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DENSITY ESTIMATES

FOR A NONLOCAL VARIATIONAL MODEL

VIA THE SOBOLEV INEQUALITY

OVIDIU SAVIN AND ENRICO VALDINOCI

Abstract. We consider the minimizers of the energy

‖u‖2
Hs(Ω) +

∫
Ω
W (u) dx,

with s ∈ (0, 1/2), where ‖u‖Hs(Ω) denotes the total contribution from Ω in
the Hs norm of u, and W is a double-well potential. By using a fractional
Sobolev inequality, we give a new proof of the fact that the sublevel sets of a
minimizer u in a large ball BR occupy a volume comparable with the volume
of BR.

Given s ∈ (0, 1/2) and Ω ⊆ R
n, with n > 2, we define

K (u; Ω) :=
1

2

∫

Ω

∫

Ω

|u(x)− u(y)|2

|x− y|n+2s
dx dy +

∫

Ω

∫

CΩ

|u(x)− u(y)|2

|x− y|n+2s
dx dy.

We take W to be a double-well potential, more precisely, we assume that W :
[−1, 1] → [0,∞),

(1) W ∈ C2([−1, 1]), W (±1) = 0, W > 0 in (−1, 1)

W ′(±1) = 0, and W ′′(±1) > 0.

The energy functional we are interested in is the sum of the nonlocal contribution
given by K and a local one induced by W , i.e., we define

(2) E (u; Ω) := K (u; Ω) +

∫

Ω

W (u(x)) dx.

We say that u is a minimizer in Ω if E (u; Ω) < ∞ and

E (u; Ω) 6 E (v; Ω)

for any v which coincides with u in CΩ. It is easy to see that minimizers satisfy
an Euler-Lagrange equation of nonlocal type, which is driven by an elliptic integral
operator of fractional type. More precisely, a minimizer u is a solution of

(−∆)su(x) +W ′(u(x)) = 0,

where (−∆)s is the fractional power of the positive operator −∆, up to a normal-
izing multiplicative constant, that we neglect. More explicitly,

(−∆)su(x) :=

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy
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and the integral is understood in the principal value sense.
From the physical point of view, the functional in (2) may be seen as a nonlocal

extension of the classical Allen-Cahn model for phase coexistence (for the latter,
see, e.g., [12]), and its interfaces may be related with suitable nonlocal minimal sur-
faces. Roughly speaking, the double-well potential W tries to drive the minimizers
towards the pure phases −1 and +1; on the other hand, up to scaling the space
variables, the term K may be seen as a penalization which prevents the formation
of unnecessary interfaces and makes the problem consistent from the mathematical
point of view. The main difference between (2) and the classical Allen-Cahn model
is that we have here a fully nonlocal interaction K instead of the usual “kinetic
term”

∫

Ω
|∇u(x)|2 dx.

From the mathematical point of view, the term K may also be regarded as the
square of a (semi)norm in a fractional Sobolev space Hs (say, ‖u‖2Hs(Ω), see, e.g., [5]

and the more comprehensive bibliography on this quoted there).
We refer to [2, 7, 8] for the precise definitions and some basic results on the

nonlocal minimal surfaces linked with the limit interface of the functional in (2),
and to [13, 14] for a more detailed discussion and motivation. For related nonlocal
problem of phase segregation with physical importance, see also [1, 3, 10, 11].
Moreover, we recall that the nonlocal contribution K may be seen as arising from
a long range interaction of particles, in connection with some statistical mechanics
model (see, e.g., [9]).

In [14], we have obtained, among others, the following result:

Theorem 1. Let u be a minimizer of E in BR. Then for any θ1, θ2 ∈ (−1, 1) such
that

(3) u(0) > θ1,

we have that

(4)
∣

∣{u > θ2} ∩BR

∣

∣ > cRn

if R > R(θ1, θ2).
The constant c > 0 depends only on n, s and W and R(θ1, θ2) is a large constant

that depends also on θ1 and θ2.

