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QUASI-TÖPLITZ FUNCTIONS IN KAM THEOREM ∗

MICHELA PROCESI† AND XINDONG XU ‡

Abstract. We define and describe the class of Quasi-Töplitz functions. We then prove an
abstract KAM theorem where the perturbation is in this class. We apply this theorem to a Non-
Linear-Schrödinger equation on the torus Td, thus proving existence and stability of quasi–periodic
solutions.
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1. Introduction . In this paper, we study a model NLS with external param-
eters on the torus Td and prove existence and stability of quasi–periodic solutions.
In order to do this we introduce a new class of functions, which we denote as quasi-
Töplitz. We focus on the equation

iut −△u+Mξu+ f(|u|2)u = 0, x ∈ T
d, t ∈ R,(1.1)

where f(y) is a real analytic function with f(0) = 0, while Mξ is a Fourier multiplier,
namely a linear operator which commutes with the Laplacian and whose role is to
introduce b parameters in order to guarantee that equation (1.1) linearized at u = 0
admits a quasi–periodic solution with b frequencies. More precisely we choose a finite
set {n(1) = 0, n(2), · · · , n(b)} with n

(i) ∈ Zd and define Mξ so that the eigenvalues of
the operator △+Mξ are

{

ωj = |n(j)|2 + ξj , 1 ≤ j ≤ b

Ωn = |n|2, n /∈ {n(1), · · · , n(b)}(1.2)

Equation (1.1) is a well known model for the natural NLS, in which the Fourier
multiplier is substituted by a multiplicative potential V . Existence and stability of
quasi–periodic solutions of (1.1) via a KAM algorithm was proved in [13] for the more
general case where f(y) is substituted with f(y, x), x ∈ Td. With respect to that
paper we use a different approach to prove measure estimates, based essentially on
two ingredients: the fact that the equation has the total momentum M =

∫

Td ū∇u
as an integral of motion, and the use of the properties of the quasi-Töplitz functions.
These two ideas induce some significant simplifications which we think are interesting,
in particular the conservation of momentum enables us to prove a stronger result,
namely our solutions are analytic while in [13] only Gevrey class is proven. Our
dynamical result for the NLS (1.1) is

Theorem 1. There exists a positive-measure Cantor set C such that for any
ξ = (ξ1, · · · , ξb) ∈ C, the nonlinear Schrödinger equation (1.1) admits small ampli-
tude analytic quasi-periodic solutions. The solutions are linearly stable and we give a
reducible normal form close to them.

This is obtained by proving that the NLS Hamiltonian fits the hypotheses of an
abstract KAM theorem, see Theorem 2.
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Before describing our results and techniques more in detail, let us make a very
brief excursus on the literature on quasi–periodic solutions for PDEs on Td and on
the general strategy of a KAM algorithm.

The existence of quasi–periodic solutions for equation (1.1) (as well as for the
non–linear wave equation) was first proved by Bourgain, see [3] and [4], by applying
a combination of Lyapunov-Schmidt reduction and Nash–Moser generalized implicit
function theorem in order to solve the small divisor problem. This method is very
flexible and may be effectively applied in various contexts, for instance in the case
where f(y) has only finite regularity, see [9] and [10]. As a drawback this method
only establishes existence of the solutions but does not give information on the linear
stability. In order to achieve this stronger result it is natural to extend to (1.1) the,
by now classical, KAM techniques which were developed to study equation (1.1) with
Dirichlet boundary conditions on the segment [0, π]. A fundamental hypothesis in the
aforementioned algorithms is that the eigenvalues Ωn are simple, and this is clearly not
satisfied already in the case of equation (1.1) on T1, where the eigenvalues are double.
We mention that this hypothesis was weakened for the non–linear wave equation by
Chierchia and You in [11], by only requiring that the eigenvalues have finite and
uniformly bounded multiplicity. Their method however does not extend trivially to
the NLS on T1 and surely may not be applied to the NLS in higher dimension, where

the multiplicity of Ωn is of order Ω
(d−1)/2
n . The first result on KAM theory on the

torus Td was given in [14] for the non–local NLS:

