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2 Vertex Ramsey problems in the hypercube
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Abstract

If we 2-color the vertices of a large hypercube what monochromatic
substructures are we guaranteed to find? Call a set S of vertices
from Qd, the d-dimensional hypercube, Ramsey if any 2-coloring of
the vertices of Qn, for n sufficiently large, contains a monochromatic
copy of S. Ramsey’s theorem tells us that for any r ≥ 1 every 2-
coloring of a sufficiently large r-uniform hypergraph will contain a
large monochromatic clique (a complete subhypergraph): hence any
set of vertices from Qd that all have the same weight is Ramsey. A
natural question to ask is: which sets S corresponding to unions of
cliques of different weights from Qd are Ramsey?

The answer to this question depends on the number of cliques
involved. In particular we determine which unions of 2 or 3 cliques
are Ramsey and then show, using a probabilistic argument, that any
non-trivial union of 39 or more cliques of different weights cannot be
Ramsey.

A key tool is a lemma which reduces questions concerning monochro-
matic configurations in the hypercube to questions about monochro-
matic translates of sets of integers.
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1 Introduction

Ramsey’s theorem is a seminal result of extremal combinatorics. It implies
that any 2-coloring of a sufficiently large r-uniform hypergraph will contain
a monochromatic copy of a complete subgraph of a given size [11].

The question we wish to address is: what types of monochromatic sets are
unavoidable in any 2-coloring of the vertices of a large hypercube? Such sets
are said to be Ramsey. Since the set of vertices of weight r in a hypercube
correspond to a complete r-uniform hypergraph it is natural to ask whether
sets of vertices corresponding to unions of complete hypergraphs of different
weights can be Ramsey. Our main results show that this can happen for
some unions of two or three complete hypergraphs (Theorems 11 and 13),
but that it cannot occur for arbitrarily large unions (Theorem 18).

In the next section we give the required definitions and show that when
considering which subsets of vertices of the hypercube are Ramsey we may
restrict our attention to particularly simple “layered” colorings (Theorem 2).

As far as we are aware this paper is the first to consider Ramsey problems
for the vertices of the hypercube. There is an extensive literature, however,
on the corresponding problems for edge-colorings of the hypercube.

Chung [4] showed that for all k ≥ 2 and all r ≥ 1, there exists N such that
if n ≥ N , every edge-coloring of Qn with r colors contains a monochromatic
copy of C4k. Moreover she gave a 4-coloring of Qn with no monochromatic
copy of C6, while Conder [5] found a 3-coloring with this property.

Alon, Radoičić, Sudakov, and Vondrák [2] extended this to show that for all
k ≥ 2 and all r ≥ 1, there exists N such that if n ≥ N , every edge-coloring
of Qn with r colors contains a monochromatic copy of C4k+2.

Axenovich and Martin [3] gave a 4-coloring of the edges of Qn containing no
induced monochromatic copy of C10.

So-called d-polychromatic colorings have also been considered previously:
these are edge colorings of the hypercube with p colors so that every d-
dimensional subcube contains every color. Alon, Krech and Szabó [1] give
upper and lower bounds for the maximum number of colors for which a d-
polychromatic colorings exists. Their lower bound was later proved to be
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exact by Offner [10]. They also considered d-polychromatic colorings for
vertices of the hypercube. Recently Stanton and Özkahya [12] have also
considered some of the questions raised by Alon, Krech and Szabó.

Related Turán-type problems for both edges and vertices of the hypercube,
were also previously considered. Chung [4] gave bounds on the density of
edges required to guarantee a copy of Q2 and this was improved recently by
Thomason and Wagner [13]. Chung also showed that any positive density
of edges in a large hypercube guarantees a copy of C4k, for k ≥ 2. More
recently this was extended to C4k+2 (k ≥ 3) by Füredi and Özkahya. For a
unified proof of the theorems of Chung, Füredi and Özkahya, see Conlon [6].

The first Turán-type result for vertices of the hypercube is due to E.A. Kos-
tochka [8] who showed that any subset of the vertices of the hypercube of
density greater than 2/3 will contain a copy of Q2. For related results see
Johnson and Talbot [7].

2 Definitions and equivalences

For a, b ∈ N, a < b we define [a] = {1, 2, . . . , a} and [a, b] = {a, a+ 1, . . . , b}.

For n ≥ 1 let Vn = {0, 1}n. The n-dimensional hypercube, Qn, is the graph
with vertex set Vn and edges between vertices that differ in exactly one
coordinate.

If 1 ≤ d ≤ n then an embedding ofQd intoQn is an injective map ψ : Vd → Vn
that preserves the edges of Qd. Note that the image of Vd under any such
embedding consists of 2d elements of Vn given by fixing n − d coordinates
and allowing the other d coordinates to vary. We refer to the image of such
an embedding as a (d-dimensional) subcube of Qn.

Given F ⊆ Vd and S ⊆ Vn, with 1 ≤ d ≤ n, we say that S contains a copy
of F if there exists an embedding ψ : Vd → Vn satisfying ψ(F ) ⊆ S.

For t ≥ 2, a t-coloring of Qn is a map c : Vn → [t]. A t-coloring of Qn

contains a monochromatic copy of F if there is a color i ∈ [t] such that c−1(i)
contains a copy of F .

We say that a set F ⊆ Vd is t-Ramsey if there exists n0(F, t) such that for
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Figure 1: A 3-dimensional subcube of Q4

all n ≥ n0, every t-coloring of Qn contains a monochromatic copy of F .

For the remainder of this paper we will work with a different model of the
hypercube: the Boolean lattice, in which vertices of the hypercube are identi-
fied with subsets of [n]. To be precise, if 2[n] = {A : A ⊆ [n]} is the powerset
of [n], then the poset (2[n],⊆) has Qn as its Hasse diagram. We identify Vn
with 2[n] via the natural isomorphism s : Vn → 2[n], s(x) = {i : xi = 1}.

We are interested in characterising those subsets of Vd which are t-Ramsey.
The simplest example is given by Ramsey’s theorem. For a, t ≥ 0 a clique of
order t and weight a is a family consisting of all a-sets from a set of size t.
Given a set K with |K| = t we denote this by K(a).

Theorem 1 (Ramsey [11]). For t ≥ 2, all cliques are t-Ramsey.

A trivial corollary is that any family of sets which are all the same size is
t-Ramsey for t ≥ 2. It is also obvious that any family of sets which contains
members of even and odd weight is not 2-Ramsey since coloring all sets of
even weight red and all sets of odd weight blue avoids monochromatic copies
of such a family.

