = 1.62 was chosen to intentionally bring the system close to the borderline between flocking
and non-flocking. Finally, with β = 1.7, the original system did not flock, and, remarkably, all the
projected systems (even to two dimensions) exhibit the same behavior.

behavior. If the result is the same for the majority of simulations, one can conclude
that the original system very likely has the same flocking behavior as well.

Fig. 3.5. Numerical results showing the time evolution of the relative error of projection (left
panel) and relative error of recovery via ℓ1-minimization (right panel) of the v-variables.

3.5.2. Numerical validation of the high and low dimensional approxi-
mation properties. Finally, we show how the relative error of projection and re-
covery evolves in time. We consider an initial datum (x0, v0) ∈ RN×d × RN×d for
the Cucker-Smale system with N = d = 200 and randomly generated entries from
the normal distribution. The parameter β = 0.4, therefore, the system will exhibit
flocking. First we project the system into k = 20, 40, 60, 100, 140, 180 dimensions and
calculate the relative error of the projection of the v-variables, given by





∑N
i=1 ‖Mvi − vj‖2ℓk

2
∑N

i=1 ‖Mvi‖2ℓk
2





1/2

.
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We observe that the maximal relative error (for k = 20) is around 14%, which we
consider as a very good result. Moreover, in all 9 cases, the error first increases, but
after t ≃ 22 it starts decreasing, which is a consequence of the flocking behavior and
concentration of measure, see the graphics in Figure 3.5 on the left. This clearly shows
that the worst-case estimate of Theorem 2.2 with exponential growth in time is overly
pessimistic.

In our second experiment, we take a randomly generated initial condition with
N = d = 200 and 80% of the entries set to zero. Then, we take L projections of the
system into 20 dimensions, with L = 1, 2, 3, 5, 7, 9, and reconstruct the v-trajectories
using ℓ1-minimization, as described in Section 3.4.1. In the graphics in Figure 3.5 on
the right, we plot the relative errors, given by





∑N
i=1 ‖ṽi − vi‖2ℓk

2
∑N

i=1 ‖vi‖2ℓk
2





1/2

,

where ṽi are the recovered trajectories. Again, we observe that the errors grow much
slower than exponentially, and after t ≃ 15 they even tend to stay constant or slightly
decrease.

4. Mean-field limit and kinetic equations in high dimension. In the pre-
vious sections we were concerned with tractable simulation of the dynamical systems
of the type (1.1) when the dimension d of the parameter space is large. Another source
of possible intractability in numerical simulations appears in the situation where the
number of agents N is very large. In general, large N imposes even a much more se-
vere limitation than large d, since the computational complexity of (1.1) is O(d×N2).
Therefore, in the next sections we consider the so-called mean-field limit of (1.1) as
N → ∞, where the evolution of the system is described by time-dependent probability
measures µ(t) on R

d, representing the density distribution of agents, and satisfying
mesoscopic partial differential equations of the type (4.1). This strategy originated
from the kinetic theory of gases, see [16] for classical references. We show how our
projection method can be applied for dimensionality reduction of the corresponding
kinetic equations and explain how the probability measures can be approximated by
atomic measures. Using the concepts of delayed curse of dimension and measure
quantization known from optimal integration problems in high dimension, we show
that under the assumption that the measure concentrates along low-dimensional sub-
spaces (and more generally along low-dimensional sets or manifolds), it can be ap-
proximated by atomic measures with sub-exponential (with respect to d) number of
atoms. Through such approximation, we shall show that we can approximate suitable
random averages of the solution of the original partial differential equation in high
dimension by tractable simulations of corresponding solutions of lower-dimensional
kinetic equations.

