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Abstract

In this paper we introduce and study the concept of optimal and surely
optimal dual martingales in the context of dual valuation of Bermudan
options, and outline the development of new algorithms in this context.
We provide a characterization theorem, a theorem which gives conditions
for a martingale to be surely optimal, and a stability theorem concern-
ing martingales which are near to be surely optimal in a sense. Guided
by these results we develop a framework of backward algorithms for con-
structing such a martingale. In turn this martingale may then be utilized
for computing an upper bound of the Bermudan product. The method-
ology is purely dual in the sense that it doesn’t require certain input
approximations to the Snell envelope.

In an Itô-Lévy environment we outline a particular regression based
backward algorithm which allows for computing dual upper bounds with-
out nested Monte Carlo simulation. Moreover, as a by-product this al-
gorithm also provides approximations to the continuation values of the
product, which in turn determine a stopping policy. Hence, we may ob-
tain lower bounds at the same time.

In a first numerical study we demonstrate the backward dual regres-
sion algorithm in a Wiener environment at well known benchmark ex-
amples. It turns out that the method is at least comparable to the one
in Belomestny et. al. (2009) regarding accuracy, but regarding computa-
tional robustness there are even several advantages.
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1 Introduction

It is well-known that the evaluation of Bermudan callable derivatives comes
down to solving an optimal stopping problem. For many callable exotic prod-
ucts, e.g. interest products, the underlying state space is high-dimensional
however. As such these products are usually computationally expensive to
solve with deterministic (PDE) methods and therefore simulation based (Monte
Carlo) methods are called for. The first developments in this respect concen-
trated on the construction of a “good” exercise policy. We mention, among
others, regression based methods by Carriere (1996), Longstaff and Schwartz
(2001), and Tsistsiklis and Van Roy (2001), the stochastic mesh method of
Broadie and Glasserman (2004), and quantization algorithms by Bally and Pages
(2003). Especially for very high dimensions, Kolodko and Schoenmakers (2004)
developed a policy improvement approach which can be effectively combined
with Longstaff and Schwartz (2001) for example (see Bender et al. (2008) and
Bender et al. (2006)).

As a common feature, the aforementioned simulation methods provide lower
biased estimates for the Bermudan product under consideration. As a new
breakthrough, Rogers (2002), and Haugh and Kogan (2004) introduced a dual
approach, which comes down to minimizing over a set of martingales rather than
maximizing over a family of stopping times. By its very nature the dual ap-
proach gives upper biased estimates for the Bermudan product and after its dis-
covery several numerical algorithms for computing dual upper bounds have been
proposed. Probably the most popular one is the method of Andersen and Broadie
(2004), although this method requires nested Monte Carlo simulation (see also
Kolodko and Schoenmakers (2004) and Schoenmakers (2005)). In a Wiener en-
vironment, Belomestny et. al. (2009) provides a fast generic method for comput-
ing dual upper bounds which avoids nested simulations. Further Brown et al.
(2009) consider dual optimization via enlarging the information were an exercise
decision may depend on. In this setting they also provide an example were a
tight dual upper bound can be obtained by non-nested simulation.

The algorithms for computing dual upper bounds so far have in common
that they start with some given “good enough” approximation of the Snell
envelope and then construct the Doob martingale due to this approximation.
In a recent paper Rogers (2010), points out how to construct a particular ’good’
martingale via a sequence of martingales which are constant on an even bigger
time interval. In this construction no input approximation to the Snell envelope
is used. The methods proposed in this paper have some flavor of the method
of Rogers (2010), in the sense that no approximation to the Snell envelope is
involved either. In a recent paper Desai et. al. (2010) treat the dual problem
by methods from convex optimization theory.

The structure of this paper is as follows. Starting with a short resume of well-
known facts on Bermudan derivatives in Section 2, we analyze in Section 3 the
almost sure property of the dual representation in detail. There we introduce the
concept of a surely optimal martingale, which is loosely speaking, a martingale
that minimizes the dual representation with a particular almost sure property.
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In this respect we will point out that a martingale which minimizes the dual
representation is not necessarily surely optimal, and on the other hand, a surely
optimal martingale is generally not unique.

In Section 4 we present, as one of the main contributions of this paper, a
characterization theorem for surely optimal martingales (Theorem 6). Moreover,
we provide another result that guarantees that a martingale is surely optimal if
it satisfies a certain measurability criterion (Theorem 10).

In applications of the algorithm of Andersen and Broadie (2004) one gen-
erally observes that the lower the variance of the upper bound estimator, i.e.
the closer the corresponding martingale is to a surely optimal one, the sharper
is the corresponding dual upper bound. Actually this observation was not well
studied from a mathematical point of view so far. In Section 5 we study this
phenomenon and, as a next main contribution, give an explanation of it by
Theorem 12 and Corollary 15. In fact, the latter corollary may be considered a
stability statement connected to Theorem 10.

Guided by the new theoretical insights we develop in Section 6 algorithms
for constructing dual martingales that are based on minimization of the vari-
ance (respectively expected conditional variance) of corresponding dual repre-
sentations and estimators. In this context we present in an Itô-Lévy environ-
ment a regression based backward procedure that constructs a dual martingale
via minimizing backwardly in time the expected (conditional) variances of the
dual estimators corresponding to the Snell envelope. We so obtain a martin-
gale that allows for computing upper bounds without nested Monte Carlo (like
in Belomestny et. al. (2009)). Moreover we obtain, as a by-product, estima-
tions of continuation values. Thus, as a result, we end up with a procedure
that computes upper bounds as well as lower bounds simultaneously via a
non-nested simulation procedure. The procedure is quite easy to implement
and may be considered as a valuable alternative to the non-nested method of
Belomestny et. al. (2009), where a dual martingale is obtained by constructing
a discretized Clark-Ocone derivative of some (input) approximation to the Snell
envelope via regression. In particular, our new procedure only requires regres-
sion at each exercise date, in contrast to the procedure of Belomestny et. al.
(2009) that requires regression at each time point of a sufficient refinement of
the exercise grid.

In Section 7, we present a numerical study of our algorithm. We illustrate
at two multi-dimensional benchmark products (one of which is also considered
in Belomestny et. al. (2009)) a backward regression algorithm that, regarding
accuracy and computational effort, produces upper bounds that show to be at
least of the same quality as those in Belomestny et. al. (2009), and fast lower
bounds that are overall better than in Belomestny et. al. (2009) moreover. In
an Appendix, we provide standard results from Statistics which are used for
several technical arguments in Section 6.1.
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2 Bermudan derivatives and optimal stopping

Let (Zi : i = 0, 1, . . . , T )1 be a non-negative stochastic process in discrete time
on a filtered probability space (Ω,F , P ), adapted to a filtration F := (Fi :
0 ≤ i ≤ T ) which satisfies E|Zi| < ∞, for 0 ≤ i ≤ T. The measure P may be
considered as a pricing measure and the process Z may be seen as a (discounted)
cash-flow which an investor may exercise once in the time set {0, ..., T }. Hence,
she is faced with a Bermudan product. A well-known fact is that a fair price of
such a derivative is given by the Snell envelope

Y ∗
i = sup

τ∈{i,...,T},

EiZτ , 0 ≤ i ≤ T, (1)

at time i = 0. In (1), τ denotes a stopping time, Ei := EFi
denotes the con-

ditional expectation with respect to the σ-algebra Fi, and sup (inf) is to be
understood as essential supremum (essential infimum) if it ranges over an un-
countable family of random variables. Let us recall some well-known facts (e.g.
see Neveu (1975)).

1. The Snell envelope Y ∗ of Z is the smallest super-martingale that domi-
nates Z.

2. A family of optimal stopping times is given by

τ∗i = inf{j : j ≥ i, Zj ≥ Y ∗
j }, 0 ≤ i ≤ T.

In particular,
Y ∗
i = EiZτ∗

i
, 0 ≤ i ≤ T,

and the above family is the family of first optimal stopping times if several
optimal stopping families exist.

The optimal stopping problem (1) has a natural interpretation from the
point of view of the option holder: she seeks for an optimal exercise strategy
which optimizes her expected payoff. On the other hand, the seller of the option
rather seeks for the minimal cash amount (smallest supermartingale) he has to
have at hand in any case the holder of the option exercises.