For A ∈ Vd the weight of A is |A|. The collection of all sets of a fixed weight
in Vd gives a special type of clique, called a layer. The layer containing all
sets of weight i from Qn is called the ith layer (of Qn) and we denote it by
Li.

A particularly simple t-coloring of Qn is one that is constant on each layer.
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Figure 2: The 2nd layer of Q4

Figure 3: A layered 2-coloring of Q4 with no monochromatic copy of Q2.

5



We call such a coloring layered. A set F ⊆ Vd is t-layer-Ramsey if there exists
nL(F, t) such that for all n ≥ nL, every layered t-coloring of Qn contains a
monochromatic copy of F .

Our first result says that there is no difference between t-Ramsey and t-layer-
Ramsey sets.

Theorem 2. A set S ⊆ Vd is t-Ramsey iff it is t-layer-Ramsey.

For the non-trivial implication in Theorem 2 we require the following lemma.

Lemma 3. If s, t ≥ 1 then there exists cL(s, t) such that any t-coloring of
Qn, where n ≥ cL, contains a copy of Qs such that the restriction of the
coloring to Qs is layered.

Proof. By Ramsey’s theorem, for any s ≥ l ≥ 0 and t ≥ 2 there exists an
integer R(s, l, t) such that whenever the collection of all l-sets from [R(s, l, t)]
are t-colored there is a monochromatic clique of order s. We define a sequence
f0, f1, ..., fs−1 by: f0 = s, fi = R(fi−1, i, t) for i > 0.

We claim that cL(s, t) = fs−1 will suffice. Suppose that χ is a t-coloring of
Qfs−1

. By the definition of the {fi} there exists a nested sequence of sets
F0 ⊆ F1 ⊆ F2 · · · ⊆ Fs−1 = [cL(s, t)] such that |Fj| = fj for j = 0, 1, . . . , s−1

and the restriction of χ to F
(j)
j−1 is monochromatic for j = 1, 2, ..., s− 1. (To

see this start with Fs−1 and work down.) Hence the restriction of χ to F
(j)
0

is monochromatic for j = 1, 2, . . . , s− 1. Adding the empty set and F0 then
gives the desired copy of Qs on which the restriction of χ is layered. ✷

We remark that our proof actually implies that in any t-coloring of Qn,
where n ≥ cL(s, t), and for any B ∈ Vn there is copy of Qs with “B at
the bottom” for which the restriction of the coloring is layered. The integer
cL(s, t) produced by this “tower of Ramsey numbers” is obviously rather
large if s is large. It would be interesting to find a good upper bound for the
smallest possible value of cL(s, t).

Proof of Theorem 2. Since a layered t-coloring of the cube is still a t-coloring
one implication is trivial.
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For the converse suppose that S ⊆ Vd is t-layer-Ramsey. Let χ be a t-coloring
of Qn with n ≥ cL(nL(S, t), t). By Lemma 3 there is subcube QnL(S,t) of Qn

such that the restriction of χ to this subcube is layered. Since S is t-layer-
Ramsey this subcube contains a monochromatic copy of S. ✷

For S ⊆ Vd we define Wd(S) = {|A| : A ∈ S}. For example, if

S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {5}} ⊆ V5

then W5(S) = {1, 3}.

A layered t-coloring c of Qn is equivalent to a t-coloring ĉ of the integers
{0, 1, . . . , n} (given by ĉ(i) = c(Li)). Thus, using Theorem 2, we can translate
our original question “which subsets of the hypercube are t-Ramsey”, into
a question concerning t-colorings of the integers that avoid certain distance
sets. This is the key observation which underlies most of our results.

For D ⊆ Z and b ∈ Z we define D+ b = {d+ b | d ∈ D} to be the translation
of D by b. We say that a family of sets of integers D = {D1, D2, . . . , Dk}
is t-translate-Ramsey if for every t-coloring of the integers, c : Z → [t] there
exists D ∈ D and j ∈ Z such that D + j is monochromatic, i.e. every t-
coloring of the integers contains a monochromatic translate of a set from the
family.

For example the family D = {{0, 1}, {0, 2}, . . . , {0, t}} is t-translate-Ramsey
but not (t+1)-translate-Ramsey (to get a (t+1)-coloring with no monochro-
matic translation of any set in D just repeat a list of the t+1 distinct colors).

Lemma 4. If D = {D1, D2, . . . , Dk} is t-translate-Ramsey, then there exists
nT (D, t) such that every t-coloring of [nT (D, t)] contains a monochromatic
translate of a set from D.

Proof. (This follows easily by compactness but for completeness we give an
elementary self-contained proof.) Suppose that D is t-translate-Ramsey. Let
d = max{maxD − minD : D ∈ D}. We will show that nT (D, t) = d(td +
1) will suffice. Suppose, for a contradiction, that there is a t-coloring c :
[d(td + 1)] → [t] with no monochromatic translate of any D ∈ D. Let
Bi = {1+ (i−1)d, 2+ (i−1)d, . . . , id} then [nT ] = B1∪B2∪ · · ·Btd+1. Since
there are td + 1 blocks Bi and each block contains d integers, there exist
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blocks Bi, Bj with i < j such that Bi and Bj are colored identically. Now
color the integers periodically using the colors of Bi, Bi+1, . . . , Bj−1

If this coloring of Z contains a monochromatic translate of D ∈ D then by
definition of d this translate meets at most two consecutive blocks of the col-
oring. Moreover since the coloring of [nT ] contained no such monochromatic
translate it must meet two consecutive blocks which did not occur in the
original coloring of [nT ]. But no such pair of blocks occur (since Bj and Bi

are colored identically). ✷

It would be interesting to find an order of magnitude estimate for the smallest
possible nT (D, t). We note that the proof of Lemma 4 also shows that if D
is not t-translate-Ramsey then there exists a periodic coloring of the integers
with period of length at most dtd which contains no monochromatic translates
of sets from D.

The link between t-Ramsey subsets of vertices of the hypercube and t-
translate-Ramsey families is given by considering which collections of layers
a given subset S ⊆ Vd can meet in the hypercube under all possible embed-
dings.

For S ⊆ Vd we define

W ∗
d (S) = {Wd(ψ(S)) : ψ : Vd → Vd, is an automorphism}.

Any automorphism of Qd can be expressed (in the Boolean lattice model)
as a set complement followed by a permutation of [d]. Since a permutation
of the d labels does not alter the weight of v ∈ V (Qd) we can restrict our
attention to the simple automorphisms of Qd of the form ψB(A) = A∆B,
A,B ∈ 2[d] when determining W ∗

d (S):

W ∗
d (S) = {Wd(ψ(S)) : ψ : Vd → Vd, is a simple automorphism}.

