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MAXIMAL Lp-REGULARITY FOR STOCHASTIC EVOLUTION

EQUATIONS

JAN VAN NEERVEN, MARK VERAAR, AND LUTZ WEIS

Abstract. We prove maximal Lp-regularity for the stochastic evolution equa-
tion

{

dU(t) +AU(t) dt = F (t, U(t)) dt +B(t, U(t)) dWH (t), t ∈ [0, T ],

U(0) = u0,

under the assumption that A is a sectorial operator with a bounded H∞-
calculus of angle less than 1

2
π on a space Lq(O, µ). The driving process WH

is a cylindrical Brownian motion in an abstract Hilbert space H. For p ∈

(2,∞) and q ∈ [2,∞) and initial conditions u0 in the real interpolation space

DA(1− 1

p
, p) we prove existence of unique strong solution with trajectories in

Lp(0, T ;D(A)) ∩ C([0, T ];DA(1 − 1

p
, p)),

provided the non-linearities F : [0, T ] × D(A) → Lq(O, µ) and B : [0, T ] ×

D(A) → γ(H,D(A
1
2 )) are of linear growth and Lipschitz continuous in their

second variables with small enough Lipschitz constants. Extensions to the case
where A is an adapted operator-valued process are considered as well.

Various applications to stochastic partial differential equations are worked
out in detail. These include higher-order and time-dependent parabolic equa-
tions and the Navier-Stokes equation on a smooth bounded domain O ⊆ Rd

with d ≥ 2. For the latter, the existence of a unique strong local solution with
values in (H1,q(O))d is shown.

1. Introduction

Maximal Lp-regularity techniques have been pivotal in much of the recent progress
in the theory of parabolic evolution equations (see [2, 22, 25, 54, 76, 86] and there
references therein). Among other things, such techniques provide a systematic and
powerful tool to study nonlinear and time-dependent parabolic problems.

For stochastic parabolic evolution equations, maximal Lp-regularity results have
been obtained previously by Krylov for second order problems on Rd [44, 46, 47,
48, 49], by Kim for second order problems on bounded domains in R

d [43], and by
Mikulevicius and Rozovskii for Navier-Stokes equations [63]. A systematic theory
of maximal Lp-regularity for stochastic evolution equations, however, based on
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abstract operator-theoretic properties of the operators governing the equation, has
yet to be developed. A first step towards such a theory has been taken in our recent
paper [68], where it was shown that if A is a sectorial operator with a bounded
H∞-calculus of angle < 1

2π on a space Lq(O, µ) with (O, µ) an arbitrary σ-finite
measure space and q ∈ [2,∞), then A has stochastic maximal Lp-regularity for all
p ∈ (2,∞), i.e., A satisfies the convolution estimate
(1.1)
∥

∥

∥
t 7→

∫ t

0

A
1
2S(t− s)G(s) dWH(s)

∥

∥

∥

Lp(R+×Ω;Lq(O,µ))
≤ C‖G‖Lp(R+×Ω;Lq(O,µ;H)),

where S denotes the semigroup generated by −A andWH is a cylindrical Brownian
motion in a Hilbert space H . The stochastic integral is understood as a vector-
valued stochastic integral in Lq(O, µ) in the sense of [65].

The aim of this paper is to apply the above estimate to deduce maximal Lp-
regularity for the stochastic parabolic evolution equation

{

dU(t) +AU(t) dt = F (t, U(t)) dt +B(t, U(t)) dWH(t), t ∈ [0, T ],

U(0) = u0,

Our main result asserts that if A has a bounded H∞-calculus of angle < 1
2π on

a Banach space X that is isomorphic to a closed subspace of Lq(O, µ) with q ∈
[2,∞), then for p ∈ (2,∞) and initial conditions u0 in the real interpolation space
DA(1 − 1

p , p) = (X,D(A))1− 1
p
,p, this problem has a unique strong solution with

trajectories in

Lp(0, T ;D(A)) ∩ C([0, T ];DA(1− 1
p , p)),

provided the non-linearities F : [0, T ] × D(A) → X and B : [0, T ] × D(A) →
γ(H,D(A

1
2 )) are of linear growth and Lipschitz continuous in their second vari-

ables with small enough Lipschitz constants. The precise statement is contained in
Theorem 4.5, where we allow A, F and B, u0 to be random.

To illustrate the power of this result, we apply it to the time-dependent problem
{

dU(t) +A(t)U(t) dt = F (t, U(t)) dt+B(t, U(t)) dWH(t), t ∈ [0, T ],

U(0) = u0,

and show in Theorem 5.2 that, essentially under the same assumptions as in the
time-independent case, the same conclusions can be drawn with regard to the ex-
istence, uniqueness, and regularity of strong solutions. An extension to the case
of locally Lipschitz continuous coefficients is given in Subsection 5.2. These results
extend [7, Theorems 4.3 and 4.10], [89, Theorem 2.5] and [91, Theorem 6.1] to the
case of sharp exponents.

It has already been mentioned that in Theorem 4.5 we allow A to be random.
In the special case where A is a fixed deterministic operator, the theorem can be

applied (by taking the negative extrapolation space D(A− 1
2 ) as the state space) to

the situation where the non-linearities are of the form F : [0, T ]×D(A
1
2 ) → D(A− 1

2 )

and B : [0, T ]×D(A
1
2 ) → γ(H,X). For initial values in DA(

1
2 − 1

p , p), this results in

solutions with trajectories in Lp(0, T ;D(A
1
2 )) ∩C([0, T ];DA(

1
2 − 1

p , p)). For second

order elliptic operators A on a smooth domain O ⊆ Rd, this includes the case where
F and B arise as Nemytskii operators associated with nonlinear functions of the

form f(u,∇u) and b(u,∇(u)). This is because in this setting D(A
1
2 ) typically can
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be identified as a Sobolev space H1,q. An illustration is given in Section 8, where
we prove existence of solutions in H1,q for the stochastic Navier-Stokes equation.

The advantage of the abstract approach presented in this paper is that it re-
places some of the hard (S)PDE techniques of Krylov’s Lp-theory by the generic
assumption that A have a good functional calculus. In recent years, a large body
of results has been accumulated by many authors which shows that, as a rule
of thumb, any ‘reasonable’ elliptic operator of order 2m has such a calculus (see
[3, 21, 22, 26, 27, 28, 29, 40, 41, 54, 59, 71, 87] and the references therein); much of
the hard analysis goes into proving these ready-to-use results. Moreover, in most of

these examples, the trace space DA(1− 1
p , p) and the fractional domain space D(A

1
2 )

have been characterised explicitly as a fractional Besov space of order 2m(1 − 1
p )

and a Sobolev space of order m, respectively.

1.1. Applications. In principle, our results pave the way for proving maximal
Lp-regularity results for any parabolic problem governed by an operator having a
bounded H∞-calculus.

To keep this paper at a reasonable length we have picked three examples which we
believe to be representative (but by no means exhaustive) to illustrate the scope of
applications. Further potential applications include, for instance, parabolic SPDEs
on complete Riemannian manifolds and on Wiener spaces such as considered in [90]
(cf. Examples 3.2 (7) and (8) below).

1.1.1. Higher-order parabolic SPDEs on Rd. Our first application concerns a system
of N coupled parabolic SPDEs involving elliptic operators of order 2m on Rd of the
form











du(t, x) +A(t, x,D)u(t, x) dt = f(t, x, u) dt+
∑

i≥1

bi(t, x, u) dwi(t),

u(0, x) = u0(x).

Here

A(t, ω, x,D) =
∑

|α|≤2m

aα(t, ω, x)D
α

with D = −i(∂1, . . . , ∂d). The scalar Brownian motions wi are independent, and
the functions f and bi are Lipschitz continuous with respect to the graph norm
of A. Under suitable boundedness and continuity assumptions on the coefficients
aα and a smallness condition on Lipschitz constants of f and bi we prove the
existence and uniqueness of a strong solution with values in H2m,q(Rd;CN ))) and

with continuous trajectories in the Besov space B
2m(1− 1

p
)

q,p (Rd;CN )) (Theorem 6.3).
To the best of our knowledge, this is the first maximal Lp-regularity result for this
class of equations.

1.1.2. Time-dependent second-order parabolic SPDEs on bounded domains. As a
second example we consider time-dependent parabolic second order problems on a
bounded domainO ⊆ R

d whose boundary consists of two disjoint arcs ∂O = Γ0∪Γ1.
We impose Dirichlet conditions on Γ0 and Neumann conditions on Γ1 and prove the
existence of a unique strong solution with values in H2,q(O) and with continuous

trajectories in the Besov space B
2− 2

p
q,p (O) (Theorem 7.3).
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1.1.3. The Navier-Stokes equation on bounded domains. In the final section we
consider the stochastic Navier-Stokes equation in a bounded smooth domain O ⊆
Rd with d ≥ 2 subject to Dirichlet boundary conditions. We prove existence and
uniqueness of a local mild solution with values in (H1,q(O))d and with continuous

trajectories in (B
1− 2

p
q,p (O))d for d

2q < 1− 2
p .

2. Preliminaries

The aim of this section is to fix notations and to recall some recent results on
maximal Lp-regularity and stochastic maximal Lp-regularity that will be needed in
the sequel.

Throughout this article we fix a probability spaces (Ω,A ,P) endowed with fil-
tration F = (Ft)t≥0, a Hilbert space H with inner product [·, ·], and a Banach
space X .

For p1, p2 ∈ [1,∞], the closed linear span in Lp1(Ω;Lp2(R+;X)) of all processes
of the form f = 1(s,t]×F ⊗ x with F ∈ Fs and x ∈ X is denoted by

Lp1

F
(Ω;Lp2(R+;X)).

The elements in Lp1

F
(Ω;Lp2(R+;X)) will be referred to as the F -adapted elements

in Lp1(Ω;Lp2(R+;X)).
The vector space of all (equivalence classes of) strongly measurable functions

on Ω with values in a Banach space Y is denoted by L0(Ω;X). The topology of
convergence in probability is metrised by the distance function d(f, g) = E(‖f −
g‖ ∧ 1) which turns L0(Ω;Y ) into a complete metric vector space. The space of all
f ∈ L0(Ω;Y ) that are strongly B-measurable, where B ⊆ A is a sub-σ-algebra, is
denoted by L0

B
(Ω;Y ).

2.1. Stochastic integration. We will be interested in an estimate for stochastic
integrals of the form

∫

R+
GdWH , where G is an F -adapted process with values in

space of finite rank operators from H to X , and WH is an F -cylindrical Brownian
motion in H . We start with a concise explanation of these notions.

2.1.1. The space γ(H , X). Let H be a Hilbert spaces (typically we take H = H
or H = L2(R+;H)). The space of all γ-radonifying operators from H to X is
denoted by γ(H , X). Recall that this space is the closure of the space of finite
rank operators from H to X with respect to the norm

∥

∥

∥

N
∑

n=1

hn ⊗ xn

∥

∥

∥

2

γ(H ,X)
:= E

∥

∥

∥

N
∑

n=1

γn ⊗ xn

∥

∥

∥

2

,

where it is assumed that (hn)
N
n=1 is an orthonormal sequence in H , (xn)

N
n=1 is

a sequence in X , and (γn)
N
n=1 is any sequence of independent standard Gaussian

random variables. For expositions of the theory of γ-radonifying operators we refer
to [24] and the review article [64], where also references to the extensive literature
can be found.

For X = Lp(O, µ) with 1 ≤ p,∞ and (O, µ) σ-finite, one has a canonical iso-
morphism

Lp(O, µ;H ) ≃ γ(H , Lp(O, µ))(2.1)



STOCHASTIC EVOLUTION EQUATIONS 5

which is obtained by assigning to a function f ∈ Lp(O, µ;H ) the operator Tf :
H → Lp(O, µ), h 7→ [f(·), h] (see [10]). More generally the same procedure gives,
for any Banach space X , a canonical isomorphism

Lp(O, µ; γ(H , X)) ≃ γ(H , Lp(O, µ;X))(2.2)

(see [65]). We shall need the following variation on this theme. Recalling the
definition of the Bessel potential spaces H2α,p(O), where O ⊆ Rn is a smooth
domain, application of the operator (I − ∆)−α on both sides of (2.2) gives an
isomorphism

H2αp(O; γ(H , X)) ≃ γ(H , H2α,p(O;X)).(2.3)

2.1.2. Cylindrical Brownian motions. An F -cylindrical Brownian motion in H is
a bounded linear operator WH : L2(R+;H) → L2(Ω) such that:

(i) for all f ∈ L2(R+;H) the random variable WH(f) is centred Gaussian.
(ii) for all t ∈ R+ and f ∈ L2(R+;H) with support in [0, t], WH(f) is Ft-

measurable.
(iii) for all t ∈ R+ and f ∈ L2(R+;H) with support in [t,∞), WH(f) is indepen-

dent of Ft.
(iv) for all f1, f2 ∈ L2(R+;H) we have E(WH(f1) ·WH(f2)) = [f1, f2]L2(R+;H).

It is easy to see that for all h ∈ H the process (WH(t)h)t≥0 defined by

WH(t)h :=WH(1(0,t] ⊗ h)

is an F -Brownian motion (which is standard if ‖h‖ = 1). Moreover, two such
Brownian motions ((WH(t)h1)t≥0 and ((WH(t)h2)t≥0 are independent if and only
if h1 and h2 are orthogonal in H .

Example 2.1 (Space-time white noise). Any space-time white noiseW on a domain
O ⊆ Rd defines a cylindrical Brownian motion in L2(O) and vice versa by the
formula

WL2(O)(1(0,t] ⊗ 1B) =W (t, B)

for Borel sets B ⊆ O of finite measure.

Example 2.2 (Sums of independent Brownian motions). A family (wi)i∈I of in-
dependent real-valued standard Brownian motions defines a cylindrical Brownian
motion in ℓ2(I) and vice versa by

Wℓ2(I)(1(0,t] ⊗ ei) := wi(t),

where ei ∈ ℓ2(I) is given by ei(j) = δij .

2.1.3. The stochastic integral. Processes which are finite linear combinations of pro-
cesses of the form

1(s,t]×F ⊗ (h⊗ x)

with F ∈ Fs, h ∈ H , x ∈ X , are called F -adapted finite rank step processes in
γ(H,X). The stochastic integral of such a process with respect to an F -cylindrical
Brownian motion WH is defined by

∫

R+

1(0,t]×F ⊗ (h⊗ x) dWH := 1F [WH(t)h]⊗ x

and linearity. The following two-sided estimate has been proved in [65]:
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Theorem 2.3. Let X be a UMD Banach space and let G be an F -adapted finite
rank step process in γ(H,X). For all p ∈ (1,∞) one has the two-sided estimate

E

∥

∥

∥

∫

R+

G(s) dWH(s)
∥

∥

∥

p

hp E‖G‖pγ(L2(R+;H),X)),(2.4)

with implicit constants depending only on p and (the UMD constant of) X.

This equivalence is used to give a meaning to the stochastic integral on the left-
hand side of the maximal Lp-regularity inequality (1.1) and plays a crucial role in
the proof of this inequality; the inequality (2.5) does not suffice for this purpose
(see [68]).

Examples of UMD spaces are all Hilbert spaces and the spaces Lq(O, µ) with
q ∈ (1,∞). Furthermore, closed subspaces, quotients, and duals of UMD spaces
are UMD. For more information on UMD spaces we refer to [14].

As a consequence of Theorem 2.3 and a routine density argument, the stochastic
integral can be uniquely extended to the space Lp

F
(Ω; γ(L2(R+;H), X)), which is

defined as the closed linear span in Lp(Ω; γ(L2(R+;H), X)) of all F -adapted finite
rank step processes in γ(H,X). For a detailed discussion we refer to [65].