3 Duality and surely optimal martingales

We briefly recall the dual approach proposed by Rogers (2002) and, indepen-
dently, Haugh and Kogan (2004). The dual approach is based on the following
observation: for any martingale (Mj) with M0 = 0 we have

Y ∗
0 = sup

τ∈{0,...,T}

E0Zτ ≤ sup
τ∈{0,...,T}

E0 (Zτ −Mτ ) ≤ E0 max
0≤j≤T

(Zj −Mj) , (2)

1For notational convenience we have chosen for this stylized time set. The reader may refor-
mulate all statements and results in this paper for a general discrete time set {T0, T1, . . . , TJ}
in a trivial way.
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hence the right-hand side provides an upper bound for Y ∗
0 . Rogers (2002) and

Haugh and Kogan (2004) showed that (2) holds with equality for the martingale
part of the Doob decomposition of Y ∗, i.e. Y ∗

j = Y ∗
0 +M∗

j − A∗
j , where M

∗ is
a martingale with M∗

0 = 0, and A∗ is predictable with A∗
0 = 0. More precisely

we have

M∗
j =

j∑

l=1

(Y ∗
l − El−1Y

∗
l ) , A∗

j =

j∑

l=1

(
Y ∗
l−1 − El−1Y

∗
l

)
, (3)

from which we see A∗ is non-decreasing due to Y ∗ being a supermartingale. In
addition, they showed that

Y ∗
0 = max

0≤j≤T

(
Zj −M∗

j

)
a.s. (4)

The next lemma, by Kolodko and Schoenmakers (2006), provides a somewhat
more general class of supermartingales, which turns relation (2) into an equality
such that moreover (4) holds.

Lemma 1 Let S be a supermartingale with S0 = 0,. Assume that Zj−Y ∗
0 ≤ Sj,

1 ≤ j ≤ T . It then holds that

Y ∗
0 = max

0≤j≤T
(Zj − Sj) a.s. (5)

For the proof see Kolodko and Schoenmakers (2006).

Examples 2 Obviously, by taking for S the Doob martingale as constructed in
(3), Lemma 1 applies. However, the Doob martingale is not the only one. For
example, in the case Z > 0 a.s. we may also take

Sj = (N∗
j − 1)Y

∗

0 ,

where N∗ is the multiplicative Doob part of the Snell envelope. More precisely,
Y ∗
j = Y ∗

0 N
∗
j B

∗
j for a martingale N∗ with N∗

0 = 1 and predictable B∗ with
B∗

0 = 1. Hence

N∗
j =

j∏

l=1

Y ∗
l

El−1Y ∗
l

, B∗
j =

j∏

l=1

El−1Y
∗
l

Y ∗
l−1

. (6)

Indeed, since B∗ is non-increasing due to Y ∗ being a supermartingale, we have

Sj = Y
∗

0

(
Y ∗
j

Y ∗
0 B

∗
j

− 1

)
≥ Y

∗

0

(
Y ∗
j

Y ∗
0

− 1

)
= Y ∗

j − Y
∗

0 ≥ Zj − Y
∗

0 ,

thus, Lemma 1 applies again.

The multiplicative Doob decomposition in (6) is used by Jamshidian (2007)
for constructing a multiplicative dual representation. In a comparative study,
Chen and Glasserman (2007) pointed out however, that from a numerical point
of view additive dual algorithms perform better due to the nice almost sure
property (4).
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Remark 3 It is not true that for any martingale M which turns (2) into equal-
ity the almost sure statement (4) holds. As a simple counterexample, consider
T = 1, Z0 = 0, Z1 = 2, M0 = 0, and M1 = ±1 each with probability 1/2. Indeed,
we see that Y ∗

0 = 2 = E0(2−M1) = E0 max(0, 2−M1), but, Y
∗
0 6= max(0, 2−M1)

a.s.

In order to have a unified dual representation for the Snell envelope Y ∗
i at

any i, it is convenient to drop the assumption that martingales start at zero.
We then may restate the dual theorem as

Y ∗
i = inf

M∈M
Ei max

i≤j≤T
(Zj −Mj +Mi) (7)

= max
i≤j≤T

(
Zj −M∗

j +M∗
i

)
a.s., (8)

for any i, 0 ≤ i ≤ T, where M is the set of all martingales and M∗ is the Doob
martingale part of Y ∗.

In view of Remark 3 and Examples 2, a martingale for which the infimum
(7) is attained must not necessarily satisfy an almost sure property such as (8),
and, martingales which do satisfy such almost sure property are generally not
unique. We hence propose the following concept of surely optimal martingales.

Definition 4 We say that a martingale M is surely optimal for the Snell
envelope Y ∗ at a time i, 0 ≤ i ≤ T, if it holds

Y ∗
i = max

i≤j≤T
(Zj −Mj +Mi) a.s. (9)

Remark 5 Obviously, the Doob martingale of Y ∗ is surely optimal at each
i, 0 ≤ i ≤ T, and any martingale M is trivially surely optimal at i = T.
However, it is not true that sure optimality for some i with i < T implies sure
optimality at i + 1. As a counterexample let us consider T = 2, and Z0 = 4,
Z1 = 0, Z2 = 2. Take as martingale M0 = 0, M1 = ±1, each with probability
1/2, and M2 = M1 ± 1, each with probability 1/2 conditional on M1. Then
max0≤j≤2 (Zj −Mj +M0) = 4 a.s. Since we have trivially Y ∗

0 = 4, M is surely
optimal at i = 0. But, max1≤j≤2 (Zj −Mj +M1) = 2 −M2 +M1 /∈ F1, so M
is not surely optimal for Y ∗ at i = 1.

4 Characterization of surely optimal martingales

In this section we give a characterization of martingales that are surely optimal
for all i = 0, . . . , T.

Theorem 6 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T, if
and only if there exists a sequence of adapted random variables (ζi)0≤i≤T, such
that Ei−1ζi = 1, and ζi ≥ 0 for all 0 < i ≤ T, and

Mi =M∗
i −A∗

i +

i∑

l=1

(
A∗

l −A∗
l−1

)
ζi, (10)
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where, respectively, M∗ is the Doob martingale and A∗
i the predictable process

of the Snell envelope Y ∗ as given in (3).

Proof. i) Let us assume that M is surely optimal as stated. Then by (9) it
holds for any 0 < i ≤ T,

Y ∗
i−1 = max

i−1≤j≤T
(Zj −Mj +Mi−1)

= max(Zi−1,Mi−1 −Mi + max
i≤j≤T

(Zj −Mj +Mi))

= max(Zi−1,Mi−1 −Mi + Y ∗
i ). (11)

Since Zi−1 ≤ Y ∗
i−1, and since Zi−1 < Y ∗

i−1 implies A∗
i−1 = A∗

i , we obtain from
(11) and the Doob decomposition Y ∗

i = Y ∗
0 +M∗

i −A∗
i

Y ∗
i−1 − Zi−1 = (Mi−1 −Mi + Y ∗

i − Zi−1)
+

=
(
Mi−1 −Mi +M∗

i −M∗
i−1 −A∗

i + A∗
i−1 + Y ∗

i−1 − Zi−1

)+

= 1Zi−1<Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1 + Y ∗

i−1 − Zi−1

)+

+ 1Zi−1=Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1 −A∗

i +A∗
i−1

)+
.

So we must have

1Zi−1<Y ∗

i−1

(
Y ∗
i−1 − Zi−1

)
=

1Zi−1<Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1 + Y ∗

i−1 − Zi−1

)
, and

1Zi−1=Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1 −A∗

i +A∗
i−1

)+
= 0,

respectively. Hence we get

1Zi−1<Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1

)
= 0, and (12)

1Zi−1=Y ∗

i−1

(
Mi−1 −Mi +M∗

i −M∗
i−1 −A∗

i +A∗
i−1

)
= −1Zi−1=Y ∗

i−1
µi, (13)

for some non-negative Fi-measurable random variable µi. W.l.o.g. we assume
that µi ≡ 0 on the set {Zi−1 < Y ∗

i−1}. By taking Fi−1 conditional expectations
on both sides of (13), and using the martingale property of both M and M∗,
and the predictability of A∗, it then follows that

Ei−1µi = 1Zi−1=Y ∗

i−1
Ei−1µi = 1Zi−1=Y ∗

i−1

(
A∗

i −A∗
i−1

)
. (14)

In particular, since µi ≥ 0 almost surely, it follows from (14) that µi = 0 on the
set {A∗

i = A∗
i−1} (in which {Zi−1 < Y ∗

i−1} is contained as a subset). We next
define

ζi :=

{(
A∗

i −A∗
i−1

)−1
µi, if A∗

i > A∗
i−1,

1, else,
(15)

and we see that we have a.s. µi =
(
A∗

i −A∗
i−1

)
ζi. By (14) we have (using the

convention 0 · ∞ = 0)

Ei−1ζi = 1A∗

i
>A∗

i−1
Ei−1

(
A∗

i −A∗
i−1

)−1
µi + 1A∗

i
=A∗

i−1

= 1A∗

i
>A∗

i−1
1Zi−1=Y ∗

i−1
+ 1A∗

i
>A∗

i−1
1Zi−1<Y ∗

i−1
+ 1A∗

i
=A∗

i−1
= 1,

7



since the middle term is trivially zero. We thus obtain from (12) and (13)

Mi−1 −Mi +M∗
i −M∗

i−1 −A∗
i +A∗

i−1 = −
(
A∗

i −A∗
i−1

)
ζi,

from which (10) follows.

ii) Conversely, if a martingale M satisfies (10), we have for any 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj −M∗

j +A∗
j −

j∑

l=1

(
A∗

l −A∗
l−1

)
ζl

+M∗
i −A∗

i +
i∑

l=1

(
A∗

l −A∗
l−1

)
ζl

)

= Y ∗
i + max

i≤j≤T

(
Zj − Y ∗

j −
j∑

l=i+1

(
A∗

l −A∗
l−1

)
ζl

)
≤ Y ∗

i ,

and then by (7) the almost sure optimality follows.