For example, let S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {5}} ⊆ V6. Now
W6(S) = {1, 3}, while

W ∗
6 (S) = {{1, 3}, {2, 4}, {3, 5}, {0, 4}, {1, 5}, {2, 6}, {0, 2, 4}, {1, 3, 5}, {2, 4, 6}}.

Note that if d1 ≤ d2 and S can be embedded in Qd1 then S can also be
embedded in Qd2 , so W ∗

d (S) depends on the value of d. (In our example

8



above W ∗
5 (S) = {{1, 3}, {2, 4}, {0, 4}, {1, 5}, {0, 2, 4}, {1, 3, 5}}.) In general

if d1 ≤ d2 thenW
∗
d1
(S) ⊆W ∗

d2
(S), whileW ∗

d2
(S)\W ∗

d1
(S) consists of translates

(in [d2]) of sets from W ∗
d1
(S). For this reason W ∗

d1
(S) is t-translate-Ramsey

iff W ∗
d2
(S) is t-translate-Ramsey and so we define W ∗(S) to be W ∗

d (S), with
d minimal such that S ⊆ Vd.

When considering whether or not W ∗(S) is t-translate-Ramsey it is natural
to define W ′(S) to be the family of all translates of sets from W ∗(S) which
have smallest element zero and which are minimal with respect to inclusion.
Thus in our example above we have W ′(S) = {{0, 2}, {0, 4}}.

Lemma 5. If S ⊆ Vd then the following are equivalent.

(i) S is t-Ramsey;

(ii) W ∗(S) is t-translate-Ramsey;

(iii) W ′(S) is t-translate-Ramsey.

Proof. Clearly W ∗(S) is t-translate-Ramsey iff W ′(S) is t-translate-Ramsey
(taking translations and removing supersets can have no effect on whether or
not a family is t-translate-Ramsey). We will show that S ⊆ Vd is t-Ramsey
iff W ∗(S) is t-translate-Ramsey.

Suppose that S ⊆ Vd is t-Ramsey and n0(S) is sufficiently large that any
t-coloring of Qn0

contains a monochromatic copy of S. Now take a t-coloring
c of Z. This induces a layered coloring of Qn0

given by ĉ(Li) = c(i). By
definition of n0 there is a subcube of Qn0

containing a monochromatic copy
of S. The set of layers of Qn0

in which this copy of S lies is a translate of
some D ∈ W ∗(S) and hence there is a monochromatic translate of D in the
original coloring of the integers. Hence W ∗(S) is t-translate-Ramsey.

Conversely, suppose that W ∗(S) is t-translate-Ramsey. Lemma 4 implies
that there exists n0 such that any t-coloring of [n0] contains a monochromatic
translate of some D ∈ W ∗(S). Let c be a layered t-coloring of Qn0

. Define a
t-coloring ĉ of [n0] by ĉ(i) = c(Li). By definition of n0, this coloring contains
a monochromatic translate of some D ∈ W ∗(S). Hence there is a subcube
of Qn0

containing a monochromatic copy of S. So S is t-layer-Ramsey and
hence by Theorem 2 is t-Ramsey. ✷
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Given Ramsey’s theorem (Theorem 1), telling us that all cliques are t-Ramsey
for all t ≥ 2, a natural question is to ask whether unions of cliques can also
be t-Ramsey. The answer, rather surprisingly, depends on how many cliques
we have.

3 Unions of cliques

3.1 Preliminaries

In order to decide which unions of cliques are Ramsey we need to consider
the different sets of layers in which such unions may be embedded.

Recall that a clique of weight a and order s consists of all a-sets from a
vertex set of size s. (Note that here we use the term vertex to mean a vertex
of a hypergraph, rather than a vertex of the hypercube.) We say that a
union of cliques is vertex disjoint if the vertex sets of distinct cliques are
pairwise disjoint. For example if S1 = [3], S2 = [4, 10] and S3 = [13, 20] then

S = S
(2)
1 ∪ S

(4)
2 ∪ S

(5)
3 is a vertex disjoint union of cliques. We will focus

mainly on vertex disjoint unions due to the following simple result.

Lemma 6. If t ≥ 2 and S is a vertex disjoint union of cliques that is not
t-Ramsey then any union of cliques with the same weights and orders as S
(but not necessarily vertex disjoint) is also not t-Ramsey.

Let S = K1 ∪K2 · · · ∪Ks be a union of cliques from Qd. Suppose that Ki is
of weight ai and order ai+ ti, i.e. Ki ≃ K

(ai)
ai+ti . We wish to determine W ∗(S).

Consider a simple automorphism given by ψB(A) = A∆B for some B ⊆ [d].
Let us suppose that |B ∩ V (Ki)| = bi and |B| = b. If bi ∈ {0, ai + ti} then
ψB(Ki) will be contained in a single layer (either b+ai or b−ai). However if
0 < bi < ai+ ti then ψB(Ki) will meet multiple layers. In order to succinctly
describe which layers ψB(Ki) will meet we need the following notation.

For integers x < y of the same parity we define

[x, y]2 = {x, x+ 2, . . . , y − 2, y}.
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Lemma 7. If S, ψB , b1, . . . , bs and b are as above and Di denotes the set of
layers that ψB(Ki) meets then

Di = [max{ai − 2bi,−ai},min{ai, ai + 2(ti − bi)}]2 + b.

Moreover precisely one of the following holds for each 1 ≤ i ≤ s:

(i) −ai + b or ai + b belongs to Di,

(ii) ti < bi < ai and Di = [ai − 2bi, ai − 2(bi − ti)]2 + b.

Proof. The first part follows by checking how large |A∆B| can be as A varies

over the sets from Ki ≃ K
(ai)
ai+ti , where |B| = b and |A ∩ V (Ki)| = bi.

For the second part suppose that (i) fails to hold. Now −ai + b 6∈ Di implies
that ai − 2bi > −ai, and hence bi < ai. Similarly since ai + b 6∈ Di we must
have ti < bi. Hence Di = [ai − 2bi, ai − 2(bi − ti)]2 + b. ✷

Given S, ψB, b1, . . . , bs, and b as above define

E(b; b1, b2, . . . , bs) =

s
⋃

i=1

[max{ai − 2bi,−ai},min{ai, ai + 2(ti − bi)}]2 + b.

Since ψB(S) = ψB(K1)∪· · ·∪ψB(Ks), ψB(S) will meet precisely those layers
contained in E(b; b1, . . . , bs).

Thus the family of all possible sets of layers occupied by embeddings of S
depends on which values of b and b1, . . . , bs can occur:

W ∗(S) = {E(b; b1, . . . , bs) | ∃B ⊆ [d], |B| = b, |B ∩Ki| = bi, 1 ≤ i ≤ s}.

