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Abstract

In this paper, we obtain the observability estimate for stochastic Schrödinger equations
evolved in a bounded domain of Rn, by means of Carleman estimate. Our Carleman
estimate is based on a new fundamental identity for stochastic Schrödinger-like opera-
tors established by the stochastic calculation. As an application, we establish a unique
continuation property for stochastic Schrödinger equations.
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1 Introduction and Main Results

Let T > 0, G ⊂ Rn (n ∈ N) be a given bounded domain with a C2 boundary Γ. Let Γ0

be a suitable chosen nonempty subset of Γ, whose definition will be given later. Put

Q
4
= (0, T )×G, Σ

4
= (0, T )× Γ, and Σ0

4
= (0, T )× Γ0.

Throughout this paper, we will use C to denote a generic positive constant depending only
on T , G and Γ0, which may change from line to line.

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space on which a one dimensional
standard Brownian motion {B(t)}t≥0 is defined. Let H be a Banach space. Denote by
L2
F(0, T ;H) the Banach space consisting of all H-valued {Ft}t≥0-adapted processes X(·)
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such that E(|X(·)|2L2(0,T ;H)) < ∞; by L∞F (0, T ;H) the Banach space consisting of all H-

valued {Ft}t≥0-adapted bounded processes; and by L2
F(Ω;C([0, T ];H)) the Banach space

consisting of all H-valued {Ft}t≥0-adapted processes X(·) such that E(|X(·)|2C(0,T ;H)) < ∞.
All of these spaces are endowed with the canonical norm.

Let us consider the following stochastic Schrödinger equation:


idy + ∆y = (a1 · ∇y + a2y + f)dt+ (a3y + g)dB in Q,

y = 0 on Σ,
y(0) = y0 in Ω

(1.1)

with initial datum y0 ∈ L2(Ω,F0, P ;H1
0 (G)), suitable coefficients ai( i = 1, 2, 3 ), and source

terms f and g.
Put

HT
4
= L2

F(Ω;C([0, T ];H1
0 (G))). (1.2)

We begin with the following definition.

Definition 1.1 We call y ∈ HT is a solution of equation (1.1) if the followings hold:
1. y(0) = y0 in G, P-a.s.;
2. For any t ∈ [0, T ] and any η ∈ H1

0 (G), it holds that∫
G

iy(t, x)η(x)dx−
∫
G

iy(0, x)η(x)dx

=

∫ t

0

∫
G

{
∇y(s, x) · ∇η(x) + (a1 · ∇y + a2y + f)η(x)

}
dxds

+

∫ t

0

∫
G

(a3y + g)η(x)dxdB(s), P-a.s.

We refer to [4, Chapter 6] and [10, Chapter 5] for the well-posedness of equation (1.1)
under suitable assumptions in the class y ∈ HT (The assumptions in Theorem 1.1 below are
enough).

The main purpose of this paper is to establish an observability estimate for equation
(1.1) under the following assumptions.

Denote by ν(x) the unit outward normal vector of G at x ∈ Γ. Assume that the set Γ0

is given by

Γ0
4
= {x ∈ Γ : (x− x0) · ν(x) > 0}. (1.3)

Also, assume that

a1 ∈ L∞F (0, T ;W 1,∞(G;Rn)), a2 ∈ L∞F (0, T ;W 1,∞(G)), a3 ∈ L∞F (0, T ;W 1,∞(G)),

(1.4)

and that

f ∈ L2
F(0, T ;H1

0 (G)), g ∈ L2
F(0, T ;H1(G)). (1.5)

Under the above assumptions, we obtain the following result.
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Theorem 1.1 Let ai (1 ≤ i ≤ 3) satisfy (1.4), f , g satisfy (1.5). Then for any solution of
equation (1.1) with initial datum y0, we have that

|y(T )|L2(Ω,FT ,P ;H1
0 (G))

≤ CeCr1
(∣∣∣∂y
∂ν

∣∣∣
L2
F (0,T ;L2(Γ0))

+ |f |L2
F (0,T ;H1

0 (G)) + |g|L2
F (0,T ;H1(G))

)
, (1.6)

where
r1
4
= |a1|2L∞

F (0,T ;W 1,∞(G;Rn)) + |a2|2L∞
F (0,T ;W 1,∞(G)) + |a3|2L∞

F (0,T ;W 1,∞(G)) + 1. (1.7)

In the deterministic case, there exist many approaches and results addressing the observ-
ability estimate for Schrödinger equations. For example, results in the spirit of Theorem
1.1 are obtained by Carleman estimate ([2, 12, 18]), by the classical Rellich-type multiplier
approach ([17]), by the microlocal analysis approach ([13, 20]), and so on. We refer to [27]
for a nice survey in this respect. Note however that, almost all of these mentioned works use
essentially the nature of time-reversibility for Schrödinger equations, in one way or another.
Therefore, one cannot simply mimic the existing methods for deterministic Schrödinger equa-
tions to derive inequality (1.6) because of the time-irreversibility of equation (1.1).