iut −△u+Mξu+ f(|Ψs(u)|2)Ψs(u) = 0, x ∈ T
d, t ∈ R,

where Ψs is a linear operator, diagonal in the Fourier basis and such that Ψs(e
i〈n,x〉) =

|n|−2sei〈n,x〉 for some s > 0. The key points of that paper are: 1. the use of the con-
servation of the total momentum to avoid the problems arising from the multiplicity
of the Ωn and 2. the fact that the presence of the non–local operator Ψs simplifies the
proof of the Melnikov non–resonance conditions throughout the KAM algorithm. As
we mentioned before the more complicated problem of a KAM algorithm for the local
NLS without momentum conservation was solved by Eliasson and Kuksin in [13].

Let us briefly describe the general strategy in the KAM algorithm for equation
(1.1).

We expand the solution in Fourier series as u =
∑

n∈Zd

unφn(x), here φn(x) =

√

1
(2π)d

ei〈n,x〉 with n ∈ Zd is the standard Fourier basis.Then we introduce stan-

dard action-angle coordinates for the modes nj by setting unj =
√

I
(0)
j + Ije

iϑj , j =

1, · · · , b, where the I
(0)
j are arbitrary sufficiently small numbers. Finally we set

un = zn = z+n , ūn = z̄n = z−n for all n 6= {n(1), · · · , n(b)}. We get

H =
∑

1≤j≤b

ωj(ξ)Ij +
∑

n∈Zd
1

Ωn|zn|2 + P (I, ϑ, z, z̄), Z
d
1 := Z

d \ {n1, . . . , nb}.(1.3)

It is easily seen that H and hence P preserve the total momentum (see formula (2.5)
below) moreover P (and

∑

(Ωm − |m|2)zmz̄m) are Töplitz/anti-Töplitz functions,
namely the Hessian matrix ∂zσ

m
∂zσ′

n
P depends on zσm, zσ

′
n only through σm+ σ′n.

Informally speaking the KAM algorithm consists in constructing a convergent
sequence of symplectic transformations Φν such that

Φν ◦H := Hν =
∑

1≤j≤b

ω
(ν)
j (ξ)Ij +

∑

n∈Zd
1

Ω(ν)
n (ξ)|zn|2 + Pν(ξ, I, ϑ, z, z̄),(1.4)
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where Pν → 0 in some appropriate norm. The symplectic transformation is well
defined for all ξ which satisfy the Melnikov non–resonance conditions:

|〈ω(ν), k〉+Ω(ν) · l| ≥ γK−̺
ν ,(1.5)

for all k ∈ Zb, l ∈ ZZ
d
1 such that (k, l) 6= (0, 0) , |l| ≤ 2 and |k| < Kν . Here ̺, γ are

appropriate constants. With these conditions in mind it is clear that a degeneracy

Ω
(ν)
n = Ω

(ν)
m poses problems since the left hand side in (1.5) is identically zero for k =

0, l = em − en (em with m ∈ Zd
1 is the standard basis vector). To avoid this problem

we use the fact that all the Hν have M as constant of motion. This in turn implies
that some of the Fourier coefficients of Pν are identically zero so that the conditions
(1.5) need to be imposed only on those k, l such that

∑b
i=1 niki +

∑

m∈Zd
1
mlm = 0.

Then, in our example, k = 0 automatically implies n = m. This is the key argument
used in [14]. However, once that one has proved that the left hand side of (1.5) is
never identically zero, one still has to show that the quantitative bounds of (1.5) may
be imposed on some positive measure set of parameters ξ. This is an easy task when
|l| = 0, 1 or l = em + en but may pose serious problems in the case l = em − en where
the non–resonance condition is of the form

|〈ω(ν), k〉+ Ω(ν)
m − Ω(ν)

n | ≥ γK−̺
ν , ∀k ∈ Z

b , n,m ∈ Z
d
1 : |k| < Kν(1.6)

where n−m =
∑b

i=1 niki. Indeed in this case for every fixed value of k one should in
principle impose infinitely many conditions, since the momentum conservation only