Clearly each bi must satisfy 0 ≤ bi ≤ ai+ ti and if the cliques in S are vertex
disjoint then all such values are possible. If, however, two cliques overlap,
say |V (Ki) ∩ V (Kj)| = c ≥ 1, then bi ≥ ai + ti − d =⇒ bj ≥ c − d, so for
example bi = ai + ti and bj = 0 is impossible.

We can now prove Lemma 6.

Proof of Lemma 6. Let S be a vertex disjoint union of cliques that is not
t-Ramsey. If Ŝ is any union of cliques with the same weights and orders

11



as those in S then by the above discussion we have W ′(Ŝ) ⊆ W ′(S) (any
choice of b1, . . . bs that can occur for an embedding of Ŝ can also occur for an
embedding of S). Now if Ŝ is t-Ramsey then Lemma 5 implies that W ′(Ŝ)
is t-translate-Ramsey. But then W ′(Ŝ) ⊂ W ′(S) so W ′(S) is t-translate-
Ramsey and so S is t-Ramsey, a contradiction. ✷

For the remainder of this section we will restrict attention to the case that S
is a vertex disjoint unions of cliques. Note that in this case for any embedding
we have b =

∑s
i=1 bi, so we write E(b1, . . . , bs) for E(b; b1, . . . , bs).

Embeddings of S in which bi ∈ {0, ai + ti} for each 1 ≤ i ≤ s will play a
special role and we call these principal embeddings of S. We define

P ∗(S) = {E(b1, . . . , bs) | bi ∈ {0, ai + ti}, 1 ≤ i ≤ s},

to denote those sets in W ∗(S) achieved by principal embeddings. Note that
all E ∈ P ∗(S) are translates of sets of the form {x1a1, x2a2, . . . , xsas}, for
some choice of signs x1, . . . , xs ∈ {−1,+1}.

For example consider S1 = [6](4)∪ [7, 15](8). In this case the principal embed-
dings yield

P ∗(S1) = {{4, 8}, {2, 14}, {1, 13}, {7, 11}}.

We will let P ′(S) denote those sets from W ′(S) which are translates of sets
from P ∗(S). So in this example we have

P ′(S1) = {{0, 4}, {0, 12}}.

Note that a coloring c of Z which alternates colors on the integers in each con-
gruence class modulo 4 contains no monochromatic translate of either set in
P ′(S1). However, while this coloring also contains no monochromatic trans-
late of the set {4, 12, 14} produced by the non-principal embedding obtained
by taking b1 = 6 and b2 = 2, it does contain a monochromatic translate of
the set {6, 8} produced by the non-principal embedding obtained by taking
b1 = 0 and b2 = 2. Since {0, 2} and {0, 4} are both in W ′(S1), S1 is 2-
Ramsey. On the other hand, if S2 = [6](4) ∪ [7, 16](8) then P ′(S2) = P ′(S1)
yet, as Theorem 11 will show, S2 is not 2-Ramsey ({0, 2} is not in W ′(S2)).

Our next result tells us that if the sizes of the cliques are not too small
compared to their weights we need only consider principal embeddings.
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Proposition 8. If S is as in Lemma 7 with ti ≥ ai − 1 for each i then
W ′(S) = P ′(S).

Proof. No bi can satisfy the inequality in Lemma 7 (ii). Hence each set in
W ′(S) contains a set in P ′(S), so in fact must equal a set in P ′(S). ✷

3.2 Two cliques

For integers a, b, c we denote “a is congruent to b modulo c” by a ≡c b. We
extend this in the obvious way to sets: e.g. {8, 14} ≡4 {0, 2}.

Lemma 9. If S = K1 ∪ K2 is the vertex disjoint union of two cliques of
weights a1 and a2 and orders a1 + t1 and a2 + t2 respectively, with a1 = p12

r1

and a2 = p22
r2 where t1, t2, r1, r2 ≥ 0, r1 ≤ r2, and p1, p2 are odd then

(a) the reduced family of sets of layers of principal embeddings is

P ′(S) = {{0, |a1 − a2|}, {0, a1 + a2}}.

(b) If r1 = r2 then S is 2-Ramsey.

(c) If r1 < r2 and c is a 2-coloring of Z, then there is no monochromatic
translate of either set in P ′(S) iff c(x) 6= c(y) for all x, y such that
|x− y| = d2r1, where d = gcd(p1, p2).

Proof. By definition

P ∗(S) = {{a1, a2}, {t1, a1+a2+t1}, {a1+a2+t2, t2}, {a2+t1+t2, a1+t1+t2}}

so (a) follows immediately.

(b) If r1 = r2 then, since {p1 + p2, p1 − p2} ≡4 {0, 2}, the integer

(a1 − a2)(a1 + a2)

2r1+1
=
p1 − p2

2
(a1 + a2) =

(p1 + p2)

2
(a1 − a2)

is an odd multiple of one of a1+a2 and |a1−a2|, and an even multiple of the
other. Hence any 2-coloring of Z must contain a monochromatic translate of
one of the sets in P ′(S).

13



(c) If r1 < r2 then both |a1 − a2| and a1 + a2 are odd multiples of d2r1. Now
if c(x) 6= c(y) for all x, y such that |x− y| = d2r1 then c(x) 6= c(y) for all x, y
such that |x−y| is an odd multiple of d2r1 . Hence there is no monochromatic
translate of either set in P ′(S). Conversely, suppose c(x) = c(y) for some
x, y with x− y = d2r1. If r1 < r2 then gcd(|a1 − a2|, a1 + a2) = d2r1, so there
exist integers k and m, one even and one odd, such that (a1 + a2)k − (a1 −
a2)m = d2r1. By symmetry we may suppose k is even and m is odd. Now
if z = x + (a1 − a2)m = y + (a1 + a2)k then |z − x| is an odd multiple of
|a1 − a2|, and |z − y| is an even multiple of a1 + a2. Since c(x) = c(y) there
must be a monochromatic translate of a set from P ′(S). ✷

Lemma 10. For each positive integer m divisible by 4, there exists a 2-
coloring c of Z such that c(x) 6= c(y) for all x, y with |x − y| = m, and
c(z) = c(z + 2) = c(z + 4) does not occur for any z.

Proof. The period 2m coloring obtained by taking RRBBRRBB . . .RRBB
on [0, m−1], then taking the complement of these colors on [m, 2m−1], and
so on, satisfies the required properties. ✷

Theorem 11. Let S = K1∪K2 be the vertex disjoint union of two cliques of
weights a1 and a2 and orders a1 + t1 and a2 + t2 respectively, with a1 = p12

r1

and a2 = p22
r2 where t1, t2, r1, r2 ≥ 0, p1, p2 are odd integers, and r1 ≤ r2.