In this paper, we establish the required observability estimate by utilizing the global
Carleman estimate. In order to overcome the difficulty of the time-irreversibility, we borrow
some idea from [8] and introduce a weight function with singularity in time at 0 and T .

As a consequence of Theorem 1.1, we have the following unique continuation property
for the solutions of equation (1.1).

Theorem 1.2 For any ε > 0, let

Oε(Γ0 × [0, T ])
4
=
{

(x, t) ∈ Q : dist ((x, t),Γ0 × [0, T ]) ≤ ε
}
.

Let f = g = 0, P -a.s. For any y which solves equation (1.1), if y = 0 in Oε(Γ0 × [0, T ])
P -a.s., then y = 0 in Q, P -a.s.

There are numerous works on the unique continuation property for partial differential
equations. The study of it began at the very beginning of the 20th century. In the last
1950-70’s, there is a climax of the study of it. Most of the existing works are addressing to
the local unique continuation property at that time. In the recent 20 years, due to the need
from Control/Inverse Problems of partial differential equations, the study of the global unique
continuation for partial differential equations is very active(see [3, 22, 26] and the references
therein). Comparing with the fruitful studying of the unique continuation property for partial
differential equations, there are few results for stochastic partial differential equations. As
far as we know, [23, 24] are the only published articles which concern with this topic, and
there is no result about the global unique continuation property for stochastic Schrödinger
equations in the literature.

The rest of this paper is organized as follows. In Section 2, we give some preliminary
results, including some energy estimate and the hidden regularity for the solutions of equation
(1.1). Section 3 is addressed to establish a crucial identity for a stochastic Schrödinger-like
operator. Then, in Section 4, we derive the Carleman estimate. At last, in Section 5, we
prove Theorem 1.1 and Theorem 1.2.
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2 Some preliminaries

In this section, we will give some preliminary results which will be used later.
To begin with, for the sake of completeness, we give an energy estimate for the solution

of equation (1.1).

Proposition 2.1 Under assumptions (1.4) and (1.5), for any y0 ∈ L2(Ω,F0, P ;H1
0 (G)), we

have that

E|y(t)|2H1
0 (G) ≤ CeCr1

(
E|y(s)|2H1

0 (G) + |f |2L2
F (0,T ;H1

0 (G)) + |g|2L2
F (0,T ;H1(G))

)
, (2.1)

for any 0 ≤ s ≤ t ≤ T .

Remark 2.1 In fact, the proof of this proposition is standard, i.e., by utilizing the usual
energy estimate. The only thing one needs paying attention to is the utilizing of stochastic
calculation rules.

Proof of Proposition 2.1: In order to establish inequality (2.1), we compute

E|y(t)|2L2(G) − E|y(s)|2L2(G) and E|∇y(t)|2L2(G) − E|∇y(s)|2L2(G).

The first one reads

E|y(t)|2L2(G) − E|y(s)|2L2(G)

= E
∫ t

s

∫
G

(ydȳ + ȳdy + dydȳ)dx

= E
∫ t

s

∫
G

{
− iy(∆ȳ − a1 · ∇ȳ − a2ȳ − f̄) + iȳ(∆y − a1 · ∇y − a2y − f)

+(a3y + g)(a3ȳ + ḡ)
}
dxdσ

= E
∫ t

s

∫
G

{
− i[div (y∇ȳ)− |∇y|2 − div (|y|2a1) + div (a1)|y|2 − a2|y|2 − yf̄ ]

+i[div (ȳ∇y)− |∇y|2 − div (|y|2a1) + div (a1)|y|2 − a2|y|2 − fȳ]

+(a3y + g)(a3ȳ + ḡ)
}
dxdσ

≤ E
∫ t

s

∫
G

2
[
(|a3|L∞(G) + 1)|y|2L2(G) + |f |2L2(G) + |g|2L2(G)

