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Abstract 
For nonlinear systems that are known to be globally asymptotically 
stabilizable, control over networks introduces a major challenge 
because of the asynchrony in the transmission schedule. 
Maintaining global asymptotic stabilization in sampled-data 
implementations with zero-order hold and with perturbations in the 
sampling schedule is not achievable in general but we show in this 
paper that it is achievable for the class of feedforward systems. We 
develop sampled-data feedback stabilizers which are not 
approximations of continuous-time designs but are discontinuous 
feedback laws that are specifically developed for maintaining 
global asymptotic stabilizability under any sequence of sampling 
periods that is uniformly bounded by a certain “maximum 
allowable sampling period”.  
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1. Introduction 
 
Achieving stabilization by sampled-data feedback and ensuring robustness to perturbations in the 
sampling schedule are the central challenges in nonlinear control over networks, where 
asynchrony is ubiquitous. In this paper we achieve these goals for the class of uncertain 
feedforward systems, for which these goals are achievable due to the absence of exponential and 
finite escape time instabilities, despite the presence of nonlinearities of superlinear growth. We 
propose a saturation-based forwarding feedback, which we construct specifically for the sampled-
data problem (namely, not as an approximation of a continuous design) and in such a way that it 
guarantees robustness of global asymptotic stability to perturbations in the sampling schedule. 
 
     Research on feedforward systems has played an important role in the development of nonlinear 
control theory, starting with the introduction of this class and the first feedback laws by Teel [54], 
followed by the key advances by Praly and Mazenc [31] and Jankovic, Sepulchre, and Kokotovic 
[15], and continuing with various extensions and generalizations by many authors [1-
4,7,8,12,13,14,16,24,28-30,32-40,46-53,55-57]. More recently, feedforward systems with input 
delays and/or measurement delays have been studied [5,6,21,25].   
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    In this work we focus on the problem of robust global stabilization of uncertain feedforward 
systems of the form 
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where lD ℜ⊂  is a non-empty compact set and all mappings ℜ→ℜ×ℜ× −1: i

i Dg  ( ni ,...,2= ) are 
locally Lipschitz for which there exists a smooth non-decreasing function );(0 ++ ℜℜ∈CL  such that 
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for all ℜ×ℜ×∈ nDuxd ),,(  and ni ,...,2=                                               (1.2) 

 
    More specifically, we solve the problem of robust global stabilization of (1.1) by means of 
bounded sampled-data feedback control applied with zero-order hold, i.e., with a controller of the 
form  
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where 0>r  is a constant (the Maximum Allowable Sampling Period; MASP) and ℜ→ℜnk :  is a 
bounded function with 0)0( =k . The input ++ ℜ→ℜ:w  represents possible perturbations in the 
sampling schedule.  
 
     This problem is important for real-time implementations of control of feedforward systems, 
especially over networks, and to our knowledge, has not been addressed so far. The literature on 
sampled-data control provides control design methodologies that guarantee global stability for the 
following cases:  
 
(i) Linear stabilizable systems, where BuAxuxf +=),( , mnnn BA ×× ℜ∈ℜ∈ , ,  
(ii) Nonlinear systems of the form uxgxfx )()( +=& , ℜ∈ℜ∈ ux n , , where the vector field 

nnf ℜ→ℜ:  is globally Lipschitz and the vector field nng ℜ→ℜ:  is locally Lipschitz and 
bounded, which can be stabilized by a globally Lipschitz feedback law )(xku =  (see [11]). 

(iii) Nonlinear systems of the form 1),(),( ++= iiii xuxguxfx&  for 1,...,1 −= ni  and 
uuxguxfx nnn ),(),( +=& , where the drift terms ),( uxf i  ( ni ,...,1= ) satisfy the linear growth 

conditions ii xLxLxf ++≤ ...)( 1  ( ni ,...,1= ) for certain constant 0≥L  and there exist constants 
0>≥ ab  such that buxga i ≤≤ ),(  for all ni ,...,1= , ℜ∈ℜ∈ ux n ,  (see [19]). 

(iv)  Asymptotically controllable homogeneous systems with positive minimal power and zero 
degree (see [9]). 

(v) Systems satisfying the reachability hypotheses of Theorem 3.1 in [20], or hypotheses (A1), 
(A2), (A3) in Section 4 of [18], 

(vi) Nonlinear systems ),( uxfx =& , for which there exists  a global diffeomorphism nn ℜ→ℜΘ :  
such that the change of coordinates )(xz Θ=  transforms the system to one of the above cases. 
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    However, nonlinear feedforward systems of the form (1.1) under hypothesis (1.2) rarely belong 
to one of the above classes (an exception is the class of linearizable feedforward systems; see 
[24,49-52]). On the other hand, there are well-established standard control design methodologies 
that guarantee stabilization of system (1.1) under sampled-data control with zero-order hold 
[10,22,23,26,27,41-45] but only in the practical and semiglobal sense. Therefore, the problem of 
robust global stabilization of (1.1) by means of bounded sampled-data feedback control applied 
with zero-order hold is open. Moreover, it was recently shown that the combination of a robust 
global sampled-data stabilizer with predictor schemes achieves global stabilization for systems 
with input and measurement delays [21]. Consequently, the solution of the problem of robust 
global stabilization of (1.1) by means of bounded sampled-data feedback control applied with 
zero-order hold automatically yields the solution of the same problem even in the presence of 
arbitrary measurement and input delays. 
 
   The key result of the present work is the “Sampled-Data Forwarding Lemma” (Lemma 3.1 
below). The Sampled-Data Forwarding Lemma deals with a composite system that consists of two 
subsystems, the x -subsystem 
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and the scalar y -subsystem 
 

ℜ∈= yuxdGy ,),,(&                                                               (1.5)  
 
Assuming that the x -subsystem can be robustly globally stabilized by means of sampled-data 
control applied with zero-order hold, then under appropriate conditions on the mappings GF ,  we 
are in a position to construct a stabilizing feedback for the interconnected system (1.4), (1.5). The 
intuition behind the Sampled-Data Forwarding Lemma is as follows: we would like to bring the 
state ),( yx  of system (1.4), (1.5) to a neighborhood of the origin, where the linearization of (1.4), 
(1.5) prevails, and keep it there using a linear feedback strategy. In order to achieve this objective, 
we first apply the sampled-data feedback stabilizer for (1.4), which brings the x -component of the 
state ),( yx  close to zero. Once we have brought x  close to zero, we keep x  close to zero while 
simultaneously driving y  close to zero. Having brought ),( yx  to an appropriate neighborhood of 
zero, we apply linear feedback to drive ),( yx  to zero.  
 
     The Sampled-Data Forwarding Lemma provides an explicit formula for the robust feedback 
stabilizer and can be applied recursively for the robust global sampled-data stabilization of 
feedforward systems (Theorem 3.7 below). Moreover, if the assumed feedback stabilizer for (1.4) 
is bounded then the constructed feedback stabilizer for (1.4), (1.5) is bounded too. Robustness to 
perturbations in the sampling schedule is guaranteed by treating )( ix τ , where iτ  is a sampling 
time, as a perturbation of the current value of the state )(tx : by restricting the MASP 0>r , we are 
in a position to guarantee that )()( ixtx τ−  is sufficiently small. The same methodology 
was introduced in the first author's papers [19,20], where robustness to perturbations in the 
sampling schedule and global stabilization was achieved for certain classes of nonlinear systems. 
 
   The structure of the paper is as follows: Section 2 provides the stability notions used in the 
paper and some technical results. Section 3 contains the “Sampled-Data Forwarding Lemma” 
(Lemma 3.1 below), which is applied recursively for the stabilization of (1.1). The main result 
(Theorem 3.7) guarantees the solvability of the problem of robust global stabilization of (1.1) by 
means of bounded sampled-data feedback control applied with zero-order hold. The formulae for 
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the feedback stabilizers for feedforward systems contain parameters which can be tuned in order 
to guarantee good performance. A three-dimensional feedforward example is presented in Section 
4 of the paper, which shows the importance of proper selection of the values of the parameters. 
Moreover, an additional example in Section 4 indicates that the Sampled-Data Forwarding 
Lemma is not restricted to feedforward systems. Section 5 contains the concluding remarks of the 
paper. Finally, the Appendix contains the proofs of all technical lemmas appearing in Section 3.  
 