Then S is 2-Ramsey iff at least one of the following is satisfied

(1) r1 = r2;

(2) at least one of t1 or t2 is equal to 0, and a1 and a2 are both even;

(3) t1 or t2 is equal to 1, and 2 ≤ r1 < r2.

Proof. If (1) is satisfied then S is 2-Ramsey by Lemma 9 (b). Assume r1 < r2
and that (2) is satisfied, say with t1 = 0 and a1 < a2. The sets {0, a2−a1+2}
(by taking b = b1 = 1) and {0, a2−a1} are both in W ′(S). If x is any integer
such that c(x− 2) is not equal to c(x), then x + a2 − a1 has the same color
as x or x− 2, so there is a monochromatic translate of a set in W ′(S). The
argument is virtually the same if t2 = 0 or a2 < a1.

Now suppose (3) is satisfied. If c is a 2-coloring of Z with no monochromatic
translate of either set in P ′(S), then it must have the form prescribed in
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Lemma 9 (c), so there exist integers x and y with opposite colors such that
y−x is a positive multiple of 4. That means there exists an integer z ∈ [x, y]2
such that c(z) = c(z + 2). Now there are four cases.

If a2 < a1 and t1 = 1 then the set {(a1 + a2)/2, (a1 + a2)/2 + 2} is in W ∗(S)
(take b = b1 = |a1 − a2|/2), and there is a monochromatic translate of this
set. An identical argument works if a1 < a2 and t2 = 1.

If a1 < a2 and t1 = 1 then for each i ∈ [a1], a translate of the set Ai =
{0, 2, a2 − a1 + 2i} is in W ∗(S) (take b = b1 = i). This means that if
c(0) = c(2) = R, to avoid a red translate of some set Ai ∈ W ∗(S), all of
the integers in [a2 − a1 + 2, a2 + a1]2 must be blue. For each consecutive
pair of blue integers in this set of size a1, to avoid a blue translate of some
set Ai, there must be a set of a1 consecutive red even integers. Taking their
union forces every integer in [2(a2 − a1 + 2), 2(a2 + a1 − 1)]2 to be red. Thus
at this second stage we have 2a1 − 2 consecutive red integers of the same
parity. Continuing this process, at the kth stage there must be k(a1 − 2)+ 2
consecutive integers of the same parity with the same color. Since a1 ≥ 4,
this cannot be true for large k. An identical argument works if a2 < a1 and
t2 = 1. Hence S is 2-Ramsey.

Conversely, assume that S does not satisfy (1), (2), or (3). If a1 and a2 have
different parities then every member of W ∗(S) contains numbers of different
parity, and thus S is not 2-Ramsey. So we can assume 1 ≤ r1 < r2. If r1 = 1
then we take a coloring which alternates colors on the even integers and on
the odd integers. Since both a1 − a2 and a1 + a2 are odd multiples of 2,
there is no monochromatic translate of either set in P ′(S). Since both t1 and
t2 are positive, each non-principal embedding contains two integers whose
difference is 2, so these cannot be monochromatic. Hence S is not 2-Ramsey.

Now assume that 2 ≤ r1 < r2 and so t1, t2 ≥ 2. By Lemma 10 there exists a
coloring c of the type prescribed in Lemma 9 (c) such that c(z) = c(z+2) =
c(z + 4) does not occur for any z. Since t1, t2 ≥ 2, any set in W ′(S) \ P ′(S)
contains a translate of {0, 2, 4}, so there is no monochromatic translate of
such a set. Furthermore, since a1 − a2 and a1 + a2 are both odd multiples of
d2r1, there is no monochromatic translate of either set in P ′(S). Hence S is
not 2-Ramsey. ✷

If S = K
(a1)
a1+t1 ∪ K

(a2)
a2+t2 is the union of two cliques which are not vertex
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disjoint then Lemma 6 tells us that for S to be 2-Ramsey it must have the
same parameters as a vertex disjoint union of cliques that is 2-Ramsey. In
fact we can say more and state the following theorem without proof.

Theorem 12. If S = K
(a1)
a1+t1∪K

(a2)
a2+t2 is the union of two cliques whose vertex

sets overlap in c ≥ 1 points, a1 > a2, t1, t2 ≥ 2 then

(i) If c ≥ 3 then S is not 2-Ramsey.

(ii) If c = 2 then S is 2-Ramsey iff there exists a positive integer m such
that a1 − a2 = 4m and a1 + a2 ≡ 2 mod 8m.

(iii) If c = 1 then S is 2-Ramsey iff there exists a positive integer m such
that a1 − a2 = 4m and a1 + a2 ≡ 0, 2, 4m − 2 or 4m + 4 mod 8m, or
there is an even integer m such that a1 − a2 = 4m and a1 + a2 ≡ 6 or
8m− 4 mod 8m.

3.3 Three cliques

If the disjoint union of s cliques of different weights is t-Ramsey, then clearly
the disjoint union of any s′ of them, for any s′ < s, is t-Ramsey as well. The
converse obviously does not hold in general, so the following result is rather
surprising.

Theorem 13. A vertex disjoint union of three cliques of pairwise distinct
weights is 2-Ramsey iff the union of each pair of the cliques is 2-Ramsey.

Due to the various possibilities for the structure of each pair of two of the
three cliques (Theorem 11 (1),(2),(3)), a complete proof of Theorem 13 would
be long. The main idea of our proof is to assume that the union of each pair
of two of the three cliques in S is 2-Ramsey, and then show that the only
possible coloring of the integers with no monochromatic translate of any set
in W ′(S) is periodic, with a short period. It is then easy to show that no
such coloring exists.

Lemma 14. Let a1, a2, a3 be integers with a1 > a2 > a3 such that a2 and
a3 have the same number of factors of 2 in their prime factorizations. Let
t1, t2, t3 be nonnegative integers, and let S = K

(a1)
a1+t1 ∪ K

(a2)
a2+t2 ∪ K

(a3)
a3+t3 be
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a vertex disjoint union of cliques. Any 2-coloring of the integers with no
monochromatic translate of any set in W ′(S) is periodic with period 2a1.