By Theorem 6 we have immediately the following alternative characterization
of almost sure martingales. It basically says that a martingale is surely optimal
if the Snell envelope can be representated in a way that resembles the Doob
decomposition but where the predictable process is replaced by a process which
is in general only adapted.

Corollary 7 A martingale M with M0 = 0 is surely optimal for i = 0, . . . , T, if
and only if there exists an non-decreasing adapted process N with N0 = 0 such
that2

Y ∗
i = Y ∗

0 +Mi −Ni.

Proof. If M is surely optimal as stated, we have by the “if” part of Theorem 6
(see (10)),

Y ∗
i − Y ∗

0 −Mi = −
i∑

l=1

(
A∗

l −A∗
l−1

)
ζi = −Ni, (16)

with N being adapted, non-decreasing and N0 = 0. Conversely, if

Y ∗
i = Y ∗

0 +Mi −Ni

for some martingale M, M0 = 0, and non-decreasing adapted N, N0 = 0, we
consider for each i, 0 ≤ i ≤ T,

max
i≤j≤T

(Zj −Mj +Mi) = max
i≤j≤T

(
Zj − Y ∗

j −Nj + Y ∗
i +Ni

)
≤ Yi,

∗

and then apply (7) again.

We have the following remark.

2Note that N is not assumed to be predictable.
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Remark 8 Let the martingale M with M0 = 0 be surely optimal for i =
0, . . . , T. For the non-decreasing process N defined by (16) it holds that

Y ∗
i −Mi +Mi−1 − Zi−1 = Y ∗

i−1 −Ni +Ni−1 − Zi−1 =: Ui,

and since by (16), Ni −Ni−1 =
(
A∗

i −A∗
i−1

)
ζi, we obtain from (11)

(Ui)
+
= Y ∗

i−1 − Zi−1 a.s.

So, in particular we have that (Ui)
+

is Fi−1-measurable while Ui itself is gen-
erally not, except for the case where M = M∗. A similar observation will en-
countered later on in (26).

From Theorem 6 it is clear that there exist infinitely many martingales which
are surely optimal for all i = 0, . . . , T. In the following example we construct a
one-parametric family of such martingales which includes the Doob martingale
of the Snell envelope.

Example 9 Let us assume Z > 0 a.s. (if Z is strictly bounded from below by a
constant −K, we may consider the equivalent stopping problem due to Z +K).
Then Y ∗ > 0 a.s., and for any α, 0 ≤ α ≤ 1, we consider

ζi := 1− α+ α
Y ∗
i

Ei−1Y ∗
i

= 1− α+ α
N∗

l

N∗
l−1

,

where N∗ is the martingale part of the multiplicative decomposition Y ∗
i = Y ∗

0 N
∗
i B

∗
i

of the Snell envelope (see Examples 2). Obviously, it holds Ei−1ζi = 1 and
ζi ≥ 0, and hence, by Theorem 6 we obtain for every 0 ≤ α ≤ 1 a martingale

Mi =M∗
i −A∗

i +
i∑

l=1

(
A∗

l −A∗
l−1

)(
1− α+ α

N∗
l

N∗
l−1

)

=M∗
i − αA∗

i + α

i∑

l=1

(
A∗

l −A∗
l−1

) N∗
l

N∗
l−1

,

which is surely optimal for i = 0, ..., T. Thus, for α = 0 (i.e. ζi ≡ 1) we retrieve
the standard Doob martingale of the Snell envelope, and for α = 1 we obtain

Mi = Y ∗
i − Y ∗

0 +
i∑

l=1

(
A∗

l −A∗
l−1

) N∗
l

N∗
l−1

=

i∑

l=1

(
Y ∗
l − Y ∗

l−1 + Y ∗
l−1

(
1− B∗

l

B∗
l−1

)
N∗

l

N∗
l−1

)

= Y ∗
0

i∑

l=1

(
N∗

l B
∗
l −N∗

l−1B
∗
l−1 +B∗

l−1

(
1− B∗

l

B∗
l−1

)
N∗

l

)

= Y ∗
0

i∑

l=1

B∗
l−1

(
N∗

l −N∗
l−1

)
. (17)
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Note that this martingale differs from the martingale Y
∗

0 (N
∗
i −1) from Example 2

(they would coincide after dropping the factors B∗
l−1). It is easy to show (using

Theorem 6 again) that the latter martingale is in general only optimal at i = 0,
while the martingale (17) is surely optimal for all i = 0, ..., T, by construction.

The next theorem provides a key criterion for identifying surely optimal mar-
tingales.

Theorem 10 Let Y ∗ be the Snell envelope of the cash-flow Z and let M be any
martingale. Then, for any i ∈ {0, ..., T } it holds

max
i≤j≤T

(Zj −Mj +Mi) ∈ Fi =⇒ max
i≤j≤T

(Zj −Mj +Mi) = Y ∗
i .

Proof. Let us suppose ϑi := maxi≤j≤T (Zj −Mj +Mi) ∈ Fi and define the
stopping time

τi = inf {j ≥ i : Zj −Mj +Mi ≥ ϑi} .

By the definition of ϑi we have i ≤ τi ≤ T almost surely. We thus have

Y ∗
i ≥ Ei Zτi ≥ Ei (Mτi −Mi + ϑi) = ϑi,

by Doob’s optional sampling theorem and the fact that ϑi ∈ Fi. On the other
hand we have ϑi = Ei ϑi ≥ Y ∗

i due to (7).

Remark 11 While in this paper we work in a discrete time setting, it is obvious
that Theorem 10 can be proved in (almost) literally the same way for continuous
time exercise as well.

5 Stability of surely optimal martingales

In equivalent terms, Theorem 10 states that, if a martingale M is such that the
conditional variance of

ϑi(M) := max
i≤j≤T

(Zj −Mj +Mi)

is zero for some 0 ≤ i ≤ T , i.e.

Vari ϑi(M) := Ei (ϑi(M)− Eiϑi(M))2 = 0, a.s.,

then ϑi(M) = Y ∗
i . Hence the martingale M is surely optimal at i. In this sec-

tion we present a stability result for martingalesM which are, loosely speaking,
close to be surely optimal at some i, in the sense that Vari ϑi(M) is small. More
specifically, we provide mild conditions on a sequence of martingales (M (n))n≥1

which guarantee that the corresponding upper bounds converge to the Snell
envelope in a sense, although the sequence of martingales (M (n)) does not nec-
essarily converge. We have the following result.

10



Theorem 12 Let i ∈ {0, ..., T }. If Vari ϑ
(n)
i

P→ 0 for n → ∞, where ϑ
(n)
i :=

ϑi(M
(n)), and if in addition the sequence of martingales

(
M

(n)
i

)
n≥1

is uniformly

integrable, then it holds

Ei ϑ
(n)
i

L1→ Y ∗
i .

Proof. Fix an i ∈ {0, ..., T } and suppose that the assumptions of the theorem
are satisfied. Now take an ǫ > 0. By introducing an auxiliary time ∂ > T and
setting Z∂ = 0 we next define the stopping time

τ
(n)
i = inf

{
j ≥ i : Zj −M

(n)
j +M

(n)
i ≥ Eiϑ

(n)
i − ǫ

}
∧ ∂.