For Banach space X with type 2 one has a continuous embedding

L2(R+; γ(H,X)) →֒ γ(L2(R+;H), X)

(see [69, 77]). In combination with (2.4) this gives the following estimate, valid for
finite rank step process in γ(H,X) with X a UMD space with type 2:

E

∥

∥

∥

∫

R+

G(s) dWH(s)
∥

∥

∥

p

≤ Cp
E‖G‖pL2(R+;γ(H,X)).(2.5)

As a consequence of the inequality (2.5), the stochastic integral uniquely extends
to Lp

F
(Ω;L2(R+; γ(H,X))), the closed linear span in Lp(Ω;L2(R+; γ(H,X))) of all

F -adapted finite rank step processes in γ(H,X).
Examples of UMD spaces with type 2 are all Hilbert spaces and the spaces

Lq(O, µ) with q ∈ [2,∞). A UMD space has type 2 if and only if it has martingale
type 2, and in fact the estimate (2.5) holds for any Banach space X with martingale
type 2 (see [7, 70]). For more information on the notions of (martingale) type and
cotype we refer to [24, 74, 75].

Remark 2.4. It follows easily from [55] that the estimates (2.4) and (2.5) are valid
for arbitrary exponents p ∈ (0,∞). We shall not need this fact here.

2.1.4. The stochastic integral operator family J . We turn our attention to a class
of stochastic integral operators, which plays a key role in connection with stochastic
maximal Lp-regularity (see Theorem 3.5 below).

For an F -adapted finite rank step process G : R+ ×Ω → γ(H,X) and a param-
eter δ > 0 we define the process J(δ)G : R+ × Ω → X by

(J(δ)G)(t) :=
1√
δ

∫ t

(t−δ)∨0

G(s) dWH(s).

A routine computation using (2.5) shows that if X is a UMD space with type 2
(or, more generally, a Banach space with martingale type 2), then for all p ∈ [2,∞)
the mapping G 7→ J(δ)G extends to a bounded operator from Lp

F
(R+×Ω; γ(H,X))

to Lp(R+ × Ω;X)) and the family

J := {J(δ) : δ > 0}(2.6)
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is uniformly bounded. It what follows, it will be important to know under what
additional conditions this family is R-bounded.

2.2. R-boundedness. LetX and Y be Banach spaces and let (rn)n≥1 be a Radem-
acher sequence. A family T of bounded linear operators from X to Y is called R-
bounded if there exists a constant C ≥ 0 such that for all finite sequences (xn)

N
n=1

in X and (Tn)
N
n=1 in T we have

E

∥

∥

∥

N
∑

n=1

rnTnxn

∥

∥

∥

2

≤ C2
E

∥

∥

∥

N
∑

n=1

rnxn

∥

∥

∥

2

.

The least admissible constant C is called the R-bound of T , notation R(T ). For
Hilbert spaces X and Y , R-boundedness is equivalent to uniform boundedness and
R(T ) = supt∈T ‖T ‖. The notion of R-boundedness has played an important role
in recent progress in the regularity theory of (deterministic) parabolic evolution
equations (see Theorem 3.3 below). For more information on R-boundedness and
its applications we refer the reader to [18, 22, 54].

In Theorems 3.5, 4.5, 5.2, and 5.6 it will be important to have conditions under
which the operator family J introduced in (2.6) is not just uniformly bounded,
but even R-bounded, from Lp

F
(R+ × Ω; γ(H,X)) to Lp(R+ × Ω;X). Whether or

not this happens depends on the choice of p and the geometry of the Banach space
X . The proof of next proposition ([68, Theorem 3.1]) depends critically upon the
two-sided estimate provided by Theorem 2.3.

Theorem 2.5 (Conditions for R-boundedness of J ). In each of the two cases
below, J is R-bounded as a family of operators from Lp

F
(R+ × Ω; γ(H,X)) to

Lp(R+ × Ω;X):

(1) p ∈ [2,∞) and X is isomorphic to a Hilbert space.
(2) p ∈ (2,∞) and X is isomorphic to a closed subspace of Lq(O, µ), with q ∈

(2,∞) and (O, µ) a σ-finite measure space.

The proof of this theorem generalises to 2-convex UMD Banach lattices X with
type 2 over (O, µ) whose 2-concavification X(2) (see [57, Section 1.d]) is a UMD
Banach lattice as well. Further results about the R-boundedness of J will be
contained in a forthcoming paper [67].

3. H∞-calculi and (stochastic) maximal Lp-regularity

Let A be a sectorial operator, or equivalently, let −A be the generator of a
bounded analytic C0-semigroup S = (S(t))t≥0 of bounded linear operators on a
Banach space X . As is well known (see [2, Proposition I.1.4.1]), the spectrum of A
is contained in the closure of a sector

Σϑ := {z ∈ C \ {0} : | arg(z)| < ϑ}
for some ϑ ∈ (0, 12π), and for all σ ∈ (ϑ, π) one has

sup
z∈C\Σσ

‖z(z −A)−1‖ <∞.(3.1)

In the converse direction, this property characterize negative generators of bounded
analytic C0-semigroups. We refer to [30, 73] for more proofs and further results.

For α ∈ (0, 1) we write

DA(α, p) = Xα,p = (X,D(A))α,p, Xα = [X,D(A)]α
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for the real and complex interpolation scales associated with A. If A has bounded
imaginary powers, then (see [35, Theorem 6.6.9], [84, Theorem 1.15.3])

Xα = D(Aα) with equivalent norms.(3.2)

The results of Section 4 and Subsection 5.1 are of isomorphic nature and the choice
of the norm on Xα is immaterial. In Subsection 5.3 we shall present a sharp
result which is of isometric nature, for which it is important to work with the
homogeneous norm on Xα (assuming bounded invertibility of A). We return to
this point in Subsection 5.3.

We will need the following result (see [84, Theorem 1.14.5]).

Proposition 3.1. −A be the generator of a bounded analytic C0-semigroup S =
(S(t))t≥0 of bounded linear operators on a Banach space X, and suppose that 0 ∈
̺(A). For x ∈ X the following assertions are equivalent:

(1) The orbit t 7→ S(t)x belongs to H1,p(R+;X) ∩ Lp(R+;D(A)).
(2) The vector x belongs to DA(1 − 1

p , p).

If these equivalent conditions hold, then for all x ∈ DA(1 − 1
p , p) one has

max
{

‖t 7→ S(t)x‖H1,p(R+;X), ‖t 7→ S(t)x‖Lp(R+;D(A))

}

h ‖x‖
DA(1− 1

p ,p)
.

3.1. Operators with bounded H∞-calculus. Let H∞(Σσ) denote the Banach
space of all bounded analytic functions ϕ : Σσ → C endowed with the supremum
norm. Let H∞

0 (Σσ) be its linear subspace consisting of all functions satisfying an
estimate

|ϕ(z)| ≤ C|z|ε
(1 + |z|2)ε

for some ε > 0.
Now let −A be as above and define, for ϕ ∈ H∞

0 (Σσ) and σ < σ′ < π,

ϕ(A) =
1

2πi

∫

∂Σσ′

ϕ(z)(z −A)−1 dz.

This integral converges absolutely and is independent of σ′. We say that A has a
bounded H∞(Σσ)-calculus if there is a constant C ≥ 0 such that

(3.3) ‖ϕ(A)‖ ≤ C‖ϕ‖∞ ∀ϕ ∈ H∞
0 (Σσ).

The least constant C for which this holds will be referred to as the boundedness
constant of the H∞(Σσ)-calculus. By approximation, the estimate (3.3) can be
extended to all functions f ∈ H∞(Σσ). The infimum of all σ such that A admits a
bounded H∞(Σσ)-calculus is called the angle of the calculus.

Any operator A with a bounded H∞-calculus of angle less than 1
2π had bounded

imaginary powers. In particular, (3.2) applies to such operators.
We proceed with some examples of operators −A for which A has a bounded

H∞-calculus of angle < 1
2π; we refer to [22, 54, 87] for further references.

Example 3.2.

(1) Generators of analytic C0-contraction semigroups on Hilbert spaces [59].
(2) Generators of bounded analytic C0-semigroups admitting Gaussian bounds

[27].
(3) Generators of positive analytic C0-contraction semigroups on a space Lq(µ),

1 < q <∞ [41].
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(4) Second order uniformly elliptic operators [3, 21] on Lq(Rd) and on Lq(O)
for bounded C2-domains O ⊆ Rd (with Dirichlet or Neumann boundary
conditions) [3, 21].

(5) The Stokes operator associated with the Navier-Stokes equation on bounded
domains [40, 71] (see Section 8) and on unbounded domains [51].

(6) Suppose −A generates a symmetric submarkovian C0-semigroup S on a
space L2(µ). Then, for all q ∈ (1,∞), A admits a bounded H∞-calculus of
angle < 1

2π on Lq(µ) [53].
(7) The Laplace-Beltrami operator −A := ∆LB on a complete Riemannian

manifoldM is given by the symmetric Dirichlet form −〈∆LBf, g〉 =
∫

M ∇f ·
∇g and therefore it satisfies the assumptions of example (6) [5, 82].

(8) Let γ denote the standard Gaussian measure on Rn. The Ornstein-Uhlen-
beck operator −A = ∆OU := ∆ − x · ∇ on satisfies the assumptions of
example (6). This example admits various generalisations; see [16, 80]
(for the infinite-dimensional symmetric case) [60] (for the finite-dimensional
non-symmetric case) and [58] (for the infinite-dimensional non-symmetric
case).

In example (4), under mild assumptions of the coefficients one typically has

D(A
1
2 ) = H1,q(Rd) and H1,q

Dir/Neum(O)

respectively (see, e.g., [35, Proposition 3.1.7] and the references in Sections 6 and
7). If, in example (7), the Ricci curvature of M is bounded below, then

D((−∆LB)
1
2 ) = H1,q(M),

the first order Sobolev space associated with the derivative ∇ [5]. In example (8),
the classical Meyer inequalities imply that

D((−∆OU)
1
2 ) = D

1,q(Rn, γ),

the first order Sobolev space associated with the Malliavin derivative in Lq(Rn; γ)
[72]. Necessary and sufficient conditions for the validity of the analogous identifica-
tion in the non-symmetric and infinite-dimensionsional case were obtained in [58];
special cases were obtained earlier in [16, 60, 80].

3.2. Maximal Lp-regularity. Let −A be the generator of a bounded analytic
C0-semigroup S on a Banach space X . For functions g ∈ L1

loc(R+;X) we consider
the linear inhomogeneous problem

(3.4)

{

u′(t) +Au(t) = g(t), t > 0,

u(0) = 0.

The (unique) mild solution to (3.4) is given by

u(t) = S ∗ g(t) :=
∫ t

0

S(t− s) g(s) ds.

Let p ∈ (1,∞). For functions g ∈ Lp(R+;X), a routine estimate shows that for all
δ ∈ [0, 1), S ∗ g takes values in D(Aδ) almost everywhere on R+. The operator A
has maximal Lp-regularity if for all g ∈ Lp(R+;X) the mild solution u belongs to
D(A) almost everywhere on R+, and satisfies

‖Au‖Lp(R+;X) ≤ C‖g‖Lp(R+;X),(3.5)



10 JAN VAN NEERVEN, MARK VERAAR, AND LUTZ WEIS

where C is a constant independent of g. If A has maximal Lp-regularity, then the
mild solution u satisfies the identity

u(t) = u0 +

∫ t

0

Au(s) ds+

∫ t

0

g(s) ds,

and the Lebesgue differentiation theorem shows that u is differentiable almost every-
where on R+ with derivative u′(t) = Au(t)+ g(t). As a consequence, the inequality
(3.5) self-improves to

‖u′‖Lp(R+;X) + ‖Au‖Lp(R+;X) ≤ C‖g‖Lp(R+;X),(3.6)

with a possibly different constant C.
In the definition of maximal Lp-regularity we do not insist that u itself be in

Lp(R+;X). If, however, 0 ∈ ̺(A), then Au ∈ Lp(R+;X) implies u ∈ Lp(R+;X),
and the estimate (3.6) is then equivalent to

‖u‖H1,p(R+;X) + ‖u‖Lp(R+;D(A)) ≤ C‖g‖Lp(R+;X).

The following result was proved in [86] (part (1)) and [42] (part (2)); the final
assertion follows by standard trace and interpolation techniques (see [2, Theorem
III.4.10.2]).

Theorem 3.3. Let −A be the generator of an analytic C0-semigroup on a UMD
space X.

(1) The operator A has a maximal Lp-regularity for some (equivalently, all) p ∈
(1,∞) if and only if the set {λ(λ+A)−1 : λ ∈ iR\{0}} is R-bounded in L (X).

(2) If A has a bounded H∞-calculus of angle < 1
2π, then A has maximal Lp-

regularity for all p ∈ (1,∞).

If A has maximal Lp-regularity and 0 ∈ ̺(A), then the mild solution u = S ∗ g of
(3.4) belongs to BUC(R+;DA(1 − 1

p , p)) and

‖u‖
BUC(R+;DA(1− 1

p ,p))
≤ C‖g‖Lp(R+;X)

with a constant C independent of g.

3.3. Stochastic maximal Lp-regularity. In this section we assume that −A
generates a bounded analytic C0-semigroup on a UMD space X with type 2. For
processes G ∈ Lp

F
(R+ × Ω; γ(H,X)) we consider the problem
{

dU(t) +AU(t) dt = G(t) dWH(t), t > 0,

U(0) = 0.

The (unique) mild solution of this problem is given by

U(t) =

∫ t

0

S(t− s)G(s) dWH(s).

Note that this stochastic integral is well defined in view of (2.5) and the remark
following it. A routine estimate based on (2.5) and Young’s inequality shows that for
all δ ∈ [0, 12 ), U takes values in D(Aδ) almost everywhere on R+×Ω. The operatorA
is said to have stochastic maximal Lp-regularity if for all G ∈ Lp

F
(R+×Ω; γ(H,X)),

U belongs to D(A
1
2 ) almost everywhere on R+ × Ω and satisfies

‖A 1
2U‖Lp(R+×Ω;X) ≤ C‖G‖Lp

F
(R+×Ω;γ(H,X)).(3.7)
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with a constant C independent of G. Under the additional assumption 0 ∈ ̺(A),

A
1
2U ∈ Lp(R+ × Ω;X) implies U ∈ Lp(R+ × Ω;X) and (3.7) is equivalent to

‖U‖
Lp(R+×Ω;D(A

1
2 ))

≤ C‖G‖Lp

F
(R+×Ω;γ(H,X)).(3.8)

Remark 3.4. It follows from [68] that A has stochastic maximal Lp-maximal regu-
larity if and only if (3.7) holds for all deterministic G ∈ Lp(R+; γ(H,X)). For later
use we note that by Theorem 2.3, this condition is equivalent to

∫ ∞

0

‖s 7→ A
1
2S(t− s)G(s)‖pγ(L2(0,t;H),X) dt ≤ Cp‖G‖pLp(R+;γ(H,X)).(3.9)

Comparing the notions of deterministic maximal Lp-regularity and stochastic
maximal Lp-regularity, we note that the latter increases the regularity only by an
exponent 1

2 . Another difference is that stochastic maximal Lp-regularity does not

in general imply u ∈ H
1
2 ,p(R+;L

p(Ω;X)) (see, however, (3.11) for a related result
which does hold true). In fact (this corresponds to the case H = X = R, A = 0,

and G constant), already Brownian motions fail to belong to H
1
2 ,p(0, 1;Lp(Ω)) for

any p ∈ [1,∞]. This follows from the continuous inclusion

H
1
2 ,p(0, 1;Lp(Ω)) ≃ Lp(Ω;H

1
2 ,p(0, 1)) →֒ Lp(Ω;B

1
2
p,p∧2(0, 1))

and the results in [17, 37].
Recall the operator family J which has been introduced in (2.6). By Theorem

2.5, the R-boundedness of J is satisfied if X is isomorphic to a closed subspace of
an Lq-space.