Proof. Let C be any 2-coloring of the integers with no monochromatic trans-
late of any set in W ′(S). Let e = gcd(a1, a2, a3) and for each 0 ≤ i ≤ 2e− 1
let Zi be the set of all integers congruent to i mod 2e. By the proof of Lemma
9(b) there must be two integers in Z0 with the same color whose difference
is a2 − a3 or a2 + a3. Assume it is the former, say C(0) = C(a2 − a3) = R.
Then C(a1 − a3) = C(a1 + a2) = B to avoid red translates of {a3, a2, a1}
and {−a2,−a3, a1} respectively. (Note that a1 − a3 and a1 + a2 have the
same color and their difference is a2 + a3. If we had instead assumed two
integers with difference a2 + a3 are both R, then two integers with differ-
ence a2 − a3 would be B.) Then C(2a1) = C(2a1 + a2 − a3) = R (to avoid
blue translates of {−a3, a2, a1} and {−a2, a3, a1} respectively). Continuing,
C(3a1 − a3) = C(3a1 + a2) = B, and so on (in both directions) so that all
integers congruent to 0 or a2 − a3 mod 2a1 are colored R, and all integers
congruent to a1 − a3 or a1 + a2 mod 2a1 are colored B.

Now consider any integer m colored R by the above argument. Then every
integer congruent to m mod 2a1 is colored R, and if C(m + a2 − a3) = R
then, by the same argument as above every integer congruent to m+ a2− a3
mod 2a1 is also colored R. This in turn implies that if C(m+ a2 − a3) = B
then all integers congruent to m+ a2 − a3 mod 2a1 are colored B (since if
any of them were red they would all be red). Thus all integers congruent to
m + a2 − a3 mod 2a1 have the same color. Similarly all integers congruent
to m + a2 + a3 mod 2a1 must have the same color. Continuing in this
way we see that for any fixed integers x, y the set of integers congruent
to x(a2 − a3) + y(a2 + a3) mod 2a1 all have the same color (of course for
some values of x and y the color is B, for others it is R). In particular if
d = gcd(a2−a3, a2+a3) and j is any fixed integer then all integers congruent
to jd mod 2a1 have the same color (and all these integers are in Z0).

Now d = gcd(a2 + a3, a2 − a3) = 2 gcd(a2, a3), so 2e = gcd(2a1, d). Hence for
each fixed integer j, all integers congruent to 2je mod 2a1 have the same
color. So we have shown that the coloring C is periodic with period 2a1 on
Z0. The same argument can be applied to Zi for each 1 ≤ i ≤ 2e−1, showing
that C has period 2a1 on the integers. ✷

Lemma 15. Let a1, a2, a3 be integers with a1 > a2 > a3 such that a1 and

17



a2 have the same number of factors of 2 in their prime factorizations. Let
t1, t2, t3 be nonnegative integers, and let S = K

(a1)
a1+t1 ∪ K

(a2)
a2+t2 ∪ K

(a3)
a3+t3 be

a vertex disjoint union of cliques. Any 2-coloring of the integers with no
monochromatic translate of any set in W ′(S) is periodic with period 2a3.

Lemma 16. Let a1, a2, a3 be integers with a1 > a2 > a3 such that a1 and
a3 have the same number of factors of 2 in their prime factorizations. Let
t1, t2, t3 be nonnegative integers, and let S = K

(a1)
a1+t1 ∪ K

(a2)
a2+t2 ∪ K

(a3)
a3+t3 be

a vertex disjoint union of cliques. Any 2-coloring of the integers with no
monochromatic translate of any set in W ′(S) is periodic with period 2a2.

The proofs of Lemmas 15 and 16 are similar to that of Lemma 14. For
Lemma 15, just as in the proof of Lemma 14, there exist two integers with a
difference of a1−a2 which must be the same color, say C(0) = C(a1−a2) = R.
Then C(a3 − a2) = C(a1 + a3) = B (to avoid red translates of {a3, a2, a1}
and {−a1,−a2, a3} respectively). Then C(2a3) = C(a1 − a2 + 2a3) = R, and
so on, eventually showing that the coloring on Zi has period 2a3, for each
0 ≤ i ≤ 2e − 1. For Lemma 16, just as in the proof of Lemma 14, there
exist two integers with a difference of a1 − a3 which have the same color.
If C(0) = C(a1 − a3) = R then C(a2 − a3) = C(a1 + a2) = B, so then
C(2a2) = C(a1 + 2a2 − a3) = R, and so on.

Proof of Theorem 13. Suppose a1 > a2 > a3 and a1 = p12
r1, a2 = p22

r2 , a3 =
p32

r3 with p1, p2, p3 odd and r1, r2, r3 ≥ 0. Let S = K
(a1)
a1+t1 ∪K

(a2)
a2+t2 ∪K

(a3)
a3+t3

be a vertex disjoint union of cliques, with t1, t2, t3 ≥ 0.

Clearly if any pair of the cliques in S is not 2-Ramsey, then neither is S. So
we just need to show that if each pair of cliques is 2-Ramsey then so is S.

Case 1. r1 = r2 = r3

By the above lemmas, any 2-coloring of the integers which does not have a
monochromatic translate of any set in W ′(S) has period 2a1, has period 2a2,
and has period 2a3. Hence it has period d where d = gcd(2a1, 2a2, 2a3). Thus
there is a monochromatic translate of the set {0, a2−a3, a1−a3} fromW ′(S),
since a2 − a3 and a1 − a3 are multiples of d (in fact there are monochromatic
translates of every set from P ′(S)).

Case 2. r1 = r2 6= r3 and either (i) t3 = 1 and r1, r2, r3 ≥ 2; (ii) t1 = t2 = 1
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and r1, r2, r3 ≥ 2; (iii) t3 = 0 or one of t1 and t2 is 0 and the other is at most
1 (with restrictions on the exponents according to Theorem 11)

By Lemma 15, if there is a 2-coloring C of the integers with no monochro-
matic translate of any set in W ′(S) then C has period 2a3. For subcase (i),
since t3 = 1, {−a2, j, j+2, a1} and {j, j+2, a2, a1} are both translates of sets
in W ′(S) for all j ∈ [−a3, a3 − 2]2. As in the proof of Lemma 14 there exist
two integers with difference a1−a2 with the same color, say R. Due to the a3
forbidden sets containing a2 listed above, no two consecutive even integers in
the period 2a3 coloring C can be colored R. As in the the proof of Lemma 14,
there also exist two integers with difference a1+a2 with the other color, B, so
due to the a3 forbidden sets containing −a2 listed above, no two consecutive
even integers can be colored B. That means C must alternate colors on the
even integers. However, then {a3, a2, a1} is monochromatic because a1, a2, a3
are all multiples of 4.

For subcase (ii), since t1 = t2 = 1, the set {0, 2} is in W ′(S): to see this take
an automorphism given by flippling (a1−a3)/2 coordinates in the first clique
and (a2 − a3)/2 coordinates in the second clique. So the only way to avoid
a monochromatic translate is to alternate colors on the even integers which,
as in subcase (i), produces a monochromatic translate after all.

The proof of subcase (iii) is similar (but easier).