]
dxdσ. (2.2)

The second one reads

E|∇y(t)|2L2(G) − E|∇y(s)|2L2(G)

= E
∫ t

s

∫
G

(∇ydȳ +∇ȳdy + d∇yd∇ȳ)dx

= E
∫ t

s

∫
G

{
div (∇ydȳ)−∆ydȳ + div (∇ȳdy)−∆ȳdy + d∇yd∇ȳ

}
dx
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= E
∫ t

s

∫
G

{
∆y
[
i(∆ȳ − a1 · ∇ȳ − a2ȳ − f)

]
−∆ȳ

[
i(∆y − a1 · ∇y − a2y − f)

]
+∇(a3y + g)∇(a3ȳ + ḡ)

}
dxdσ

≤ 2E
∫ t

s

∫
G

{
(|a1|2W 1,∞(G;Rm) + |a3|2W 1,∞(G) + 1)|∇y|2L2(G)

+(|a2|2W 1,∞(G) + |a3|2W 1,∞(G) + 1)|y|2L2(G) + |f |2H1
0 (G) + |g|2H1(G)

}
dxdσ.

(2.3)

From inequality (2.2) and inequality (2.3), we know that

E|y(t)|2H1
0 (G) − E|y(s)|2H1

0 (G)

≤ 2r1E
∫ t

s

∫
G

|y(s)|2H1
0 (G)dxdσ + E

∫ t

s

∫
G

(|f |2H1
0 (G) + |g|2H1(G))dxdσ. (2.4)

Therefore, utilizing Gronwall’s inequality, we arrive at

E|y(t)|2H1
0 (G) ≤ eCr1

{
E|y(s)|2H1

0 (G) + E
∫ t

0

∫
G

(|f |2H1
0 (G) + |g|2H1(G))dxdσ

}
, (2.5)

which implies (2.1) immediately.
Nextly, we give a result about the hidden regularity for solutions of equations (1.1), i.e.,

it shows that, solutions of equation (1.1) have some regularity on the boundary than the one
deduced from the classical Trace Theorem of Sobolev spaces directly.

Proposition 2.2 Let ai (1 ≤ i ≤ 3) satisfy (1.4), f , g satisfy (1.5). Then for any solution
of equation (1.1) with initial datum y0, it holds that∣∣∣∂y

∂ν

∣∣∣2
L2
F (0,T ;L2(Γ0))

≤ CeCr1
(
|y0|2L2(Ω,F0,P ;H1

0 (G)) + |f |L2
F (0,T ;H1

0 (G)) + |g|L2
F (0,T ;H1(G))

)
.

(2.6)

Remark 2.2 By means of Proposition 2.2, we know that∣∣∣∂y
∂ν

∣∣∣2
L2
F (0,T ;L2(Γ0))

<∞.

Comparing with Theorem 1.1, Proposition 2.2 tells us that
∣∣∣∂y
∂ν

∣∣∣2
L2
F (0,T ;L2(Γ0))

can be bounded

by the initial energy of the equation and the non-homogenous terms. This result is an reverse
of Theorem 1.1 in some sense.

In order to prove Proposition 2.2, we first establish the following pointwise identity.
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Proposition 2.3 Let µ = µ(x) = (µ1, · · · , µn) : Rn → Rn be a vector field of class C1 and
z an H2

loc(Rn)-valued {Ft}t≥0-adapted process. Then for a.e. x ∈ Rn and P-a.s. ω ∈ Ω, it
holds that

µ · ∇z̄(idz + ∆zdt) + µ · ∇z(−idz̄ + ∆z̄dt)

= ∇
[
(µ · ∇z)∇z̄ + (µ · ∇z̄)∇z − izdz̄µ− |∇z|2µ

]
dt+ d(iµ∇z̄z)−

n∑
j,k=1

µkj (zj z̄k + z̄jzk)dt

+∇ · µ|∇z|2dt+ i∇ · µzdz̄ − iµ∇dz̄z. (2.7)

Proof of Proposition 2.3 : For simplicity, here and in the sequel, we will use the notation

yj ≡ yj(x)
4
=
∂y(x)

∂xj
, where xj is the j-th coordinate of a generic point x = (x1, · · · , xn) in

Rn. In a similar manner, we will use the notation zi, vi, etc., for the partial derivatives of z
and v with respect to xi.