 
Notation Throughout this paper we adopt the following notation:  
∗  Let ),0[: +∞=ℜ⊆ +I  be an interval. By  );( UI∞L  ( );( UIloc

∞L ) we denote the space of measurable 
and (locally) essentially bounded functions )( ⋅u  defined on I  and taking values in mU ℜ⊆ . 

∗  By  );(0 ΩAC , we denote the class of continuous functions on nA ℜ⊆ , which take values in 
mℜ⊆Ω . By  );( ΩAC k , where 1≥k , we denote the class of continuous functions on nA ℜ⊆ , 

which have continuous derivatives  of order 1≥k  and take values in mℜ⊆Ω . 
∗  For a vector nx ℜ∈  we denote by x′  its transpose and by x  its Euclidean norm. mnA ×ℜ∈′  

denotes the transpose of the matrix nmA ×ℜ∈ .  

∗  By  [-1,1]:sat →ℜ , we denote the continuous function 
),1max(

)(sat
x

xx =  for all ℜ∈x . nxB ℜ⊆),( ρ  

denotes the closed ball in nℜ  of radius 0≥ρ  centered at nx ℜ∈ , i.e., { }ρρ ≤−ℜ∈= xyyxB n ::),( .  
∗  We say that an increasing continuous function ++ ℜ→ℜ:γ  is of class ∞K  if 0)0( =γ  and 

+∞=
+∞→

)(lim s
s

γ . By KL  we denote the set of all continuous functions +++ ℜ→ℜ×ℜ= :),( tsσσ  

with the properties: (i) for each 0≥t  the mapping ),( t⋅σ  is non-decreasing; (ii) for each 0≥s , 
the mapping ),( ⋅sσ  is non-increasing with 0),(lim =

+∞→
ts

t
σ . 

 
 
 
2. Background Material and Preliminary Results 
 
The stability notions used in the present work are applied to sampled-data systems of the form: 
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where lD ℜ⊂  is a non-empty set and 0>r  is a constant, under the following hypotheses:  
 
(H) ),,( 0xxdf  is continuous with respect to nDxd ℜ×∈),(  and there exist a symmetric positive 
definite matrix nnP ×ℜ∈  and a function ∞∈Ka  such that the following inequalities hold  
 

( ) ( )
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∈≠∈
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−′−
DdyxsBxyx
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xydfxxdfPyx
,,),0(,,:

),,(),,(
sup 02

00 , 0>∀s                 (2.2) 

 
( )00 ),,( xxaxxdf +≤ , nDUxdu ℜ××∈∀ ),,(                                       (2.3) 
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Hypothesis (H) guarantees that nℜ∈0  is an equilibrium point for (1.1) and is automatically 
satisfied if lD ℜ⊂  is compact, ),,( uxdf  is locally Lipschitz with respect to nx ℜ∈  and 0)0,0,( =df  
for all Dd ∈ . Moreover, by virtue of Proposition 2.5 in [17], hypothesis (H) guarantees that for 
every );();(),,( 0

++∞+∞ ℜℜ×ℜ×ℜ∈ locloc
n Dwdx LL , system (2.1) admits a unique solution ntx ℜ→),0[: max  

with 0)0( xx = , where ],0(max +∞∈t  is the maximal existence time of the solution. Furthermore, if 
+∞<maxt  then +∞=

−→
)(suplim

max

tx
tt

. The unique solution of (2.1) with 0)0( xx =  corresponding to inputs 

);();(),( ++∞+∞ ℜℜ×ℜ∈ locloc Dwd LL  will be denoted by ),,,( 0 wdxtx . The set of times ∞
=0}{ iiτ  is called the 

set of sampling times. 
 
We next provide the definition of Robust Global Asymptotic Stability of (1.1).   
 
Definition 2.1: Consider system (2.1) under hypothesis (H). We say that nℜ∈0  is Robustly 
Globally Asymptotically Stable (RGAS) for system (2.1) if the following properties hold: 
 
P1 (2.1) is Robustly Lagrange Stable, i.e., for every 0>ε , it holds that 
 

( ){ } +∞<ℜ×ℜ∈≤≥ ++∞ Dwdxtwdxtx loc ;),(,,0;),,,(sup 00 Lε  
(Robust Lagrange Stability) 

 
 P2 (2.1) is Robustly Lyapunov Stable, i.e., for every 0>ε there exists ( ) 0: >= εδδ  such that: 
 

0,),,,( 00 ≥∀≤⇒≤ twdxtxx εδ , );();(),( ++∞+∞ ℜℜ×ℜ∈∀ locloc Dwd LL  
(Robust Lyapunov Stability) 

 
P3 (2.1) satisfies the Robust Attractivity Property, i.e. for every 0>ε  and 0≥R , there exists a 

( ) 0,: ≥= Rεττ , such that: 
 

τε ≥∀≤⇒≤ twdxtxRx ,),,,( 00 , );();(),( ++∞+∞ ℜℜ×ℜ∈∀ locloc Dwd LL  
 
 
Remark 2.2: Using Lemma 2.17 in [18] (with zero gain function) we can guarantee that nℜ∈0  is 
RGAS for system (2.1) if and only if there exists a function KL∈σ  such that the following 
estimate holds for all );();(),,( 0

++∞+∞ ℜℜ×ℜ×ℜ∈ locloc
n Dwdx LL  and 0≥t : 

 
( )txtx ,)( 0σ≤                                                                (2.4) 

 
The reader should also notice that the sampling period is allowed to be time-varying. The factor 

( ) 1)(exp ≤− iw τ  , with 0)( ≥tw  some non-negative function of time, is an uncertainty factor in the 
end-point of the sampling interval. Proving RGAS for (2.1) guarantees stability for all sampling 
schedules with rii ≤−+ ττ 1  (robustness to perturbations of the sampling schedule). Therefore, it is 
justified to call the constant 0>r  the Maximum Allowable Sampling Period (MASP).   
 
We finish this section by providing a technical result which will be used in the following sections. 
 
Lemma 2.3: Let ab >  be constants and let nbax ℜ→],[:  be absolutely continuous. Suppose that 
there exist constants 0, ≥GQ  such that  
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)()()( axGtxQtx +≤&  for ),[ bat∈ , a.e.                                              (2.5) 
 
Suppose furthermore, that ( ) 1)(exp))(( <−−+ abQabQG .  Then the following inequality holds for all 

],[ bat∈ : 
 

( )
( ) )(

)(exp))((1
)(exp))(()()( tx
abQabQG

abQabQGaxtx
−−+−

−−+
≤−                                         (2.6) 

 

Proof: Since nbax ℜ→],[:  is absolutely continuous, it holds that dssxaxtx
t

a
∫≤− )()()( & , for all 

],[ bat∈ . Inequality (2.5) implies )()()()()( axabGdssxQaxtx
t

a

−+≤− ∫ , for all ],[ bat∈  and 

consequently we obtain )())(()()()()( axabQGdsaxsxQaxtx
t

a

−++−≤− ∫ , for all ],[ bat∈ . Applying the 

Gronwall-Bellman lemma to the previous inequality, gives: 
 

( ) )()(exp))(()()( axabQabQGaxtx −−+≤− , for all ],[ bat∈  
 
The above inequality in conjunction with the triangle inequality implies that 
 

( ) ( ) )()(exp))(()()()(exp))(()()( txabQabQGtxaxabQabQGaxtx −−++−−−+≤− , ],[ bat∈∀  
 
Since ( ) 1)(exp))(( <−−+ abQabQG , the above inequality directly implies (2.6). The proof is 
complete.      <  
 
 
 
3. Main Results 
 
All the results of the present work are proved by using Lemma 3.1, which is stated next. We call it 
the “Sampled-Data Forwarding Lemma” because it provides sufficient conditions for robust 
global stabilization by means of sampled-data control with positive sampling rate of a system with 
“added integration”. The main result of the paper, Theorem 3.7, is established by recursively 
applying this lemma to system (1.1), and by constructively satisfying the lemma’s key 
assumptions (inequalities (3.3)-(3.5) below) with the help of Lemma 3.6.  
 