Theorem 1 follows in the streamline of the density estimates for sublevel sets
of minimizers, whose study was started in [6] for the Allen-Cahn equation. Esti-
mate (4) is quite meaningful in applications, since, from the physical viewpoint, it
represents an estimate on the probability of finding a phase in a given portion of the
medium. We refer to [14] for further references about related density estimates, and
for further comments about the important consequence that these estimates have in
the applications (such as geometric results on Γ-convergence, uniform convergence
of rescaled interfaces, rigidity and symmetry properties, etc.).

Theorem 1 has been proved in [14] by using a fine estimate on a weighted double
integral. The purpose of this note is to perform an alternative proof, by using a
fractional Sobolev inequality.

Such an alternative proof is given below. Then, in the appendix, we give a
simple, essentially self-contained, proof of the fractional Sobolev inequality in use.

The preliminary computations for the proof of Theorem 1 are in common with [14],
but the rest of the proof given here is conceptually and technically quite different.
Indeed, the proof given in [14] is more general (for instance, it works also for the



DENSITY ESTIMATES VIA THE SOBOLEV INEQUALITY 3

case s ∈ [1/2, 1), in which the limit interface of the nonlocal problem is the classical,
i.e. local, perimeter, and the technique used also plays an important role in the
study of the Γ-convergence of the rescaled functional performed in [13]). On the
other hand, the proof in [14] is somewhat more difficult, since it is based on an
“ad hoc” fine measure theoretic result, namely Theorem 1.6 there, which, roughly
speaking, estimates the energy for making the phase change based on the nonlocal
integral contribution. In this paper, this will be achieved more directly, via a frac-
tional Sobolev inequality, and this makes the argument technically simpler (and
also closer in spirit to the proof of [6] for the classical Allen-Cahn model, where the
standard Sobolev inequality was used).

Proof of Theorem 1. First of all, we observe that, by (1), there exists a small con-
stant c > 0 such that1

W (t) > W (r) + c(1 + r)(t − r) + c(t− r)2 when −1 6 r 6 t 6 −1 + c

and W (r) −W (t) 6 (1 + r)/c when −1 6 r 6 t 6 +1.
(5)

We fix θ⋆ := min{θ1, θ2, −1 + c}, with c as in (5).
Now, we recall a useful barrier that was constructed in Lemma 3.1 in [14]:

Lemma 2. Given any τ > 0, there exists a constant C > 1, possibly depend-

ing on n, s and τ , such that the following holds: for any R > C, there exists a

rotationally symmetric function

w ∈ C
(

R
n, [−1 + CR−2s, 1]

)

,

with

w = 1 in CBR,

such that

(6) − (−∆)su(x) =

∫

Rn

w(y)− w(x)

|x− y|n+2s
dy 6 τ

(

1 + w(x)
)

and

(7)
1

C

(

R+ 1− |x|
)−2s

6 1 + w(x) 6 C
(

R+ 1− |x|
)−2s

for any x ∈ BR.

As in [14], we define

A(R) := c

∫

BR∩{w<u6θ⋆}

(u− w)2 dx and V (R) :=
∣

∣{u > θ⋆} ∩BR

∣

∣.

Also, we fix K > 2(Ro + 1), to be taken suitably large in the sequel (possibly in
dependence of θ⋆), where Ro is also suitably large (at the end, roughly speaking,
this will give R as in the statement of Theorem 1, up to constants), and R > 2K.
We take w to be the function constructed in Lemma 2 with τ := c/4, and we
define v(x) := min{u(x), w(x)}.

1It may be worth to remark that, in fact, Theorem 1 is proven here simply under condition (5),
which is weaker than (1).
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Then, from formula (3.34) of [14], one knows that

A(R) + K (u− v;BR) +
c

2

∫

BR∩{w<u6θ⋆}

(1 + w)(u − w) dx

6 C

∫ R

0

(R + 1− t)−2sV ′(t) dt.