The next theorem has been proved in [68, Theorems 1.1, 1.2] for spaces X =
Lq(µ) with q ≥ 2 and µ σ-finite. Inspection of the proof shows that it consists of
two parts: (i) the proof that J is R-bounded for such X = Lq(µ) ([68, Theorem
3.1], recalled here as Theorem 2.5) and (ii) the proof that, still for X = Lq(µ),
the R-boundedness of J implies the result. Step (ii) extends mutatis mutandis to
arbitrary UMD Banach space with type 2, provided one replaces spaces of square
functions such as Lq(µ;H ) and duality for Hilbert spaces H by spaces of radonify-
ing operators γ(H,X) and trace duality following the lines of [42]. This leads to
the following result:

Theorem 3.5 (Conditions for stochastic maximal Lp-regularity). Let X be a UMD
space with type 2 and let p ∈ [2,∞), and suppose the operator family J is R-
bounded from L (Lp

F
(R+ × Ω; γ(H,X)) to Lp(R+ × Ω;X). If A has a bounded

H∞-calculus on X of angle < 1
2π, then A has stochastic maximal Lp-regularity. If,

in addition, 0 ∈ ̺(A), then also (3.8) holds and

‖U‖Lp(Ω;BUC(R+;DA( 1
2− 1

p
,p)) ≤ C‖G‖Lp

F
(R+×Ω;γ(H,X)).(3.10)

and, for all θ ∈ [0, 12 ),

‖U‖
Lp(Ω;Hθ,p(R+;D(A

1
2
−θ)))

≤ C ‖G‖Lp(R+×Ω;γ(H,X)).(3.11)

In all these estimates, the constants C are independent of G.

Note that the case θ = 0 of (3.11) corresponds to the stochastic maximal Lp-
regularity estimate (3.7). The proof of (3.11) proceeds by reducing the problem,
via the H∞-calculus of A, to the R-boundedness of a certain family I of stochastic
convolution operators with scalar-valued kernels. By convexity arguments, the R-
boundedness of I is then deduced from the R-boundedness of J . The estimate
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(3.10) follows from a combination of (3.7), (3.11), and an interpolation argument
(see [88]). Note that (3.11) implies the space-time Hölder regularity estimate

‖U‖
Lp(Ω;C

θ− 1
p ([0,∞);D(A

1
2
−θ)))

≤ C ‖G‖Lp(R+×Ω;γ(H,X)), θ ∈ ( 1p ,
1
2 ).

It has already been observed that the limiting case θ = 1
2 is not allowed in (3.11)

even when A = 0 and G ∈ γ(H,X) is constant.

4. The main result

On a Banach space X0 we consider the stochastic evolution equation

(SE)











dU(t) +AU(t) dt = [F (t, U(t)) + f(t)] dt

+ [B(t, U(t)) + b(t)] dWH(t), t ∈ [0, T ],

U(0) = u0.

Concerning the space X0, the random operator A, the nonlinearities F and B,
the external forces f and b, and the random initial value u0 we shall assume the
following standing hypothesis.

Hypothesis (H).

(HX) X0 is a UMD Banach space with type 2, and X1 is a Banach space contin-
uously and densely embedded in X0.

(HA) The function A : Ω → L (X1, X0) is strongly F0-measurable. There exists
w ∈ R such that each operator w + A(ω), viewed as a densely defined
operator on X0 with domain X1, has a bounded H∞-calculus of angle
0 < σ < 1

2π, with σ independent of ω. There is a constant C, independent
of ω, such that for all ϕ ∈ H∞(Σσ),

‖ϕ(w +A(ω))‖ ≤ C‖ϕ‖H∞(Σσ).

In what follows, for α ∈ (0, 1) we write

Xα,p = (X0, X1)α,p, Xα = [X0, X1]α

for the real and complex interpolation scales of the couple (X0, X1).

(HF) The function f : [0, T ]× Ω → X0 is adapted and strongly measurable and
f ∈ L1(0, T ;X0) almost surely. The function F : [0, T ]× Ω ×X1 → X0 is
strongly measurable and
(a) for all t ∈ [0, T ] and x ∈ X1 the random variable ω 7→ F (t, ω, x) is

strongly Ft-measurable;
(b) there exist constants LF , L̃F , CF such that for all t ∈ [0, T ], ω ∈ Ω,

and x, y ∈ X1,

‖F (t, ω, x)− F (t, ω, y)‖X0 ≤ LF ‖x− y‖X1 + L̃F ‖x− y‖X0

and

‖F (t, ω, x)‖X0 ≤ CF (1 + ‖x‖X1).

(HB) The function b : [0, T ]×Ω → γ(H,X 1
2
) is adapted and strongly measurable

and b ∈ L2(0, T ; γ(H,X 1
2
)) almost surely. The function B : [0, T ] × Ω ×

X1 → γ(H,X 1
2
) is strongly measurable and

(a) for all t ∈ [0, T ] and x ∈ X1 the random variable ω 7→ B(t, ω, x) is
strongly Ft-measurable;
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(b) there exist constants LB, L̃B, CB such that for all t ∈ [0, T ], ω ∈ Ω,
and x, y ∈ X1,

‖B(t, ω, x)−B(t, ω, y)‖γ(H,X 1
2
) ≤ LB‖x− y‖X1 + L̃B‖x− y‖X0

and

‖B(t, ω, x)‖γ(H,X 1
2
) ≤ CB(1 + ‖x‖X1).

(Hu0) The initial value u0 : Ω → X0 is strongly F0-measurable.

Remark 4.1. Some comments on these assumptions are in order.

(i) By (HA), the spaces X0 and X1 are isomorphic as Banach spaces, an iso-
morphism being given by (λ−A(ω))−1 for any λ ∈ ̺(A(ω)). In particular,
since X0 is a UMD space with type 2, the same is true for X1. As a conse-
quence, also the real and complex interpolation spaces Xα,p with p ∈ [2,∞)
and Xα are UMD spaces with type 2 (see [39, Proposition 5.1]).

(ii) If (HA) holds for some w ∈ R, then it holds for any w′ > w. Furthermore,
we may write

−A+ F = −(A+ w′) + (F + w′),

and note that a function F satisfies (HF) if and only if F+w′ satisfies (HF).
Thus, in what follows we may replace A and F by A+ w′ and F +w′ and
thereby assume, without any loss of generality, that the operators A(ω) are
invertible, uniformly in ω.

(iii) The operators −A(ω) generate analytic C0-semigroups S(ω) on X0, given
through the H∞-calculus by

S(t, ω) = e−tA(ω), t ≥ 0.

For each t ≥ 0 and x ∈ X0, ω 7→ S(t, ω)x is strongly F0-measurable.
Assuming, as in (ii), that the operators A(ω) are uniformly invertible, the
semigroups S(·, ω) are uniformly exponentially stable, uniformly in ω.

(iv) By (3.9), Theorem 3.5 extends to the present situation of a random operator
A satisfying (HA).

(v) The Lipschitz conditions in (HF) and (HB) are fulfilled if and only if there

exist αF , αB ∈ [0, 1) and constants L′
F , L̃

′
F , L

′
B, L̃

′
B such that

‖F (t, ω, x)− F (t, ω, y)‖X0 ≤ L′
F‖x− y‖X1 + L̃′

F‖x− y‖XαF

and

‖B(t, ω, x)−B(t, ω, y)‖γ(H,X 1
2
) ≤ L′

B‖x− y‖X1 + L̃′
B‖x− y‖XαB

.

Moreover, for any ε > 0 the constants L̃′
F and L̃′

B can be chosen in such
a way that |L′

F − LF | < ε and |L′
B − LB| < ε. The ‘if’ part is obvious

from ‖x − y‖X0 .α ‖x − y‖Xα
(in this case we may take L′

F = LF and
L′
B = LB), and the ‘only if’ part follows by a standard application of

Young’s inequality. Indeed, for any δ > 0 we have

‖x− y‖Xα
≤ C‖x− y‖1−α

X0
‖x− y‖αX1

≤ C

(1− α)δ
‖x− y‖X0 +

Cδ

α
‖x− y‖X1 .

Choosing δ > 0 small enough this gives the required result. In certain appli-
cations (see Sections 6, 7 and 8 below) this reformulation of the conditions
(HF) and (HB) is more convenient.
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Definition 4.2. Let (H) be satisfied. A process U : [0, T ] × Ω → X0 is called a
strong solution of (SE) if it is strongly measurable and adapted, and

(i) almost surely, U ∈ L2(0, T ;X1);
(ii) for all t ∈ [0, T ], almost surely the following identity holds in X0:

U(t) +

∫ t

0

AU(s) ds = u0 +

∫ t

0

F (s, U(s)) + f(s) ds

+

∫ t

0

B(s, U(s)) + b(s) dWH(s).

To see that the integrals in this definition are well defined, we note that, by
(HA), the process AU is strongly measurable and satisfies

‖AU‖L1(0,T ;X0) ≤ ‖A‖L (X1,X0)‖U‖L1(0,T ;X1)

almost surely. Similarly, by (HF) and (HB), F (·, U) and f belong to L1(0, T ;X0)
and B(·, U) and b belong to L2(0, T ; γ(H,X 1

2
)) almost surely. Therefore, the

Bochner integral is well defined in X0, and the stochastic integral is well defined in
X 1

2
(and hence in X0) by (HX), the fact the space X 1

2
is a UMD space with type

2, and (2.5).
By Definition 4.2, a strong solution always has a version with continuous paths

in X0 such that, almost surely, the identity in (ii) holds for all t ∈ [0, T ]. Indeed,

define Ũ : [0, T ]× Ω → X0 by

Ũ(t) := −
∫ t

0

AU(s) ds+ u0 +

∫ t

0

F (s, U(s)) + f(s) ds

+

∫ t

0

B(s, U(s)) + b(s) dWH(s),

where we take continuous versions of the integrals on the right-hand side. From
the definitions of U and Ũ one obtains, for all t ∈ [0, T ], that U(t) = Ũ(t) almost
surely in X0. Therefore, almost surely, for all t ∈ [0, T ] one has

Ũ(t) +

∫ t

0

AŨ(s) ds = u0 +

∫ t

0

F (s, Ũ(s)) + f(s) ds

+

∫ t

0

B(s, Ũ(s)) + b(s) dWH(s).

From now on we choose this version whenever this is convenient. We will actually
prove much stronger regularity properties in Theorem 4.5 below.

Definition 4.3. Let (H) be satisfied. A process U : [0, T ] × Ω → X0 is called a
mild solution of (SE) if it is strongly measurable and adapted, and

(i) almost surely, U ∈ L2(0, T ;X1);
(ii) for all t ∈ [0, T ], almost surely the following identity holds in X0:

U(t) = S(t)u0 +

∫ t

0

S(t− s)[F (s, U(s)) + f(s)] ds

+

∫ t

0

S(t− s)[B(s, U(s)) + b(s)] dWH(s).
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The convolutions with F (·, U(·)) and f are well defined as an X0-valued process
by (HF). The stochastic convolutions with B(·, U(·)) and b are well defined as an
X 1

2
-valued process (and hence as an X0-valued process) by (HB), the fact that X 1

2

is a UMD space with type 2, and (2.5). Henceforth we shall use the notations

S ∗ g(t) :=
∫ t

0

S(t− s)g(s) ds,

S ⋄G(t) :=
∫ t

0

S(t− s)G(s) dWH (s),

whenever the integrals are well defined.

Proposition 4.4. Let (H) be satisfied. A process U : [0, T ]× Ω → X0 is a strong
solution of (SE) if and only if it is a mild solution of (SE).

Results of this type for time-dependent operators A are well known. Since in
our case A also depends on Ω, the usual proof has to be adjusted. For the reader’s
convenience we provide the details.

Proof. For notational convenience we write F (t, x) = F (t, x) + f(t) and B(t, x) =
B(t, x) + b(t).

First assume that U is a mild solution. As in [19, Proposition 6.4 (i)], the
(stochastic) Fubini theorem can be used to show that for all t ∈ [0, T ], almost
surely we have

U(t) +

∫ t

0

AU(s) ds = u0 +

∫ t

0

F (s, U(s)) ds+

∫ t

0

B(s, U(s)) dWH(s).

Next assume that U is a strong solution of (SE). By the scalar-valued Itô
formula,

〈U(t), ϕ(t)〉 − 〈u0, ϕ(0)〉 =
∫ t

0

〈AU(s), ϕ(s)〉 + 〈U(s), ϕ′(s)〉 ds

+

∫ t

0

〈F (s, U(s)), ϕ(s)〉 ds

+

∫ t

0

B(s, U(s))∗ϕ(s) dWH (s),

for functions ϕ ∈ C1([0, t];E∗) of the form ϕ = g ⊗ x∗. By linearity and density
this extends to all ϕ ∈ C1([0, t];E∗). By linearity and approximation this extends
to all ϕ ∈ L0(Ω;C1([0, t];E∗)) which are F0-measurable. Indeed, recall that for a
limn→∞

∫ ·
0 ψ(t)− ψn(t) dW (t) = 0 in L0(Ω;C([0, T ])) whenever limn→∞ ψn = ψ in

L0(Ω;L2(0, T ;H)) (see [38, Proposition 17.6]).
With the choice ϕ(t) = S∗(t − s)λ(λ + A∗)−1x∗ we obtain, for all x∗ ∈ E∗ and

λ > w (with w as in (HA)),

〈λ(λ +A)−1U(t),x∗〉 − 〈λ(λ +A)−1S(t)u0, x
∗〉

=
〈

λ(λ +A)−1

∫ t

0

〈S(t− s)F (s, U(s)) ds, x∗
〉

+
〈

λ(λ +A)−1

∫ t

0

S(t− s)B(s, U(s)) dWH(s), x∗
〉

,
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where we used the strong F0-measurability of A. Now the result follows from the
fact that for all x ∈ X , λ(λ+A)−1x→ x as λ→ ∞. �

Let us fix an exponent p ∈ [2,∞) for the moment and assume, as in Remark
4.1(ii), that the operators A(ω) are uniformly invertible. By Theorem 3.3 and (HX)
and (HA), the linear operator

g 7→ S ∗ g
is bounded from Lp

F
(Ω;Lp(R+;X0)) into L

p
F
(Ω;Lp(R+;X1)). Furthermore, if the

operator family J introduced in Subsection 2.1.4 is R-bounded in

L (Lp
F
(R+ × Ω; γ(H,X0)), L

p(R+ × Ω;X0)),

then it is also R-bounded in

L (Lp
F
(R+ × Ω; γ(H,X 1

2
)), Lp(R+ × Ω;X 1

2
))

and therefore by Theorem 3.5 (applied to the space X 1
2
) and (HX) and (HA), the

reiteration identity X1 = (X 1
2
) 1

2
(apply A

1
2 to both sides and use that D(A

1
2 ) = X 1

2

by (HA)) the mapping
G 7→ S ⋄G

is bounded from Lp
F
(Ω;Lp(R+; γ(H,X 1

2
))) into Lp

F
(Ω;Lp(R+;X1)). We shall de-

note by
K∗

p and K⋄
p

the norms of these operators. We emphasise that the numerical value of these
constants depends on the choice of the parameter w′ used for rescalingA (cf. remark
4.1).

In what follows we fix an arbitrary time horizon T > 0; constants appearing in
the inequalities below are allowed to depend on it. Recall that by Theorem 2.5,
the R-boundedness of the operator family J is satisfied if X0 is isomorphic to a
closed subspace of an Lq-space.

Theorem 4.5. Let (H) be satisfied, let p ∈ [2,∞), let f ∈ Lp
F
(Ω;Lp(0, T ;X0))

and b ∈ Lp
F
(Ω;Lp(0, T ; γ(H,X 1

2
))), and suppose that the operator family J is

R-bounded from L (Lp
F
(R+ × Ω; γ(H,X0)) to Lp(R+ × Ω;X0). If the Lipschitz

constants LF and LB satisfy

K∗
pLF +K⋄

pLB < 1,

then the following assertions hold:

(i) If u0 ∈ L0
F0

(Ω;X1− 1
p
,p), then the problem (SE) has a unique strong solution

U in
L0

F (Ω;Lp(0, T ;X1)) ∩ L0
F (Ω;C([0, T ];X1− 1

p
,p)).