Lemma 3.1 (The Sampled-Data Forwarding Lemma): Consider the following system 
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where nb ℜ∈′= )0,...,0,1( , lD ℜ⊂  is a nonempty compact set, nnDf ℜ→ℜ×ℜ×: , ℜ→ℜ×ℜ× nDg :  
are locally Lipschitz mappings with 0)0,0,( =df , 0)0,0,( =dg  for all Dd ∈ , },...,1,:{ , njiaA ji ==  with 

1, =jia  if 1−= ij , ni ,...,2=  and 0, =jia  if otherwise. We assume that the following hypothesis 
holds: 
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(H) There exist a constant 0>r , a locally bounded function ℜ→ℜnk :  with 0)0( =k  being 
continuous at nℜ∈0  such that nℜ∈0  is RGAS for the following sampled-data system: 
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Let nnP ×ℜ∈  be a symmetric positive definite matrix, and np ℜ∈  be a constant vector such that the 
matrix PbpApbAP )()( ′+′+′+  is negative definite. Define )1,0,...0()( 1 ′′+′−= −bpAc  and assume the 
existence of constants 0,,,, >δωKRM  such that 
 

( ){ } 0,,),(:),,(max 2 <′≤′−=′ℜ×∈++′ bcKxpuRPxxDxdbuuxdfAxPx n                (3.3) 
 

{ } 22 )(,,:),,(),,(max bcKbcKxpuDdRPxxuxdfcuxdg ′<′≤′−∈≤′′+                     (3.4) 
 

( ) ( ) )),,()(()()(),,(),,( 22 uxdfxIpbAPxzbcMKPxbbcKuxdfcMuxdMgz ++′+′−−′≤′′−′+ δδωω  
for all ℜ×ℜ∈ nzx ),(  with 2RPxx ≤′ , 1≤zω  and zbcKxpu ω′−′=                  (3.5)  

 
Define ℜ→ℜ×ℜnk :

~  by 
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                                   (3.6) 

 
Then for sufficiently small 0~ >r , nℜ×ℜ∈0  is RGAS for the following sampled-data system 
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   The proof of the Sampled-Data Forwarding Lemma is technical and is based on the following 
four technical results. Their proofs are provided in the Appendix. 
 
Lemma 3.2:  Let nnP ×ℜ∈  be a symmetric positive definite matrix and np ℜ∈  be a constant vector 
such that the matrix PbpApbAP )()( ′+′+′+  is negative definite. Define )1,0,...0()( 1 ′′+′−= −bpAc  and 
assume the existence of constants 0,,,, >δωKRM  such that (3.3), (3.4) and (3.5) hold. Consider 
the solution ℜ×ℜ∈ ntytx ))(),((  of (3.7) under hypothesis (H), where ℜ→ℜ×ℜnk :

~  is defined by 
(3.6) and 0~ >r , with arbitrary initial condition ℜ×ℜ∈ nyx ))0(),0((  satisfying 2)0()0( RPxx <′  and 
corresponding to arbitrary ( )++∞ ℜ×ℜ∈ Dwd loc ;),( L . If 0~ >r  is sufficiently small then 2)()( RtPxtx <′  
for all ],0[ 1τ∈t .  
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Using induction and Lemma 3.2, we obtain the following result. 
 
Lemma 3.3:  Let nnP ×ℜ∈  be a symmetric positive definite matrix and np ℜ∈  be a constant vector 
such that the matrix PbpApbAP )()( ′+′+′+  is negative definite. Define )1,0,...0()( 1 ′′+′−= −bpAc  and 
assume the existence of constants 0,,,, >δωKRM  such that (3.3), (3.4) and (3.5) hold. Consider 
the solution ℜ×ℜ∈ ntytx ))(),((  of (3.7) under hypothesis (H), where ℜ→ℜ×ℜnk :

~  is defined by 
(3.6) and 0~ >r , with arbitrary initial condition ℜ×ℜ∈ nyx ))0(),0((  satisfying 2)0()0( RPxx <′  and 
corresponding to arbitrary ( )++∞ ℜ×ℜ∈ Dwd loc ;),( L . If 0~ >r  is sufficiently small then the solution 

ℜ×ℜ∈ ntytx ))(),((  of (3.7) exists for all 0≥t  and satisfies 2)()( RtPxtx <′  for all 0≥t .   
 
The following lemma uses the result of Lemma 3.3 and shows attractivity for a certain region in 
the state space.  
 
Lemma 3.4: Let nnP ×ℜ∈  be a symmetric positive definite matrix and np ℜ∈  be a constant vector 
such that the matrix PbpApbAP )()( ′+′+′+  is negative definite. Define )1,0,...0()( 1 ′′+′−= −bpAc  and 
assume the existence of constants 0,,,, >δωKRM  such that (3.3), (3.4) and (3.5) hold. Consider 
the solution ℜ×ℜ∈ ntytx ))(),((  of (3.7) under hypothesis (H), where ℜ→ℜ×ℜnk :

~  is defined by 
(3.6) and 0~ >r , with arbitrary initial condition ℜ×ℜ∈ nyx ))0(),0((  satisfying 2)0()0( RPxx <′  and 
corresponding to arbitrary ( )++∞ ℜ×ℜ∈ Dwd loc ;),( L . If 0~ >r  is sufficiently small then there exists 

( )+ℜℜ∈ ;0CT  such that  
 

{ }1,)0(max)( −≤ ωztz , 0≥∀t                                        (3.8) 
 

1)( −≤ ωtz , ))0((zTt ≥∀                                              (3.9) 
 
where )()()( txctytz ′+= .  
 
 
Lemma 3.5: Let nnP ×ℜ∈  be a symmetric positive definite matrix and np ℜ∈  be a constant vector 
such that the matrix PbpApbAP )()( ′+′+′+  is negative definite. Define )1,0,...0()( 1 ′′+′−= −bpAc  and 
assume the existence of constants 0,,,, >δωKRM  such that (3.3), (3.4) and (3.5) hold. Consider 
the solution ℜ×ℜ∈ ntytx ))(),((  of (3.7) under hypothesis (H), where ℜ→ℜ×ℜnk :

~  is defined by 
(3.6) and 0~ >r , with arbitrary initial condition ℜ×ℜ∈ nyx ))0(),0((  satisfying 2)0()0( RPxx <′ , 

1)0()0( −≤′+ ωxcy  and corresponding to arbitrary ( )++∞ ℜ×ℜ∈ Dwd loc ;),( L .  
 
If 0~ >r  is sufficiently small then there exists 0>μ  such that the following differential inequality 
holds for 0≥t , a.e.:  
 

)()( tVtV μ−≤&                                                             (3.10) 
 

where )()()( txctytz ′+=  and )()(
2
1)(

2
)( 2 tPxtxtzMtV ′+= . 

 
Remark: The reader should notice that by virtue of Lemma 3.3 and Lemma 3.4 the set 

{ }12 ,:),( −≤′+<′ℜ×ℜ∈= ωxcyRPxxyxS n  is positively invariant for system (3.7). The differential 
inequality (3.10) guarantees that ( ) )0(exp)( VttV μ−≤  for all 0≥t , provided that Syx ∈))0(),0(( . 
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Since PxxtxcyMyxV ′+′+=
2
1)(

2
),( 2  is a positive definite quadratic function, the previous inequality 

shows that local exponential stability is guaranteed for system (3.7) in the region ℜ×ℜ⊆ nS . 
Notice that the size of the region ℜ×ℜ⊆ nS  is determined by the constants ω,R .  
 
We are now in a position to prove the Sampled-Data Forwarding Lemma. 
 
Proof of Lemma 3.1: We will restrict 0~ >r , so that  
 

rr ≤~                                                                (3.11) 
 
Notice that Lemma 3.3 and definition (3.6) imply that the set { }2: RPxxx n <′ℜ∈  is positively 
invariant. Robust Lyapunov stability for system (3.7) is a direct consequence of the differential 
inequality (3.10). We will show next robust Lagrange stability and robust attractivity for system 
(3.7). 
 