We thus have with M
(n)
∂ :=M

(n)
T , n ≥ 1,

Y ∗
i ≥ Ei Zτ

(n)
i

= Ei Zτ
(n)
i

1
τ
(n)
i

<∂
≥ Ei

(
M

(n)

τ
(n)
i

−M
(n)
i + Eiϑ

(n)
i − ǫ

)
1
{τ

(n)
i

<∂}

= Ei

(
M

(n)

τ
(n)
i

−M
(n)
i + Eiϑ

(n) − ǫ

)
− Ei

(
M

(n)
T −M

(n)
i + Eiϑ

(n)
i − ǫ

)
1
{τ

(n)
i

=∂}

= Eiϑ
(n)
i − ǫ− Ei

(
M

(n)
T −M

(n)
i + Eiϑ

(n)
i − ǫ

)
1
{τ

(n)
i

=∂}
a.s.,

hence

Eiϑ
(n)
i ≤ Y ∗

i + ǫ+ Ei

∣∣∣M (n)
T −M

(n)
i + Eiϑ

(n)
i − ǫ

∣∣∣ 1
τ
(n)
i

=∂

=: Y ∗
i + ǫ+ Ei U

(n)
i 1

τ
(n)
i

=∂
a.s. (18)

Now it is easy to see that the family of random variables
(
U

(n)
i

)
n≥1

is uniformly

integrable too. We so may take Kǫ > 0 such that

sup
n≥0

E U
(n)
i 1

U
(n)
i

>Kǫ
≤ ǫ.

Further observe that due to a conditional version of Chebyshev’s inequality,

0 ≤ Ei 1{τ
(n)
i

=∂
} = Ei1{ϑ

(n)
i

<Eiϑ
(n)
i

−ǫ
} ≤ Vari ϑ

(n)
i

ǫ2
P→ 0.

Since the family

(
Ei 1{

τ
(n)
i

=∂
}
)

n≥0

is bounded by 1, it is uniformly integrable.

Hence, it follows that

Ei1{τ
(n)
i

=∂
} L1→ 0. (19)

We thus have

E U
(n)
i 1

τ
(n)
i

=∂
= E U

(n)
i 1

U
(n)
i

>Kǫ
1
τ
(n)
i

=∂
+ E U

(n)
i 1

U
(n)
i

≤Kǫ
1
τ
(n)
i

=∂

≤ ǫ+KǫE 1
U

(n)
i

≤Kǫ
1
τ
(n)
i

=∂
≤ ǫ+KǫE Ei1τ (n)

i
=∂

< 2ǫ

11



for n > Nǫ,Kǫ
by (19). So for n > Nǫ,Kǫ

, we derive from (18)

Eϑ
(n)
i ≤ EYi + ǫ+ E U

(n)
i 1

τ
(n)
i

=∂
≤ EY ∗

i + 3ǫ.

Thus,

limn→∞ Eϑ
(n)
i ≤ EY ∗

i + 3ǫ

Since ǫ > 0 was arbitrary,

limn→∞ Eϑ
(n)
i ≤ EY ∗

i .

On the other hand, due to (7) we have Eiϑ
(n)
i ≥ Y ∗

i a.s. for all n, so

0 ≤ limn→∞ E
∣∣∣Eiϑ

(n) − Y ∗
i

∣∣∣ = limn→∞

(
Eϑ

(n)
i − EY ∗

i

)
≤ 0,

which finally proves Eiϑ
(n)
i

L1→ Y ∗
i .

Remark 13 Like Theorem 10, Theorem 12 can be formulated in a continuous
time setting as well with (almost) literally the same proof.

The following simple example illustrates that Theorem 12 would not be true
when the uniform integrability condition is dropped.

Example 14 Take T = 1, Z0 = Z1 = 0, M
(n)
0 = 0, M

(n)
1 =: −ξn with E0ξn =

0, n = 1, 2, . . . Then obviously Y ∗
0 = 0, and we have

ϑ
(n)
0 = max(Z0 −M

(n)
0 , Z1 −M

(n)
1 ) = max(0, ξ(n)) = ξ

(n)
+ .

Now take

ξ(n) =

{
1 with Prob. n−1

n

1− n with Prob. 1
n

(hence E0ξ
(n) = 0). Then, for n → ∞ we have Var0 ϑ

(n)
0 = E0 (ξ

(n)
+ )2 −(

E0ξ
(n)
+

)2
= n−1

n
−
(
n−1
n

)2
= n−1

n2 → 0, whereas E0ϑ
(n)
0 = E0ξ

+
n = n−1

n
→ 1.

Clearly, for each K > 1, E0

∣∣∣M (n)
1

∣∣∣ 1
{
∣∣∣M(n)

1

∣∣∣>K}
≥ n−1

n
1{n−1>K} → 1 as n →

∞, hence the
(
M

(n)
1

)
are not uniformly integrable.

In view of the next Corollary, Theorem 12 may be considered as a stability
theorem related to Theorem 10.

Corollary 15 Let MUI be a set of uniformly integrable martingales. Then for
any i ∈ {0, . . . , T } it holds: For every ǫ > 0 there exist a δ > 0 such that

[
M ∈ MUI and E Vari ϑi(M) < δ

]
=⇒ 0 ≤ E ϑi(M)− Y ∗

i < ǫ.

12



Proof. Suppose the statement is not true for some i. Then there exists an
ǫ0 > 0 such that for all n ∈ N there exists a martingale M (n) ∈ MUI , for
which E Vari ϑi(M

(n)) < 1/n and E ϑi(M
(n)) − Y ∗

i ≥ ǫ0. Since convergence in
L1 implies convergence in probability along a subsequence (indexed again by

n) we thus have Vari ϑi(M
(n))

P→ 0, and E
∣∣ϑi(M (n))− Y ∗

i

∣∣ ≥ ǫ0 along this
subsequence. This contradicts Theorem 12.

Remark 16 Theorem 12 is important in practical situations, for instance, for
(possibly high dimensional) underlyings of jump-diffusion type in a Lévy-Itô
setup. In this environment we may consider the following class of uniformly
integrable martingales.

Let W be an m-dimensional Brownian motion and let N denote a Poisson
random measure, independent of W , with (deterministic) compensator measure
ν(s, du)ds such that

∫ t

0

∫

Rq

(u2 ∧ 1)ν(s, du)ds <∞, 0 ≤ t ≤ T.

Let (Ft)0≤t≤T be the filtration generated by W and N , augmented by null sets.
Now let X be a D-dimensional Markov process, adapted to (Ft), and consider
the mappings c : [0, T ]× R

D → R≥0 and d : [0, T ]× R
D × R

q → R≥0 satisfying

E

∫ T

0

|c(s,Xs)|2ds <∞, E

∫ T

0

∫

Rq

|d(s,Xs, u)|2ν(s, du)ds <∞. (20)

We define the class of uniformly integrable martingales, MUI , as the set of all
martingales M satisfying

Mt =M0 +M c
t +Md

t

=M0 +

∫ t

0

ϕc(s,Xs)dWs +

∫ t

0

∫

Rq

ϕd(s,Xs, u)Ñ(ds, du),

where ϕc and ϕd satisfy

|ϕc| ≤ c, |ϕd| ≤ d,

and Ñ = N − ν is the compensated Poisson measure. Note that M is indeed a
martingale and that the expected quadratic variation of M is given by

E
[
M,M

]
t
= E

∫ t

0

|ϕc(s,Xs)|2ds+ E

∫ t

0

∫

Rq

|ϕd(s,Xs, u)|2ν(s, du)ds

≤ E

∫ t

0

|c(s,Xs)|2ds+ E

∫ t

0

∫

Rq

|d(s,Xs, u)|2ν(s, du)ds.

We then have for every t ∈ [0, T ] ,

sup
M∈MUI

E|Mt|2 ≤ sup
M∈MUI

E sup
0≤t≤T

|Mt|2 ≤ sup
M∈MUI

CE
[
M,M

]
T
<∞,

13



where the second estimation results from the Burkholder-Davis-Gundy inequality
and the third estimation follows from (20). Finally, an application of the de
la Vallée Poussin criterion yields that MUI is indeed a family of uniformly
integrable martingales.

6 New dual algorithms for pricing of

Bermudan derivatives

In this section we consider the design of a new dual algorithm for solving multiple
stopping problems, hence pricing Bermudan products, which are based on the
theoretical insights from Theorem 10, Theorem 12, and Corollary 15. In the
following, we provide an assessment of the merits of variance minimizing dual
algorithms based on these results.