(ii) If u0 ∈ Lp
F0

(Ω;X1− 1
p
,p), then the strong solution U given by part (i) belongs

to
Lp

F
((0, T )× Ω;X1) ∩ Lp

F
(Ω;C([0, T ];X1− 1

p
,p))

and satisfies

‖U‖Lp((0,T )×Ω;X1) ≤ C(1 + ‖u0‖Lp(Ω;X
1− 1

p
,p
)),

‖U‖Lp(Ω;C([0,T ];X
1− 1

p
,p
)) ≤ C(1 + ‖u0‖Lp(Ω;X

1− 1
p
,p
)),

with constants C independent of u0.
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(iii) For all u0, v0 ∈ Lp
F0

(Ω;X1− 1
p
,p), the corresponding strong solutions U, V sat-

isfy

‖U − V ‖Lp((0,T )×Ω;X1) ≤ C‖u0 − v0‖Lp(Ω;X
1− 1

p
,p
),

‖U − V ‖Lp(Ω;C([0,T ];X
1− 1

p
,p
)) ≤ C‖u0 − v0‖Lp(Ω;X

1− 1
p
,p
),

with constants C independent of u0 and v0.

Remark 4.6. The condition u0 ∈ L0
F0

(Ω;X1− 1
p
,p) is satisfied if (Hu0) holds and

u0 takes values in X1− 1
p
,p almost surely. Indeed, by (Hu0) we know that u0 is

strongly F0-measurable as an X-valued random variable. Now the strong F0-
measurability of u0 as an X1− 1

p
,p-valued random variable easily follows from the

strong measurability of ξ : Ω → Lp(0, 1, dtt ;X), given by

ξ(ω) := [t 7→ AS(t)u0(ω)],

and the definition of X1− 1
p
,p.

Proof of Theorem 4.5. Without loss of generality we can reduce to the case where
w = 0 (see Remark 4.1 (ii)). By assumption we have K∗

pLF +K⋄
pLB = 1 − θ for

some θ ∈ (0, 1]. Without loss of generality we may assume that LF + LB > 0 and
θ ∈ (0, 1).

By Proposition 4.4 it suffices to prove existence and uniqueness of a mild solution.

Step 1: Local existence of mild solutions for initial values u0 ∈ Lp
F0

(Ω;X1− 1
p
,p).

We fix a number κ ∈ (0, T ], to be chosen in a moment, and introduce, for θ ∈ [0, 1],
the Banach spaces

Zθ,κ = Lp
F
(Ω;Lp(0, κ;Xθ)),

Zγ
θ,κ = Lp

F
(Ω;Lp(0, κ; γ(H,Xθ))).

On Z1,κ we define an equivalent norm ||| · ||| by
|||φ||| = ‖φ‖Z1,κ +M‖φ‖Z0,κ

with M = (K∗
p L̃F +K⋄

p L̃B)/(K
∗
pLF +K⋄

pLB).
In order to simplify notations we shall omit the subscript κ in what follows. Let

L : Z1 → Z1 be the mapping given by

L(φ)(t) = S(t)u0 + S ∗ [F (·, φ) + f ](t) + S ⋄ [B(·, φ) + b](t).

We emphasise that L depends on the initial value u0.
First we check that L does indeed map Z1 into itself. By (Hu0) and Proposition

3.1, t 7→ S(t)u0 defines an element of Z1.
By restriction to the interval [0, κ], the operators g 7→ S ∗ g and G 7→ S ⋄G are

bounded as mappings from Lp
F
(Ω;Lp(0, κ;X0)) and L

p
F
(Ω;Lp(0, κ; γ(H,X 1

2
))) into

Lp
F
(Ω;Lp(0, κ;X1)), with norms bounded by K∗

p and K⋄
p respectively. Therefore

L is well defined as a mapping from Z1 into itself, and for all φ1, φ2 ∈ Z1 we may
estimate

‖L(φ1)− L(φ2)‖Z1 ≤ ‖S ∗ (F (·, φ1)− F (·, φ2))‖Z1 + ‖S ⋄ (B(·, φ1)−B(·, φ2))‖Z1

≤ K∗
p‖F (·, φ1)− F (·, φ2)‖Z0 +K⋄

p‖B(·, φ1)−B(·, φ2)‖Zγ
1
2

≤ K∗
pLF‖φ1 − φ2‖Z1 +K∗

p L̃F ‖φ1 − φ2‖Z0
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+K⋄
pLB‖φ1 − φ2‖Z1 +K⋄

p L̃B‖φ1 − φ2‖Z0

= (1− θ)|||φ1 − φ2|||,
recalling that K∗

pLF +K⋄
pLB = 1− θ. Moreover, we have the elementary estimate

‖L(φ1)− L(φ2)‖Z0 ≤ c(κ)
[

CLF ‖φ1 − φ2‖Z1 + CL̃F ‖φ1 − φ2‖Z0

+ C′LB‖φ1 − φ2‖Z1 + C′L̃B‖φ1 − φ2‖Z0

]

≤ c̃(κ)|||φ1 − φ2|||,
where κ 7→ c(κ) and κ 7→ c̃(κ) are continuous functions on [0, T ] not depending on
u0 and satisfying limκ↓0 c(κ) = limκ↓0 c̃(κ) = 0.

Collecting the above estimates, we see that

|||L(φ1)− L(φ2)||| ≤ (1− θ +Mc̃(κ))|||φ1 − φ2|||.
So far, the number κ > 0 was arbitrary. Now we set

κ := inf{t ∈ (0, T ] : Mc̃(t) ≥ 1
2θ}.

where we take κ = T if the infimum is taken over the empty set. Note that κ only
depends on θ, the Lipschitz constants of F and B, the constants K∗

p and K⋄
p and

the type 2 constant of X 1
2
. Then (1 − θ +Mc̃(κ)) ≤ 1 − 1

2θ, and it follows that L

has a unique fixed point in Z1. This gives a process U ∈ Z1 such that for almost
all (t, ω) ∈ [0, κ]× Ω, the following identity holds in X1:

(4.1) U(t) = S(t)u0 + S ∗ F (·, U)(t) + S ∗ f(t) + S ⋄B(·, U)(t) + S ⋄ b(t).
By Theorems 3.3 and 3.5 (applied with X = X 1

2
), and keeping in mind Remarks

4.1(i) and (iv), U has a version with trajectories in Lp(Ω;C([0, κ], X1− 1
p
,p)). For

this version, almost surely the identity (4.1) holds in X0 for all t ∈ [0, κ].

Step 2: Local existence of mild solutions for initial values u0 ∈ L0
F0

(Ω;X1− 1
p
,p).

For n ≥ 1, let
Γn :=

{

‖u0‖X
1− 1

p
,p
≤ n

}

.

From Step 1 we obtain processes Un belonging to Z1∩Lp(Ω;C([0, κ], X1− 1
p
,p)) such

that (4.1) holds with the pair (u0, U) replaced by (u0,n, Un) (with u0,n = 1Γn
u0).

We claim that for all m ≤ n, Un(·, ω) = Um(·, ω) in X1− 1
p
,p almost surely on

Γm × [0, τm]. Indeed, by Step 1 and the fact that Γm ∈ F0,

|||1Γm
(Um − Un)||| = |||1Γm

(L(Um)− L(Un))|||
= |||1Γm

(L(1Γm
Um)− L(1Γm

Un))|||
≤ |||L(1Γm

Um)− L(1Γm
Un)|||

≤ (1− 1
2θ) |||1Γm

(Um − Un)|||
and since θ ∈ (0, 1) it follows that for almost all (t, ω) ∈ [0, κ] × Γn, Um(t, ω) =
Un(t, ω) in X1. By (4.1) for Um and Un it follows that for almost all ω ∈ Γm,
Un(·, ω) = Um(·, ω) in X1− 1

p
,p, and the claim follows. Therefore, we can define

U : [0, κ]× Ω → X0 by U = Un on Γn. Now it is easy to check that

U ∈ L0
F (Ω;Lp(0, κ;X1)) ∩ L0(Ω;C([0, κ], X1− 1

p
,p)).

and that for all t ∈ [0, κ], (4.1) holds almost surely in X0.

Step 3: Local uniqueness of mild solutions for initial values u0 ∈ L0
F0

(Ω;X1− 1
p
,p).
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Let U, V ∈ L0
F
(Ω;Lp(0, κ;X1)) be such that (4.1) holds. For W ∈ {U, V } let

τWn be the stopping time defined by

τWn = inf{t ∈ [0, κ] : ‖1[0,t]W‖Lp(0,κ;X1) ≥ n}

(and τWn = κ if this set is empty) and let τn = τUn ∧ τVn . Let Un = 1[0,τn]U and
Vn = 1[0,τn]V . Clearly, for all n ≥ 1, we have Un, Vn ∈ Z1. Using the extension of
[9, Lemma A.1] to the type 2 setting one can check that for all t ∈ [0, κ], almost
surely, one has

Wn = 1[0,τn]S(·)u0 + 1[0,τn](S ∗ (1[0,τn](F (·,Wn) + f)))

+ 1[0,τn](S ⋄ (1[0,τn](B(·,Wn) + b)))

in X0, where Wn ∈ {Un, Vn}. As in Step 1 it follows that

|||Un − Vn|||
≤ |||S ∗ (1[0,τn](F (·, Un)− F (·, Vn)))||| + |||S ⋄ (1[0,τn](B(·, Un)−B(·, Vn)))|||
≤ (1 − 1

2θ)|||Un − Vn|||.

Since θ ∈ (0, 1), we obtain that Un = Vn in Z1. Letting n tend to infinity, we may
conclude that U = V in L0

F
(Ω;Lp(0, κ;X1)).

Step 4: Global existence of mild solutions.
In Steps 1 and 2 we have shown that there exists a unique mild solution U1 in

L0
F
(Ω;Lp(0, κ;X1)) with trajectories in C([0, κ], X1− 1

p
,p). Let, for 0 ≤ a < b ≤ T ,

Y (a, b) := L0
F (Ω;Lp(a, b;X1)) ∩ L0(Ω;C([a, b], X1− 1

p
,p))

We construct a mild solution on [κ, 2κ]. Using the path continuity in X1− 1
p
,p we

can take uκ = U1(κ) in L
0(Ω;X1− 1

p
,p) as initial value and repeat Steps 1 and 2 to

obtain a unique mild solution U2 ∈ Y (κ, 2κ) on [κ, 2κ] with initial data uκ. One
easily checks that letting U = U1 on [0, κ] and U = U2 on [κ, 2κ] defines a mild
solution on [0, 2κ]. Iterating this finitely many times we obtain a mild solution
U ∈ Y (0, T ).

Step 5: Global uniqueness of mild solutions.
To see that U is the unique mild solution in Y (0, T ), let V be another mild

solution in Y (0, T ). Recall from Step 1 that we can find versions of U and V which
also have paths in C([0, T ];X1− 1

p
,p). It suffices to prove the uniqueness for these

versions. Note that by the uniqueness on [0, κ] we have U |[0,κ] = V |[0,κ]. By the
almost sure pathwise continuity of U and V with values in the space X1− 1

p
,p we see

that almost surely U(κ) = V (κ) in X1− 1
p
,p. One easily checks that both U |[κ,2κ]

and V |[κ,2κ] are mild solutions in Y (κ, 2κ) on the interval [κ, 2κ]. By uniqueness
on [κ, 2κ] from Step 3a, we obtain that U |[κ,2κ] = V |[κ,2κ] in Y (κ, 2κ). Proceeding
in finitely many steps we obtain U = V in Y (0, T ).

Step 6: The proof of part (ii).
On [0, κ] it follows from Step 1 that

|||U ||| = |||L(U)||| ≤ |||L(U)− L(0)|||+ |||L(0)|||
≤ (1− 1

2θ)|||U ||| + C(1 + ‖u0‖Lp(Ω;X
1− 1

p
,p
)).
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Since θ ∈ (0, 1) we obtain

(4.2) |||U ||| ≤ 2C

θ
(1 + ‖u0‖Lp(Ω;X

1− 1
p
,p
)).

Next, observe that by Proposition 3.1, Theorems 3.3 and 3.5, Remark 4.1 (iv),
and (HF) and (HB) one has

‖U‖Lp(Ω;C([0,κ];X
1− 1

p
,p
))

= ‖L(U)‖Lp(Ω;C([0,κ];X
1− 1

p
,p
))

≤ C‖u0‖Lp(Ω;X
1− 1

p
,p
) +K∗

p‖F (·, U) + f‖Z0 +K⋄
p‖B(·, U) + b‖Zγ

1
2

≤ C‖u0‖Lp(Ω;X
1− 1

p
,p
) +K∗

pCF,f (1 + ‖U‖Z1) +K⋄
pCB,b(1 + ‖U‖Z1).

From (4.2) and the norm equivalence of ||| · ||| on Z1 we obtain

(4.3) ‖U‖Lp(Ω;C([0,κ];X
1− 1

p
,p
)) ≤ C̃(1 + ‖u0‖Lp(Ω;X

1− 1
p
,p
))

for some constant C̃. This proves the required estimates on [0, κ]. In particular, it
follows from (4.3) that

(4.4) ‖U(κ)‖Lp(Ω;X
1− 1

p
,p
) ≤ C̃(1 + ‖u0‖Lp(Ω;X

1− 1
p
,p
)).

Using U(κ) as an initial values the same argument now gives the following estimates
for U on [κ, 2κ]:

‖U‖Lp
F
(Ω;Lp(κ,2κ;X1)) ≤

2C

θ
(1 + ‖U(κ)‖Lp(Ω;X

1− 1
p
,p
))

‖U‖Lp(Ω;C([κ,2κ];X
1− 1

p
,p
)) ≤ C̃(1 + ‖U(κ)‖Lp(Ω;X

1− 1
p
,p
)).

Combining this with (4.4) and iterating this finitely many times gives (2).

Step 7: The proof of part (iii).
First note that by Step 1,

‖U − V ‖Z1 = ‖L(U)− L(V )− Su0 + Sv0‖Z1

≤ (1− 1
2θ)‖U − V ‖Z1 + C‖u0 − v0‖Lp(Ω;X

1− 1
p
,p
),

where L = Lu0 is the operator from Step 1 with initial condition u0.
Since θ ∈ (0, 1) this implies

‖U − V ‖Z1 ≤ 2C

θ
‖u0 − v0‖Lp(Ω;X

1− 1
p
,p
).

In the same way as for (4.3) one can prove that

‖U − V ‖Lp(Ω;C([0,κ];X
1− 1

p
,p
)) ≤ C̃‖u0 − v0‖Lp(Ω;X

1− 1
p
,p
).

Now one iterates the argument as in Steps 4 and 5. �

Theorem 4.5 can be seen as an extension of [7] to the borderline case. A maximal
Lp-regularity result using real interpolation spaces instead of fractional domain
spaces has been obtained in [6].
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Remark 4.7. We believe that by using Lenglart’s inequality (see [55]), it may
be shown that in Theorem 4.5 one obtains solutions in Lp1(Ω;Lp2(0, T ;X1)) and
Lp1(Ω;C([0, T ];X1− 1

p 2
,p2

)) for any p2 > p1 > 0 and p2 ≥ 2. Since we do not have

any applications of this, we shall not pursue this any further.

Remark 4.8. Applying (3.11) to the space X 1
2
one can prove in the same way that

U ∈ L0(Ω;Hθ,p(0, T ;X1−θ)) for all θ ∈ [0, 12 ).

In particular,

U ∈ L0(Ω;Cθ− 1
p ([0, T ];X1−θ)) for all θ ∈ [ 1p ,

1
2 ).