Consider the solution ℜ×ℜ∈ ntytx ))(),((  of (3.7) under hypotheses (H1-2), with initial condition 

ℜ×ℜ∈ nyx ))0(),0((  and corresponding to arbitrary ( )++∞ ℜ×ℜ∈ Dwd loc ;),( L . By virtue of hypothesis 
(H), inequality (3.11) and definition (3.6), there exists KL∈σ  such that 
 

( )txtx ,)0()( σ≤                                                     (3.12) 
 
for all times 0≥t  with 2)()( RtPxtx ≥′ . Inequality (3.12) in conjunction with Lemma 3.3 implies 
that there exists a constant 0>C  such that the following inequality holds: 
 

( )( )Cxtx ,0,)0(max)( σ≤ , 0≥∀t                                  (3.13) 
 
and that there exists ( )+ℜℜ∈ ;~ 0 nCT  such that  
 

2)()( RtPxtx <′ , for all ))0((~ xTt ≥                                                (3.14) 
 
Notice that hypothesis (H) implies the existence of ∞∈Kρ  such that ( )xxk ρ≤)( , for all nx ℜ∈ . 
Therefore, using (3.13), (3.14) we can conclude that there exists ∞∈Kγ  such that: 
 

( ))0()0()()( yxtxcty +≤′+ γ                                                              (3.15) 
 
for all times 0≥t  with 2)()( RtPxtx ≥′ . Therefore, inequality (3.15) in conjunction with Lemma 3.4 
implies that: 
 

( )( )1,)0()0(,)0()0(max)()( −′++≤′+ ωγ xcyyxtxcty , 0≥∀t                                  (3.16) 
 
Estimates (3.13), (3.16) prove robust Lagrange stability. Finally, inequality (3.14) in conjunction 
with Lemma 3.4 and Lemma 3.5 imply that robust attractivity holds as well. The proof is 
complete.      <  
 
 
The following result shows that the assumptions of the Sampled-Data Forwarding Lemma can be 
automatically satisfied for a certain class of nonlinearities. 
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Lemma 3.6: Suppose that there exists a non-decreasing function );(0 ++ ℜℜ∈CL  such that the 
following inequality holds for the mappings nnDf ℜ→ℜ×ℜ×: , ℜ→ℜ×ℜ× nDg : : 
 

uxuxLxuxLuxdguxdf )),(()),((),,(),,( 2 +≤+ , for all ℜ×ℜ×∈ nDuxd ),,(             (3.17) 
 
Then there exist constants 0, >∗ CR  with 1≤C  such that for every 0>ω , ),0( ∗∈ RR  there exist 
constants 0, >δM  such that (3.3), (3.4), (3.5) hold with CRK = .  
 
 
Theorem 3.7: Consider system (1.1) where all mappings ℜ→ℜ×ℜ× −1: i

i Dg  are locally Lipschitz 
and assume that there exists a smooth non-decreasing function );(0 ++ ℜℜ∈CL  such that (1.2) 
holds. Then there exist a bounded ℜ→ℜnk :  with 0)0( =k  being continuous at nℜ∈0  and a 
constant 0>r , such that nℜ∈0  is RGAS for the closed-loop sampled-data system (1.1) with 
 

+
+

+

ℜ∈

=−+=
∈=

)(

0,))(exp(
),[,))(()(

01

1

tw

wr
txktu

iii

iii

ττττ
τττ

                                                  (3.18) 

 
Define ni

iQ ×ℜ∈  with ),...( 1 ′= ii xxxQ  for ni ,...,1= , ℜ∈= ]1[1b , i
ib ℜ∈′= )0,...,0,1(  for ni ,...,2= , 

11
1 ]0[ ×ℜ∈=A , ii

jki ijkaA ×ℜ∈== },...,1,:{ ,  for ni ,...,2=  with 1, =jka  if 1−= kj , ik ,...,2=  and 0, =jka  
if otherwise. Let arbitrary constants 00 >K , 0>iω ( 1,...,0 −= ni ), arbitrary matrices ii

iP ×ℜ∈  
( 1,...,1 −= ni ) being symmetric and positive definite and arbitrary vectors i

ip ℜ∈  ( 1,...,1 −= ni ) such 
that the matrices iiiiiiii PbpApbAP )()( ′+′+′+  ( 1,...,1 −= ni ) are negative definite. Define 

i
iiii bpAc ℜ∈′′+′−= − )1,0,...0()( 1  for 1,...,1 −= ni . Then there exist constants 0>r , 0>iK , 0>iR  

( 1,...,1 −= ni ) such that nℜ∈0  is RGAS for the closed-loop sampled-data system (1.1) with (3.18), 
where ℜ→ℜnk :  is defined by 
 

))((sat:)( 1 xQcxbcKxQpxk iiiiiiiii ′+′−′= +ω                                     (3.19) 
 
where }1,...,1{)( −∈= nxii  is the largest integer such that     
 

2
iiii RxQPQx <′′                                                   (3.20) 

and 
 

)(sat:)( 100 xKxk ω−= , if ( ) 0min 2
1,...,1

≥−′′
−=

llllnl
RxQPQx                                   (3.21) 

 
 
Proof: Repeated application of the Sampled-Data Forwarding Lemma and Lemma 3.6. Notice 
that the subsystem ux =1&  can be stabilized by the bounded sampled-data feedback  
 

( )

+

−
+

+

ℜ∈

=−+=

∈−=

)(

0,))(exp(

),[,)(sat)(

0
1

01

110

tw

wK

txKtu

iii

iii

ττττ

τττ
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where 00 >K  is an arbitrary positive constant. The Sampled-Data Forwarding Lemma is applied 
for 1,...,1 −= nj  with nx ℜ∈  replaced by j

jxx ℜ∈′),...,( 1 , ℜ∈y  replaced by ℜ∈+1jx , nnA ×ℜ∈  
replaced by jj

jA ×ℜ∈ , nb ℜ∈  replaced by j
jb ℜ∈ , ℜ∈),,( uxdg  replaced by ℜ∈+ ),,...,,( 11 uxxdg jj , 

nuxdf ℜ∈),,(  replaced by j
jj uxxdguxdguxdf ℜ∈′= − )),,...,,(),...,,,(,0(),,( 1112  for 2≥j  and 

ℜ∈= 0),,( uxdf  for 1=j , nnP ×ℜ∈ , np ℜ∈ , )1,0,...0()( 1 ′′+′−= −bpAc  replaced by jj
jP ×ℜ∈ , j

jp ℜ∈ , 
j

jjjj bpAc ℜ∈′′+′−= − )1,0,...0()( 1 , respectively and ℜ→ℜnk :  replaced by ℜ→ℜ j
jk :  which is 

defined by the following equalities: 
 
- for 2≥j  
 

))((sat:),...,( 11 xQcxbcKxQpxxk iiiiiiiiijj ′+′−′= +ω                                     (3.22) 
 
where }1,...,1{),...,( 11 −∈= − jxxii j  is the largest integer such that (3.20) holds and 
 

)(sat:),...,( 1001 xKxxk jj ω−= , if ( ) 0min 2
1,...,1

≥−′′
−=

lllljl
RxQPQx                                   (3.23) 

 
- for 1=j  
 

)(sat:)( 10011 xKxk ω−=                                                            (3.24) 
 
By virtue of (1.2), it follows that (3.17) holds with nx ℜ∈  replaced by j

jxx ℜ∈′),...,( 1 , ℜ∈),,( uxdg  
replaced by ℜ∈+ ),,...,,( 11 uxxdg jj , nuxdf ℜ∈),,(  replaced by 

j
jj uxxdguxdguxdf ℜ∈′= − )),,...,,(),...,,,(,0(),,( 1112  for 2≥j  and ℜ∈= 0),,( uxdf  for 1=j  and 

);(0 ++ ℜℜ∈CL  replaced by );(0 ++ ℜℜ∈CL j , where )()( sjLsL j =  and L  is the function involved in 
(1.2). Therefore, by virtue of Lemma 3.6, it follows that there exist constants 0, >∗

jj CR  with 
1≤jC  such that for every 0>jω , ),0( ∗∈ jj RR  there exist constants 0, >jjM δ  such that (3.3), (3.4), 

(3.5) hold with jjj RCKK == , jRR = , jωω = , jMM =  and jδδ = .  
 