Case 3. r1 = r3 6= r2. Subcase (i) is exactly as in Case 2. For subcase (ii),
since t1 = t3 = 1, a translate of each of the sets {j, j+2, a2} and {−a2, j, j+2}
is in W ′(S) for each j ∈ [−a3, a3−2]2, and now an argument identical to the
one in the proof of Theorem 11 (3) for the case a1 < a2 and t1 = 1, produces
a monochromatic translate after all.

Case 4. r2 = r3 6= r1. Almost identical to Case 3.

Case 5. r1, r2, r3 all distinct and greater than or equal to 2, at least two of
t1, t2, t3 equal to 0 or 1. If t1 and t2 are equal to 0 or 1 then the set {0, 2} is
in W ′(S) and we can finish as in Case 1(ii). If t1 = t3 = 1 then translates of
{j, j+2, a2} and {−a2, j, j+2} are in W ′(S) for each j ∈ [−a3, a3− 2]2. We
know that any coloring candidate has two consecutive even integers with the
same color, say 0 and 2 are colored R, so [a2 − a3 + 2, a2 + a3]2 is all B, so
[−2a3 + 2, 2a3 − 2]2 is all R, and so on, producing arbitrarily long sequences
of consecutive even integers with the same color, an impossibility. The other
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possibilities in Case 5 are similar. ✷

3.4 Arbitrary unions of cliques

There is no analogue of Theorem 13 for the disjoint union of four cliques
of different weights. For example, if S is the disjoint union of cliques of
weights 1,5,7,9 then, no matter what the orders of the cliques may be, S is
2-Ramsey (this can be verified rather laboriously by hand by considering the
16 sets in P ′(S)). However, if S is the disjoint union of cliques of weights
1, 5, 7, 11, and if the orders are large enough so that W ′(S) = P ′(S), (so
by Proposition 8, orders at least 1, 9, 13, 21 respectively) then S is not
2-Ramsey. The period 38 coloring of the integers obtained by repeating
the sequence RRRRBBBRRBRBRBRRBBB on the even integers, and on
the odd integers, has no monochromatic translate of any of the 13 sets in
P ′(S) (in fact these colorings are the only colorings of the integers with no
monochromatic translate of any set in W ′(S)). By Theorem 13 the disjoint
union of any three of these four cliques is 2-Ramsey, no matter what the
orders of the cliques may be.

Which disjoint unions of s cliques are not 2-Ramsey, but the disjoint union
of any s − 1 of the cliques is 2-Ramsey? By Theorem 13, none with s = 3.
By our next result, none if s is sufficiently large.

If S is the vertex disjoint union of s cliques K
(a1)
a1+t1 , . . . , K

(as)
as+ts where ai is odd

and ti ≤ 1 for each i, then S is 2-Ramsey. This is so because {0, 2} ∈ W ′(S)
(take bi = (ai+1)/2 for each i), but the only 2-coloring of the integers with no
monochromatic translate of {0, 2}, is one that alternates colors on the even
integers and so contains a monochromatic translate of the set {x1a1, . . . , xsas}
obtained by letting xi = 1 if ai ≡ 1 mod 4, and xi = −1 if ai ≡ 3 mod 4,
since any pair of elements from this set differ by a multiple of 4.

Our final result (Theorem 18) tells us that if we require ti ≥ 2 for each i
then, for sufficiently large s, the vertex disjoint union of s cliques of different
weights cannot be 2-Ramsey. First we show that to prove this we need only
consider configurations S where ai is odd for all i.

Proposition 17. Let S = K
(a1)
a1+t1 ∪ · · · ∪K

(as)
as+ts, be a vertex disjoint union

of s cliques. For a positive integer m, let Sm = K
(e1)
e1+u1

∪ · · · ∪K
(es)
es+us

, be a
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vertex disjoint union of s ≥ 2 cliques with ei = mai for each i.

(a) If ui ≥ 2 for each i and Sm is 2-Ramsey, then so is S (for all values of
the ti’s).

(b) If ti ≥ ai−1 for each i and S is 2-Ramsey, then so is Sm (for all values
of the ui’s).

Proof. We note that the sets in P ′(Sm) are obtained by multiplying each
element in each set in P ′(S) by m.

For (a) suppose that Sm is 2-Ramsey. Since ui ≥ 2 for 1 ≤ i ≤ s, Theorem
11 implies that r1 = r2 = ... = rs, where 2ri is the largest power of two
that divides ai. In particular all the ai are of the same parity. Now, for a
contradiction, suppose that S is not 2-Ramsey and take a coloring c of the
integers avoiding all monochromatic translates of sets from P ′(S). Since the
ai are all of the same parity the sets in P ′(S) only contain even integers.
Hence the sets in P ′(Sm) only contain numbers congruent to 0 mod 2m and
so their translates lie in a congruence class mod 2m.

Since each ui ≥ 2, Lemma 7 implies that for any embedding ψ : Vd → Vd,
W (ψ(Sm)) either contains a translate of {0, 2, 4} or it contains a translate of
Am ∈ P ′(Sm). Thus, if we construct a coloring c′ of the integers avoiding all
monochromatic translates of of sets in P ′(Sm) and {0, 2, 4} then Sm is not
2-Ramsey, a contradiction.

We can define such a coloring as follows: for integers j, n, with 0 ≤ j ≤ 2m−1,
let c′(2mn+j) = c(2n), if j ≡ 0, 1 mod 4 and c′(2mn+j) 6= c(2n) if j ≡ 2, 3
mod 4. For any m > 1, c′ avoids monochromatic translates of {0, 2, 4} (if
c′(x) = c′(x− 2) then x ≡ 0, 1 mod 2m and so c′(x + 2) 6= c′(x)). Moreover
c′ restricted to any mod 2m congruence class gives a restriction of c or its
complement to the even integers. Since any monochromatic translate under
c′ of a set Am ∈ P ′(Sm) lies in a congruence class mod 2m it would correspond
to a monochromatic translate under c of a set A ∈ P ′(S), but c contains no
such monochromatic translates.

For (b) suppose Sm is not 2-Ramsey and let c′ be a coloring of the integers
with no monochromatic translate of any set in P ′(Sm). Define a coloring c on
the integers by c(n) = c′(mn). Clearly c does not produce a monochromatic
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translate of any set in P ′(S), and since P ′(S) = W ′(S) (by Proposition 8),
S is not 2-Ramsey. ✷

Theorem 18. If S is the vertex disjoint union of s ≥ 39 cliquesK
(a1)
a1+t1 , . . . , K

(as)
as+ts

contained in Qd, and each ti ≥ 2 then S is not 2-Ramsey

Proof. We will use a probabilistic argument employing the Lovász Local
Lemma [9] (see Lemma 19 below).