fixes n − m. In [14], the presence of Ψs implies that Ω
(ν)
m − |m|2 ≈ ε

|m|s so that if

|m|s > c|k|τ the variation of Ω(ν) is negligible. This implies in turn that one has
to impose only finitely many conditions for each k. In the case of equation (1.1)
however s = 0, so that this argument may not be applied. One wishes to impose the
non resonance conditions by verifying only a finite number of bounds for each k. To

do this one needs some control on Ω
(ν)
m − |m|2, for |m| large, throughout the KAM

algorithm. The ideal setting is when Ω
(ν)
m − |m|2 is m–independent. This holds true

for the first step of the KAM algorithm due to the fact that P is a Töplitz function.
However it is easily seen that already P1 is not a Töplitz function and some wider
class of functions must be defined.

In order to control the shift of the normal frequency Eliasson and Kuksin in [13]
define a Töplitz-Lipschitz property, which they show is satisfied by the NLS Hamil-
tonian and preserved through the KAM iteration. With this property, they prove
the existence of KAM tori. As a further difficulty they consider an NLS equation
which does not have M as a constant of motion. This implies that some of the Mel-
nikov non–resonance conditions (1.6) may not be imposed. At each step of the KAM
algorithm they thus obtain a more complicated normal form.

In order to describe the Töplitz-Lipschitz property, given an analytic function
A(z, z̄), let An

m(±) = ∂zm∂z±
n
A be its Hessian matrix. For all n,m, c ∈ Zd, one

requres that the limit An
m(±, c) := lim

t→∞
An∓tc

m+tc(±) exists and is attained with speed

of order 1
t . In dimension d > 2 one also requires similar conditions on the limits

lim
s→∞

An∓sc′

m+sc′(±, c) with c′ orthogonal to c. In [15] an understanding of this property

in T2 is given. A key step is to divide the region {|n−m| ≤ N} ⊂ Zd ×Zd in a finite
number of Lipschitz domains.
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In our paper we use a similar –but in our opinion more natural– approach. We
define a class of functions, the quasi–Töplitz functions whose main properties are:

1. the Poisson bracket of two quasi-Töplitz functions is quasi-Töplitz (Proposi-
tion 5),

2. the Hamiltonian flow generated by a quasi-Töplitz function preserves the
quasi-Töplitz property (Proposition 5),

3. the solution of the homological equation with a quasi-Töplitz perturbation is
quasi-Töplitz (Proposition 4).

Note that the Töplitz-Lipschitz property of [13] is closed only with respect to Poisson
brackets when one of the functions is quadratic, this makes our definitions more
flexible.

In this paper we strongly rely on the conservation of momentum for our defi-
nitions, however this condition is not necessary in order to define the quasi-Töplitz
functions, see for instance [7]. In the next paragraph we give a brief informal descrip-
tion of our method.

1.1. Brief description of the strategy. We start by fixing two diophantine
exponents τ0 ≪ τ1. All our definitions and constructions are based on some parame-
ters N ≫ 1, 1

2 < θ, µ < 4 and τ0 ≤ τ ≤ τ1/4d which are needed in order to ensure that
the quasi-Töplitz functions are closed with respect to Poisson brackets (with slightly
different parameters).

The first step in our construction is an intrinsic (and unique) description of affine
subspaces described by equations with integer coefficients. We consider the equations
vi · x = pi, i = 1, . . . , ℓ x, vi ∈ Zd, pi ∈ Z describing the set of integral points x in an
affine subspace, we then denote this set by [vi; pi]ℓ and, by abuse of notation, call it
an affine subspace. Given N ≫ 1, an N–optimal presentation of an affine subspace
of codimension ℓ is a (uniquely fixed if it exists) list [vi; pi]ℓ such that the |vi| < C1N
and the pi are positive, ordered and as small as possible (see Definition 3.3).