The proof is complete.      <  
 
 
Remark 3.8: Notice that the proof of Theorem 3.7 guarantees that for every 0>G , the sampled-
data feedback stabilizer ℜ→ℜnk :  can be selected in such a way that Gxk ≤)(  for all nx ℜ∈ . To 
see this, first select arbitrary constants 0>iω ( 1,...,0 −= ni ), arbitrary matrices ii

iP ×ℜ∈  ( 1,...,1 −= ni ) 
being symmetric and positive definite and arbitrary vectors i

ip ℜ∈  ( 1,...,1 −= ni ) such that the 
matrices iiiiiiii PbpApbAP )()( ′+′+′+  ( 1,...,1 −= ni ) are negative definite. The selection of 0>iK , 0>iR  
( 1,...,1 −= ni ) made in the proof of Theorem 3.7 guarantees that the constants ),0( ∗∈ ii RR  
( 1,...,1 −= ni ) can be selected in an arbitrary way, where 0>∗

iR  ( 1,...,1 −= ni ) are appropriate 
constants. Moreover, the inequalities ii RK ≤  hold for 1,...,1 −= ni . It follows from (3.19), (3.20), 
(3.21) that  
 

( )
⎭
⎬
⎫

⎩
⎨
⎧ ′+≤ −

−=
iiiii

ni
bcapRKxk 1

1,...,1
0 max,max)( , nx ℜ∈∀                                 (3.25) 
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where 0>ia  ( 1,...,1 −= ni ) are constants satisfying 22 xQaxQPQx iiiii ≥′′  for all nx ℜ∈ . It follows 

from (3.25) that if GK ≤0  and 
iiii

i
bcap

GR
′+

≤
−1

 for 1,...,1 −= ni  then Gxk ≤)(  for all nx ℜ∈ . 

Notice that we can always select GK ≤0  and 
iiii

i
bcap

GR
′+

≤
−1

 for 1,...,1 −= ni  ( 00 >K  and 

),0( ∗∈ ii RR  are free parameters). 
 
 
 
4. Illustrative Examples 
 
In this section we present two examples that illustrate the results of the previous section. The first 
example shows the application of Theorem 3.7 to a feedforward system. 
 
Example 4.1: We consider the 3-dimensional feedforward system  
 

ℜ∈ℜ∈′=

+=

+=
=

uxxxx

xxx

uxxx
ux

,),,( 3
321

2
123

112

1

&

&

&

                                                         (4.1) 

 
The solution map of system (4.1) can be explicitly found: the resulting discrete-time system that 
corresponds to a constant sampling period 0>r  and input ℜ∈u  applied with zero order hold is 
given by the following equations: 
 

6
)3(

2
)3()(

2
)()(

3
2

2

11
2
1233

2
2

1122

11

ruuruxxrxxxx

ruuruxxxx

urxx

++++++=

++++=

+=

+

+

+

                                          (4.2) 

 
     However, as already noted in the Introduction, system (4.1) is not included in one of the 
classes of systems noted in the Introduction for which there exists a feedback design methodology 
that results in the design of a globally stabilizing sampled-data feedback (notice that (4.1) is not 
linearizable). Other approaches for sampled-data systems can be also applied (see 
[10,22,23,26,27,41-45]) but the result is semiglobal and practical sampled-data stabilization of 
system (4.1).  
 
    Here we apply the step-by-step feedback design methodology described in Theorem 3.7. The 
feedback law will be given by (3.19), (3.20), (3.21). For simplicity, we select 1210 === ωωω  and 

10 =K . We also select: 

]1[1 =P , ]1[1 −=p , ⎥
⎦

⎤
⎢
⎣

⎡
=

21
11

2P , ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
2
2

2p  

 

Using the formula i
iiii bpAc ℜ∈′′+′−= − )1,0,...0()( 1  for 2,1=i , we obtain ]1[1 =c  and ⎥

⎦

⎤
⎢
⎣

⎡
=

1
2/1

2c . The 

only constants that remain to be determined are 2121 ,,, KKRR .  
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    In order to determine 0, 11 >KR , we use the Sampled-Data Forwarding Lemma. We apply the 
Sampled-Data Forwarding Lemma with 1=n , ]0[=A , ]1[=b , ]1[=P , ]1[−=p  , ]1[=c , 0),,( ≡uxdf  

and uxuxdg 1),,( = . Conditions (3.3), (3.4), (3.5) are satisfied with 
KR

KM
+

= , 1=ω  for 0>δ  

sufficiently small, provided that  
 

RK
R

R
<<

−1

2
 and  1<+ KR                                                               (4.3) 

 

Inequalities (4.3) hold with 
8
3

=R  and 
4
1

=K . Therefore, we select 
8
3

1 =R  and 
4
1

1 =K . 

 
    In order to determine 0, 22 >KR , we use again the Sampled-Data Forwarding Lemma. We apply 

the Sampled-Data Forwarding Lemma with 2=n , ⎥
⎦

⎤
⎢
⎣

⎡
=

01
00

A , ⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

b , ⎥
⎦

⎤
⎢
⎣

⎡
=

21
11

P , ⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
2
2

p  , 

⎥
⎦

⎤
⎢
⎣

⎡
=

1
2/1

c , ⎥
⎦

⎤
⎢
⎣

⎡
=

ux
uxdf

1

0
),,(  and 2

1),,( xuxdg = . After some tedious calculations, we conclude that 

conditions (3.3), (3.4), (3.5) are satisfied with 
R

RKM
4

)223(2 ++
= , 1=ω  for 0>δ  sufficiently 

small, provided that  
 

( )
1

22212
221

4 2

+
+−

<<
− R

RRK
R

R  and 1)223()224( 2 <−++ RR                              (4.4) 

 

Inequalities (4.4) hold with 
20
1

== KR . Therefore, we select 
20
1

22 == KR . We conclude that the 

sampled-data feedback law (3.18) defined by  
 

( )
( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<++⎟
⎠
⎞

⎜
⎝
⎛ ++−+−

≥++<+−−

≥++≥−

=

120
2
1sat

40
12

12038sat
4
1

12038)(sat

:)(

2
21

2
212321

2
21

2
21121

2
21

2
211

xxxifxxxxx

xxxandxifxxx

xxxandxifx

xk                      (4.5) 

 
achieves global stabilization of system (4.1) provided that the MASP 0>r  is sufficiently small. 
Indeed, simulations show that global stabilization of system (4.1) is achieved with 01.0=r . 
However, under these conservative choices of design parameters, which satisfy the sufficient 
conditions of Theorem 3.7, the closed-loop system shows different dynamic behavior in different 
time scales. The state variables 21, xx  converge very fast, while the state variable 3x  exhibits slow 
convergence, which lasts about 900 time units.  
 
    Therefore, it is crucial to determine tight bounds for the range of values for 0, 22 >KR  which 
guarantee global asymptotic stability. Numerical experiments show that higher values than 0.05 
for 0, 22 >KR  can guarantee global asymptotic stability for 2.0=r . Figure 1 shows the evolution of 
the state variables for the closed-loop system (4.1) with (3.18), where k  is defined by  
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( )
( ) ( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<++⎟
⎠
⎞

⎜
⎝
⎛ ++−+−

≥++<+−−

≥++≥−

=

1
2
1sat

2
12

138sat
4
1

138)(sat

:)(

2
21

2
212321

2
21

2
21121

2
21

2
211

xxxifxxxxx

xxxandxifxxx

xxxandxifx

xk                      (4.6) 

 

with 2.0=r , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

)sin(1
2ln)(

t
tw  and initial condition 1)0()0()0( 321 === xxx . It is clear that the 

selection 122 == KR  guarantees good performance even when perturbations of the sampling 
schedule are present. Figure 2 shows the corresponding input behavior and Figure 3 focuses on 
the evolution of the input for ]8,4[∈t .  
 