Moreover, the following estimates hold:

‖U‖Lp(Ω;Hθ,p(0,T ;X1−θ)) ≤ C(1 + ‖u0‖Lp(Ω;X
1− 1

p
,p
)),

‖U − V ‖Lp(Ω;Hθ,p(0,T ;X1−θ)) ≤ C‖u0 − v0‖Lp(Ω;X
1− 1

p
,p
),

where U and V are the solutions with initial values u0 and v0 respectively.

5. Extensions of the main result

5.1. The time-dependent case. In the same setting as before we now consider
(SE) with an adapted operator family {A(t, ω) : t ∈ [0, T ], ω ∈ Ω} in L (X1, X0):
(SE′)











dU(t) +A(t)U(t) dt = [F (t, U(t)) + f(t)] dt

+ [B(t, U(t)) + b(t)] dWH(t), t ∈ [0, T ],

U(0) = u0.

Below we shall extend the definition of a strong solution (see Definition 4.2) to
the time-dependent problem (SE′) for adapted random operators A : [0, T ]× Ω →
L (X1, X0). There is no direct extension of the definition of a mild solution to this
setting, the reason being that serious problems with adaptedness arise (see [56] for
details). Below we shall prove the existence and uniqueness of strong solutions for
(SE′) by means of maximal regularity techniques.

Throughout this section we replace Hypothesis (HA) by the following hypothesis
(HA)′ and we say that Hypothesis (H)′ holds if (HX), (HA)′, (HF), (HB) and (Hu0)
hold, with

(HA)′ The function A : [0, T ] × Ω → L (X1, X0) is strongly measurable and
adapted. Each operator A(t, ω), viewed as a densely defined operator on
X0 with domain X1, is invertible and has a bounded H∞-calculus of an-
gle 0 < σ < 1

2π, with σ independent of t and ω. There is a constant C,
independent of t and ω, such that for all ϕ ∈ H∞(Σσ),

‖ϕ(A(t, ω))‖ ≤ C‖ϕ‖H∞(Σσ).

The function A : [0, T ]×Ω→ L (X1, X0) is piecewise relatively continuous,
uniformly in ω, i.e., there exists finitely many points 0 = t0 < t1 < . . . <
tN = T such that for all ε > 0 there exists a δ > 0 and η > 0 such that for
all ω ∈ Ω, for all 1 ≤ n ≤ N , for all t, s ∈ [tn−1, tn] and for all x ∈ X1, we
have

|t− s| < δ =⇒ ‖A(t, ω)x−A(s, ω)x‖X0 < ε‖x‖X1 + η‖x‖X0 .
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The first part of Hypothesis (HA)′ implies that the operators −A(t, ω) generate
bounded analytic C0-semigroups on X0 for which the estimate (3.1) holds uniformly
in t and ω.

Relatively continuous operators A have been introduced in [4] to study maximal
Lp-regularity for deterministic problems. We consider a piecewise variant here,
which seems to be new even in a deterministic setting. It seems that the results in
[4] extend to this more general setting without difficulty.

Definition 5.1. Let (H)′ be satisfied. A process U : [0, T ] × Ω → X0 is called a
strong solution of (SE′) if it is strongly measurable and adapted, and

(i) almost surely, U ∈ L2(0, T ;X1);
(ii) for all t ∈ [0, T ], almost surely the following identity holds in X0:

(5.1)

U(t) +

∫ t

0

A(s)U(s) ds = u0 +

∫ t

0

F (s, U(s)) + f(s) ds

+

∫ t

0

B(s, U(s)) + b(s) dWH(s).

As before, under (H)′ all integrals are well defined, and again U has a pathwise
continuous version for which, almost surely, the identity in (ii) holds for all t ∈ [0, T ].

Theorem 5.2. Let (H)′ be satisfied, let p ∈ [2,∞), and suppose that the operator
family J is R-bounded from Lp

F
(R+ × Ω; γ(H,X0)) to Lp(R+ × Ω;X0). If the

Lipschitz constants LF and LB satisfy

K∗
pLF +K⋄

pLB < 1,

then the assertions of Theorem 4.5 (i), (ii) and (iii) remain true for the problem
(SE′).

Proof. As in the proof of Theorem 4.5 we may assume that K∗
pLF +K⋄

pLB = 1− θ
with θ ∈ (0, 1).

Choose δ > 0 and η > 0 such that for all 1 ≤ n ≤ N and for all t, s ∈ [tn−1, tn],
for all x ∈ X1,

‖A(t)x−A(s)x‖X0 ≤ 1
2θ‖x‖X1 + η‖x‖X0 if |t− s| < δ.

Fix 0 = s0 < s1 < . . . < sM = T such that {tn : 0 ≤ n ≤ N} is a subset of
{sn : 0 ≤ n ≤ N} and |sm − sm−1| < δ for m = 1, . . . ,M .

We first solve the problem on [0, s1]. Let FA,0 : [0, s1]×Ω×X1 → X0 be defined
by FA,0(t, x) = F (t, x) − A(t)x + A(0)x. Then FA satisfies (HF) with F replaced

by FA,0. Moreover, LFA,0 ≤ LF + 1
2θ and L̃FA,0 ≤ L̃F + Cη, and therefore, the

condition of Theorem 4.5 holds for the equation with F replaced by FA,0 and A
replaced by A(0) with constant K∗

pLFA,0 +K⋄
pLB = 1 − 1

2θ. Therefore, Theorem

4.5 implies the existence of a unique strong solution U ∈ L0
F
(Ω;Lp(0, s1;X1)), i.e.

almost surely, for all t ∈ [0, s1] the following identity holds in X0:

U(t) +

∫ t

0

A(0)U(s) ds = u0 +

∫ t

0

FA,0(s, U(s)) + f(s) ds

+

∫ t

0

B(s, U(s)) + b(s) dWH(s)

and therefore also (5.1) holds on [0, s1] almost surely. Moreover, the assertions of
Theorem 4.5 (i), (ii) and (iii) hold on [0, s1].
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Now we proceed inductively. Suppose we know that the assertions of Theorem
4.5 (i), (ii) and (iii) hold for the problem (SE′) on the interval [0, sm] with m ≤M .
If m = M , there is nothing left to prove. If m < M , we shall prove next existence
and uniqueness on the interval [sm, sm+1].

Consider the problem
(5.2)










dV (t) +A(sm)V (t) dt = [FA,m(t, V (t)) + f(t)] dt

+ [B(t, V (t)) + b(t)] dWH(t), t ∈ [sm, sm+1],

V (sm−1) = U(sm)

with FA,m = F (t, x)−A(t)+A(sm). As before, Theorem 4.5 (more precisely, the ver-
sion of it with initial time 0 replaced by sm) can be applied to obtain a unique strong
solution V ∈ L0

F
(Ω;Lp(sm, sm+1;X1)) and assertions (i), (ii) and (iii) of Theorem

4.5 hold for the solution V of (5.2). Now we extend U to [0, sm+1] by setting
U(t) := V (t) for t ∈ [sm, sm+1]. Then U is in L0

F
(Ω;Lp(0, sm+1;X1)) and, using

the induction hypothesis, one sees that it is a strong solution on [0, sm+1]. It is also
the unique strong solution on [0, sm+1]. Indeed, letW ∈ L0

F
(Ω;Lp(0, sm+1;X1)) be

another strong solution on [0, sm+1]. By the induction hypothesis we have W = U
in L0

F
(Lp(0, sm;X1)). In particular, the definition of a strong solution implies that

W (sm) = U(sm) almost surely. Now one can see that W is strong solution of (5.2)
on [sm, sm+1]. Since the solution of (5.2) is unique, it follows that also W = V
in L0

F
(Ω;Lp(sm, sm+1;X1)). Therefore, the definition of U shows that U = W in

L0
F
(Lp(0, sm+1;X1)). The other results in (i), (ii) and (iii) for U on [0, sm+1] follow

from the corresponding results for V as well. This completes the induction step
and the proof. �

5.2. The locally Lipschitz case. In this section we shall prove an extension of
Theorem 4.5 to the case where the functions F and B satisfy a local Lipschitz
condition with respect to the X1− 1

p
,p-norm, where p ∈ [2,∞) is fixed. We replace

the Hypotheses (HF) and replace (HB) by the hypotheses (HF)ploc and (HB)ploc.

Hypothesis (H)p
loc

(HF)ploc The function f : [0, T ]× Ω → X0 is adapted and strongly measurable and
f ∈ L1(0, T ;X0) almost surely. The function F : [0, T ] × Ω × X1 → X0

is given by F = F (1) + F (2), where F (1) : [0, T ] × Ω × X1 → X0 and
F (2) : [0, T ] × Ω × X1− 1

p
,p → X0 are strongly measurable. The function

F (1) is F -adapted and Lipschitz continuous, i.e., it satisfies (HF):
(a) for all t ∈ [0, T ] and x ∈ X1 the random variable ω 7→ F (1)(t, ω, x) is

strongly Ft-measurable;
(b) there exist constants LF (1) , L̃F (1) , CF (1) such that for all t ∈ [0, T ],

ω ∈ Ω, and x, y ∈ X1,

‖F (1)(t, ω, x)− F (1)(t, ω, y)‖X0 ≤ LF (1)‖x− y‖X1 + L̃F (1)‖x− y‖X0

and

‖F (1)(t, ω, x)‖X0 ≤ CF (1)(1 + ‖x‖X1).

The function F (2) is F -adapted and locally Lipschitz continuous, i.e.,
(c) for all t ∈ [0, T ] and x ∈ X1− 1

p
,p the random variable ω 7→ F (2)(t, ω, x)

is strongly Ft-measurable;



24 JAN VAN NEERVEN, MARK VERAAR, AND LUTZ WEIS

(d) for all R > 0 a constant LF (2),R such that for all t ∈ [0, T ], ω ∈ Ω, and
x, y ∈ X1 satisfying ‖x‖X

1− 1
p
,p
, ‖y‖X

1− 1
p
,p
≤ R,

‖F (2)(t, ω, x)− F (2)(t, ω, y)‖X0 ≤ LF (2),R‖x− y‖X
1− 1

p
,p

and there exists a constant CF (2) such that for all t ∈ [0, T ], ω ∈ Ω,

‖F (2)(t, ω, 0)‖X0 ≤ CF (2) .

(HB)ploc The function b : [0, T ]×Ω → γ(H,X 1
2
) is adapted and strongly measurable

and b ∈ L2(0, T ; γ(H,X 1
2
)) almost surely. The function B : [0, T ] × Ω ×

X1 → γ(H,X 1
2
) is given by B = B(1) + B(2), where B(1) : [0, T ] × Ω ×

X1 → γ(H,X 1
2
) and B(2) : [0, T ] × Ω × X1− 1

p
,p → γ(H,X 1

2
) are strongly

measurable. The function B(1) is F -adapted and Lipschitz continuous, i.e.,
it satisfies (HB):
(a) for all t ∈ [0, T ] and x ∈ X1 the random variable ω 7→ B(1)(t, ω, x) is

strongly Ft-measurable;
(b) there exist constants LB(1) , L̃B(1) , CB(1) such that for all t ∈ [0, T ],

ω ∈ Ω, and x, y ∈ X1,

‖B(1)(t, ω, x)−B(1)(t, ω, y)‖γ(H,X 1
2
) ≤ LB(1)‖x− y‖X1 + L̃B(1)‖x− y‖X0

and

‖B(1)(t, ω, x)‖γ(H,X 1
2
) ≤ CB(1)(1 + ‖x‖X1).

The function B(2) is F -adapted and locally Lipschitz continuous, i.e.,
(c) for all t ∈ [0, T ] and x ∈ X1− 1

p
,p the random variable ω 7→ B(2)(t, ω, x)

is strongly Ft-measurable;
(d) for all R > 0 a constant LB(2),R such that for all t ∈ [0, T ], ω ∈ Ω, and

x, y ∈ X1 satisfying ‖x‖X
1− 1

p
,p
, ‖y‖X

1− 1
p
,p
≤ R,

‖B(2)(t, ω, x)−B(2)(t, ω, y)‖γ(H,X 1
2
) ≤ LB(2),R‖x− y‖X

1− 1
p
,p

and there exists a constant CB(2) such that for all t ∈ [0, T ], ω ∈ Ω,

‖B(2)(t, ω, 0)‖γ(H,X 1
2
) ≤ CB(2) .

Before we explain the definition of a local mild solution, we need to discuss some
preliminaries on stopped stochastic convolutions. Let G : [0, T ]×Ω→ γ(H,X0) be
an adapted process which satisfies G ∈ L2(0, T ; γ(H,X0)) almost surely. Let τ be
a stopping time with values in [0, T ]. Define the X0-valued processes I(G) by

I(G)(t) =

∫ t

0

S(t− s)G(s) dWH (s).

As explained in [9] it is tempting to write

I(G)(t ∧ τ) =
∫ t∧τ

0

S(t ∧ τ − s)G(s) dWH (s).

This is meaningless, however, since the integrand in the right-hand expression is
not adapted, and therefore the stochastic integral is not well defined. To remedy
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this problem, following [9] we consider the process Iτ (G) defined by

Iτ (G)(t) =

∫ t

0

1[0,τ ](s)S(t− s)G(s) dWH (s) = S ⋄ (1[0,τ ]G).

The following lemma can be proved as in [9, Lemma A.1].

Lemma 5.3. Assume (HX). Let G : [0, T ]× Ω → γ(H,X0) be an adapted process
which satisfies G ∈ L2(0, T ; γ(H,X0)) almost surely. Let τ be a stopping time with
values in [0, T ]. If the processes I(G) and Iτ (G) have an X0-valued continuous
version, then almost surely,

S(t− t ∧ τ)I(G)(t) = Iτ (G)(t), t ∈ [0, T ].

In particular, almost surely,

I(G)(t ∧ τ) = Iτ (G)(t ∧ τ), t ∈ [0, T ].

Note that if G is only defined up to a stopping time τ ′ with τ ≤ τ ′ and 1[0,τ ]G

is in L2(0, T ; γ(H,X0)), the above definition of Iτ (G) is still meaningful. This is
what we will use below.

Remark 5.4. If (HA) holds and G belongs to Lp(0, T ; γ(H,X0)) almost surely for
some p > 2, then Theorem 3.5 (combined with Remark 4.1 (iv)) shows that I(G)
and Iτ (G) are both pathwise continuous as X 1

2− 1
p
,p-valued processes, hence also

as X0-valued processes. For p = 2, pathwise continuity of I(G) and Iτ (G) follows
from [85, Theorem 1.1].

Definition 5.5. Let p ∈ [2,∞) and let (H)ploc be satisfied. Let τ be a stopping
time with values in [0, T ]. A process U : [0, τ)× Ω → X1− 1

p
,p is called a local mild

solution of (SE) if U is adapted and for each ω ∈ Ω, t 7→ U(t, ω) is continuous in
X1− 1

p
,p on the interval [0, τ(ω)) and, for all n ≥ 1,

(i) almost surely, 1[0,τn]U ∈ L2(0, T ;X1);
(ii) almost surely, for all t ∈ [0, T ], the following identity holds in X0:

U(t ∧ τn) = S(t ∧ τn)u0 +
∫ t∧τn

0

S(t ∧ τn − s)[F (s, U(s)) + f(s)] ds

+ S ⋄ (1[0,τn](B(·, U) + b)))(t ∧ τn),
where

τn = inf{t ∈ [0, τ) : ‖U(t)‖X
1− 1

p
,p
≥ n}.

Note that

S ⋄ (1[0,τn](B(·, U) + b)))(t ∧ τn) = Iτn(B(·, U) + b)(t ∧ τn).
The motivation for this expression has been explained in Lemma 5.3.

A process U : [0, τ) × Ω → X1− 1
p
,p is called a maximal local mild solution on

[0, T ] if it is a local mild solution and for every stopping time τ ′ with values in [0, T ]
and every local mild solution V : [0, τ ′)×Ω → X1− 1

p
,p one has τ = τ ′ almost surely

and U = V in C([0, τ);X1− 1
p
,p) almost surely. A process U : [0, T )× Ω → X1− 1

p
,p

is called a global mild solution if U is a local mild solution (with τ = T ) and
U ∈ L2(0, T ;X1) almost surely. For such U one easily checks that part (ii) of
Definition 4.3 holds.
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In a similar way one can define local and global strong solutions. It is obvious
from the proof of Proposition 4.4 that the notions of global strong solution and
global mild solution are equivalent. Below we shall only consider local and global
mild solutions.