The proof is a direct computation. We have that

n∑
k=1

n∑
j=1

µkz̄kzjj +
n∑
k=1

n∑
j=1

µkzkz̄jj

=
n∑
k=1

n∑
j=1

[
(µkz̄kzj)j + (µkzkz̄j)j + µkk|zj|2 − (µk|zj|2)k − µkj z̄kzj − µkj z̄jzk

]
(2.8)

and that

i
n∑
k=1

(µkz̄kdz − µkzkdz̄) = i
n∑
k=1

[
d(µkz̄kz)− µkdz̄kdz − (µkzdz̄)k + µkkzdz̄

]
. (2.9)

By equality (2.8) and equality (2.9), we get equality (4.5).
Since the proof of Proposition 2.2 is standard by utilizing Proposition 2.3. We give a

sketch of it.
Sketch of the Proof of Proposition 2.2 : Since Γ is C2, one can find a vector field µ0 =

(µ1
0, · · · , µn0 ) ∈ C2(G;Rn) such that µ0 = ν on Γ(see [11, page 18]). Applying Proposition

2.3 with µ = µ0, z = y, integrating in Q and take the expectation, by means of Proposition
2.3, with similar computation in [22], Proposition 2.2 can be obtained immediately.

3 An Identity for Stochastic Schrödinger-like Opera-

tors

In this section, we establish an identity for stochastic schrödinger-like operators, which is
similar as identity (4.5) but much more complex. It will play a key role in the proof of our
main result.

Let β(t, x) ∈ C2(lR1+m; lR), and bjk(t, x) ∈ C1,2(lR1+m; lR) satisfy

bjk = bkj, j, k = 1, 2, · · · , n, (3.1)
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let us define a second order stochastic partial differential operator P as

Pz 4= iβ(t, x)dz +
m∑

j,k=1

(bjk(t, x)zj)kdt, i =
√
−1. (3.2)

We have the following identity concerning with P :

Theorem 3.1 Let `, Ψ ∈ C2(lR1+m; lR). Assume that z is an H2
loc(Rn,C)-valued {Ft}t≥0-

adapted process. Put θ = e`, v = θz. Then for a.e. x ∈ Rn and P-a.s. ω ∈ Ω, it holds
that

θ(PzI1 + PzI1) + dM + divV

= 2|I1|2dt+
m∑

j,k=1

cjk(vkvj + vkvj)dt+B|v|2dt+ i

m∑
j,k=1

[
(βbjk`j)t + bjk(β`t)j

]
(vkv − vkv)dt

+i
[
βΨ +

m∑
j,k=1

(βbjk`j)k

]
(vdv − vdv) + (β2lt)dvdv,

(3.3)
where 

I1
4
= −iβltv − 2

m∑
j,k=1

bjkljvk + Ψv,

A
4
=

m∑
j,k=1

bjk`j`k −
m∑

j,k=1

(bjk`j)k −Ψ,

(3.4)



M
4
= β2`t|v|2 + iβ

m∑
j,k=1

bjk`j(vkv − vkv),

V
4
= [V 1, · · · , V k, · · · , V m],

V k 4= −iβ
m∑
j=1

[
bjk`j(dvv − vdv) + bjk`t(vjv − vjv)dt

]
−Ψ

m∑
j=1

bjk(vjv + vjv)dt+
m∑
j=1

bjk(2A`j + Ψj)|v|2dt

+
m∑

j,j′,k′=1

(
2bjk

′
bj

′k − bjkbj′k′
)
`j(vj′vk′ + vj′vk′)dt,

(3.5)

and 
cjk

4
=

m∑
j′,k′=1

[
2(bj

′k`j′)k′b
jk′ − (bjkbj

′k′`j′)k′ − bjkΨ
]
,

B
4
= (β2`t)t +

m∑
j,k=1

(bjkΨk)j + 2
[ m∑
j,k=1

(bjk`jA)k + AΨ
]
.

(3.6)
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Remark 3.1 Since we only assume the symmetry condition for bjk(t, x) (without the positive
definite condition for the matrix (bjk)1≤j,k≤n), similar to [5], starting from identity (3.3) in
Theorem 3.1, we can deduce, in one shot, controllability/observability results not only for
the stochastic Schrödinger equation, but also for deterministic hyperbolic, Schrödinger and
plate equations which are derived before via Carleman estimate in the literature, i.e., that
appeared in [7], [12] and [22], respectively.