Another interesting approach to the problem of efficient numerical simulation of
large group dynamics is the so-called “equation-free” approach, see e.g. [47]. Here,
convenient coarse-grained variables that account for rapidly developing correlations
during initial transients are chosen, in order to perform efficient computations of
coarse-grained steady states and their bifurcation analysis. The big advantage of the
equation-free approach is that the coarse-grained dynamics can be explored without
the assumption of the continuum limit equation as we consider here. The premise of
the method is that coarse-grained governing equations conceptually exist, but are not
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explicitly available in closed form. The main idea is that short bursts of appropri-
ately initialized microscopic (fine-scale) simulations and the projection of the results
onto coarse-grained variables result in time-steppers (mappings) for those variables
(which is effectively the same as the discretization of the unavailable equations). One
then processes the results of the short simulations to estimate various coarse-grained
quantities (such as time derivatives, action of Jacobians, residuals) to perform rele-
vant coarse-grained level numerical computations, as if those quantities were obtained
from coarse-grained governing equations.

4.1. Formal derivation of mean-field equations. In this section we briefly
explain how the mean-field limit description corresponding to (1.1) can be derived.
This is given, under suitable assumptions on the family of the governing functions
FN = {fi, fij : i, j = 1, . . . N}, by the general formula

∂µ

∂t
+∇ · (HF [µ]µ) = 0, (4.1)

where HF [µ] is a field in Rd, determined by the sequence F = (FN )N∈N.
In order to provide an explicit example, we show how to formally derive the mean

field limit of systems of the type

ẋi = vi , (4.2)

v̇i =

N∑

j=1

fvv
ij (Dx,Dv)vj +

N∑

j=1

fvx
ij (Dx)xj , (4.3)

with

fvx
ij (Dx) = −δij

N

∑

k 6=i

u(‖xi − xk‖ℓd
2
) +

1− δij
N

u(‖xi − xj‖ℓd
2
) ,

fvv
ij (Dx,Dv) = δij

(

h(‖vi‖2ℓd
2

)− 1

N

N∑

k=1

g(‖xi − xk‖ℓd
2
)

)

+
1− δij
N

g(‖xi − xj‖ℓd
2
) .

Note that for suitable choices of the functions h, g, u this formalism includes both the
Cucker-Smale model (2.12)–(2.13) and the self-propulsion and pairwise interaction
model (3.13)–(3.14). We define the empirical measure associated to the solutions
xi(t), vi(t) of (4.2)–(4.3) as

µN (t) := µN (t, x, v) =
1

N

N∑

i=1

δxi(t)(x)δvi(t)(v) .

Taking a smooth, compactly supported test function ξ ∈ C∞
0 (R2d) and using (4.2)–

(4.3), one easily obtains by a standard formal calculation (see [14])

d

dt
〈µN (t), ξ〉 = d

dt

(

1

N

N∑

i=1

ξ(xi(t), vi(t))

)

(4.4)

=

∫

R2d

∇xξ(x, v) · v dµN (t, x, v) +

∫

R2d

∇vξ(x, v) · H[µN (t)](x, v) dµN (t, x, v) ,

with

H[µ](x, v) = h(‖v‖ℓd
2
)v +

∫

R2d

g(‖x− y‖ℓd
2
)(w − v) dµ(y, w) +

∫

R2d

u(‖x− y‖ℓd
2
)(y − x) dµ(y, w) .
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We now assume weak convergence of a subsequence of (µN (t))N∈N to a time-dependent
measure µ(t) = µ(t, x, v) and boundedness of its first order moment, which indeed can
be established rigorously for the Cucker-Smale and the self-propulsion and pairwise
interaction systems (see [38], [50]). Then, passing to the limit N → ∞ in (4.4), one
obtains in the strong formulation that µ is governed by

∂µ

∂t
(t, x, v) + v · ∇xµ(t, x, v) +∇v · (H[µ(t)](x, v)µ(t, x, v)) = 0 ,

which is an instance of the general prototype (4.1).
Using the same formal arguments as described above, one can easily derive mean

field limit equations corresponding to (1.1) with different choices of the family F .