(8)

Now, we observe that u − v = 0 outside BR, and so the Sobolev-type inequality
(see Theorem 7) gives that

K (u− v;BR) = K (u − v,Rn)

> c1‖u− v‖2L2n/(n−2s)(Rn) = c1‖u− v‖2L2n/(n−2s)(BR)

(9)

for a suitable c1 > 0.
Now, by (7),

(10) w < −1 + (1 + θ⋆)/2 in BR−K ,

as long as K is large enough. Hence, we have that

|u− v| > u− v > u− w > (1 + θ⋆)/2 in BR−K ∩ {u > θ⋆}

and so

‖u− v‖2L2n/(n−2s)(BR) >

(

∫

BR−K∩{u>θ⋆}

|u− v|2n/(n−2s)

)(n−2s)/n

>

(

∫

BR−K∩{u>θ⋆}

((1 + θ⋆)/2)
2n/(n−2s)

)(n−2s)/n

= c2V (R−K)(n−2s)/n,

for a suitable c2 > 0 (possibly depending on θ⋆, hence on θ1 and θ2, which have
been fixed at the beginning).

Then, recalling (8) and (9), we obtain that

c3V (R−K)(n−2s)/n 6

∫ R

0

(R + 1− t)−2sV ′(t) dt,(11)
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for a suitable c3 > 0. Now, we integrate (11) in R ∈ [ρ, (3/2)ρ], with ρ > 2K, and
we use that s ∈ (0, 1/2) to obtain that

c3
2
ρ V (ρ−K)(n−2s)/n

6 c3

∫ (3/2)ρ

ρ

V (R−K)(n−2s)/n dR

6

∫ (3/2)ρ

ρ

(

∫ R

0

(R+ 1− t)−2sV ′(t) dt

)

dR

6

∫ (3/2)ρ

0

(

∫ (3/2)ρ

t

(R + 1− t)−2s dR

)

V ′(t) dt

=
1

1− 2s

∫ (3/2)ρ

0

[

(

(3/2)ρ+ 1− t
)1−2s

− 1
]

V ′(t) dt

6

(

(3/2)ρ+ 1
)1−2s

1− 2s

∫ (3/2)ρ

0

V ′(t) dt

6
41−2s

1− 2s
ρ1−2s V ((3/2)ρ),

that is, for any ρ > 2K,

(12) ρ2sV (ρ−K)(n−2s)/n 6 C̃V ((3/2)ρ),

for a suitable C̃ > 0.
We take r := ρ−K in (12), and we obtain that

(13) r2sV (r)(n−2s)/n 6 CV (2r),

for a suitable C > K2, as long as r > C (notice that C may depend on K, which
is now fixed once and for all).

Now, we recall the following general, inductive result, for the proof of which we
refer to Lemma 3.2 of [14]:

Lemma 3. Let σ, µ ∈ (0,+∞), ν ∈ (σ,+∞) and γ, Ro, C ∈ (1,+∞).
Let V : (0,+∞) → (0,+∞) be a nondecreasing function. For any r ∈ [Ro,+∞),

let

α(r) := min

{

1,
logV (r)

log r

}

.

Suppose that

V (Ro) > µ

and

rσ α(r)V (r)(ν−σ)/ν 6 CV (γr), for any r ∈ [Ro,+∞).

Then, there exist c ∈ (0, 1) and R⋆ ∈ [Ro,+∞), possibly depending on µ, ν, γ, Ro

and C, such that

V (r) > crν , for any r ∈ [R⋆,+∞).

Then, we apply Lemma 3 with σ := 2s and γ := 2 and we deduce from (13)
that V (R) > coR

n for large R, for a suitable co ∈ (0, 1).
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Therefore, if we define θ⋆ := max{θ1, θ2, −1 + c},
∣

∣{u > θ⋆} ∩BR

∣

∣+
∣

∣{θ⋆ < u 6 θ⋆} ∩BR

∣

∣

=
∣

∣{u > θ⋆} ∩BR

∣

∣ = V (R) > coR
n

(14)

for large R. On the other hand, by Theorem 1.3 of [14], we know that

E (u;BR) 6 C Rn−2s,

for some C > 0, and so

CRn−2s > E (u,BR) >

∫

{θ⋆<u6θ⋆}∩BR

W (u(x)) dx

> inf
r∈[θ⋆,θ⋆]