Proof of Theorem 3.1: The proof is divided into three steps.
Step 1. By the definition of v and w, a direct computation shows that:

θPz = iβdv − iβltvdt+
m∑

j,k=1

(bjkvj)kdt+
m∑

j,k=1

bjkljlkvdt

−2
m∑

j,k=1

bjkljvkdt−
m∑

j,k=1

(bjklj)kvdt

= I1 + I2, (3.7)

where

I2 = iβdv +
m∑

j,k=1

(bjkvj)k + Av. (3.8)

Hence we obtain that

θ(PzI1 + PzI1) = 2|I1|2 + (I1I2 + I2I1). (3.9)

Step 2. In this step, we compute I1I2 + I2I1. Denote the three terms in the right-hand
side of I1 and I2 by Ij1 and Ij2 , respectively, j = 1, 2, 3. Then we have that

I1
2I

1
1 + I1

2I
1
1 = −d(β2lt|v|2) + (β2lt)t|v|2dt+ β2ltdvdv. (3.10)

Noting that {
2vdv = d(|v|2)− (vdv − vdv)− dvdv,

2vvk = (|v|2)k − (vvk − vvk),
(3.11)

we get that

I1
2 (I2

1 + I3
1 ) + I1

2 (I2
1 + I3

1 )

= −2i
m∑

j,k=1

[
d(βbjkljvvk)− (βbjklj)tvvkdt

]
+ 2i

m∑
j,k=1

[
(βbjkljvdv)k − (βbjklj)kvdv

]
−iβΨ(vdv − dvv)

= −i
m∑

j,k=1

d
[
βbjklj(vvk − vvk)

]
+ i

m∑
j,k=1

[
βbjklj(vdv − vdv)

]
k
dt

−i
m∑

j,k=1

(βbjklj)t(vvk − vvk)dt+ i
[
βΨ +

m∑
j,k=1

(βbjklj)k

]
(vdv − vdv). (3.12)
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Noting that bjk = bkj, we have that

I2
2I

1
1 + I2

2I
1
1

=
m∑

j,k=1

[
iβbjklt(vjv − vjv)

]
k
dt+ i

m∑
j,k=1

bjk(βlt)k(vjv − vjv)dt (3.13)

and that

2
m∑

j,k,j′,k′=1

bjkbj
′k′lj(vj′vkk′ + vj′vkk′)dt

=
m∑

j,k,j′,k′=1

[
bjkbj

′k′lj(vj′vk′ + vj′vk′)
]
k
dt−

m∑
j,k,j′,k′=1

(bjkbj
′k′lj)k(vj′vk′ + vj′vk′)dt.

(3.14)

By equality (3.14), we get that

I2
2I

2
1 + I2

2I
2
1

= −2
m∑

j,k,j′,k′=1

[
bjkbj

′k′lj(vj′vk + vj′vk)
]
k′
dt+ 2

m∑
j,k,j′,k′=1

(bjkbj
′k′lj)k′(vj′vk + vj′vk)dt

+
m∑

j,k,j′,k′=1

[
bjkbj

′k′lj(vj′vk′ + vj′vk′)
]
k
dt−

m∑
j,k,j′,k′=1

(bjkbj
′k′lj)k(vj′vk′ + vj′vk′)dt.

(3.15)

Further, it holds that

I2
2I

3
1 + I2

2I
3
1 =

m∑
j,k=1

[
Ψbjk(vjv + vjv)

]
k
dt−

m∑
j,k=1

Ψbjk(vjvk + vjvk)dt

−
m∑

j,k=1

[
bjkΨk|v|2

]
j
dt+

m∑
j,k=1

(bjkΨk)j|v|2dt. (3.16)

Finally, we have that

I3
2 (I1

1 + I2
1 + I3

1 ) + I3
2 (I1

1 + I2
1 + I3

1 )

= −2
m∑

j,k=1

(bjkljA|v|2)kdt+ 2
[ m∑
j,k=1

(bjkljA)k + AΨ
]
|v|2dt. (3.17)

Step 3. Combining (3.9)-(3.17), we conclude the desired identity (3.3).
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4 Carleman Estimate for Stochastic Schrödinger Equa-

tions

This section is devoted to establishing a global Carleman estimate for equation (1.1) (the
following Theorem 4.1). We introduced the following weight function at first.