4.2. Monge-Kantorovich-Rubinstein distance and stability. In several
relevant cases, and specifically for the Cucker-Smale and the self-propulsion and pair-
wise interaction systems [13], solutions of equations of the type (4.1) are stable with
respect to suitable distances. We consider the space P1(R

d), consisting of all proba-
bility measures on R

d with finite first moment. In P1(R
d) and for solutions of (4.1), a

natural metric to work with is the so-called Monge-Kantorovich-Rubinstein distance
(also called Wasserstein distance) [57],

W1(µ, ν) := sup{|〈µ− ν, ξ〉| =
∣
∣
∣
∣

∫

Rd

ξ(x)d(µ − ν)(x)

∣
∣
∣
∣
, ξ ∈ Lip(Rd),Lip(ξ) ≤ 1}.

(4.5)
We further denote Pc(R

d) the space of compactly supported probability measures on
Rd. In particular, throughout the rest of this paper, we will assume that for any
compactly supported measure valued weak solutions µ(t), ν(t) ∈ C([0, T ],Pc(R

d)) of
(4.1) we have the following stability inequality

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.6)

where C(t) is a positive increasing function of t with C(0) > 0, independent of the
dimension d. We address the interested reader to [13, Section 4] for a sample of general
conditions on the vector field H[F ](µ) which guarantee stability (4.6) for solutions of
equations (4.1).

4.3. Dimensionality reduction of kinetic equations. Provided a high-dimensional
measure valued solution to the equation

∂µ

∂t
+∇ · (HF [µ]µ) = 0, µ(0) = µ0 ∈ Pc(R

d) , (4.7)

we will study the question whether its solution can be approximated by suitable
projections in lower dimension.

Given a probability measure µ ∈ P1(R
d), its projection into Rk by means of a

matrix M : Rd → Rk is given by the push-forward measure µM := M#µ,

〈µM , ϕ〉 := 〈µ, ϕ(M ·)〉 for all ϕ ∈ Lip(Rk). (4.8)

Let us mention two explicit and relevant examples:
• If µN = 1

N

∑N
i=1 δxi

is an atomic measure, we have 〈µN
M , ϕ〉 = 〈µN , ϕ(M ·)〉 =

1
N

∑N
i=1 ϕ(Mxi). Therefore,

µN
M =

1

N

N∑

i=1

δMxi
. (4.9)
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• If µ is absolutely continuous with respect to the Lebesgue measure, i.e., it is a
function in L1(Rd), the calculation requires a bit more effort: Let us consider
M † the pseudo-inverse matrix of M . Recall that M † = M∗(MM∗)−1 is a
right inverse of M , and M †M is the orthogonal projection onto the range of
M∗. Moreover, x = M †Mx+ ξx, where ξx ∈ kerM for all x ∈ R

d. According
to these observations, we write

∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗⊕kerM

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗

∫

kerM

ϕ(Mv)µ(M †Mv + v⊥)dv⊥dv

Note now that M|ranM∗ : ranM∗ → ranM h Rk is an isomorphism, hence y =

Mv implies the change of variables dv = det(M|ranM∗)−1dy = det(MM∗)−1/2dy.
Consequently, we have
∫

Rd

ϕ(Mx)µ(x)dx =

∫

Rd

ϕ(Mx)µ(M †Mx+ ξx)dx

=

∫

ranM∗

∫

kerM

ϕ(Mv)µ(M †Mv + v⊥)dv⊥dv

=

∫

Rk

(
1

det(MM∗)1/2

∫

kerM

µ(M †y + v⊥)dv⊥
)

ϕ(y)dy ,

and

µM (y) =
1

det(MM∗)1/2

∫

kerM

µ(M †y + v⊥)dv⊥.

According to the notion of push-forward, we can consider the measure valued function
ν ∈ C([0, T ],Pc(R

k)), solution of the equation

∂ν

∂t
+∇ · (HFM

[ν]ν) = 0, ν(0) = (µ0)M ∈ Pc(R
k), (4.10)

where (µ0)M = M#µ0 and FM = ({Mfi, fij , i, j = 1, . . . , N})N∈N. As for the
dynamical system (3.5), also equation (4.10) is fully defined on the lower-dimensional
space Rk and depends on the original high-dimensional problem exclusively by means
of the initial condition.