This decomposition holds also for a single point (when ℓ = d, in this case an
N–optimal presentation will surely exist). Then we use the parameters 1

2 < θ, µ < 4,
τ0 ≤ τ ≤ τ1/4d to define the notion of ℓ–cut for a point m and of good points of an
affine subspace with respect to the parameters (N, θ, µ, τ). Namely, if [vi; pi]d is the
N–optimal presentation ofm, then m has a cut at ℓ if pℓ < µN τ and pℓ+1 > θN4dτ . In
the same way the (N, θ, µ, τ)–good points of an affine subspace [vi; pi]ℓ, with pℓ < µN τ

are those points of [vi; pi]ℓ which have a cut at ℓ with parameters (N, θ, µ, τ) (see
Definition 3.4).

We then define the (N, θ, µ, τ)–bilinear functions, i.e. functions which are bilinear
in the high variables zσm, zσ

′
n such that |m|, |n| > θN τ1 and both m and n have a cut

with parameters (N, θ, µ, τ). These functions may depend on I, ϑ and on the small
variables zσj with |j| < µN3 in a possibly complicated way (see Definition 4.1 for a
precise statement).

Finally we define the piecewise Töplitz functions as those (N, θ, µ, τ)–bilinear func-
tions which are Töplitz when restricted to the (N, θ, µ, τ)–good points of any affine
subspace (see Definition 4.2 and Remark 4.1).

We can now define the (K, θ, µ)–quasi–Töplitz functions. Informally speaking
given a function f , for all N > K, τ0 ≤ τ ≤ τ1/4d, we project it on the (N, θ, µ, τ)–
bilinear functions and we say that f is quasi-Töplitz if all these projections are well
approximated by a piecewise Töplitz function. To be more precise, τ controls the size
of the error function, namely the (N, θ, µ, τ)–bilinear part of f is approximated by
a piecewise Töplitz function with an error of the order N−4dτ , for all N ≥ K (see
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Formula (4.5) and Definition 4.3)
The role of the parameters K, θ, µ is to ensure that if f, g are quasi-Töplitz with

parameters K, θ, µ then {f, g} is quasi-Töplitz for all θ′ > θ and µ′ < µ provided
K ′ > K is large enough (see Proposition 5).

We proceed by induction supposing that we have been able to perform ν KAM

iterative steps and that we have a Hamiltonian of the form (1.4) where
∑

m(Ω
(ν)
m −

|m|2)|zm|2 is quasi-Töplitz with parameters (Kν , θν , µν) (note that Kν is the ultra–
violet cut-off at step ν). In order to solve the homological equation (and hence pass to
step ν+1 ) we restrict to the subset of ξ for which (1.5) holds for all k,m, n (satisfying
momentum conservation) for some ̺ := ̺(k,m, n) < 2dτ1. The main point is to show
that this restriction on the parameters only removes a small measure set.

For all natural N ≥ Kν we introduce a decomposition of Zd
1 as

Z
d
1 := A0 ∪

(

d−1
⋃

ℓ=1

Aℓ

)

∪ {|m| ≤ 4N τ1} ,(1.7)

here A0 ≡ A0(N) is Zd
1 minus a finite number of affine hyperplanes while Aℓ := Aℓ(N)

is the union of a finite number of affine spaces of codimension ℓ minus a finite number
of affine spaces of codimension ℓ+ 1 (see Figure 3.1 for a picture in d = 2).

This decomposition is constructed as follows:
A0 (defined in formula (3.8)) is chosen so that for all |k| < N,m ∈ A0 the Melnikov

denominators (1.6) are not small.
For all 0 < ℓ < d we may write

Aℓ :=
⋃

v1,...,vℓ∈Zd
1

,p1,...,pℓ∈Z

|vi|<C1N ,pi<4Nτ1/4d

[vi; pi]
g
ℓ ,

where the [vi; pi]
g
ℓ ⊂ [vi; pi]ℓ (see Definition 3.5) are defined in order to ensure the

following property: fix τ(pℓ) by setting N τ = max(2pℓ, N
τ0), we have that all m ∈

[vi; pi]
g
ℓ are (N, θ, µ, τ(pℓ))–good points for [vi; pi]ℓ for all choices of

1
2 < θ, µ < 4 – this

is the content of Lemma 3.5. Finally the fact that this sets provide a decomposition
of Zd

1 is the content of Proposition 1.
To prove the measure estimates we use the above decomposition with N = Kν .