Let
ψ(x) = |x− x0|2 + τ, (4.1)

where τ is a positive constant such that ψ > 2
3
|ψ|L∞(G).

Put

l = s
e4λψ − e5λ|ψ|L∞(Ω)

t2(T − t)2
, ϕ =

e4λψ

t2(T − t)2
. (4.2)

Hence we have that
|lt| ≤ Csϕ1+ 1

2 , |ltt| ≤ Csϕ3. (4.3)

If l is given as (4.2)(recall that θ = el), we have the following Carleman inequality.

Theorem 4.1 Let ai (1 ≤ i ≤ 3) satisfy (1.4), f , g satisfy (1.5). Then for any solution of
equation (1.1) with initial datum y0, it holds that

E
∫
Q

θ2
(
ϕ3|y|2 + ϕ|∇y|2

)
dxdt

≤ CeCr1
{
E
∫
Q

θ2
(
|f |2 + ϕ2g2 + |∇g|2

)
dxdt+ E

∫ T

0

∫
Γ0

θ2ϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt
}
.

(4.4)

Remark 4.1 It is well known that the global Carleman estimate is an important tool for
the study of unique continuation property, stabilization, controllability and inverse problems
for deterministic partial differential equations(e.g. [2, 12, 18, 22, 27]). Although there are
numerous results for the global Carleman estimate for deterministic partial differential equa-
tions, people know very little about the stochastic counterpart. In fact, as far as we know,
[1, 21, 25] are the only three papers addressing to the global Carleman estimate for stochastic
partial differential equations. [1, 21] are devoted to the stochastic heat equations while [25] is
devoted to the stochastic wave equations. To my best knowledge, there is no global Carleman
estimate for stochastic Schrödinger equations in the literature.

Proof of Theorem 4.1: The proof is divided into the following three steps.

Step 1. Let β = 1 and (bjk)1≤j,k≤m equal the identity matrix. Put

δjk =

{
1, if j = k,

0, if j 6= k.
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Apply Theorem 3.1 to equation (1.1) with z replaced by y and v = θz. We obtain that

θPy(iβltv̄ − 2
m∑

j,k=1

bjklj v̄k + Ψv̄) + θPy(−iβltv − 2
m∑

j,k=1

bjkljvk + Ψv) + dM + divV

= 2
∣∣∣− iβltv − 2

m∑
j,k=1

bjkljvk + Ψv
∣∣∣2dt+

m∑
j,k=1

cjk(vkvj + vkvj)dt+B|v|2dt

+2i
m∑
j=1

(ljt + ltj)(vjv − vjv)dt+ i(Ψ + ∆l)(vdv − vdv)

+ltdvdv +
i

2

m∑
j=1

lj(dvjdv − dvjdv),

(4.5)
where 

M = lt|v|2 + i
m∑
j=1

lj(vjv − vjv),

A =
m∑
j=1

(l2j − ljj)−Ψ,

B = ltt +
m∑
j=1

Ψjj + 2
m∑
j=1

(ljA)j + 2AΨ,

cjk = 2ljk − δjk∆l − δjkΨ,

V k = 2
m∑
j=1

lj(vjvk + vjvk)− 2
m∑
j′=1

lk(vjvj).

(4.6)

Step 2. In this step, we will estimate the terms in the right-hand side of equality (4.5)
one by one. Let Ψ = −∆l, then we have that

A =
m∑
j=1

l2j = s2λ2ϕ2|∇ψ|2, (4.7)

Utilizing (4.3), we obtain that

B = ltt +
m∑
j=1

Ψjj + 2
m∑
j=1

(ljA)j + 2AΨ

= 2s3λ4ϕ3|∇ψ|4 − sλ4ϕ|∇ψ|4 − s3ϕ3O(λ3) (4.8)

and that

cjk = 2ljk − δjk∆l − δjkΨ
= 2sλ2ϕψjψk + sλϕψjk. (4.9)

11



Hence we know that there exists a λ0 > 0 such that for all λ > λ0, one can find a constant
s0 = s0(λ0) so that for any s > s0, it holds that

B ≥ s3λ4ϕ3|∇ψ|4,
m∑

j,k=1

cjk(vjvk + vkvj) ≥ sλϕ|∇v|2. (4.10)

Now we estimate the other terms in the right-hand side of (4.5). The first one satisfies
that