The natural question at this point is whether the solution ν of (4.10) provides
information about the solution µ of (4.7). In particular, similarly to the result of
Theorem 3.1, we will examine whether the approximation

ν(t) ≈ µM (t), t ∈ [0, T ],

in Monge-Kantorovich-Rubinstein distance is preserved in finite time. We depict the
expected result by the following diagram:

µ(0)
t−→ µ(t)

↓ M ↓ M

ν(0) = (µ0)M
t−→ ν(t) ≈ µM (t) .
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This question will be addressed by approximation of the problem by atomic measures
and by an application of Theorem 3.1 for the corresponding dynamical system, as
concisely described by

µ
W1(µ, µ

N ).ε−→ µN

↓ M ↓ M

ν ≈ µM
W1(ν, ν

N ).ε−→ νN ≈ µN
M

Let us now recall the framework and general assumptions for this analysis to be
performed. We assume again that for all N ∈ N the family FN = {fi, fij : i, j =
1, . . .N} is composed of functions satisfying (1.2)-(1.4). Moreover, we assume that
associated to F = (FN )N∈N and to

ẋi(t) = fi(Dx(t)) +

N∑

j=1

fij(Dx(t))xj(t), (4.11)

we can define a mean-field equation

∂µ

∂t
+∇ · (H[F ](µ)µ) = 0, µ(0) = µ0 ∈ Pc(R

d), (4.12)

such that for any compactly supported measure valued weak solutions µ(t), ν(t) ∈
C([0, T ],Pc(R

d)) of (4.1) we have the following stability

W1(µ(t), ν(t)) ≤ C(t)W1(µ(0), ν(0)), t ∈ [0, T ], (4.13)

where C(t) is a positive increasing function of t, independent of the dimension d.
We further require that corresponding assumptions, including stability, hold for the
projected system (2.5) and kinetic equation (4.10). Then we have the following ap-
proximation result:

Theorem 4.1. Let us assume that µ0 ∈ Pc(R
d) and there exist points {x0

1, . . . , x
0
N} ⊂

R
d, for which the atomic measure µN

0 = 1
N

∑N
i=1 δx0

i
approximates µ0 up to ε > 0 in

Monge-Kantorovich-Rubinstein distance, in the following sense

W1(µ0, µ
N
0 ) ≤ ε, N = N k(ε) for k(ε) ≤ d and k(ε) → d for ε → 0. (4.14)

Requirement (4.14) is in fact called the delayed curse of dimension as explained below
in detail in Section 4.5. Depending on ε > 0 we fix also

k = k(ε) = O(ε−2 log(N)) = O(ε−2 log(N )k(ε)).

Moreover, let M : Rd → Rk be a linear mapping which is a continuous Johnson-
Lindenstrauss embedding as in (3.4) for continuous in time trajectories xi(t) of (4.11)
with initial datum xi(0) = x0

i . Let ν ∈ C([0, T ],Pc(R
k)) be the weak solution of

∂ν

∂t
+∇ · (H[FM ](ν)ν) = 0, (4.15)

ν(0) = (µ0)M ∈ Pc(R
k), (4.16)

where (µ0)M = M#µ0. Then

W1(µM (t), ν(t)) ≤ C(t)‖M‖ε, t ∈ [0, T ], (4.17)
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where C(t) is an increasing function of t, with C(0) > 0, which is at most polynomially
growing with the dimension d.

Proof. Let us define νN (t) the solution to equation (4.15) with initial datum
νN (0) = (µN

0 )M , or, equivalently, thanks to (4.9)

νN (t) =
1

N

n∑

i=1

δyi(t),

where yi(t) is the solution of

ẏi = fi(D′y) +
N∑

j=1

fij(D′y)yj , i = 1, . . . , N ,

yi(0) = Mx0
i , i = 1, . . . , N .

We estimate

W1(µM (t), ν(t)) ≤ W1(µM (t), (µN (t))M ) +W1((µ
N (t))M , νN (t)) +W1(ν

N (t), ν(t)).