The following theorem can be proved by following the lines of [6, 79] (see also
[9] and [66, Theorem 8.1]).

Theorem 5.6. Let (H)ploc be satisfied for p ∈ [2,∞), and suppose that the operator
family J is R-bounded from Lp

F
(R+ × Ω; γ(H,X0)) to Lp(R+ × Ω;X0). If the

Lipschitz constants LF and LB satisfy

K∗
pLF +K⋄

pLB < 1,

then the following assertion holds:

(i) If u0 ∈ L0
F0

(Ω;X1− 1
p
,p), f ∈ L0

F0
(Ω;Lp(0, T ;X0)), and b ∈ L0

F0
(Ω;Lp(0, T ;

γ(H,X 1
2
))), then the problem (SE) has a unique maximal local mild solution

U in

L0
F (Ω;Lp(0, τ ;X1)) ∩ L0

F (Ω;C([0, τ);X1− 1
p
,p)).

(ii) If, in addition to the assumptions in (i), F (2) and B(2) also satisfy the linear
growth conditions

‖F (2)(t, ω, x)‖X0 ≤ CF (2)(1 + ‖x‖X
1− 1

p
,p
),

‖B(2)(t, ω, x)‖γ(H,X 1
2
) ≤ CB(2)(1 + ‖x‖X

1− 1
p
,p
),

for some constants CF (2) and CB(2) independent of t ∈ [0, T ], ω ∈ Ω, and
x ∈ X1− 1

p
,p, then the solution U in (i) is a global mild solution which belongs

to

L0
F (Ω;Lp(0, T ;X1)) ∩ L0

F (Ω;C([0, T ];X1− 1
p
,p)).

(iii) If, in addition to the assumptions of (i) and (ii), we have u0 ∈ Lp
F0

(Ω;X1− 1
p
,p),

f ∈ Lp
F
(Ω;Lp(0, T ;X0)), and b ∈ Lp

F
(Ω;Lp(0, T ; γ(H,X 1

2
))), then the global

solution U in (ii) belongs to Lp
F
((0, T ) × Ω;X1) ∩ Lp

F
(Ω;C([0, T ];X1− 1

p
,p))

and satisfies

‖U‖Lp((0,T )×Ω;X1) ≤ C(1 + ‖u0‖Lp(Ω;X
1− 1

p
,p
)),

‖U‖Lp(Ω;C([0,T ];X
1− 1

p
,p
)) ≤ C(1 + ‖u0‖Lp(Ω;X

1− 1
p
,p
)),

with constants C independent of u0.

5.3. The Hilbert space case. For Hilbert spaces X0, several of the constants in
the estimates in Theorems 4.5 and 5.2 become explicit and we can give more precise
conditions on the smallness of LF and LB. Below, we show that if A is self-adjoint
and positive, then K∗

2 ≤ 1 and K⋄
2 ≤ 1√

2
(these constants have been defined in the

text preceding Theorem 4.5). Moreover, these estimates are optimal in the sense
that the condition (5.3) below cannot be improved (see [78, Section 4.0] for the
stochastic part; see also [13] for more information on the smallness condition for
K∗

p and K⋄
p for p 6= 2). As a consequence one obtains the following result, which is

well known to experts (see [19, 78] for related results and [20] for applications to a
class of SDPEs).
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Corollary 5.7. Let X0 and X1 be Hilbert spaces, and let A : [0, T ] × Ω →
L (X1, X0) be strongly measurable, adapted, self-adjoint, and piecewise relatively
continuous uniformly on Ω. Moreover, assume that there is a constant δ > 0 such
that

‖esA(t,ω)‖ ≤ e−δs, t ∈ [0, T ], ω ∈ Ω.

Assume (HF), (HB) and (Hu0). The assertions of Theorem 5.2 hold whenever

LF +
LB√
2
< 1.(5.3)

A similar consequence of Theorem 5.6 can be formulated in the Hilbert space
setting.

Proof. The result follows at once from Theorem 5.2 once we show that K∗
2 ≤ 1 and

K⋄
2 ≤ 1√

2
. Here is it important to endow X 1

2
with the norm

‖x‖ 1
2
:= ‖A 1

2 x‖(5.4)

(cf. the discussion below (3.2)). By the invertibility of A and the equivalence of
norms (3.2), (5.4) indeed defines an equivalent norm on X 1

2
. If what follows, we

understand K∗
2 and K⋄

2 as the operator norms as defined in Section 4, with X 1
2

normed by (5.4).
We first show that K∗

2 ≤ 1. Using the spectral theorem one can see that for all
s ∈ R, one has

‖A(is+A)−1‖ ≤ 1(5.5)

As direct proof is obtained as follows. For x ∈ X0 with ‖x‖ ≤ 1 and s ∈ R one has

‖A(is+A)−1x‖2 = 〈A2(−is+A)−1(is+A)−1x, x〉
= 〈A2(s2 +A2)−1x, x〉 = 〈A2(t+A2)−1x, x〉 =: f(t),

where t = s2 Then f(0) = 1 and, for t > 0,

f ′(t) = −〈A2(t+A2)−2x, x〉 = −‖A(t+A2)−1x‖2 ≤ 0,

and therefore f(t) ≤ 1 as claimed.
By (5.5) and Plancherel’s theorem, for any g ∈ L2(R+;X0) one has that

‖AS ∗ g‖2L2(R+;X0)
=

∫

R

‖A(is+A)−1ĝ(s)‖2X0
ds ≤

∫

R

‖ĝ(s)‖2X0
ds = ‖g‖2L2(R+;X0)

,

and hence K∗
2 ≤ 1.

Next we show that K⋄
2 ≤ 1√

2
(cf. [19, Section 6.3.2]). By standard arguments

involving the essentially separable-valuedness of strongly measurable mappings (cf.
[64]) there is no loss of generality in assuming that that H is separable. Let (hn)n≥1

be an orthonormal basis of H . Let L2(H,X 1
2
) denote the space of Hilbert-Schmidt

operators (which is canonically isometric to γ(H,X 1
2
)). By the Itô isometry, for all

G ∈ L2(R+ × Ω;L2(H,X 1
2
)) we have

‖A 1
2S ⋄G‖2L2(R+×Ω;X 1

2
) =

∫ ∞

0

∫ t

0

∑

n≥1

E‖AS(t− s)G(s)hn‖2 ds dt

≤
∫ ∞

0

∫ ∞

0

∑

n≥1

E‖AS(t)G(s)hn‖2 dt ds
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=
∑

n≥1

E

∫ ∞

0

∫ ∞

0

[A2S(2t)G(s)hn, G(s)hn] dt ds

=
∑

n≥1

E

∫ ∞

0

1
2 [Ag(s)hn, G(s)hn] ds

= 1
2‖G‖2L2(R+×Ω;L2(H,X 1

2
)).

It follows that K⋄
2 ≤ 1√

2
. �

6. Parabolic SPDEs of order 2m on Rd

In this section we shall apply our abstract results to the following system of N
coupled stochastic partial differential equations on [0, T ]× Rd:

(6.1)



















du(t, x) +A(t, x,D)u(t, x) dt = [f(t, x, u) + f0(t, x)] dt

+
∑

i≥1

[bi(t, x, u) + b0i (t, x)] dwi(t),

u(0, x) = u0(x).

Here

A(t, ω, x,D) =
∑

|α|≤2m

aα(t, ω, x)D
α,

with D = −i(∂1, . . . , ∂d). The precise assumptions on the coefficients

aα : [0, T ]× Ω× R
d → C

N × C
N

and the functions

f : [0, T ]× Ω× R
d ×H2m,q(Rd;CN ) → Lq(Rd;CN )

f0 : [0, T ] → Lq(Rd;CN )

bi : [0, T ]× Ω× R
d ×H2m,q(Rd;CN ) → Hm,q(Rd;CN )

b0 : [0, T ] → Hm,q(Rd;CN )

will be stated in the next two subsections. Essentially, we shall assume that the
conditions of [28] (where the non-random case was discussed) hold pointwise on Ω
with uniform bounds.

6.1. Hypotheses on the coefficients aα. Let Aπ be the principal part of A,

Aπ(t, ω, x,D) =
∑

|α|=2m

aα(t, ω, x)D
α.

(Ha) The coefficients aα : [0, T ]× Ω× Rd → CN × CN are P × BRd-measurable,
where P denotes the progressive σ-algebra of [0, T ]× Ω and BRd the Borel
σ-algebra of Rd. Furthermore,

(i) aα ∈ L∞(Ω;C([0, T ];BUC(Rd;CN × CN ))) for all |α| = 2m,
aα ∈ L∞(Ω× (0, T )× Rd;CN × CN ) for all |α| < 2m.

(ii) There is a constant M1 ≥ 0 such that for all t ∈ [0, T ] and ω ∈ Ω,
∑

|α|=2m

‖aα(t, ω, ·)‖∞ ≤M1.
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(iii) There is a constant M2 ≥ 0 and an angle ϑ ∈ [0, 12π) such that for all

t ∈ [0, T ], ω ∈ Ω, x ∈ R
d, and ξ ∈ R

d with |ξ| = 1 we have

σ(Aπ(t, ω, x, ξ)) ⊆ {z ∈ C \ {0} : | arg(z)| ≤ ϑ}
and

‖Aπ(t, ω, x, ξ)
−1‖L (CN ) ≤M2.

Let Aq(t, ω) denote the realization of A(t, ω, ·) in Lq(Rd;CN ) with domain

D(A(t, ω)) = H2m,q(Rd;CN ).

By [28, Theorem 6.1], applied pointwise on Ω, one has the following powerful result
for the H∞-calculus of A.

Proposition 6.1 ([28]). Let Hypothesis (Ha) be satisfied. For all q ∈ (1,∞) and
σ ∈ (ϑ, 12π) there exist constants w ≥ 0 and C ≥ 1, depending only on q σ, ϑ, M1,
M2, such that for all ω ∈ Ω and t ∈ [0, T ] the operator Aq(ω, t) + w has a bounded
H∞(Σσ)-calculus on Lq(Rd;CN ) with boundedness constant at most C.

This result actually holds with ϑ ∈ [0, π), provided one extends the definition
of bounded H∞-calculi accordingly (replacing negative generators of analytic semi-
groups by generals sectorial operators), but we shall not need it in this generality.

6.2. Hypotheses on the functions f , f0, b, b0, and the initial value u0.

(Hf) The function f0 : [0, T ]×Ω×R
d → Lq(Rd;CN ) is P ×BRd -measurable and

satisfies f0 ∈ L1(0, T ;Lq(Rd;CN )) almost surely. The function f : [0, T ]×
Ω × Rd × H2m,q(Rd;CN ) → Lq(Rd;CN ) is P × BRd × B(H2m,q(Rd;CN ))-
measurable. There exist constants αf ∈ [0, 1), Lf ≥ 0, Lf,αf

≥ 0, Cf ≥ 0

such that for all u, v ∈ H2m,q(Rd;CN ), t ∈ [0, T ], and ω ∈ Ω one has

‖f(t, ω, ·, u)− f(t, ω, ·, v)‖Lq(Rd;CN )

≤ Lf‖u− v‖H2m,q(Rd;CN ) + Lf,αf
‖u− v‖H2m−αf ,q(Rd;CN )

and

‖f(t, ω, u)‖Lq(Rd;CN ) ≤ Cf (1 + ‖u‖H2m,q(Rd;CN )).

(Hb) The functions b0i : [0, T ]×Ω×Rd → Hm,q(Rd;CN ) are P×BRd-measurable
and satisfy b0 ∈ L1(0, T ;Hm,q(Rd; ℓ2(CN ))) almost surely. The functions
bi : [0, T ] × Ω × Rd × H2m,q(Rd;CN ) → Hm,q(Rd;CN ) are P × BRd ×
B(H2m,q(Rd;CN ))-measurable. There exist constants αb ∈ [0, 1), Lb ≥ 0,
Lb,αb

≥ 0 and Cb such that for all u, v ∈ H2m,q(Rd;CN ), t ∈ [0, T ], and
ω ∈ Ω one has

‖b(t, ω, ·, u)− b(t, ω, ·, v)‖Hm,q(Rd;ℓ2(CN ))

≤ Lb‖u− v‖H2m,q(Rd;CN ) + Lb,αb
‖u− v‖H2m−αb,q(Rd;CN )

and

‖b(t, ω, u)‖Hm,q(Rd;ℓ2(CN )) ≤ Cb(1 + ‖u‖H2m,q(Rd;CN )).

(Hu0) The initial value u0 : Ω → Lq(Rd;CN ) is F0-measurable.
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6.3. Main result. We begin by defining the notion of a strong solutions to the
SPDE (6.1). We fix exponents p, q ∈ [2,∞) and assume that (Ha), (Hf), (Hb),
(Hu0) are satisfied. As in Section 4 it can be shown that a strong solution with
paths in Lp(0, T ;H2m,q(Rd;CN ))) is also mild and weak solution (cf. Proposition
4.4 and the references given there).

Definition 6.2. A progressively measurable process u ∈ L0(Ω;Lp(0, T ;H2m,q(Rd;
CN ))) is called a strong solution to (6.1) if for almost all (t, ω) ∈ [0, T ]× Ω,

u(t, ·) +
∫ t

0

A(s, ·, D)u(s, ·) ds = u0(·) +
∫ t

0

f(s, ·, u(s, ·)) + f0(s, ·) ds

+
∑

i≥1

∫ t

0

bi(s, ·, u(s, ·)) + b0i (s, ·) dwi(s).

The integral with respect to time is well defined as a Bochner integral in the
space Lq(Rd;CN ). By (2.5) and the remark following it, the stochastic integrals
are well defined in the space Hm,q(Rd;CN ). Indeed, by (Hb) and the isomorphism
(2.3) one has

∥

∥b(s, ·, u(s, ·))
∥

∥

γ(ℓ2,Hm,q(Rd;CN ))
hq

∥

∥b(s, ·, u(s, ·))
∥

∥

Hm,q(Rd;ℓ2(CN ))

≤ Cb(1 + ‖u(s, ·)‖H2m,q(Rd;CN )).

By the assumptions on u, the L2(0, T )-norm of the right-hand side is finite almost
surely.

As a consequence of Theorem 5.2 one has the following well-posedness result for
the SPDE (6.1).

Theorem 6.3. Let q ∈ [2,∞) and p ∈ (2,∞), where p = 2 is also allowed if
q = 2. Assume (Ha), (Hf), (Hb), (Hu0), and suppose that f0 ∈ Lp

F
(Ω;Lp(0, T ;

Lq(Rd;CN ))) and b0 ∈ Lp
F
(Ω;Lp(0, T ;Hm,q(Rd; ℓ2(CN )))). Provided Lf and Lb

are small enough, the following assertions hold:

(i) If u0 ∈ L0
F0

(Ω;B
2m(1− 1

p
)

q,p (Rd;CN)), then the problem (6.1) has a unique so-

lution u ∈ L0
F
(Ω;Lp(0, T ;H2m,q(Rd;CN ))). Moreover, u has a version with

trajectories in C([0, T ];B
2m(1− 1

p
)

q,p (Rd;CN )).

(ii) If u0 ∈ Lp
F0

(Ω;B
2m(1− 1

p
)

q,p (Rd;CN )), then the solution u given by part (i) sat-
isfies

‖u‖Lp((0,T )×Ω;H2m,q(Rd;CN )) ≤ C
(

1 + ‖u0‖
Lp(Ω;B

2m(1− 1
p
)

q,p (Rd;CN ))

)

‖u‖
Lp(Ω;C([0,T ];B

2m(1− 1
p
)

q,p (Rd;CN ))
≤ C

(

1 + ‖u0‖
Lp(Ω;B

2m(1− 1
p
)

q,p (Rd;CN ))

)

,

with constants C independent of u0.