6.1 Merits of variance minimizing dual algorithms

Let Q be some index set and M = {M q : q ∈ Q} be a set of uniformly integrable
martingales such that M contains a martingale M q∗ which is surely optimal at
i = 0. Suppose that for any q ∈ Q we haveN samples of ϑ0(M

q,(n)), n = 1, ..., N.
Based on these samples we may estimate Var0 ϑ0(M

q) = Varϑ0(M
q) as usual

by

Var(N) ϑ0(M
q) :=

1

N − 1

N∑

n=1

(
ϑ0(M

q,(n))− ϑ0(M q)N

)2
, with

ϑ0(M q)N :=
1

N

N∑

n=1

ϑ0(M
q,(n)). (21)

So, in principle, only two realizations (N = 2) would be enough to identify a q∗

such that

0 = Varϑ0(M
q∗) = Var(2) ϑ0(M

q∗) = min
q∈Q

2∑

n=1

(
ϑ0(M

q,(n))− ϑ0(M q)N

)2
,

and then obtain Y ∗
0 = ϑ0(M

q∗) = ϑ0(M
q∗,(1)). Due to this stylized argumenta-

tion we may expect that in a case where although the set M doesn’t contain a
martingale that is surely optimal at i = 0 but at least one martingale M q such
that Varϑ0(M

q) is “small enough”, we only need a relatively small sample size
N to identify this martingale, leading to a tight upper bound Y up

0 := Eϑ0(M
q).

In the following, we formalize this idea by giving precise estimates for the vari-
ance estimators in terms of the family of uniformly integrable martingales.

Suppose we want to obtain an upper bound which is bounded from above
by Y ∗

0 + ǫ for some given ǫ > 0. Consider a family of uniformly integrable

14



martingales M = {M q : q ∈ Q} which is “rich enough” in the sense that there
exists a δ > 0 according to Corollary 15, such that

{M ∈ M : Varϑ0(M) < κδ} 6= ∅,

for some 0 < κ < 1. Then, in particular, we have infq∈Q Varϑ0(M
q) < κδ which

implies that for any q ∈ Q we have EVarϑ0(M
q) = Varϑ0(M

q) < δ. Now
Corollary 15 again yields 0 ≤ Eϑ0(M

q)−Y ∗
0 < ǫ. For a given set of realizations

ϑ0(M
q,(n)), n = 1, ..., N, q ∈ Q, we now may try to find an optimal q◦N ∈ Q

arising as the solution of the minimization problem

inf
q∈Q

Var(N) ϑ0(M
q) = Var(N) ϑ0(M

q◦N ). (22)

For convenience, we assume that such a q◦N does exist. Furthermore, we assume
the existence of q◦ ∈ Q which satisfies

inf
q∈Q

Varϑ0(M
q) = Varϑ0(M

q◦).

Let 0 ≤ α ≪ 1 be a small threshold probability. Then one can show under mild
conditions on the family of random variables {ϑ0(M q) : q ∈ Q}, that for some
constant C > 0 and quantile coefficient cα > 0 (only depending on α) we have
with probability larger than 1− α,

Var(N) ϑ0(M
q) ≤ Varϑ0(M

q)

(
1 + cα

√
C

N

)
, (23)

(
1− cα

√
C

N

)
Varϑ0(M

q) ≤ Var(N) ϑ0(M
q), for q ∈ {q◦, q◦N}

(see Appendix for details). Thus, with probability larger than 1− α,

(
1− cα

√
C

N

)
Varϑ0(M

q◦N ) ≤ VarN ϑ0(M
q◦N ) ≤ VarN ϑ0(M

q◦)

≤ Varϑ0(M
q◦)

(
1 + cα

√
C

N

)
,

which yields

Varϑ0(M
q◦N ) ≤ κδ

1 + cα

√
C
N

1− cα

√
C
N

.

This implies that for

N = inf



n : κ

1 + cα

√
C
n

1− cα

√
C
n

< 1



 (24)
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we have P
[
Varϑ0(M

q◦N ) < δ
]
> 1 − α. Thus, by Corollary 15, the dual upper

bound due to the martingale M q◦N identified by (22) falls below Y ∗
0 + ǫ with

probability larger than 1 − α. As a main feature, equation (24) demonstrates
that the smaller κ, the fewer samples N we may choose for the identification of
q◦N .

The above argumentation suggests to minimize the estimated variance of
the dual estimator over a parametric set of martingales using a relatively small
sample size N. However, as the parametric set of martingales M needs to be
“rich enough”, in practice there may be many parameters involved, which in
turn may lead to a non-convex minimization problem with many local minima.
As a remedy to this problem, rather than directly minimizing the variance of the
dual estimator at time zero, we propose to minimize backwardly the expected
conditional variances E Vari ϑi(M

q) over q ∈ Q, starting from i = T (where
the conditional variance is trivially zero) down to i = 0, using a simple but
effective recursive relationship between ϑi(M

q) and ϑi+1(M
q) as explained in

the next subsection. For this backward minimization procedure the arguments
above apply as well and moreover, as we will see, it opens the possibility for
linear regression, hence also the possibility for fast numerical implementations.

6.2 Backward dual variance minimization

Motivated by Section 6.1 we now develop a backward recursive simulation based
algorithm for the construction of a dual martingale M that yields tight upper
bounds. In view of a such a Monte Carlo approach, we assume a Markov
setting generated by some underlying Markov process X := (Xt)0≤t≤T , and a
cash-flow of the form Zj := Zj(Xj) := Z(j,Xj). First we describe the algorithm
in a pseudo language which involves terms such as conditional expectations
and conditional variances. Then, we spell out an implementable Monte Carlo
algorithm where these expressions are replaced by their empirical counterparts.

To start out on a pseudo algorithmic level we construct a martingale M
backwardly in a recursive way by establishing that from i = T down to i = 0
the expected conditional variances E Variϑi(M) are “as small as possible” in
a sense that we will describe. The martingale M is such that for j > i, any
increment

Mj −Mi is measurable with respect to ∆Fi,j := σ{Xs : i ≤ s ≤ j}. (25)

It is easy to see that the Doob martingale of the Snell envelope meets this
measurability property, however, in general Theorem 6 yields that there may
exist many other surely optimal martingales satisfying this property.

A corner stone of the whole procedure is the following recursion that holds

16



for any martingale M and any i < T,

ϑi(M) = max

(
Zi, max

i+1≤j≤T
(Zj −Mj +Mi)

)

= max (Zi, ϑi+1(M) +Mi −Mi+1)

= Zi + (ϑi+1(M) +Mi −Mi+1 − Zi)
+ . (26)

Obviously, at every i = 0, ..., T, ϑi(M) only depends on (Mj −Mi)i≤j≤T
, and

at the starting time i = T we initially have ϑT (M) = ZT which trivially satisfies
E VarT (ϑT (M)) = 0. Note that if M were already surely optimal, i.e. ϑ(M)
were already equal to Y ∗, then Remark 8 would imply that for Ui := ϑi+1(M)+
Mi −Mi+1 − Zi, (Ui)

+ = ϑi(M)− Zi = Y ∗
i − Zi is already Fi-measurable.

Now the essential idea is comprised in the following backward induction: As-
sume that for i+1 ≤ T we have constructed the increments (Mj −Mi+1)i+1≤j≤T

and ϑi+1(M). Now the task is to find a random variable ξi+1 such that

ξi+1 is ∆Fi,i+1-measurable, Eiξi+1 = 0, (27)

that solves the following minimization problem

ξi+1 := argmin
ξ∈∆Fi,i+1, Eiξ=0

E Variϑi(M(ξ))

= argmin
ξ∈∆Fi,i+1, Eiξ=0

E Vari (ϑi+1(M)− ξ − Zi)
+
. (28)

Intuitively, ξi+1 represents the optimal martingale increment and thus, we put
Mj(ξi+1) − Mi(ξi+1) := Mj − Mi+1 + ξi+1 for j ≥ i + 1. By construction,
the random variable ξi+1 satisfies (27), therefore, we obtain a set of martingale
increments (Mj(ξi+1)−Mi(ξi+1))i≤j≤T

, which has now been extended from
j = i+ 1 to j = i and which satisfies for j ≥ i + 1,

Mj(ξi+1)−Mi+1(ξi+1) =Mj(ξi+1)−Mi(ξi+1) +Mi(ξi+1)−Mi+1(ξi+1)

=Mj −Mi+1

and by construction also the measurability requirement (25). Now we extend
the increments (Mj −Mi+1)i+1≤j≤T

from j = i+ 1 to j = i by setting

(Mj −Mi)i≤j≤T
= (Mj(ξi+1)−Mi(ξi+1))i≤j≤T

Finally we put
ϑi(M) = Zi + (ϑi+1(M)− ξi+1 − Zi)

+
.