By using the definition of push-forward (4.8) and (4.14), the first term can be esti-
mated by

W1(µM (t), (µN (t))M ) = sup{〈µM (t)− (µN (t))M , ϕ〉 : Lip(ϕ) ≤ 1}
= sup{〈µ(t)− µN (t), ϕ(M ·)〉 : Lip(ϕ) ≤ 1}
≤ ‖M‖W1(µ(t), µ

N (t)) ≤ ‖M‖C(t)ε.

We estimate now the second term

W1((µ
N (t))M , νN (t)) = sup{〈(µN (t))M − νN (t), ϕ〉 : Lip(ϕ) ≤ 1}

= sup{ 1

N

N∑

i=1

(ϕ(Mxi(t)) − ϕ(yi(t))) : Lip(ϕ) ≤ 1}

≤ 1

N

N∑

i=1

‖Mxi(t)− yi(t)‖ℓk
2
.

We recall the uniform approximation of Theorem 3.1,

‖Mxi(t)− yi(t)‖ℓk
2
≤ D(t)ε , i = 1, . . . , N,

where D(t) is the time-dependent function on the right-hand-side of (3.7). Hence

W1(µM (t), (µN (t))M ) ≤ D(t)ε.

We address now the upper estimate of the third term, by the assumed stability of the
lower dimensional equation (4.10)

W1(ν
N (t), ν(t)) ≤ C(t)W1(ν

N (0), ν(0))

= C(t)W1((µ
N
0 )M , (µ0)M )

≤ C(t)‖M‖W (µN
0 , µ0) ≤ C(t)‖M‖ε.

We can fix C(t) = 2C(t)‖M‖+D(t), and, as observed in Theorem 3.3, we can assume

without loss of generality that ‖M‖ ≤
√

d
k . Hence, C(t) depends at most polynomially

with respect to the dimension d.
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4.4. Approximation of probability measures by atomic measures and
optimal integration. In view of the fundamental requirement (4.14) in Theorem
4.1, given µ0 ∈ Pc(R

d), we are interested to establish an upper bound to the best pos-
sible approximation in Monge-Kantorovich-Rubinstein distance by means of atomic
measures µN

0 = 1
N

∑N−1
i=0 δx0

i
with N atoms, i.e.,

EN (µ0) := inf
µN
0
= 1

N

∑N−1

i=0
δ
x0
i

W1(µ0, µ
N
0 ) (4.18)

= inf
{x0

0
,...,x0

N−1
}⊂Rd

sup
{
|
∫

Rd

ξ(x)dµ0(x)−
1

N

N−1∑

i=0

ξ(x0
i )| : ξ ∈ Lip(Rd),Lip(ξ) ≤ 1

}
.

In fact, once we identify the optimal points {x0
0, . . . , x

0
N−1}, we can use them as initial

conditions xi(0) = x0
i for the dynamical system (4.11), and by using the stability

relationship (4.6), we obtain

W1(µ(t), µ
N (t)) ≤ C(T )W1(µ0, µ

N
0 ), t ∈ [0, T ] , (4.19)

where µN (t) = 1
N

∑N−1
i=0 δxi(t), meaning that the solution of the partial differential

equation (4.1) keeps optimally close to the particle solution of (4.11) also for suc-
cessive time t > 0. Note that estimating (4.18) as a function of N is in fact a very
classical problem in numerical analysis well-known as optimal integration with its
high-dimensional behaviour being a relevant subject of the field of Information Based
Complexity [49, 55].

The numerical integration of Lipschitz functions with respect to the Lebesgue
measure and the study of its high-dimensional behaviour goes back to Bakhvalov [2],
but much more is known nowadays. We refer to [33] and [36] for the state of the art
of quantization of probability distributions.