     Having addressed the robust global stabilization problem for (4.1) under sampled-data control 
applied with zero order hold, we are in a position to address the stabilization problem for the 
system  

ℜ∈ℜ∈′=

+=−+=−=

uxxxx

txtxtxtutxtxtxtutx

,),,(

)()()(,)()()()(,)()(
3

321

2
1231121 &&& ττ                          (4.7) 

 
where 0>τ  is the input delay, with sampled and delayed measurement 
 

)()( Txty i −= τ                                                                       (4.8) 
 
where +∈= Ziiri ,τ  are the sampling times and 0>r , 0>T  are the sampling period and the 
measurement delay, respectively. Following the methodology described in [], first we select a 
sampling period for which there exists +∈Zl  such that rl=τ . This is possible since we have 
shown robustness with respect to the sampling schedule, i.e., we have shown robust global 
asymptotic stability for the closed-loop system (4.1) with (3.18), where k  is defined by (4.6) with 

2.0=r . Consequently, we may choose any integer +∈Zl  with τ5≥l  and set 2.0≤=
l

r τ . The 

predictor mapping for (4.1) can be explicitly expressed by the equations:  
 

( ) ( )
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++++=Φ ∫ ∫∫∫

−− −−−−−−

),(,)()(1)(,)(:),(
00

112

0

1 uxdsdqqusudssuxxTxdssuxux
T

s

TTT

φτ
τ τττ

  (4.9) 

 
where 

( ) ( ) ( )

( ) ∫ ∫∫ ∫ ∫

∫ ∫

−− −−−− −− −−

−− −−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+++

+++++++=

0 20

0

11
22

123

)()()(1

)(3
2
1),(

τ ττ τ τ

τ τ

τττφ

T

s

TT

s

T

w

T

T

s

T

dsdqqudsdwdqquwu

dsdqquxxTxTxTxux

                       (4.10) 

 
Using Theorem 3.2 in [21], we can guarantee that the closed-loop system (4.7) with 
 

( )
0,

,),[,)(),(),()(

01

1321

=+=
∈∈=

+

+
+

τττ
τττττ

r
ZitXXXktu

ii

iiiii                                        (4.11) 
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where k  is defined by (4.6) and  

( ) ( )∫ ∫∫

∫

−− −−−−

−−

++−+−++−=

+−=

i

i i

i

i

i

i

T

s

TT
iiii

T
ii

dsdqqusudssuTxTxTTxX

dssuTxX

τ

ττ ττ

τ

ττ

τ

ττ

τττττ

ττ

)()(1)()()()()(

)()()(

1122

11

    (4.12) 

 
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ∫ ∫∫ ∫ ∫∫ ∫
−− −−−− −− −−−− −−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+++−+

−++−+−++−=

i

i i

i

i i i

i

i i T

s

TT

s

T

w

TT

s

T
i

iiiii

dsdqqudsdwdqquwudsdqquTx

TxTTxTxTTxX

τ

ττ ττ

τ

ττ ττ ττ

τ

ττ ττ

τ

τττττττ

2

1

1
22

1233

)()()(1)(3

2
1)(

   (4.13) 

 
is Uniformly Globally Asymptotically Stable, in the sense that there exists a function KL∈σ  such 
that for every ( )ℜ−−×ℜ−∈ ∞ );0,[)];0,([),( 30

00 τTTCux L , the solution ℜ×ℜ∈ 3))(),(( tutx  of system 
(4.7), (4.11) with initial condition )()( 0 θθ uu =  for )0,[ T−−∈ τθ , )()( 0 θθ xx =  for ]0,[ T−∈θ  satisfies 
the following inequality for all 0≥t : 
 

⎟
⎠

⎞
⎜
⎝

⎛ +≤+
<≤−−≤≤−<≤−−≤≤−

tsusxsusx
sTsTtsTttsTt

,)(sup)(max)(sup)(max
00 ττ

σ                                    (4.14) 

 
     It should be emphasized that the value of the integrals involved in (4.12), (4.13) can be 
computed with precision when ττ +≥ Ti , since the input )(tu  for 0≥t  is a piecewise constant 
function.      <  
 
 
    The second example shows that the Sampled-Data Forwarding Lemma (Lemma 3.1) can be 
also applied to some nonlinear systems outside of the class of feedforward systems.  
 
 
Example 4.2: Consider the nonlinear system 
 

ℜ∈∈ℜ∈ℜ∈

+=
++=

uDdyx

xdgxy
xdfbuAxx

n
n

,,,

),(
),(

&

&

                                                               (4.15)  

 
where nb ℜ∈′= )0,...,0,1( , },...,1,:{ , njiaA ji ==  with 1, =jia  if 1−= ij , ni ,...,2=  and 0, =jia  if 
otherwise, lD ℜ⊂  is a non-empty compact set, nnDf ℜ→ℜ×: , ℜ→ℜ× nDg :  are locally Lipschitz 
mappings that satisfy the following inequalities: 
 

{ } xLxdgxdf 1),(,),(max ≤ , for all ),0(),( ρBDxd ×∈                                   (4.16) 
 

xLxdf 2),( ≤ , for all nDxd ℜ×∈),(                                                (4.17) 
 
for certain constants 012 >≥ LL  and 0>ρ . At this point we should note the crucial difference 
between (4.16), (4.17) and (3.17). While in (3.17) the nonlinearities f  and g  are restricted to be 
locally quadratic, in (4.16), (4.17) the nonlinearities are allowed to have linear growth at the 
origin. 
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Figure 1: Time evolution of the state variables )(1 tx , )(2 tx  and )(3 tx  for the closed-loop system 

(4.1) with (3.18), where k  is defined by (4.6) with 2.0=r , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

)sin(1
2ln)(

t
tw  and initial condition 

1)0()0()0( 321 === xxx  
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Figure 2: Time evolution of the input )(tu  for the closed-loop system (4.1) with (3.18), where k  

is defined by (4.6) with 2.0=r , ⎟
⎟
⎠

⎞
⎜
⎜
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+
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)sin(1
2ln)(

t
tw  and initial condition 1)0()0()0( 321 === xxx  
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Figure 3: Time evolution of the input )(tu , ]8,4[∈t  for the closed-loop system (4.1) with (3.18), 

where k  is defined by (4.6) with 2.0=r , ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=

)sin(1
2ln)(

t
tw  and initial condition 

1)0()0()0( 321 === xxx  
 
 
    We also assume the existence of a symmetric positive definite matrix nnP ×ℜ∈ , a constant 
vector np ℜ∈  and a constant 0>q  such that the matrix PbpApbAP )()( ′+′+′+  is negative definite 
and such that 
  

2),()( xqxdPfxxpbAPx −≤′+′+′ , for all nDxd ℜ×∈),(                               (4.18) 
 
Finally, we assume that  
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( ) Pbac
bcqa

L
2

1
1 1+

′
<                                                                        (4.19) 

 
where )1,0,...0()( 1 ′′+′−= −bpAc  and 012 >≥ aa  are constants satisfying  
 

PxxaxPxxa ′≤≤′ 2
2

22
1 , for all nx ℜ∈                                          (4.20) 

 
    We show next that for every 0, >Rω  with ρ≤Ra2  there exist constants 0~, >rK  such that 

nℜ×ℜ∈0  is RGAS for the closed-loop system (4.15) with  
 

+
+

+

ℜ∈∈

=−+=
∈=

)(,)(

0,))(exp(~
),[,))(),((

~
)(

01

1

twDtd

wr
tyxktu

iii

iiii

ττττ
ττττ

                                                (4.21) 

 
where ℜ→ℜ×ℜnk :

~  is defined by 
 

⎪⎩

⎪
⎨
⎧

<′′+′−′
≥′′

= 2

2

))((sat
:),(

~
RPxxifxcybcKxp

RPxxifxpyxk
ω

                                   (4.22) 

 
    Indeed, this can be shown by a direct application of the Sampled-Data Forwarding Lemma with 

xpxk ′=:)( , arbitrary 0, >Rω  with ρ≤Ra2 , constants 0, >KM  satisfying  
 

( )
bcPb

RqaK
bc

RaLc
′

<<
′

+ 1
2

211  and ( ) 11 Lc
PbbcK

M
+

′
=

ω                                        (4.23) 

 
and sufficiently small constant 0>δ . Notice that by virtue of (4.18) and (4.20), inequality (3.3) is 
satisfied provided that RqabcPbK 1<′  (a direct consequence of (4.23)). Moreover, since ρ≤Ra2 , 
it follows from (4.16) and (4.20) that inequality (3.4) holds provided that ( ) 2

21 )(1 bcKRaLc ′<+  (a 
direct consequence of (4.23)). Finally, using the fact ρ≤Ra2  in conjunction with (4.16), (4.18), 
(4.20), we conclude that inequality (3.5) with M  as defined in (4.23) holds for sufficiently small 

0>δ  provided ( ) bcqPbLc ′<+ 11  (a direct consequence of (4.19)).  
 