After carrying out these steps backwardly from i = T down to i = 0 we end up
with a family of martingale increments (Mj −M0)0≤j≤T

, hence a martingale

(Mj)0≤j≤T
, as M0 = 0 without loss of generality. This martingale will be

subsequently used to compute a dual upper bound for Y ∗
0 via

Y up
0 = E max

0≤j≤T

(
Zj −Mj

)
.
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The key step in the above procedure is to find a solution to minimization
problem (28): Suppose that the martingale increments satisfying (27) for some
fixed i may be parametrized as ξi+1(β) where β is some generic parameter.
Based on a set of simulated trajectories of X one may then estimate for some
β (which we specify in more details below) the conditional variance

E Vari (ϑi+1(M)− ξi+1(β) − Zi)
+
=: E VariU

+
i (β)

by using e.g. kernel estimators (e.g. see Liero (1989)), and next minimize
with respect to β. In particular when the dimension of the parameter space is
very small (typically one-dimensional) this may lead to a feasible Monte Carlo
procedure. However, if the set of martingale increments ξi+1(β) is “rich enough”
and is moreover linearly structured in β, that is

ξi+1(β) =

K∑

k=1

βkm
(k)
i+1,

where β = (β1, . . . , βK) ∈ R
K and the random variables m

(k)
i+1, k = 1, . . . ,K,

satisfy (27) for K ≥ 1 sufficiently large, it is in general more effective to solve
the dominating problem

argmin
β∈RK

E VariUi(β) := argmin
β∈RK

E Vari (ϑi+1(M)− ξi+1(β)− Zi)

= argmin
β∈RK

E Vari

(
ϑi+1(M)−

K∑

k=1

βkm
(k)
i+1

)
. (29)

The reason is twofold. On the one hand, if we succeed to find β◦ ∈ R
K such

that E VariUi(β
◦) is sufficiently small (if it were zero, we would have arrived at

an surely optimal martingale increment), then since

argmin
β∈RK

E VarXTi
U+
i (β) ≤ E VariU

+
i (β◦) ≤ EVariUi(β

◦),

E VariU
+
i (β◦) is generally even closer to zero and so β◦ can be considered a good

approximation to (28) as well. On the other hand, most importantly, problem
(29) can be treated as a linear regression problem,

[β◦, γ◦] = argmin
β∈RK ,γ∈RK1

E

∣∣∣∣∣ϑi+1(M)−
K∑

k=1

βkm
(k)
i+1 −

K1∑

k=1

γkψk(i,Xi)

∣∣∣∣∣

2

, (30)

which employs an additional set of basis functions ψk(t, x), k = 1, ...,K1. To see
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this, note that (30) is equivalent with

[β◦, γ◦] = argmin
β∈RK ,γ∈RK1

EEi

(
ϑi+1(M)−

K∑

k=1

βkm
(k)
i+1 − Eiϑi+1(M)

+Eiϑi+1(M)−
K1∑

k=1

γkψk(i,Xi)

)2

= argmin
β∈RK ,γ∈RK1

{
E Vari

(
ϑi+1(M)−

K∑

k=1

βkm
(k)
i+1

)

+E

(
Eiϑi+1(M)−

K1∑

k=1

γkψk(i,Xi)

)2


 ,

hence β◦ satisfies (29), and moreover for γ◦ it holds

γ◦ = argmin
γ∈RK1

E

(
Eiϑi+1(M)−

K1∑

k=1

γkψk(i,Xi)

)2

. (31)

Further, the regression procedure (30) delivers as by-product

Ci(x) :=
K1∑

k=1

γ◦kψk(i, x),

an approximate continuation function that may be used afterwards to define a
stopping rule and to simulate a corresponding lower biased estimation of Y ∗

0 .

Remark 17 (i) In virtually all practical applications we are in a setting as
described in Remark 16. In this environment we may model ξi+1 as linear
combinations of the form

ξi+1(β) :=

N1∑

k=1

βc
k

∫ Ti+1

Ti

ϕc
k(s,Xs)dWs

+

N2∑

k=1

βd
k

∫ Ti+1

Ti

ϕd
k(s,Xs, u)dÑ(ds, du), (32)

where N1 +N2 = K and ϕc
k(s, x) and ϕ

d
k(s, x, u) are suitable sets of basis func-

tions satisfying the conditions in Remark 16. In this setting, we have

m
(k)
i+1 =

∫ Ti+1

Ti

ϕc
k(s,Xs)dWs +

∫ Ti+1

Ti

ϕd
k(s,Xs, u)dÑ(ds, du)

and β = (βc
1, . . . , β

c
N1
, βd

1 , . . . , β
d
N2

) ∈ R
K .
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As an alternative, we may also take

ξi+1(β) :=
K∑

k=1

βk

(
B

(k)
i+1 −B

(k)
i

)
(33)

for an arbitrary given set of discounted tradables
(
B

(k)
j

)
0≤j≤T

where the B
(k)
j =

B(k)(j,Xj) are provided by some specific problem under consideration. For ex-
ample it may happen that discounted European options are available in closed
form. In any case, (32) and (33) satisfy the requirements (27) for any vector
parameter β ∈ R

K .

(ii) Suppose that the system of basis martingale increments and basis functions
in the regression based minimization (30) is sufficiently “rich” that there even
exist β◦◦ and γ◦◦ such that

ϑi+1(M)−
K∑

k=1

β◦◦
k m

(k)
i+1 −

K1∑

k=1

γ◦◦k ψk(i,Xi) = 0 a.s.

then one would need only one trajectory for X to identify β◦◦ and γ◦◦ via (30).
This is a similar situation as discussed in Section 6.1: In practice when the
system (32) is rich enough, a relatively low sample size will be sufficient to
solve (30) effectively. This phenomenon will be confirmed by our experiments
in Section 7.

Description of the Monte Carlo algorithm

Let us now spell out the empirical, implementable counterpart of the procedure

described above. Based on a set of trajectories
(
X

(n)
j

)
j=0,...,T

, n = 1, ..., N, we

carry out the following procedure.

Step 1: At i = T we set on each trajectory ϑ
(n)
T := ϑ

(n)
T (M) := ZT (X

(n)
T )

and
(
M

(n)
j −M

(n)
T

)
T≤j≤T

=M
(n)
T −M

(n)
T = 0 for n = 1, ..., N .

Step 2: For n = 1, ..., N let
(
M

(n)
j −M

(n)
i+1

)
i+1≤j≤T

be constructed. For

i = T − 1 down to i = 0, based on the N samples, we solve the regression
problem

[
β̂(i), γ̂(i)

]
:= argmin

β∈RK,γ∈RK1

1

N

N∑

n=1

(
ϑ
(n)
i+1(M)−

K∑

k=1

βkm
(k,n)
i+1 −

K1∑

k=1

γkψk(i,X
(n)
i )

)2

.
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We then put

ξ̂
(n)
i+1 :=

K∑

k=1

β̂
(i)
k m

(k,n)
i+1 ,

M
(n)
j −M

(n)
i :=

(
M

(n)
j −M

(n)
i+1

)
+ ξ̂

(n)
i+1,

and

ϑ
(n)
i (M) := Z

(n)
i +

(
ϑ
(n)
i+1(M)− ξ̂

(n)
i+1 − Z

(n)
i

)+
.

Step 3: We simulate Ñ new independent samples
(
X̃

(n)
j

)
j=0,...,T

, n =

1, ..., Ñ , which give rise to the new martingale samples

M̃
(n)
i =

i∑

j=1

K∑

k=1

β̂
(j)
k m̃

(k,n)
j , k = 1, ...,K, n = 1, ..., Ñ .

Then, an upper biased estimate for the upper bound is given by

Ŷ up
0 :=

1

Ñ

Ñ∑

n=1

max
0≤i≤T


Z(n)

i (X̃
(n)
i )−

i∑

j=1

K∑

k=1

β̂
(j)
k m̃

(k,n)
j


 . (34)

Step 4: Based on the stopping rule

τ0(Xi) := inf{i ≥ 0 : Zi(Xi) ≥
K1∑

k=1

γ̂
(i)
k ψk(i,Xi)} (35)

we put

Ŷ low
0 :=

1

Ñ

Ñ∑

n=1

Z
(n)

τ0(X̃(n))
(X̃

(n)

τ0(X̃(n))
).

which yields lower biased estimate to Y ∗
0 .