W (r)
∣

∣{θ⋆ < u 6 θ⋆} ∩BR

∣

∣.
(15)

By (14) and (15), we obtain that (4) holds, thus proving Theorem 1. �

Appendix – The fractional Sobolev inequality

For completeness, we provide here an essentially selfcontained and elementary
proof of the Sobolev-type inequality used in this paper (in particular, we will not
make use of neither interpolations or Besov spaces). For a more comprehensive
treatment of fractional Sobolev-type inequalities see [5] and references therein.

In this appendix, we will fix s ∈ (0, 1) (in fact, when s ∈ [1/2, 1) some of the
statements may be strengthened, see [4]). We recall an elementary estimate, for
the proof of which see, e.g., the Appendix of [14] and, in particular, Lemma A.1
there:

Lemma 4. Fix x ∈ R
n. Let E ⊂ R

n be a measurable set with finite measure.

Then,
∫

CE

dy

|x− y|n+2s
> c(n, s) |E|−2s/n,

for a suitable constant c(n, s) > 0.

Now, we make a general observation about a useful summability property:

Lemma 5. Fix T > 1. Let N ∈ Z and

ak be a bounded, nonnegative, decreasing sequence

with ak = 0 for any k > N .

(16)

Then,
∑

k∈Z

a
(n−2s)/n
k T k 6 C(n, s, T )

∑

k∈Z

ak 6=0

ak+1a
−2s/n
k T k,

for a suitable constant C(n, s, T ) > 0, independent of N .

Proof. By (16),

(17) both
∑

k∈Z

a
(n−2s)/n
k T k and

∑

k∈Z

ak 6=0

ak+1a
−2s/n
k T k are convergent series.
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Moreover, since ak is nonnegative and decreasing, we have that if ak = 0, then
ak+1 = 0. Accordingly,

∑

k∈Z

a
(n−2s)/n
k+1 T k =

∑

k∈Z

ak 6=0

a
(n−2s)/n
k+1 T k.

Therefore, we use the Hölder inequality with exponents α := n/2s and β := n/(n−
2s) as follows:

1

T

∑

k∈Z

a
(n−2s)/n
k T k =

∑

k∈Z

a
(n−2s)/n
k+1 T k

=
∑

k∈Z

ak 6=0

a
(n−2s)/n
k+1 T k

=
∑

k∈Z

ak 6=0

(

a
2s/(nβ)
k T k/α

)(

a
1/β
k+1a

−2s/(nβ)
k T k/β

)

6

(

∑

k∈Z

(

a
2s/(nβ)
k T k/α

)α
)1/α







∑

k∈Z

ak 6=0

(

a
1/β
k+1a

−2s/(nβ)
k T k/β

)β







1/β

6

(

∑

k∈Z

a
(n−2s)/n
k T k

)2s/n






∑

k∈Z

ak 6=0

ak+1a
−2s/n
k T k







(n−2s)/n

.

So, recalling (17), we obtain the desired result. �

We use the above tools to deal with the measure theoretic properties of the level
sets of the functions:

Lemma 6. Let

(18) f ∈ L∞(Rn) be compactly supported.

For any k ∈ Z let

ak :=
∣

∣{|f | > 2k}
∣

∣.

Then,
∫

Rn

∫

Rn

|f(x)− f(y)|2

|x− y|n+2s
dx dy > c(n, s)

∑

k∈Z

ak 6=0

ak+1a
−2s/n
k 22k,

for a suitable constant c(n, s) > 0.

Proof. Notice that
∣

∣|f(x)| − |f(y)|
∣

∣ 6 |f(x)− f(y)|,

and so, by possibly replacing f with |f |, we may consider the case in which f > 0.
We define

(19) Ak := {|f | > 2k}.