     The only thing that remains to be shown is that hypothesis (H) of Lemma 3.1 holds with 

xpxk ′=:)(  and sufficiently small 0>r . By virtue of (4.18), we notice that for every 
);();(),,( 0

++∞+∞ ℜℜ×ℜ×ℜ∈ locloc
n Dwdx LL , the solution of ),( xdfbuAxx ++=&  with 0)0( xx = , 

)()( ixptu τ′=  satisfies the following differential inequality for almost all ),[ 1+∈ iit ττ : 
 

)()()(2)(2)( 2 txxpPbtxtxqtV i −+−≤ τ&                                               (4.24) 
 
where )()()( tPxtxtV ′= , ))(exp(1 iii wr τττ −+=+ . By virtue of (4.17), it follows that the hypotheses of 
Lemma 2.3 hold for the absolutely continuous mapping n

iix ℜ→+ ],[: 1ττ . Using Lemma 2.3 and 
inequality (4.24), we conclude that for sufficiently small 0>r  there exists 0~ >q  such that the 
differential inequality 2)(~)( txqtV −≤&  holds for almost all 0≥t . Therefore, hypothesis (H) of 
Lemma 3.1 holds as well.  
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    Notice that the case (4.15) includes systems, which are not necessarily feedforward systems. 
For example, the three-dimensional system: 
 

ℜ∈−∈′=ℜ∈ℜ∈′=

+=
+=
+=

uddddyxxx

xgdxy
xxdkx

uxdkx

,]1,1[),,(,,),(

)(
3

321
2

21

32

12222

1111

&

&

&

 

 
where 0, 21 >kk  and );( 21 ℜℜ∈Cg  with 0)0( =g , is not a feedforward system of the form (1.1).  

Inequalities (4.16), (4.17) hold for every 0>ρ  with 
⎭
⎬
⎫

⎩
⎨
⎧ ∇==

∈
)(max,,max

),0(
2112 xgkkLL

Bx ρ
. Moreover, 

inequality (4.18) holds with ⎥
⎦

⎤
⎢
⎣

⎡
+++

+
=

1)1(1
11

2
22

2

kk
k

P , [ ])1(11 22 kSkSp ++++−=′ , 

( ) ( )212
2

21 1
2
1

2
1 kkkkS ++++= , 

4)1(222

14)1(
2

22

2
2

2

++++

−−++
=

kk

kk
q .          <  

 
 
 
5. Concluding Remarks 
 
To construct a globally asymptotically stabilizing sampled-data feedback for feedforward systems 
subject to perturbations in the sampling schedule, we have developed the recursive sampled-data 
feedback synthesis tool—the Sampled-Data Forwarding Lemma. Assuming that a system (whose 
state is denoted by x ) is stabilizable by sampled-data feedback, the Sampled-Data Forwarding 
Lemma guarantees the existence of sampled-data feedback stabilizer when the system is 
augmented by an additional state ( y ) in a cascade/feedforward configuration. Outside of the set 

2RPxx <′  in the ),( yx  state space (where P  is an appropriate positive definite matrix and 0>R  is 
an appropriate constant) the feedback law uses the stabilizer for the x -subsystem in order to make 
x  small, whereas inside of the set 2RPxx <′  the feedback law uses a suitably saturated linear 

feedback law whose task is to drive xcy ′+  below a prescribed small value 1−ω  (where c  is an 
appropriate vector), while keeping x  small. Once both x  and xcy ′+  are rendered small, the 
linear feedback law prevails in achieving exponential regulation to the origin. Robustness to 
perturbations in the sampling schedule is proved by quantifying the error between the current 
value of the state x  and its most recent sampled value, and by showing the smallness of this error 
for the closed-loop solutions provided all sampling periods fall uniformly below a sufficiently 
small “maximum allowable sampling period” (MASP).  
 
    Example 4.1 has shown that formulae (3.19), (3.20), (3.21) can be used in a straightforward 
way in order to design a globally stabilizing sampled-data feedback for an uncertain feedforward 
system of the form (1.1) under hypothesis (A2). However, the selection of the parameters 0>iK , 

0>iR  ( 1,...,1 −= ni ) involved in formulae (3.19), (3.20), (3.21) is crucial for performance: low 
values for 0>iK  will result in slow convergence of some state variables and high overshoot.  
 
     Example 4.1 has also demonstrated that the result of the present paper, in combination with the 
approach we introduced in [21], allows us to compensate any amount of actuation or sensing 
delay when controlling systems within the feedforward class using sampled-data controllers 
introduced in the present paper. 
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Appendix 
 
Proof of Lemma 3.2: Define:  
 

( ){ } 0,,),(:),,(max: 2 >′≤′−=′ℜ×∈++′−= bcKxpuRPxxDxdbuuxdfAxPx nδ           (A1) 
 
The fact that δ  as defined by (A1) is positive is a consequence of (3.3). Clearly, by virtue of 
continuity of the solution )(tx , there exists ],0( 1ττ ∈  such that 2

],0[
)()(max RtPxtx

t
<′

∈ τ
. The structure of 

system (3.7) guarantees that the solution of (3.7) exists for all times ],0( 1ττ ∈  with 
2

],0[
)()(max RtPxtx

t
≤′

∈ τ
.  

 
We prove by contradiction that 2

],0[
)()(max

1

RtPxtx
t

<′
∈ τ

. We therefore assume that there exists ],0( 1ττ ∈  

with 2)()( RPxx ≥′ ττ . We define  
 

{ }2
1 )()(:],0[inf: RtPxtxtT ≥′∈= τ                                                     (A2)  

 
and notice that ],0( 1τ∈T . Definition (A2) and continuity of the solution )(tx  imply that 

2

],0[
)()()()(max RTPxTxtPxtx

Tt
=′=′

∈
. Define )()()( tPxtxtV ′=  and )()()( txctytz ′+= . Notice that inequalities 

(3.2), (3.4) and the fact that ))0((sat)0(:)( zbcKxptu ω′−′=  for all ),0[ Tt∈  imply that the following 
inequality holds for almost all ),0[ Tt∈ : 
 

( )
( ) ))()0(()(2))(),(),(())0(),(),(()(2

))(),(),(())(()()(2)(
txxpPbtxvtxptxtdfvxptxtdfPtx

vtxptxtdfvtxpbtAxPtxtV
−′′++′−+′′+

+′++′+′−≤&
         (A3) 

 
where ))0((sat: zbcKv ω′−= . The differential equation (3.7), in conjunction with 2

],0[
)()(max RtPxtx

Tt
≤′

∈
 

and ))0((sat)0(:)( zbcKxptu ω′−′=  imply that there exists a constant 0>S  such that Stx ≤)(&  for 
almost all ),0[ Tt∈ . Consequently, the following inequality holds for all ],0[ Tt∈ : 
 

tSxtx ≤− )0()(                                                               (A4) 
 
Using the facts that ),,( uxdf  is locally Lipschitz, rTt ~

1 ≤≤≤ τ ,  bcKv ′≤  and 
2

],0[
)()()()(max RTPxTxtPxtx

Tt
=′=′

∈
  in conjunction with definition (A1) and inequalities (A3), (A4), we 

guarantee the existence of a constant 0>L  such that the following inequality holds for almost all 
),0[ Tt∈  sufficiently close to T : 

 
rLtV ~)( +−≤ δ&                                                            (A5) 

 
If 0~ >r  is sufficiently small then inequality (A5) implies that 2/)( δ−≤tV&  for almost all ),0[ Tt∈  
sufficiently close to T . This contradicts the assumption 2

],0[
)()()()(max RTPxTxtPxtx

Tt
=′=′

∈
. The proof 

is complete.      <  
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Proof of Lemma 3.4: Using the fact )1,0,...0()( 1 ′′+′−= −bpAc , we obtain 0≠′bc  and 
xpbcAxcxn ′′−=′+ , for all nx ℜ∈ . The previous equality in conjunction with the fact that 

))0((sat)0(:)( zbcKxptu ω′−′=  for all ),0[ 1τ∈t  imply that the following differential equation holds for 
almost all ),0[ 1τ∈t : 
 

( ))0(sat)())(),(),(())(),(),(())()0(()( 2 zbcKtutxtdfctutxtdgtxxpbctz ω′−′++−′′=&                     (A6) 
 
Define: 
 

{ } 22 )(,,:),,(),,(max: bcKbcKxpuDdRPxxuxdfcuxdgJ ′<′≤′−∈≤′′+=                   (A7) 
 
Using definition (A7), the fact that the mappings gf ,  are locally Lipschitz and since 

2)()( RtPxtx <′  for all 0≥t  (a consequence of Lemma 3.3), we obtain for all ),0[ 1τ∈t : 
 