The scope of this section is to recall some facets of these estimates and to refor-
mulate them in terms of W1 and EN . We emphasize that here and in what follows,
we consider generic compactly supported probability measures µ, not necessarily ab-
solutely continuous with respect to the Lebesgue measure. We start first by assuming
d = 1, i.e., we work with a univariate measure µ ∈ Pc(R) with support suppµ ⊂ [a, b]
and σ := b− a > 0. We define the points x0, . . . , xN−1 as the quantiles of the proba-
bility measure µ, i.e., x0 := a and

i

N
=

∫ xi

−∞
dµ(x), i = 1, . . . , N − 1. (4.20)

This is notationally complemented by putting xN := b. Note that by definition
∫ xi+1

xi
dµ(x) = 1

N , i = 0, . . . , N − 1, and we have

∣
∣
∣
∣
∣

∫

R

ξ(x)dµ(x) − 1

N

N−1∑

i=0

ξ(xi)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

N−1∑

i=0

∫ xi+1

xi

(ξ(x) − ξ(xi))dµ(x)

∣
∣
∣
∣
∣

≤
N−1∑

i=0

∫ xi+1

xi

|ξ(x) − ξ(xi)| dµ(x) (4.21)

≤ Lip(ξ)

N

N−1∑

i=0

(xi+1 − xi) =
σLip(ξ)

N
.
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Hence it is immediate to see that

EN(µ) = inf
µN= 1

N

∑N−1

i=0
δ
x0
i

W1(µ, µ
N ) ≤ σ

N
.

We would like to extend this estimate to higher dimension d > 1. However, for
multivariate measures µ there is no such an easy upper bound, see [33] and [36] for
very general statements, and for the sake of simplicity we restrict here the class of
measures µ to certain special cases. As a typical situation, we address tensor product
measures and sums of tensor products.

Lemma 4.2. Let µ1, . . . , µd ∈ P1(R) with W1(µ
j , µj,Nj ) ≤ εj , j = 1, . . . , d for

some N1, . . . , Nd ∈ N, ε1, . . . , εd > 0 and µj,Nj := 1
Nj

∑Nj−1
i=0 δxj

i
. Let N =

∏d
i=1 Ni.

Then

W1(µ
1 ⊗ · · · ⊗ µd, µN ) ≤

d∑

j=1

εj ,

where

µN :=
1

N

∑

x∈X

δx and X :=
d∏

j=1

{xj
0, . . . , x

j
Nj−1}.

Proof. The proof is based on a simple argument using a telescopic sum. For
j = 1, . . . , d+ 1 we put

Vj :=
1

∏d
i=j Ni

Nj−1
∑

ij=0

· · ·
Nd−1∑

id=0

∫

Rj−1

ξ(x1, . . . , xj−1, x
j
ij
, . . . , xd

jd
)dµ1(x1) . . . dµ

j−1(xj−1).

Of course, if j = 1, then the integration over Rj−1 is missing and if j = d + 1 then
the summation becomes empty. Now

∫

Rd

ξ(x)dµ(x) − 1
∏d

i=1 Ni

N1−1∑

i1=0

· · ·
Nd−1∑

id=0

ξ(x1
i1 , . . . , x

d
id
) =

d∑

j=1

(Vj+1 − Vj)

together with the estimate |Vj+1 − Vj | ≤ εj finishes the proof.
Lemma 4.2 says, roughly speaking, that the tensor products of sampling points of

univariate measures are good sampling points for the tensor product of the univariate
measures. Next lemma deals with sums of measures.

Lemma 4.3. Let µ1, . . . , µL ∈ P1(R
d) with W1(µl, µ

N
l ) ≤ εl, l = 1, . . . , L for

some N ∈ N, ε1, . . . , εL > 0 and µN
l := 1

N

∑N−1
i=0 δxl,i

. Then

W1

(µ1 + · · ·+ µL

L
, µLN

)

≤ 1

L

L∑

l=1

εl,

where

µLN :=
1

LN

∑

x∈X

δx =
1

L

L∑

l=1

µN
l and X :=

L⋃

l=1

{xl,0, . . . , xl,N−1}.
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Proof. We use the homogeneity of the Monge-Kantorovich-Rubinstein distance
W1(aµ, aν) = aW1(µ, ν) for µ, ν ∈ P1(R

d) and a ≥ 0 combined with its subadditivity
W1(µ1+µ2, ν1+ ν2) ≤ W1(µ1, ν1)+W1(µ2, ν2) for µ1, µ2, ν1, ν2 ∈ P1(R

d). We obtain

W1

(µ1 + · · ·+ µL

L
,
µN
1 + · · ·+ µN

L

L

)

≤ 1

L

L∑

l=1

W1(µl, µ
N
l ) ≤ 1

L

L∑

l=1

εl.