Let S be a vertex disjoint union of s ≥ 39 cliques K
(a1)
a1+t1 , . . . , K

(as)
as+ts , with

each ti ≥ 2. Suppose, for a contradiction, that S is 2-Ramsey. By Proposition
17 (a) we may suppose that gcd(a1, . . . , as) = 1. If any pair of the ai are of
different parities then S is trivially not 2-Ramsey (simply color all even layers
red and all odd layers blue). So we may suppose that a1 < a2 < · · · < as
are all odd and in particular ai+1 − ai ≥ 2 for 1 ≤ i ≤ s− 1. By Lemma 5,
W ∗(S) is 2-translate-Ramsey. Hence, by Lemma 4, there exists nT such that
any 2-coloring of [nT ] contains a monochromatic translate of D ∈ W ∗(S) =
{W (ψ(S)) : ψ : Vd → Vd is an embedding}.

Since each ti ≥ 2, Lemma 7 implies that for any embedding ψ : Vd → Vd,
W (ψ(S)) either contains a translate of {0, 2, 4} or it contains a translate of
{x1a1, x2a2, . . . , xsas}, for some choice of signs x1, . . . , xs ∈ {−1,+1}. To
show that S is not 2-Ramsey it is sufficient to prove that there exists a color-
ing of [nT ] with no monochromatic translate of {0, 2, 4} or {x1a1, . . . , xsas},
for any choice of signs. We will do this by defining a random 2-coloring of
the integers and showing that with positive probability no translate of sets
of the above types are found in the restriction of this coloring to [nT ].

Define a random coloring of the integers c : Z → {R,B} as follows. For
each i ∈ Z such that i ≡ 0 or 1 mod 4, toss a fair coin (all coin tosses are
independent). If the coin toss is heads set c(i) = R and c(i+2) = B otherwise
set c(i) = B and c(i + 2) = R. We refer to each pair (i, i + 2) of integers
colored in this way as a block.

Note that if y1, y2, . . . , yk are distinct integers no pair of which differ by
exactly two then they are all colored independently. Moreover for any choice
of colors c1, . . . ck ∈ {R,B} we have

Pr[c(y1) = c1, c(y2) = c2, . . . , c(yk) = ck] = 2−k.
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The coloring has the property that for any x ∈ Z it is not true that c(x) =
c(x+2) = c(x+4) (since either (x, x+2) or (x+2, x+4) is a block). Hence
no translate of {0, 2, 4} is monochromatic.

For each integer b let Rb be the event that there exists a choice of signs
x1, . . . , xs ∈ {−1,+1} such that {x1a1, . . . , xsas} + b is red. Let Ei

b be the
event that at least one of b− ai and b+ ai is red. Then

Pr[Rb] = Pr[E1
b ∧ E

2
b ∧ · · · ∧ Es

b ].

Clearly Pr[Ei
b] = 3/4 unless i = 1 and a1 = 1 (in which case it is equal to 1 if

(b−1, b+1) is a block, and 3/4 otherwise). We note that (b+ai, b+ai+1) is a
block iff (b−ai+1, b−ai) is a block, since ai+1−ai = 2 implies (b+ai+1)−(b−ai)
is a multiple of 4. If i < j and b + ai, b+ aj are in different blocks, then Ei

b

and Ej
b are independent, while if they are in the same block then j = i + 1

and Pr[Ei
b ∧ E

j
b ] = 1/2.

Hence if (b− a1, b+ a1) is not a block, and there are precisely t blocks of the
form (b+ ai, b+ ai+1), for some 1 ≤ i ≤ s− 1, then

Pr[Rb] =
1

2t

(

3

4

)s−2t

≤

(

3

4

)s

,

while if (b − a1, b + a1) is a block, then Pr[Rb] ≤ (3/4)s−1. Hence this last
inequality holds no matter what.

For an integer b let Mb be the event that there exists a choice of signs
x1, . . . , xs ∈ {−1,+1} such that {x1a1, . . . , xsas} + b is monochromatic. By
symmetry we have Pr[Mb] ≤ 2(3/4)s−1.

Our next aim is to show that the event Mb is independent of “most” other
events Mb′ , in the following sense.

Claim: Mb is independent of all but at most 6s2 events Mb′ .

For any integer b let Db = {±a1,±a2, . . . ,±as} + b. Let b be fixed. We
first count the number of ways to choose b′ 6= b such that Db ∩ Db′ 6= ∅. If
Db ∩ Db′ 6= ∅ and b′ 6= b then there exist u, v ∈ {±a1, . . . ,±as} such that
b′ = b+u−v. Now b′ 6= b implies that u 6= v. If we suppose also that u 6= −v
then there are 2s(2s−2) such ordered pairs (u, v), but they produce at most
s(2s − 2) distinct values of b′ (since (u, v) and (−v,−u) produce the same
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value of b′). There are at most 2s other values of b′ produced when u = −v,
so there are a total of at most 2s2 distinct values of b′ such that Db∩Db′ 6= ∅.
Since Mb is independent of all Mb′ except those for which there exist x ∈ Db

and y ∈ Db′ such that x ∈ {y − 2, y, y + 2}, there are at most 6s2 values of
b′ such that Mb and Mb′ are dependent.

It is straightforward to check that for s ≥ 39 we have 2(6s2+1)e
(

3
4

)s−1
< 1.

Hence, by the Lovász Local Lemma (Lemma 19), with non-zero probability c
gives a coloring of [nT ] with no monochromatic translate of {x1a1, . . . , xsas}
for any choice of signs x1, . . . , xs ∈ {−1,+1}. Hence S is not 2-Ramsey. ✷

Lemma 19 (Erdős–Lovász [9]). Let A1, . . . , Ak be events in a probability
space that each occur with probability at most p. If each event is independent
of all but at most d other events and ep(d + 1) ≤ 1 then there is a non-zero
probability that none of the events occur.

4 Questions

Given Theorem 18, a natural question to ask is: do there exist 2-Ramsey
subsets of Vd that cannot be embedded into a small number of layers? To
make this precise we define l(S) to be the smallest number layers into which
S ⊆ Vd can be embedded:

l(S) = min
B∈W ′(S)

|B|.

Question 20. Do there exist subsets Sd ⊆ Vd such that Sd is 2-Ramsey and
limd→∞ l(Sd) = ∞?

Another natural question to ask is: how large can a 2-Ramsey subset of Vd
be? By Ramsey’s theorem examples of size

(

d
⌊d/2⌋

)

exist.

Question 21. If S ⊆ Vd is 2-Ramsey how large can |S| be?
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