At this point, let us briefly compare our algorithm with the algorithm from
Belomestny et. al. (2009). The methodology of Belomestny et. al. (2009) to
compute dual martingales is built upon a procedure to numerically approximate
Clark-Ocone derivatives of an approximative Snell envelope Y with respect to
a Wiener filtration. The key ingredient in Belomestny et. al. (2009) is to ap-
proximate this Clark-Ocone derivative on a (fine) grid π = {t0, . . . , tN} which
contains the exercise grid {0, 1, . . . , T } using the estimator,

Zπ
tj
:=

1

∆π
j

Etj [∆
πWj Yi+1], (36)
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where ∆π
j = tj+1−tj and ∆πWj =Wtj+1−Wtj . Due to (36), Belomestny et. al.

(2009) morally requires to carry out a regression at each tj ∈ π on the fine grid
π. However, our algorithm only needs to carry out regressions on the coarser
grid of the possible exercise dates {0, . . . , T } ⊂ π. Moreover, note that (36)
requires as an input some approximation of Y , which needs to be obtained by
another method, such as the method of Longstaff and Schwartz (2001). Fur-
thermore, if the grid π happens to be very fine, i.e. if |π| = supj |tj+1 − tj | = ε
for some very small ε > 0, the complexity increases, and also the right-hand
of (36) becomes very large and even explodes as ε approaches zero. To cir-
cumvent these instabilities, Belomestny et. al. (2009) implement regressions on
the coarser exercise time grid and then locally interpolate on the finer grid π.
In our algorithm, these problems do not appear at all. Finally, we underline
that obtaining numerically the Clark-Ocone derivative (36) in a non-Wiener fil-
tration (e.g. filtratons generated by Lévy processes) is not so straightforward.
In contrast, in our framework, the regression procedure (30) may include jump
martingales as depicted in Remark 16.

7 Numerical examples

In this section we present the numerical results of the backward algorithm de-
scribed in Section 6. The performance and accuracy of our algorithm is il-
lustrated by testing it with two benchmark examples from the literature, a
Bermudan basket-put on 5 assets and Bermudan max-call on 2 and 5 assets
(see Bender et al. (2006a) and Belomestny et. al. (2009) respectively). In both
examples, the risk-neutral dynamic of each asset is governed by

dXd
t = (r − δ)Xd

t dt+ σXd
t dW

d
t , d = 1, ..., D,

where D ∈ N is the number of assets, W d
t , d = 1, ..., D, are independent one-

dimensional Brownian motions, and r, δ and σ are constant real valued param-
eters. Exercise opportunities are equally spaced at times Tj = jT

J
, j = 0, ..., J .

The discounted payoff from exercise at time t is given by

Zt(Xt) = e−rt(K − X1
t + . . .+XD

t

D
)+ for the Bermudan basket-put,

and

Zt(Xt) = e−rt(max(X1
t , . . . , X

D
t )−K)+ for the Bermudan max-call,

where we denote Xt = (X1
t , . . . , X

D
t ). For both products, the time interval

[Tj, Tj+1], j = 0, . . . , J − 1, is partitioned into L equally spaced subintervals of
width ∆t = T

N
with N = J × L.

The implementation can be outlined as follows. We first simulate M inde-
pendent samples of Brownian increments

∆Wi = (∆W
1,(m)
i , . . . ,∆W

D,(m)
i ), i = 1, . . . , N, m = 1, . . . ,M.
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Then the trajectories of X
(m)
i = (X

1,(m)
i , . . . , X

D,(m)
i ), i = 1, . . . , N , m =

1, . . . ,M , are given by

X
d,(m)
i = X

d,(m)
i−1 exp

(
(r − δ − 1

2
σ2)∆t+ σ∆W

d,(m)
i

)
, (37)

for d = 1, . . . , D and initial data X0 = (X1
0 , . . . , X

D
0 ).

We now carry out the backward Monte Carlo regression algorithm as de-
scribed in Section 6. In this Wiener setting, we recall Remark 17 (i) and
choose as the spanning family of surely optimal martingales the Wiener in-

tegrals m
(k)
i+1 =

∫ Ti+1

Ti
ϕc
k(s,Xs)dWs. More precisely, we solve in a first step the

regression problem backward in time

(β̂(i), γ̂(i)) := argmin
(β,γ)

1

M

M∑

m=1

[
ϑ
(m)
i+1 −

K∑

k=1

βk

∫ i+1

i

ϕk(u,X
(m)
u )dW (m)

u

−
K1∑

k=1

γkψk(i,X
(m)
i )

]2
, i = T − 1, . . . , 0, (38)

for two families of basis functions (ϕk) =
(
ϕ
(d)
k

)
with ϕ

(d)
k = ϕ

(1)
k , and (ψk),

chosen as explained below. In (38) the Wiener integrals are approximated by
the standard Euler scheme, using the same Brownian increments as in (37).
Finally, a new independent simulation is launched and we estimate an upper
bound Ŷ up

0 and a lower bound Ŷ low
0 by means of (34) and (34).

As one may expect, the choice of basis functions is crucial to obtain tight
upper and lower bounds. In this respect, special information on the pricing
problem may help us finding suitable basis functions. One way of retrieving
additional information is to employ martingales representations and Malliavian
calculus techniques to obtain more specific insights into the structure of the
pricing dynamics. We illustrate this by considering the following stylized setting:
By the Markov property of X , we have that Et (ZT (XT )) = f(t,Xt) for some
measurable function f(t, x) and 0 ≤ t ≤ T = TJ . Let us assume that f(t, x)
is differentiable in x. Then, by Itô’s formula and the fact that Et(ZT ) is a
martingale we have

ZT (XT )− ETJ−1 (ZT (XT )) =

D∑

d=1

σ

∫ T

TJ−1

fxd(t,Xt)X
d
t dW

d
t .

Recall that ϑ̂T = ZT and ETJ−1 (ZT (XT )) can be expressed in the following
form

ETJ−1 (ZT (XT )) = e−rTJ−1EP (TJ−1, XTJ−1 ;T ),

where EP (t, x;T ) is the price of the corresponding European option with ma-
turity T at time t. Thus, it is natural to choose from time T to time TJ−1
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European option values for the basis (ψk(t, x)) and the corresponding European
deltas multiplied by the value of the underlying asset for the basis (ϕk(t, x)).
Although for the following steps (t < TJ−1) there is no easy way to predict
optimal choices of (ψk) and (ϕk), the above analysis suggests to always include
the still-alive European options into the basis (ψk) and include the information
on the European deltas into the basis (ϕk). In fact, based on similar arguments,
this choice of basis functions were already proposed in Belomestny et. al. (2009).

7.1 Bermudan basket-put

In this example, we take the following parameter values,

r = 0.05, δ = 0, σ = 0.2, D = 5, T = 3,

and
X1

0 = . . . = XD
0 = x0, K = 100.

We perform the simulation of the underlying asset X from (37) with a time step
size ∆t = 0.01. For Tj ≤ t < Tj+1, j = 0, . . . , J − 1, we choose the set

{
1, Pol3(Xt), Pol3(EP (t,Xt;Tj+1)), Pol3(EP (t,Xt;TJ))

}

as basis functions (ψk), where Poln(y) denotes the set of monomials of degree
up to n in the components of a vector y and EP (t,X ;T ) denotes the (approxi-
mated) value of a European basket-put with maturity T at time t. Recall that
the family (ψk) serves as the regression basis for the continuation value. Further
we choose

{
1,

(
Xd

t

∂EP (t,Xt;Tj+1)

∂Xd
t

)

1≤d≤D

,

(
Xd

t

∂EP (t,Xt;TJ)

∂Xd
t

)

1≤d≤D

}

as a regression basis (ϕk) spanning the family of the surely optimal martin-
gales. Since there is no closed-form formula for the still-alive European basket-
put, we use the moment-matching method to approximate their values (see e.g.

Brigo et al. (2004), and Lord (2006)). To this end, Let St =
X1

t + . . .+XD
t

D
,

and consider another asset Gt whose risk-neutral dynamic follows

dGt = rGtdt+ σ̃GtdW
1
t ,

where σ̃ is a constant. The value of the European put on this asset can be easily
computed by the well-known Black-Scholes formula, that is,

E[e−rT (K −GT )
+] = BS(G0, r, σ̃,K, T ). (39)

If ST and GT have the same moments up to two, then the Black-Scholes price
in (39) can be regarded as a good approximation for the value of the European
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basket-put E
(
e−rT (K − ST )

+
)
, for details see Lord (2006). Since

E(ST ) =
1

D

D∑

d=1

Xd
0 e

rT ,

E(S2
T ) =

1

D2
e2rT




D∑

i,j=1

X i
0X

j
0 exp(1i=jσ

2T )




and
E(GT ) = G0e

rT , E(G2
T ) = G2

0e
2rT+σ̃2T ,

we can simply set

G0 =
1

D

D∑

d=1

Xd
0

and

σ̃2 =
1

T
ln


 1

(
∑D

d=1X
d
0 )

2

D∑

i,j=1

X i
0X

j
0 exp(1i=jσ

2T )


 .