)0()(

))(),(),(())0(),(),((

))(),(),(())0(),(),((

))(),(),(())(),(),((

))(),(),(())(),(),((

xtxLJ

vtxptxtdfvxptxtdfc

vtxptxtdgvxptxtdg

vtxktxtdfcvtxptxtdg

tutxtdfctutxtdg

−+≤

+′−+′+

+′−+′+

+′′++′

≤′+

 

 
where ))0((sat zbcKv ω′−=  and 0>L  is an appropriate constant. Assuming that 1~)( 2 <′ rbcK ω , 
integrating (A6) and exploiting the above inequality, we conclude that the following inequality 
holds for all ],0[ 1τ∈t : 
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2

ω
ω                                 (A8) 

 
where 0>Q  is an appropriate constant. The differential equations (3.7) in conjunction with 

2

],0[
)()(max

1

RtPxtx
t

≤′
∈ τ

 and ))0((sat)0(:)( zbcKxptu ω′−′=  imply that there exists a constant 0>S  such 

that Stx ≤)(&  for almost all ),0[ 1τ∈t . Consequently, inequality (A4) holds for all ],0[ 1τ∈t . 
Combining (A4), (A8), we can conclude that the following inequality holds for all ],0[ 1τ∈t : 
 

( )
( ) tJtQSz

z
bcKttz ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ′
−≤ 2

2
)0(

)0(,1max
1)(

ω
ω                                       (A9) 

 
The above inequality in conjunction with inequality (3.4) (which implies that 2)( bcKJ ′< ), shows 
that the following implications hold for sufficiently small 0~ >r : 
 

• If 1)0( ≥zω  then )0()( ztz ≤  for all ],0[ 1τ∈t   
• If 1)0( ≤zω  then 1)( −≤ ωtz  for all ],0[ 1τ∈t  

 
It follows that ( )1,)0(max)( −≤ ωztz  for all ],0[ 1τ∈t . Using induction, it can be shown that: 
 

( )1,)(max)( −≤ ωτ iztz  for all it τ≥ , ,...2,1,0=i                                        (A10) 



 25

 
Moreover, inequality (A9) shows that the following implication holds for sufficiently small 0~ >r : 
 

If 1)( ≥iz τω  then ( )iiii Gzz ττττ −−≤ ++ 11 )()(                                  (A11) 
 
where 0>G  is an appropriate constant.  
 

Implication (A11) shows that (3.9) holds with ( )
r

G
z

zT ~1,0max
:)( +

−
=

ω
ω . Indeed, we prove this by 

contradiction. Suppose that there exists ( )
r

G
z

t ~1)0(,0max
+

−
>

ω
ω  with 1)( −> ωtz . Let +∈ Zm  be the 

largest integer with 1+<≤ mm t ττ . By virtue of (A10) we conclude that 1)( −> ωτmz . Moreover, since 

rmm
~

1 +≤+ ττ  it follows that ( )
G

z
m ω

ω
τ

1)0(,0max −
> . Estimate (A10) shows that 1)( −> ωτ iz  for all 

mi ,...,0= . Implication (A11) gives Gzz mm ττ −≤ )0()( , which is a contradiction.  
 
The proof is complete.      <  
 
 
 
Proof of Lemma 3.5: By virtue of Lemma 3.3 and Lemma 3.4 the solution of (3.7) satisfies 

2)()( RtPxtx <′ , 1)( −≤ ωtz  for all 0≥t . Let 0≥t  be a time where )()(
2
1)(

2
)( 2 tPxtxtzMtV ′+=  is 

differentiable. Let +∈ Zm  be the largest integer with 1+<≤ mm t ττ . Using (A6) we obtain: 
 

)()()( 21 tStStV +=&                                                        (A12) 
 
where 
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))()(()()(:)(2

m

mm

mm

m

ztzPbtxtzbcMbcK
tzbcKtxptxtdfzbcKxptxtdfctMzPtx

tzbcKtxptxtdgzbcKxptxtdgtMz
txxpPbtxbctMztS

τω
ωτωτ

ωτωτ
τ

−′+′′+

′−′−′−′′+′+

′−′−′−′+
−′′+′=

    (A14) 

 
Notice that inequality (3.5) implies that  
 

22
1 )()()( txtztS δδ −−≤                                                       (A15) 

 
Moreover, since the mappings gf ,  are locally Lipschitz and 2)()( RtPxtx <′ , 1)( −≤ ωtz  for all 0≥t , 
it follows that the hypotheses of Lemma 2.3 hold on the interval ],[ 1+mm ττ  for the absolutely 
continuous map ))(),(( txtz  for appropriate constants GQ, . Therefore, for sufficiently small 0~ >r , 
there exists 0>Γ  such that the following inequality holds for all ],[ 1+∈ mmt ττ  
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( ) ))(),((~)()(,)()(max tztxrztzxtx mm Γ≤−− ττ                                (A16) 
 
Using the facts that the mappings gf ,  are locally Lipschitz and 2)()( RtPxtx <′ , 2)()( RPxx mm <′ ττ , 

1)( −≤ ωτmz , 1)( −≤ ωtz  in conjunction with inequality (A16) and definition (A14), we obtain: 
 

22
2 )(~)(~)( txqrtzqrtS Γ+Γ≤                                           (A17) 

 
for certain appropriate constant 0>q . Selecting 0~ >r  sufficiently small and using inequalities 

(A15), (A17), we can conclude that (3.10) holds with 
2
δμ = .  The proof is complete.      <  

 
Proof of Lemma 3.6: Since nnP ×ℜ∈  is a symmetric positive definite matrix, there exist constants 

012 >≥ aa  satisfying  
 

PxxaxPxxa ′≤≤′ 2
2

22
1 , for all nx ℜ∈                                          (A18) 

 
Since PbpApbAP )()( ′+′+′+  is negative definite there exists a constant 0>q  such that  
 

2)( xqxpbAPx −≤′+′ , for all nx ℜ∈                                       (A19)  
 

Let 
bcPb

qaC
′

< 1  with ]1,0(∈C  (otherwise arbitrary) and 0>∗R  such that 

( )
( ) ( ) ( ) bcPpbcCapPb

p
q

c

bcq
RaRQ

′++′++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
+

′
<

−

∗∗

11
1

1 1
2

2
λ

                                    (A20) 

 

( ) ( ) ( )( )bcCapc
bcC

RaRQ
′+++

′
<∗∗

2

2

2 11
)(                                                      (A21) 

 

( ) bcCPaPp
bcPbCqa

RaRQ
′++

′−
<∗∗

2

1
2 1

)(                                                        (A22) 

 
where ( )( )bcRRapLRQ ′++= 21:)( . We claim that there exists a constant 0>δ  such that (3.3), (3.4), 

(3.5) hold with arbitrary 0>ω , ),0( ∗∈ RR , CRK = , ( ) ( )
( )

( ) bcCap
PbRaRQP

RQc
bcC

M
′++

+

+

′
=

2

2

11
ω

 for the case 

0)( >RQ  and 1
4

2

+=
q

PbCR
M

ω  for the case 0)( =RQ . Indeed, using (3.17), (A18), (A19), in 

conjunction with the fact that 1≤C , we conclude that conditions (3.3), (3.4) with CRK =  are 
satisfied provided that 
 

( ) ( ) 12
2
2 )()(1 qabcCRaRQPPbRaRQPp <′+++                                     (A23) 

 
( )( ) ( ) ( ) ( ) 2

2
2
2 )(111 bcCbcCRaRQcRaRQpc ′<′++++                               (A24) 
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Inequalities (A23), (A24) are direct consequences of (A21), (A22) and the fact that ∗≤ RR . 
Finally, after tedious calculations and using (3.17), (A18), (A19) in conjunction with the fact that 

1≤C , we conclude that condition (3.5) is satisfied provided that there exists 0>δ  such that the 
following inequality holds for all ℜ×ℜ∈ nzx ),( : 
 

( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) 222

2
22

22

1)(

111

xzxRaRQPpqzbcMK

zxbcKRQcMPbbcKRaRQbcPKRaRQpcM

δδω

ωω

−−≤+−−′−

′++′+′+++
 

 
The existence of sufficiently small 0>δ  such that the above inequality holds is a direct 
consequence of (A20), the facts that CRK = , ∗≤ RR  and the selection 

( ) ( )
( )

( ) bcCap
PbRaRQP

RQc
bcC

M
′++

+

+

′
=

2

2

11
ω

 for the case 0)( >RQ  and 1
4

2

+=
q

PbCR
M

ω  for the case 0)( =RQ . 

The proof is complete.            <  
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