We remark that Ak+1 ⊆ Ak, hence

(20) ak+1 6 ak.
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We define

Dk := Ak \Ak+1 = {2k < f 6 2k+1} and dk := |Dk|.

Notice that

(21) dk and ak are bounded and they become zero when k is large enough,

thanks to (18). Also, we observe that the Dk’s are disjoint, that

(22)
⋃

ℓ∈Z

ℓ6k

Dℓ = CAk+1

and that

(23)
⋃

ℓ∈Z

ℓ>k

Dℓ = Ak.

As a consequence of (23), we have that

(24) ak =
∑

ℓ∈Z

ℓ>k

dℓ

and so

(25) dk = ak −
∑

ℓ∈Z

ℓ>k+1

dℓ.

We stress that the series in (24) is convergent, due to (21), thus so is the series
in (25). Similarly, we can define the convergent series

(26) S :=
∑

ℓ∈Z

aℓ−1 6=0

22ℓa
−2s/n
ℓ−1 dℓ.

We notice that Dk ⊆ Ak ⊆ Ak−1, hence a
−2s/n
i−1 dℓ 6 a

−2s/n
i−1 aℓ−1. Therefore

{

(i, ℓ) ∈ Z s.t. ai−1 6= 0 and a
−2s/n
i−1 dℓ 6= 0

}

⊆
{

(i, ℓ) ∈ Z s.t. aℓ−1 6= 0
}

.
(27)

We use (27) and (20) in the following computation:
∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ>i+1

22ia
−2s/n
i−1 dℓ =

∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ>i+1

a
−2s/n
i−1

dℓ 6=0

22ia
−2s/n
i−1 dℓ

6
∑

i∈Z

∑

ℓ∈Z

ℓ>i+1
aℓ−1 6=0

22ia
−2s/n
i−1 dℓ =

∑

ℓ∈Z

aℓ−1 6=0

∑

i∈Z

i6ℓ−1

22ia
−2s/n
i−1 dℓ

6
∑

ℓ∈Z

aℓ−1 6=0

∑

i∈Z

i6ℓ−1

22ia
−2s/n
ℓ−1 dℓ =

∑

ℓ∈Z

aℓ−1 6=0

+∞
∑

k=0

22(ℓ−1)2−2ka
−2s/n
ℓ−1 dℓ

6
∑

ℓ∈Z

aℓ−1 6=0

22ℓa
−2s/n
ℓ−1 dℓ = S.

(28)
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Now, we fix i ∈ Z and x ∈ Di: then, for any j ∈ Z with j 6 i− 2 and any y ∈ Dj

we have that

|f(x) − f(y)| > 2i − 2j+1 > 2i − 2i−1 = 2i−1

and therefore, recalling (22),

∑

j∈Z

j6i−2

∫

Dj

|f(x)− f(y)|2

|x− y|n+2s
dy > 22(i−1)

∑

j∈Z

j6i−2

∫

Dj

dy

|x− y|n+2s

= 22(i−1)

∫

CAi−1

dy

|x− y|n+2s
.

This and Lemma 4 imply that, for any i ∈ Z and any x ∈ Di, we have that

∑

j∈Z

j6i−2

∫

Dj

|f(x)− f(y)|2

|x− y|n+2s
dy > co2

2ia
−2s/n
i−1 ,

for a suitable co > 0.
As a consequence, for any i ∈ Z,

(29)
∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y) > co2

2ia
−2s/n
i−1 di,

where d(x, y) denotes the volume element for the product Lebesgue measure onR
n×

R
n. Therefore, by (25), we conclude that, for any i ∈ Z,

(30)
∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y) > co






22ia

−2s/n
i−1 ai −

∑

ℓ∈Z

ℓ>i+1

22ia
−2s/n
i−1 dℓ






.

By (26) and (29), we have that

(31)
∑

i∈Z

ai−1 6=0

∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y) > coS.