The European deltas can be approximated by

∂BS

∂G0

∂G0

∂Xd
0

= −N (−d1)
1

D
, d = 1, . . . , D,

where d1 =
ln(G0

K
) + (r + σ̃2

2 )T

σ̃
√
T

and N denotes the cumulative standard normal

distribution function. These formulas are straightforwardly extended to the
pricing at times t > 0.

The numerical results are shown in Table 1. We use 1000 paths for estimating
the surely optimal martingale and the continuation function via the regression
procedure. Another 300000 paths are used to compute the lower bound and
100000 paths are used to compute the upper bound. Note that we have chosen
a relatively small number of samples (1000) for estimating the martingale in the
regression procedure. We do so because on the assumption that the family of
uniformly integrable martingales is rich enough, the arguments leading to (24)
yield that only a small number of samples are required for identifying a good
approximation to a surely optimal martingale. We compare our results to the
price intervals obtained in Bender et al. (2006a) which are displayed in the last
column of Table 1. In our C++ implementation, the run-times for computing
one set of lower and upper bounds are in the range of 15-20 minutes.

7.2 Bermudan max-call

We use the same parameter values as in Section 7.1 except δ = 0.1 and D = 2
or 5. As in the previous example we use European (call) options in the basis
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Table 1: Lower and upper bounds for Bermudan basket-put on 5 assets with
parameters r = 0.05, δ = 0, σ = 0.2, K = 100, T = 3 and different J and x0

J x0 Low (SE) Up (SE) BKS Price Interval
90 10.000 (0.000) 10.000 (0.000) [10.000, 10.004]

3 100 2.164 (0.007) 2.172 (0.001) [2.154, 2.164]
110 0.539 (0.004) 0.551 (0.001) [0.535, 0.540]
90 10.000 (0.000) 10.000 (0.000) [10.000, 10.000]

6 100 2.407 (0.006) 2.432 (0.001) [2.359, 2.412]
110 0.573 (0.003) 0.609 (0.001) [0.569, 0.580]
90 10.000 (0.0000) 10.008 (0.0003) [10.000, 10.005]

9 100 2.475 (0.0063) 2.522 (0.0013) [2.385, 2.502]
110 0.5915 (0.0034) 0.6353 (0.0009) [0.577, 0.600]

(ψk) and the corresponding deltas in the basis (ϕk). The value of the European
max-call option is computed by the following formula (Johnson (1987)),

Cmax =
D∑

l=1

X l
0

e−δT

√
2π

∫

(−∞,dl
+]

exp[−1

2
z2]

D∏

l′=1
l′ 6=l

N



ln

Xl
0

Xl′

0

σ
√
T

− z + σ
√
T


 dz

−Ke−rT +Ke−rT

D∏

l=1

(
1−N

(
dl−
))
, (40)

where

dl− :=
ln

Xl
0

K
+ (r − δ − σ2

2 )T

σ
√
T

, dl+ = dl− + σ
√
T .

Moreover, straightforward computations reveal that the deltas are given by

∂Cmax

∂X l
0

=
e−δT

√
2π

∫

(−∞,dl
+]

exp[−1

2
z2]

D∏

l′=1
l′ 6=l

N



ln

Xl
0

Xl′

0

σ
√
T

− z + σ
√
T


 dz, (41)

and that Cmax satisfies the linear homogeneity3

Cmax =
D∑

l=1

X l
0

∂Cmax

∂X l
0

+K
∂Cmax

∂K
. (42)

The numerical results are shown in Table 2. They are based on 1000 paths
for the regression procedure, 300000 paths for computing the lower bound and
100000 paths for computing the upper bound. As before, we have chosen a
relatively small number of samples (1000) for estimating the martingale in the

3Compare also with (Johnson, 1987, eq. (9)).
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Table 2: Lower and upper bounds for Bermudan max-call with parameters
r = 0.05, δ = 0.1, σ = 0.2, K = 100, T = 3 and different D and x0.

D x0 Low (SE) Up (SE) A&B price interval
90 8.0556 (0.0219) 8.15655 (0.0034) [8.053, 8.082]

2 100 13.8850 (0.0276) 14.0293 (0.0044) [13.892, 13.934]
110 21.3671 (0.0319) 21.5319 (0.0048) [21.316, 21.359]
90 16.5973 (0.0296) 16.7963 (0.0058) [16.602, 16.655]

5 100 26.1325 (0.0356) 26.3803 (0.0072) [26.109, 26.292]
110 36.7348 (0.0403) 37.0856 (0.0082) [36.704, 36.832]

regression procedure. This is again allowed because the arguments leading to
(24) and the assumption that the choice of the basis functions indeed equips
us with a rich enough family of uniformly integrable martingales yield that
only a small number of samples are required for identifying a good approxima-
tion to a surely optimal martingale. The integral expressions from (40) and
(41) are numerically evaluated using a simple adaptive Gauss-Kronrod proce-
dure with 31 points. The price intervals in the last column are quoted from
Andersen and Broadie (2004). In our C++ implementation, for each set of
lower and upper bounds, we observe run-times that are in the range of 10-25
minutes, with the longer computation times for the 5-dimensional case.

Concluding remark

The numerical results presented in Tables 1, 2 due to our new algorithm may be
considered as very satisfactory given the decreased computation times (which are
in the order of minutes in a C++ compiled implementation). In this respect it
should be noted that computing upper bounds (in a rather generic way) in order
of minutes is a considerable improvement compared to Bender et al. (2006a),
whose upper bounds are computed with nested Monte Carlo simulation requiring
higher computation time, and of comparable range to Belomestny et. al. (2009).
Moreover, the algorithm delivers fast and surprisingly good lower bounds while
the upper bounds are about the same range as the ones obtained with the
algorithm in Belomestny et. al. (2009). Needless to say that, as for the method
of Belomestny et. al. (2009), the performance of the here presented algorithm
will highly depend on the choice of the basis functions. An in depth treatment
of this issue is considered beyond scope however.

8 Appendix

We present in this section some well-known facts from theory of empirical pro-
cesses which are used to establish the relation (23) in Section 6.1.

Let {ϑq : q ∈ Q} be a family of random variables and let for each q ∈ Q,
ϑq,1, ..., ϑq,N be i.i.d. samples of ϑq. For each q ∈ Q we consider the unbiased
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variance estimator

Var(N) ϑq :=
1

N − 1

N∑

n=1

(
ϑq,n − ϑqN

)2
with ϑqN :=

1

N

N∑

n=1

ϑq,n,

hence E Var(N) ϑq = Varϑq for q ∈ Q. From standard statistical theory it is
well known that with µq := Eϑq

Var
(
Var(N) ϑq

)
≤ 1

N
E (ϑq − µq)

4
=

(Varϑq)2

N
E

(
ϑq − µq

√
Varϑq

)4

.

Now, as a mild condition we assume that,

E

(
ϑq − µq

√
Varϑq

)4

≤ C for all q ∈ Q.

For example, this holds if E exp [λ |ϑq|] < ∞ for some λ > 0 and all q ∈ Q. We
so have in particular

Var
(
Var(N) ϑq

◦

N

)
≤ C

N

(
Varϑq

◦

N

)2
and Var

(
Var(N) ϑq

◦

)
≤ C

N

(
Varϑq

◦

)2
,

while, strictly speaking, the randomness of ϑq
◦

N in the first inequality is ignored.
However, by considering a next from ϑq

◦

N independent sample, we can show that
this is not really essential (the details would go beyond the scope of the optional
analysis of Section 6.1 and are therefore omitted). From standard empirical
probability theory it now follows that for any (small) 0 ≤ α ≪ 1, there is a
suitable quantile coefficient cα (particularly not depending on N) such that

P

[
Var(N) ϑq ≤ Varϑq

(
1 + cα

√
C

N

)
,Varϑq ≤ Var(N) ϑq + cα

√
C

N
Varϑq

]

≥ 1− α,

for q ∈ {q◦N , q◦} which implies (23).
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