2i
m∑
j=1

(ljt + ltj)(vjv − vjv) = 4i
m∑
j=1

sλψjlt(vjv − vvj)

≤ 2sϕ|ψ|2|∇v|2 + 2sλ2ϕ3|v2|. (4.11)

For the second one, it holds that

i(Ψ + ∆l)(vdv − vdv) = 0. (4.12)

For the estimate of the third and the fourth one, we need to take mean value and get
that

Eltdvdv = Elt(θlty + θdy)(θlty + θdy)

≤ 2Eθ2sϕ
3
2 (a2

3|y|2 + g2)dt. (4.13)

The fourth one enjoys that∣∣∣iE m∑
j=1

lj(dvjdv − dvjdv)
∣∣∣ =

∣∣∣iE m∑
j=1

sλϕψ(dvjdv − dvjdv)
∣∣∣

≤ E
m∑
j=1

dvjdvj + s2λ2ϕ2|∇ψ|2dvdv

≤ Eθ2
{
s2λ2ϕ2(a2

3|y|2 + g2) + a2
3|∇y|2 + |∇a3|2y2 + |∇g|2

}
dt.

(4.14)

Step 3. Integrating equality (4.5) in Q, taking mean value in both sides, noting (4.7)-
(4.14), we obtain that

E
∫
Q

(
s3λ4ϕ3|v|2 + sλϕ|∇v|2

)
dxdt+ 2E

∫
Q

∣∣∣− iβltv − 2
m∑

j,k=1

bjkljvk + Ψv
∣∣∣2dxdt

≤ E
∫
Q

{
θPy

(
iβltv̄ − 2

m∑
j,k=1

bjklj v̄k + Ψv̄
)

+ θPy
(
− iβltv − 2

m∑
j,k=1

bjkljvk + Ψv
)}
dx

+CE
∫
Q

θ2
[
s2λ2ϕ2(a2

3|y|2 + g2) + a2
3|∇y|2 + |∇a3|2y2 + |∇g|2

]
dxdt

+E
∫
Q

dMdx+ E
∫
Q

divV dx. (4.15)

12



Now we analyze the terms in the right-hand side of inequality (4.15) one by one.
The first term satisfies that

E
∫
Q

{
θPy

(
iβltv̄ − 2

m∑
j,k=1

bjklj v̄k + Ψv̄
)

+ θPy
(
− iβltv − 2

m∑
j,k=1

bjkljvk + Ψv
)}
dx

= E
∫
Q

{
θ(a1 · ∇y + a2y + f)(iβltv̄ − 2

m∑
j,k=1

bjklj v̄k + Ψv̄)

+θ(a1 · ∇ȳ + a2y + f̄)
(
− iβltv − 2

m∑
j,k=1

bjkljvk + Ψv
)}
dxdt

≤ 2E
∫
Q

{
θ2|a1 · ∇y + a2y + f |2 +

∣∣∣− iβltv − 2
m∑

j,k=1

bjkljvk + Ψv
∣∣∣2}dxdt (4.16)

By the definition of θ, we know that v(0) = v(T ) = 0. Hence, it holds that∫
Q

dMdx = 0. (4.17)

For E
∫
Q

divV dx, utilizing Stokes Theorem, we have that

E
∫
Q

divV dx = E
∫

Σ

2
m∑
k=1

m∑
j=1

[
lj(vjvk + vjvk)ν

k − lkνkvjvj
]
dΣ

= E
∫

Σ

(
4

m∑
j=1

ljνj

∣∣∣∂v
∂ν

∣∣∣2 − 2
m∑
k=1

lkνk

∣∣∣∂v
∂ν

∣∣∣2)dΣ

= E
∫

Σ

2
m∑
k=1

lkνk

∣∣∣∂v
∂ν

∣∣∣2dΣ

≤ 2E
∫ T

0

∫
Γ0

θ2sλϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt. (4.18)

By (4.8)-(4.18), we have that

E
∫
Q

(
s3λ4ϕ3|v|2 + sλϕ|∇v|2

)
dxdtt

≤ CE
∫
Q

θ2|a1 · ∇y + a2y + f |2dxdt+ CE
∫ T

0

∫
Γ0

θ2sλϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt

+CE
∫
Q

θ2
[
s2λ2ϕ2(a2

3|y|2 + g2) + a2
3|∇y|2 + |∇a3|2y2 + |∇g|2

]
dxd. (4.19)