Then, using (30), (28) and (31),

∑

i∈Z

ai−1 6=0

∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y)

> co







∑

i∈Z

ai−1 6=0

22ia
−2s/n
i−1 ai −

∑

i∈Z

ai−1 6=0

∑

ℓ∈Z

ℓ>i+1

22ia
−2s/n
i−1 dℓ







> co







∑

i∈Z

ai−1 6=0

22ia
−2s/n
i−1 ai − S







> co
∑

i∈Z

ai−1 6=0

22ia
−2s/n
i−1 ai −

∑

i∈Z

ai−1 6=0

∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y).
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That is, by taking the last term to the left hand side,

(32) 2
∑

i∈Z

ai−1 6=0

∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y) > co

∑

i∈Z

ai−1 6=0

22ia
−2s/n
i−1 ai.

On the other hand, by symmetry,
∫

Rn×Rn

|f(x)− f(y)|2

|x− y|n+2s
d(x, y) =

∑

i,j∈Z

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y)

= 2
∑

i,j∈Z

j6i

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y)

> 2
∑

i∈Z

ai−1 6=0

∑

j∈Z

j6i−2

∫

Di×Dj

|f(x)− f(y)|2

|x− y|n+2s
d(x, y).

(33)

Then, the desired result plainly follows from (32) and (33). �

With the above estimates, we are now in the position of completing the elemen-
tary proof of the Sobolev-type inequality exploited in our paper:

Theorem 7. Let s ∈ (0, 1). Let f : Rn → R be measurable and compactly sup-

ported. Then,

(34) ‖f‖2L2n/(n−2s)(Rn) 6 C(n, s)

∫

Rn

∫

Rn

|f(x)− f(y)|2

|x− y|n+2s
dx dy,

for a suitable constant C(n, s) > 0.

Proof. Of course, we may suppose that

(35) the right hand side of (34) is finite,

otherwise we are done.
We will prove (34) under the additional assumption that

(36) f ∈ L∞(Rn).

This does not affect the generality of the result, because if (34) holds for bounded
functions, then it holds for the function fN obtained by f by cutting at levels −N
and +N . Then, denoting by |f |N the function obtained by cutting |f | at level N ,
we see that |f |N = |fN |, so we obtain from the Fatou Lemma that

lim inf
N→+∞

‖fN‖L2n/(n−2s) = lim inf
N→+∞

(∫

Rn

(

|f |N

)2n/(n−2s)
)(n−2s)/(2n)

>

(∫

Rn

|f |2n/(n−2s)

)(n−2s)/(2n)

= ‖f‖L2n/(n−2s).(37)

Also, by (35) and the Dominated Convergence Theorem, we have that

(38) lim
N→+∞

∫

Rn

∫

Rn

|fN (x)− fN (y)|2

|x− y|n+2s
dx dy =

∫

Rn

∫

Rn

|f(x)− f(y)|2

|x− y|n+2s
dx dy.

From (37) and (38), one deduces (34) for f from the one for fN , hence we may and
do assume (36).
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We have, using the notation in (19),

‖f‖
2n/(n−2s)

L2n/(n−2s)(Rn)
=
∑

k∈Z

∫

Ak\Ak+1

|f |2n/(n−2s)(x) dx

6
∑

k∈Z

∫

Ak\Ak+1

(2k+1)2n/(n−2s) dx 6
∑

k∈Z

22(k+1)n/(n−2s)ak.

That is,

‖f‖2L2n/(n−2s)(Rn) 6 4

(

∑

k∈Z

22kn/(n−2s)ak

)(n−2s)/n

.

Thus, since (n− 2s)/n < 1,

‖f‖2L2n/(n−2s)(Rn) 6 4
∑

k∈Z

22ka
(n−2s)/n
k .

This, (36), Lemma 5 (applied with T := 22) and Lemma 6 give the claim. �

It may be worth to remark that, from Lemma 4, it follows that

(39)

∫

E

∫

CE

dx dy

|x− y|n+2s
> c(n, s) |E|(n−2s)/n

for all measurable sets E with finite measure.
On the other hand, we see that (34) reduces to (39) when f = χE , so (39) (and

thus Lemma 4) may be seen as a Sobolev-type inequality for sets.
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