Next corollary follows directly from Lemma 4.2 and Lemma 4.3.
Corollary 4.4. (i) Let µ1, . . . , µd ∈ P1(R) and N1, . . . , Nd ∈ N. Then

EN (µ1 ⊗ · · · ⊗ µd) ≤
d∑

j=1

ENj
(µj), where N := N1 · · ·Nd.

(ii) Let µ1, . . . , µL ∈ P1(R
d) and N ∈ N. Then

ELN

(µ1 + · · ·+ µL

L

)

≤ 1

L

L∑

l=1

EN (µl).

4.5. Delayed curse of dimension. Although Lemma 4.2, Lemma 4.3 and
Corollary 4.4 give some estimates of the Monge-Kantorovich-Rubinstein distance be-
tween general and atomic measures, the number of atoms needed may still be too
large to allow the assumption (4.14) in Theorem 4.1 to be fulfilled. Let us for exam-
ple consider the case, where µ1 = · · · = µd in Lemma 4.2 and ε1 = · · · = εd =: ε.
Then, of course, N1 = · · · = Nd =: N and we observe, that the construction given in
Lemma 4.2 gives an atomic measure, which approximates µ up to the error dε using
N d atoms, hence with an exponential dependence on the dimension d. This effect is
another instance of the well-known phenomenon of the curse of dimension.

However, in many real-life high-dimensional applications the objects of study
(in our case the measure µ ∈ Pc(R

d)) concentrate along low-dimensional subspaces
(or, more general, along low-dimensional manifolds) [5, 6, 19, 20, 21]. The number
of atoms necessary to approximate these measures behaves in a much better way,
allowing the application of (4.14) and Theorem 4.1. To clarify this effect, let us
consider µ = µ1 ⊗ · · · ⊗ µd with suppµj ⊂ [aj , bj ] and define σj = bj − aj . Let us
assume, that σ1 ≥ σ2 ≥ · · · ≥ σd > 0 is a rapidly decreasing sequence. Furthermore,
let ε > 0. Then we define k := k(ε) to be the smallest natural number, such that

d∑

k=k(ε)+1

σk ≤ ε/2

and put Nk = 1 for k ∈ {k(ε) + 1, . . . , d}. The numbers N1 = · · · = Nk(ε) = N are
chosen large enough so that

1

N

k(ε)
∑

k=1

σk ≤ ε/2.
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Then Lemma 4.2 together with (4.20) state that there is an atomic measure µN with

N = N k(ε) atoms, such that

W1(µ, µ
N ) ≤

d∑

k=1

σk

Nk
≤ ε/2 + ε/2. (4.22)

Hence, at the cost of assuming that the tensor product measure µ is concentrated
along a k(ε)-dimensional coordinate subspace, we can always approximate the mea-
sure µ with accuracy ε by using an atomic measure supported on points whose number
depends exponentially on k = k(ε) ≪ d. However, if we liked to have ε → 0, then
k(ε) → d and again we are falling under the curse of dimension. This delayed kicking
in of the need of a large number of points for obtaining high accuracy in the ap-
proximation (4.22) is in fact the so-called delayed curse of dimension, expressed by
assumption (4.14), a concept introduced first by Curbera in [24], in the context of
optimal integration with respect to Gaussian measures in high dimension.

Let us only remark, that the discussion above may be easily extended (with help
of Lemma 4.3) to sums of tensor product measures. In that case we obtain as atoms
the so-called sparse grids, cf. [10]. Using suitable change of variables, one could also
consider measures concentrated around (smooth) low-dimensional manifolds, but this
goes beyond the scope of this work, see [33] for a broader discussion.
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