However, noting that yi = θ−1(vi − liv) = θ−1(vi − sλϕψiv), we get that

θ2(|∇y|2 + s2λ2ϕ2|y|2) ≤ C(|∇v|2 + s2λ2ϕ2|v|2). (4.20)
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Therefore, it follows from (4.19) that

E
∫
Q

(
s3λ4ϕ3|y|2 + sλϕ|∇y|2

)
dxdt

≤ CE
∫
Q

(
θ2|a1|2||∇y|2 + a2

2|y|2 + |f |2
)
dxdt+ CE

∫ T

0

∫
Γ0

θ2sλϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt

+CE
∫
Q

θ2
[
s2λ2ϕ2(a2

3|y|2 + g2) + a2
3|∇y|2 + |∇a3|2y2 + |∇g|2

]
dxdt.

(4.21)

Choosing λ = λ0 and s = max(s0, Cr1), we have that

E
∫
Q
θ2
(
ϕ3|y|2 + ϕ|∇y|2

)
dxdt

≤ Cr1

{
E
∫
Q

θ2
(
|f |2 + ϕ2g2 + |∇g|2

)
dxdt+ E

∫ T

0

∫
Γ0

θ2ϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt
}
,

(4.22)

which is the global Carleman estimate we expected.

5 Proof of Theorem 1.1 and Theorem 1.2

In this section, we prove Theorem 1.1 and Theorem 1.2, by means of Theorem 4.4.
Proof of Theorem 1.1: Owing to the definition of l and θ, it holds that

E
∫
Q

θ2
(
ϕ3|y|2 + ϕ|∇y|2

)
dxdt

≥ min
x∈G

(
ϕ
(T

2
, x
)
θ2
(T

4
, x
))

E
∫ 3T

4

T
4

∫
G

(|y|2 + |∇y|2)dxdt, (5.1)

E
∫
Q

θ2(|f |2 + ϕ2|g|2 + |∇g|2)dxdt

≤ max
(x,t)∈Q

(ϕ2(t, x)θ2(t, x))E
∫
Q

(|f |2 + |g|2 + |∇g|2)dxdt (5.2)

and that

E
∫ T

0

∫
Γ0

θ2ϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt ≤ max
(x,t)∈Q

(ϕ(t, x)θ2(t, x))E
∫ T

0

∫
Γ0

∣∣∣∂y
∂ν

∣∣∣2dΓdt. (5.3)

From (4.22)-(5.3), we deduce that

E
∫ 3T

4

T
4

∫
G

(|y|2 + |∇y|2)dxdt

≤ Cr1

max(x,t)∈Q

(
ϕ2(t, x)θ2(t, x)

)
minx∈G

(
ϕ(T

2
, x)θ2(T

4
, x)
)

14



×
{
E
∫
Q

(|f |2 + |g|2 + |∇g|2)dxdt+ E
∫ T

0

∫
Γ0

∣∣∣∂y
∂ν

∣∣∣2dΓdt

}
≤ CeCr1

{
E
∫
Q

(|f |2 + |g|2 + |∇g|2)dxdt+ E
∫ T

0

∫
Γ0

∣∣∣∂y
∂ν

∣∣∣2dΓdt

}
. (5.4)

Utilizing (5.4) and (2.1), we obtain that

E
∫
G

(|y|2 + |∇y|2)dxdt

≤ CeCr1
{
E
∫
Q

(|f |2 + |∇f |2 + |g|2 + |∇g|2)dxdt+ E
∫ T

0

∫
Γ0

∣∣∣∂y
∂ν

∣∣∣2dΓdt

}
,

(5.5)

which deduce Theorem 1.1 immediately.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2 : Since f = g = 0, P -a.s., utilizing inequality (4.4), we obtain that

E
∫
Q

θ2
(
ϕ3|y|2 + ϕ|∇y|2

)
dxdt ≤ Cr1E

∫ T

0

∫
Γ0

θ2ϕ
∣∣∣∂y
∂ν

∣∣∣2dΓdt. (5.6)

By virtue of that y = 0 in Oε(Γ0 × [0, T ]), P -a.s., we have that

∂y

∂ν
= 0 on Γ0 × (0, T ), P -a.s.

This, together with (5.6), implies that

E
∫
Q

θ2ϕ3|y|2dxdt = 0,

which means that y = 0 in Q, P -a.s.
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