(iii) For all u0, v0 ∈ Lp
F0

(Ω;B
2m(1− 1

p
)

q,p (Rd;CN)), the corresponding solutions u, v
satisfy

‖u− v‖Lp((0,T )×Ω;H2m,q(Rd;CN )) ≤ C‖u0 − v0‖
Lp(Ω;B

2m(1− 1
p
)

q,p (Rd;CN ))
,

‖u− v‖
Lp(Ω;C([0,T ];B

2m(1− 1
p
)

q,p (Rd;CN )))
≤ C‖u0 − v0‖

Lp(Ω;B
2m(1− 1

p
)

q,p (Rd;CN ))
,

with constants C independent of u0 and v0.
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Proof. It suffices to check the conditions of Theorem 5.2 with X0 = Lq(Rd;CN )
andX1 = H2m,q(Rd;CN ). These spaces satisfy Hypothesis (HX), Hypothesis (HA)′

holds by Proposition 6.1 and the assumption that ϑ < 1
2π, and Hypothesis (Hu0)

holds by the assumption on u0. The family J is R-bounded from L (Lp
F
(R+ ×

Ω; γ(H,X0)) to L
p(R+ × Ω;X0) by Theorem 2.5.

Recall from [83, Theorems 2.4.2, 2.4.7 and 2.5.6] that

(6.2) X 1
2
= Hm,q(Rd;CN) and X1− 1

p
,p = B

2m(1− 1
p
)

q,p (Rd;CN ).

Let F : [0, T ]×Ω×X1 → X0 be defined by F (t, ω, u) = f(t, ω, ·, u). The additional
additive term can be defined in a similar way. Then the equivalent version of (HF)

discussed in Remark 4.1 is satisfied with αF = αf , L
′
F = Lf , L̃

′
F = Lf,αf

and

CF = Cf . Let H = ℓ2 and let B : [0, T ] × Ω × X1 → γ(H,X 1
2
) be defined by

B(t, ω, u)ei = bi(t, ω, ·, u). The additional additive term can be defined in a similar
way. Then the equivalent version of (HB) discussed in Remark 4.1 is satisfied with

αB = αb, L
′
B = Lb, L̃

′
B = Lb,αb

and CB = Cb.
In this way, the equation (6.1) can be written as (SE′), where the unknown

processes u : [0, T ]×Ω×Rd → CN and U : [0, T ]× Ω → X0 are identified through
U(t, ω)(x) = u(t, ω, x). The result then follows from Theorem 5.2 and (6.2). �

Remark 6.4. Let n ∈ Z. If aα ∈ BUC|n|(Rd;CN ×CN ) one can transfer the result
of Proposition 6.1 to the realization of A(t, ω, ·) in Hn,q(Rd;CN ) with domain

D(An,q(t, ω)) = Hn+2m,q(Rd;CN ).

We refer to [47, Lemma 5.2] for details. Using this fact, under suitably reformu-
lated assumptions on f , f0, b, b0 and u0 one can obtain a version of Theorem 6.3
with an additional regularity parameter n ∈ Z. It is even possible to consider a
real parameter n, but in that case on needs additional smoothness on a (see [83,
Corollary 2.8.2]).

6.4. Discussion. In this subsection we compare the above result Theorem 6.3 with
available results in the literature.

The case m = 1 and N = 1 of Theorem 6.3 has some overlap with [47, Theorem
5.1] due to Krylov. Theorem 6.3 improves on [47, Theorem 5.1] in various respects.

(i) Our approach covers SPDEs governed by N -dimensional systems of elliptic
operators of order 2m for any m ≥ 1.

Even for m = 1 and N = 1, there are new features in our approach:

(ii) In our setting, the highest order coefficients aα are only assumed to be
bounded and uniformly continuous in the space variable, whereas in [47,
Theorem 5.1] it is assumed that they are Hölder continuous in the space
variable. Our continuity assumptions can be further weakened to VMO
assumptions (cf. [29] for the second order case). Recently, in [43] Krylov’s
Lp-approach has been extended to prove results for continuous coefficients
as well.

(iii) In our approach, the parameters p and q can be chosen independently of
each other. In [47, Theorem 5.1], only the case p = q is considered, in [48]
an extension to the case p ≥ q ≥ 2 was obtained. We do not need such an
assumption.
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Finally, the regularity assumptions on the initial value in [47, Theorem 5.1] seem
not to be optimal.

On the other hand, there are two striking features of Krylov’s result that we
could not cover by our methods.

(i)′ In [47, Theorem 5.1], an additional linear term satisfying a less restrictive
smallness condition can be allowed in the multiplicative part of the noise
(see [47, Assumption 5.1]).

In our approach, we need a smallness condition on Lf and Lb and are not able to
take the linear part as mentioned above into account yet. There is a possibility
that the operator-theoretic approach of [11] works in such a setting. We also refer
to Subsection 5.3 for a discussion on the smallness condition.

(ii)′ In [47, Theorem 5.1], the highest order coefficients aα with |α| = 2 need
only be measurable in time.

Quite possibly, this cannot be achieved by an operator theoretic approach. All well-
posedness results for time-dependent problems currently available in the literature
impose some continuity assumption in order to proceed by perturbation arguments.

With regard to (i), we mention that Mikulevicius and Rozovskii [62] have ex-
tended Krylov’s Lp-approach to N -dimensional systems of second order equations.
Apart from the fact that our result covers operators of order 2m, the differences
are of the same nature as those pointed out in (ii), (iii), and (i)′, (ii)′. A further
difference is that Mikulevicius and Rozovskii consider equations in divergence form.
Our results hold for systems of second operators in divergence form as well, since,
under mild regularity assumptions on the coefficients, such operators also have a
bounded H∞-calculus (see [26, 54] and references therein).

7. Second order parabolic SPDEs on bounded domains in Rd

We proceed with an application of Theorems 4.5 and 5.2 to a class of second or-
der parabolic SPDEs on a bounded domain O ⊆ R

d with mixed Dirichlet and Neu-
mann boundary conditions. All results can be extended to N -dimensional systems
of operators of 2m for arbitrary m ≥ 1, assuming Lopatinskii-Shapiro boundary
conditions (see [22] for more on this). The case N = 1 and m = 1 is chosen here in
order to keep the technical details at a reasonable level.

Let O ⊆ Rd be a bounded domain with a C2-boundary ∂O = Γ0 ∪ Γ1 where
Γ0 and Γ1 are disjoint and closed (one of them being possibly empty). On [0, T ]×
O we consider the following stochastic partial differential equation with Dirichlet
boundary conditions on Γ0 and Neumann boundary conditions on Γ1:

(7.1)































du(t, x) +A(x,D)u(t, x) dt = [f(t, x, u) + f0(t, x)] dt

+
∑

i≥1

[bi(t, x, u) + b0i (t, x)] dwi(t),

C(x,D)u = 0,

u(0, x) = u0(x).

Here

A(x,D) =

d
∑

i,j=1

aij(x)DiDj +

d
∑

i=1

ai(x)Di + a0,
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where Di denotes the i-th partial derivative, and

C(x,D) =

d
∑

i=1

ci(x)Di + c0(x).

7.1. Assumptions on the coefficients aij, ai, ci. Essentially, the assumptions
on aij and ai correspond to a special case of an example in [21] and [40].

(Ha) The coefficients aij , ai, ci are real-valued and satisfy:
(i) There is a constant ρ ∈ (0, 1] such that

aij ∈ Cρ(O) for all 1 ≤ i, j ≤ d.

Furthermore,

ai ∈ C(O) for all 0 ≤ i ≤ n,

ci ∈ C1(O) for all 0 ≤ i ≤ d.

(ii) The matrices (aij(x)) are symmetric and there is a constant κ > 0
such that for all x ∈ O and ξ ∈ Rd one has

d
∑

i,j=1

aij(x)ξiξj ≥ κ|ξ|2.

(iii) For all x ∈ Γ0 we have c0(x) = 1 and c1(x) = c2(x) = . . . = cd(x) = 0.
There is a constant κ′ > 0 such that for all x ∈ Γ1 we have

d
∑

i,j=1

ci(x)ni(x) ≥ κ′.

We denote by Aq be the realization of A(·) in Lq(O) with domain

D(A(t, ω)) = H2,q
C (O) :=

{

u ∈ H2,q(O) : C(x,D)u = 0
}

.

One has the following result for the H∞-calculus of Aq (see [21] and [40]).

Proposition 7.1. Assume that (Ha) is satisfied. For all q ∈ (1,∞) there exist
constants w ≥ 0 and σ ∈ [0, 12π) such that Aq +w has a bounded H∞(Σσ)-calculus
on Lq(O).

7.2. Hypotheses on the functions f , f0, b, b0, and the initial value u0.

(Hf) The function f0 : [0, T ] × Ω × O → Lq(O) is P × BO-measurable and
satisfies f0 ∈ L1(0, T ;Lq(O)) almost surely. The function f : [0, T ]× Ω ×
O×H2,q

C (O) → Lq(O) is P ×BO ×B(H2,q(O))-measurable and there exist
constants αf ∈ [0, 1), Lf ≥ 0, Lf,αf

≥ 0, and Cf ≥ 0 such that for all

u, v ∈ H2,q
C (O), t ∈ [0, T ], and ω ∈ Ω one has

‖f(t, ω, ·, u)− f(t, ω, ·, v)‖Lq(O)

≤ Lf‖u− v‖H2,q(O) + Lf,αf
‖u− v‖H2−αf ,q(O),

and

‖f(t, ω, u)‖Lq(O) ≤ Cf (1 + ‖u‖H2,q(O)).
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(Hb) The functions b0i : [0, T ] × Ω × O → Lq(O) are P × BO-measurable and
satisfy b0 ∈ L1(0, T ;H1,q(O; ℓ2)) almost surely. The functions bi : [0, T ]×
Ω × O × H2,q

C (O) → H1,q(O) are P × BO × B(H2,q
C (O))-measurable and

there exist constants αb ∈ [0, 1), Lb,1 ≥ 0, Lb,αb
≥ 0, and Cb such that for

all u, v ∈ H2,q
C (O), t ∈ [0, T ], and ω ∈ Ω one has

‖b(t, ω, ·, u)− b(t, ω, ·, v)‖H1,q
C

(O)

≤ Lb‖u− v‖H2,q(O) + Lb,αb
‖u− v‖H2−αb,q(O)

and

‖b(t, ω, u)‖H1,q
C

(O;ℓ2) ≤ Cb(1 + ‖u‖H2,q(O)).

(Hu0) The initial value u0 : Ω → Lq(O) is F0-measurable.

7.3. Main result. We let p, q ∈ [2,∞) and assume that (Ha), (Hf) (Hb), (Hu0)
are satisfied.

Definition 7.2. A progressively measurable process u ∈ L0(Ω;Lp(0, T ;H2,q(O)))
is called a solution to (7.1) if, for almost all (t, ω) ∈ [0, T ]× Ω,

u(t, ·) +
∫ t

0

A(·, D)u(s, ·) ds = u0(·) +
∫ t

0

f(s, ·, u(s, ·)) + f0(s, ·) ds

+
∑

i≥1

∫ t

0

bi(s, ·, u(s, ·)) + b0i (s, ·) dwi(s).

Arguing as in the previous section, we see that the integral with respect to time
is well defined as a Bochner integral in the space Lq(O) and the stochastic integrals

are well defined in H1,q
C (O).

Following [1], we define the following Besov and Bessel potential spaces with
boundary conditions. For p ∈ (1,∞) and q ∈ (1,∞), and Ss

q ∈ {Bs
q,p, H

s
q} let

Ss
q,C(O) = {u ∈ Ss

q(O) : Cu = 0} 1 + 1
q < s ≤ 2.

For p ∈ (1,∞) and q ∈ (1,∞), and Ss
q ∈ {Bs

q,p, H
s
q } let

Ss
q,C(O) = {u ∈ Ss

q(O) : Tr(u) = 0 on Γ0} 1
q < s < 1 +

1

q
.

Below we use the following well-known result:

X 1
2
= H1,q

C (O) and X1− 1
p
,p = B

2− 2
p

q,p,C(O),

Indeed, since A has a bounded H∞-calculus of angle < 1
2π, it has bounded imagi-

nary powers and therefore, by [84, Theorem 1.15.3],X 1
2
= [X0, X1] 1

2
with equivalent

norms. Now by Theorem 5.2 and Remark 5.3 (c) in [1] one obtains X 1
2
= H1,q

C (O)

with equivalent norms. Similarly, if 2− 2
p /∈ { 1

q , 1 +
1
q } then

X1− 1
p
,p = (X0, X1)1− 1

p
,p = B

2− 2
p

q,p,C(O).

Note that in the case that Γ0 = ∅, one has H1,q
C (O) = H1,q(O) for all q ∈ (1,∞)

with equivalent norms.
As a consequence of Theorem 4.5 we obtain the following well-posedness result

for the SPDE (6.1).
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Theorem 7.3. Let q ∈ [2,∞) and p ∈ (2,∞), where p = 2 is also allowed if q = 2.
Assume that 2

p + 1
q 6= 1. Assume that (Ha), (Hf), (Hb), (Hu0) are satisfied and

suppose that f0 ∈ Lp
F
(Ω;Lp(0, T ;Lq(O))) and b0 ∈ Lp

F
(Ω;Lp(0, T ;H1,q(O; ℓ2))).

Provided Lf and Lb are small enough, the following assertions hold:

(i) If u0 ∈ L0
F0

(Ω;B
2− 2

p

q,p,C(O)), then the problem (6.1) has a unique solution u ∈
L0

F
(Ω;Lp(0, T ;H2,q

C (O))). Moreover, u has a version with trajectories in the

space C([0, T ];B
2− 2

p

q,p,C(O)).

(ii) If u0 ∈ Lp
F0

(Ω;B
2− 2

p

q,p,C(O)), then the solution u given by part (i) satisfies

‖u‖Lp((0,T )×Ω;H2,q
C

(O)) ≤ C(1 + ‖u0‖
Lp(Ω;B

2− 2
p

q,p,C
(O))

)

‖u‖
Lp(Ω;C([0,T ];B

2− 2
p

q,p,C
(O))

≤ C(1 + ‖u0‖
Lp(Ω;B

2− 2
p

q,p,C
(O))

),

with constants C independent of u0.

(iii) For all u0, v0 ∈ Lp
F0

(Ω;B
2− 2

p

q,p,C(O)), the corresponding solutions u, v satisfy

‖u− v‖Lp((0,T )×Ω;H2,q
C

(O)) ≤ C‖u0 − v0‖
Lp(Ω;B

2− 2
p

q,p,C
(O))

,

‖u− v‖
Lp(Ω;C([0,T ];B

2− 2
p

q,p,C(O))
≤ C‖u0 − v0‖

Lp(Ω;B
2− 2

p
q,p,C(O))

,

with constants C independent of u0 and v0.

Proof. We check the conditions of Theorem 5.2 with X0 = Lq(O) and X1 =

H2,q
C (O).
As in the proof of Theorem 6.3, the verification of the Hypotheses (HX), (HA),

(Hu0), as well as the R-boundedness of J is immediate.
Let F : [0, T ] × Ω × X1 → X0 be defined by F (t, ω, u) = f(t, ω, ·, u). The

additional term can be defined in a similar way. Then the equivalent version of
(HF) discussed in Remark 4.1 is satisfied with αF = αf , L

′
F = Lf , L̃

′
F = Lf,αf

and CF = Cf . Let H = ℓ2 and let B : [0, T ] × Ω × X1 → γ(H,X 1
2
) be defined

by B(t, ω, u)ei = bi(t, ω, ·, u). The additional term can be defined in a similar way.

Then (HB) (see Remark 4.1) is satisfied with αB = αb, L
′
B = Lb, L̃

′
B = Lb,αb

and
CB = Cb.

In this way, the equation (6.1) can be written as (SE′), where the unknown
processes u : [0, T ]× Ω × O → R and U : [0, T ]× Ω → X0 are identified through
U(t, ω)(x) = u(t, ω, x). The result now follows from Theorem 5.2 and (6.2) and the
assumptions on p and q. �

Remark 7.4. Under additional continuity assumptions on the coefficients aij , the
same methods one can be used to handle the case where A depends on time and Ω.

7.4. Discussion. In case of Dirichlet boundary conditions, related results for
weighted half-spaces and bounded domains with weights have been obtained by
Kim and Krylov (see [43] and references therein) using Krylov’s Lp-approach. The
weighted approach started with the L2-theory of Krylov [45]. The advantage of us-
ing weights is that no additional compatibility conditions on the noise are required
in this case, whereas in the unweighted case such conditions seem to be unavoid-
able (see [31]). To see the point, note that Theorem 7.3 does not cover the simple
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problem










du(t, x) = 1
2∆u(t, x) dt+ dw(t), t ∈ [0, T ], x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, x) = 0, x ∈ (0, 1),

in, say, E = Lq(0, 1) with q ∈ (2,∞), where w is a real-valued Brownian motion.
Now the constant function g = 1 in the noise term dw(t) = 1 dw(t) does not belong

to D((−∆)
1
2 ) = H1,q

0 (0, 1) due to the Dirichlet boundary conditions. We refer to
[50, Section 4] for a further discussion of this example.

It seems likely that, under suitable regularity assumptions on the coefficients,
the Lp-realisations of the operators A on weighted domains should have a bounded
H∞-calculus. If true, the weighted domain case could be treated by our methods
as well. Maximal Lp-regularity results for elliptic operators on Lp(O, w) for open
domains O ⊆ Rd and Muckenhaupt weights w were proved in [36]. Further evidence
is provided by the fact (see [23]) that if the linear Cauchy problem with additive
noise has maximal regularity for both A and its adjoint, then A necessarily has a
bounded H∞-calculus.

8. The stochastic Navier-Stokes equation

Let d ≥ 2 be a fixed integer and suppose that O is a smooth bounded open
domain in Rd. Let H be a Hilbert space (for instance ℓ2 or L2(O)). Let q ∈ (1,∞)
be fixed. We are interested in local existence of strong solutions in (H1,q(O))d of
the Navier-Stokes equation

(8.1)



























∂u

∂t
= ∆u− (u · ∇)u + f0 −∇p+ (g(u,∇u) + g0)ẆH ,

div u(t, ·) = 0, t > 0,

u(t, x) = 0, t > 0, x ∈ ∂O,
u(0, ·) = u0.

Note that we allow g to depend on both u and ∇u. As is well known (see, for
instance, [8, 63]) such dependencies arise in the modelling of the onset of turbulence.

The function u0 : O → Rd is the initial velocity field, WH is a cylindrical
Brownian motion in H , and u and p represent the velocity field and the pressure
of the fluid, respectively. We assume that f0 and g0 are strongly measurable and
adapted and belong to L1(0, T ;H−1,q(O)) and L2(0, T ;Lq(O;H)) almost surely,
respectively. The function g is interpreted as a strongly measurable mapping

g : (H1,q(O))d → (Lq(O;H))d,

and we assume that for and all x, y ∈ (H1,q(O))d we have

(8.2) ‖g(u)− g(v)‖(Lq(O;H))d ≤ Lg‖u− v‖(H1,q(O))d + L̃g‖u− v‖(Lq(O))d .

It is well known (see [32] and [40, Section 9]) that we have the direct sum
decomposition

(Lq(O))d = X
q ⊕G

q,

where Xq is the closure in (Lq(O))d of the set {u ∈ (C∞
c (O))d : ∇ · u = 0}

and G
q = {∇p : p ∈ H1,q(O)}. We denote by P the Helmholtz projection from
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(Lq(O))d onto Xq along this decomposition. The negative Stokes operator is the
linear operator (A,D(A)) defined by

D(A) = X
q ∩ D(∆Dir),

Av = −P (∆u), u ∈ D(A),

where D(∆Dir) is the domain of the Dirichlet Laplacian in (Lq(O))d, which for
C2-domains equals

D(∆Dir) = {u ∈ (H2,q(O))d : u = 0 on ∂O}.
The operator A is boundedly invertible (see [15] and [40, page 797]), −A generates
a bounded analytic C0-semigroup in Xq, and it was shown in [71] (for C3 domains)
and [40, Theorem 9.17] (for C1,1 domains) that A has a bounded H∞-calculus on
Xq:

Proposition 8.1. For all q ∈ (1,∞) the negative Stokes operator A has a bounded
H∞(Σσ)-calculus of angle 0 < σ < 1

2π on X
q.

It is well known (see [81] for the details) that, by applying the Helmholtz pro-
jection P to u, the Navier-Stokes equation (8.1) can be reformulated as an abstract
stochastic evolution on

X0 := X
q

− 1
2

,

where the space on the right-hand side is defined as the completion of Xq with
respect to the norm

‖x‖X0 := ‖A− 1
2x‖Xq .

In particular, as a Banach space, X0 is isomorphic to a closed subspace of Lq(O).
The bounded invertibility of A implies that the identity operator on X

q extends
to a continuous embedding Xq →֒ X0. Furthermore we set

X1 := D(A
1
2 ).

For s ∈ (0, 1] and s− 1
q > 0 let Hs,q

0 (O) and Bs
q,p,0(O) denote the closed subspaces

of Hs,q(O) and Bs
q,p(O) with zero trace. If s − 1

q < 0 we let Hs,q
0 (O) = Hs,q(O)

and Bs
q,p,0(O) = Bs

q,p(O). Furthermore let H−1,q(O) be the dual of H1,q′

0 (O) with
1
q + 1

q′ = 1.

The following lemma is well known.

Lemma 8.2. For every α ∈ [ 12 , 1] and p, q ∈ (1,∞) with 2α− 1− 1
q 6= 0 one has

(8.3) Xα = D(Aα− 1
2 ) = X

q ∩ (H2α−1,q
0 (O))d,

(8.4) Xα,p = X
q ∩ (B2α−1

q,p,0 (O))d.

Moreover, P induces a bounded linear operator

P : (H−1,q(O))d → X0.

Proof. To prove (8.3) note that

(8.5) Xα = D(Aα− 1
2 ) = [Xq,D(A)]α− 1

2
,

where we used [2, Theorem V.1.5.4], Proposition 8.1 and (3.2). The second identity
in (8.3) follows from [33], [40, Theorem 9.17] and [84, Theorem 1.17.1.1]. By a
similar reasoning one obtains (8.4).
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The final assertion follows from a similar argument as in [40, Proposition 9.14]
(see also [52, Proposition 3.1]). �

Define F : Xθ+ 1
2
×Xθ+ 1

2
→ X0 by

F (u, v) = −P ((u · ∇)v)

and write F (u) := F (u, u). We will check that these mappings are well defined for
θ ≥ d

4q . Indeed, by [34], for these θ one has

‖A− 1
2F (u, v)‖Lq(O) ≤ C‖Aθu‖Lq(O)‖Aθv‖Lq(O), u, v ∈ D(Aθ).

This can be reformulated as

‖F (u, v)‖X0 ≤ C‖u‖X
θ+1

2

‖v‖X
θ+1

2

, u, v ∈ Xθ+ 1
2
,

from which the well-definedness follows. Moreover, one immediately obtains the
following local Lipschitz estimate (see [12])

‖A− 1
2 (F (u)− F (v))‖Lq(O) ≤ C(‖Aθu‖Lq(O) + ‖Aθv‖Lq(O))‖Aθu−Aθv‖Lq(O),

which can be reformulated as

‖F (u)− F (v)‖X0 ≤ C(‖u‖X
θ+1

2

+ ‖v‖X
θ+1

2

)‖u− v‖X
θ+1

2

.

In particular, if 0 ≤ θ < 1
2 − 1

p and p ∈ [2,∞), then 1 − 1
p > θ + 1

2 and therefore

F : X1− 1
p
,p ×X1− 1

p
,p → X0 is locally Lipschitz continuous.

Next define B : X1 → γ(H,X 1
2
) by

B(u) = P (g(u)).

This is well defined, because g maps X1 = (H1,q(O))d into

(Lq(O;H))d = (γ(H,Lq(O))d = γ(H, (Lq(O))d),

and the Helmholtz projection extends to a bounded projection P : γ(H, (Lq(O))d) →
γ(H,Xq) = γ(H,X 1

2
) in a canonical way. Here we used (2.1) and (8.5).

Now we can reformulate (8.1) as an abstract stochastic evolution equation in X0

of the form

(8.6)

{

dU(t) + A U(t) dt = [F (U(t)) + f(t)] dt+ [B(U(t)) + b(t)] dWH(t),

U(0) = u0,

where A = A− 1
2
, f = Pf0 and b = Pg0.

Theorem 8.3. Let d ≥ 2, and let p > 2 and q ≥ 2 satisfy d
2q < 1− 2

p . Let u0 : Ω →
Xq∩B1− 2

p

q,p,0(O))d be strongly F0-measurable. Let f0 ∈ L0
F
(Ω;Lp(0, T ; (H−1,q(O))d))

and g0 ∈ L0
F
(Ω;Lp(0, T ;Lq(O;H))). If the Lipschitz constant Lg in (8.2) is small

enough, then the problem (8.6) admits a unique maximal local mild solution on

[0, T ] with values in (H1,q
0 (O))d. Moreover, this solution has a modification with

continuous trajectories in (B
1− 2

p

q,p,0(O))d.

Proof. The operator family J is R-bounded. Furthermore, by Proposition 8.1 A
has a bounded H∞-calculus on Xq = X 1

2
(the equality of these spaces follows from

(8.3)) of angle < 1
2π. Therefore, A = A− 1

2
has a bounded H∞-calculus on X0.
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By Lemma 8.2 (and noting that 1− 2
p >

d
2q ≥ 1

q to justify the boundary condi-

tions), one has X0 = Xq ∩ (H−1,q(O))d X1 = Xq ∩ (H1,q
0 (O))d and

(X0, X1)1− 1
p
,p = X

q ∩ (B
1− 2

p

q,p,0(O))d, (X0, X1) 1
2
= X

q.

By Lemma 8.2, u0 ∈ (X0, X1)1− 1
p
,p almost surely.

For any θ ∈ [ d
4q ,

1
2 − 1

p ), we can apply Theorem 5.6 with F (1) = 0, F (2) =

F , B(1) = B, and B(2) = 0 (and combine (8.2) with Remark 4.1 to check the
assumptions concerning B(1)) to obtain a unique maximal local mild solution U
which satisfies the assertions of Theorem 5.6. �

Remark 8.4. The above result is merely a proof-of-principle and can be extended
into various directions. For instance, more general ranges of the parameters can
be considered as in [12, 34]; different regularity assumptions on the coefficients are
possible, and different regularity of the solutions will result. Furthermore, we expect
global existence in dimension d = 2. Using the results of [51, 52], we believe that it
should be possible to adapt the above techniques to study maximal regularity for
the Navier–Stokes equation on Rd (see also the discussion below). Along similar
lines, it should be possible to use the results of [51, 52, 71] to study maximal
regularity in the case of exterior domains in Rd. We plan to address such issues in
a forthcoming paper.

8.1. Discussion. The existence of H1,q(O)-solutions for the stochastic Navier-
Stokes equation in dimension d = 2 was established, under a trace class assumption
on the noise replacing our assumption on g, by Brzeźniak and Peszat [12]. In their
framework, g is a C1-function on Rd with locally Lipschitz continuous derivatives;
it is then shown that g induces a locally Lipschitz continuous mapping G from Xη

to γ(H,X 1
2
) for suitable exponents η > 1. However, G is not defined on X1 and

therefore g cannot be allowed to depend on both u and ∇u.
Under the same assumptions on g as ours, existence of a local strong H1,q(Rd)-

solution for dimensions d ≥ 2 has been shown by Mikulevicius and Rozovskii [63].
Existence and uniqueness of local strong H1,2-solutions in bounded domains was
obtained by Mikulevicius [61]. In both papers, global existence for d = 2 is estab-
lished as well.
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[13] Z. Brzeźniak and M.C. Veraar. Is the stochastic parabolicity condition dependent on p and
q? submitted for publication.

[14] D.L. Burkholder. Martingales and singular integrals in Banach spaces. In Handbook of the
geometry of Banach spaces, Vol. I, pages 233–269. North-Holland, Amsterdam, 2001.

[15] L. Cattabriga. Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend.
Sem. Mat. Univ. Padova, 31:308–340, 1961.

[16] A. Chojnowska-Michalik and B. Goldys. Generalized Ornstein-Uhlenbeck semigroups:
Littlewood-Paley-Stein inequalities and the P. A. Meyer equivalence of norms. J. Funct.
Anal., 182(2):243–279, 2001.

[17] Z. Ciesielski, G. Kerkyacharian, and B. Roynette. Quelques espaces fonctionnels associés à
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[36] R. Haller, H. Heck, and M. Hieber. Muckenhoupt weights and maximal Lp-regularity. Arch.
Math. (Basel), 81(4):422–430, 2003.

[37] T.P. Hytönen and M.C. Veraar. On Besov regularity of Brownian motions in infinite dimen-
sions. Probab. Math. Statist., 28(1):143–162, 2008.

[38] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New
York). Springer-Verlag, New York, second edition, 2002.

[39] N. Kalton and S. Montgomery-Smith. Interpolation of Banach spaces. In Handbook of the
geometry of Banach spaces, Vol. 2, pages 1131–1175. North-Holland, Amsterdam, 2003.

[40] N.J. Kalton, P.C. Kunstmann, and L.W. Weis. Perturbation and interpolation theorems for
the H∞-calculus with applications to differential operators. Math. Ann., 336(4):747–801,
2006.

[41] N.J. Kalton and L.W. Weis. The H∞-calculus and sums of closed operators. Math. Ann.,
321(2):319–345, 2001.

[42] N.J. Kalton and L.W. Weis. The H∞-calculus and square function estimates. Preprint, 2004.
[43] K.-H. Kim. Sobolev space theory of SPDEs with continuous or measurable leading coefficients.

Stochastic Process. Appl., 119(1):16–44, 2009.
[44] N.V. Krylov. A generalization of the Littlewood-Paley inequality and some other results

related to stochastic partial differential equations. Ulam Quart., 2(4):16 ff., approx. 11 pp.
(electronic), 1994.

[45] N.V. Krylov. A Wn
2
-theory of the Dirichlet problem for SPDEs in general smooth domains.

Probab. Theory Related Fields, 98(3):389–421, 1994.
[46] N.V. Krylov. On Lp-theory of stochastic partial differential equations in the whole space.

SIAM J. Math. Anal., 27(2):313–340, 1996.
[47] N.V. Krylov. An analytic approach to SPDEs. In Stochastic partial differential equations:

six perspectives, volume 64 of Math. Surveys Monogr., pages 185–242. Amer. Math. Soc.,
Providence, RI, 1999.

[48] N.V. Krylov. SPDEs in Lq((0, τ ]], Lp) spaces. Electron. J. Probab., 5:Paper no. 13, 29 pp.
(electronic), 2000.

[49] N.V. Krylov. On the foundation of the Lp-theory of stochastic partial differential equations.
In Stochastic partial differential equations and applications—VII, volume 245 of Lect. Notes
Pure Appl. Math., pages 179–191. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[50] N.V. Krylov. A brief overview of the Lp-theory of SPDEs. Theory Stoch. Process., 14(2):71–
78, 2008.

[51] P.C. Kunstmann. H∞-calculus for the Stokes operator on unbounded domains. Arch. Math.
(Basel), 91(2):178–186, 2008.

[52] P.C. Kunstmann. Navier-Stokes equations on unbounded domains with rough initial data.
Czechoslovak Math. J., 60(135)(2):297–313, 2010.
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