Then the quasi-Töplitz property with N = Kν implies that for each m ∈ [vi; pi]
g
ℓ ,

Ω(ν)
m = |m|2 + Ω̂

(ν)
([vi; pi]ℓ) + Ω̄(ν)

m K−4dτ(pℓ)
ν ,(1.8)

where Ω̂ (ν) is constant on all the points of [vi; pi]ℓ while Ω̄
(ν)
m is bounded by ε0 (see

Lemma 4.1). We stress that here1 τ = τ(pℓ) is fixed by the positive integer pℓ.
Roughly speaking, we fix k, choose one point mg on each [vi; pi]

g
ℓ and impose the

Melnikov conditions (1.6) with ̺ = 2dτ(pℓ), γ  2γ and m = mg (see Definition 6.1
iv) for the precise formulation). This condition and (1.8) ensure the second Melnikov
condition for all m ∈ [vi; pi]

g
ℓ with ̺ = 2dτ(pℓ) (see Lemma 6.1). This shows that the

infinitely many conditions (1.6) can be imposed by only requiring a finite subset of
them.

1Note that in the definition of quasi-Töplitz functions and of cuts, instead, τ is left as a free
parameter with the only restriction τ0 ≤ τ ≤ τ1/4d.
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In order to check the measure estimates we remark that to impose one Melnikov
condition (i.e. with fixed k, m ∈ [vi; pi]

g
ℓ and ̺ = 2dτ(pℓ)) we need to remove a region

of parameter sets of order K
−2dτ(pℓ)
ν (see Lemma 6.3). Thus we need to estimate the

number of affine spaces [vi; pi]ℓ with pℓ = p, using Remark 3.2 it follows that this

bound is proportional to K
dτ(p)
ν = (2p)d. This concludes the problem of measure

estimates and we exclude a set of ξ of measure
∑

p∈N:p>K
τ0
ν
(2p)−d (here we are giving

only an informal argument, see Lemma 6.2 for the complete proof). In order to pass
to the step ν + 1 we need Fν (the solution of the Homological equation) to be quasi-
Töplitz: this requires a further restriction of the parameter set (see Definition 6.1iv),
Remark 6.2 and Proposition 4).

Recalling that quasi-Töplitz functions are closed with respect to Poisson brackets
we conclude that the new Hamiltonian is still quasi–Töplitz for some new parameters
θν+1, µν+1 for all N ≥ Kν+1.

2. Relevant notations and definitions.

2.1. Function spaces and norms. We start by introducing some notations.
We fix b vectors {n(1), · · · , n(b)} in Zd called the tangential sites. We denote by Zd

1 :=
Zd\{n(1), · · · , n(b)} the complement, called the normal sites. Let z = (· · · , zn, · · ·)n∈Zd

1
,

and its complex conjugate z̄ = (· · · , z̄n, · · ·)n∈Zd
1
. We introduce the weighted norm

‖z‖ρ =
∑

n∈Zd
1

|zn|e|n|ρ|n|d+1,

where |n| =
√

n2
1 + n2

2 + · · ·+ n2
d, n = (n1, n2, · · · , nd) and ρ > 0. We denote by ℓρ

the Hilbert space of lists {wj = (zj , z̄j)}j∈Zd
1
with ‖z‖ρ < ∞.

We consider the real torus Tb := Rb/Zb naturally contained in the space Cb/Zb×ℓρ
as the subset where I = z = z̄ = 0. We then consider in this space the neighborhood
of Tb :

D(r, s) := {(I, ϑ, z, z̄) : |Imϑ| < s, |I| < r2, ‖z‖ρ < r, ‖z̄‖ρ < r},

where |·| denotes the sup-norm of complex vectors. Denote byO an open and bounded
parameter set in Rb and let D = maxξ,η∈O |ξ − η|.

We consider functions F (I, ϑ, z; ξ) : D(r, s) × O → C analytic in I, ϑ, z and of
class C1

W in ξ. We expand in Taylor–Fourier series as:

F (ϑ, I, z, z̄; ξ) =
∑

l,k,α,β

Flkαβ(ξ)I
lei〈k,ϑ〉zαz̄β,(2.1)

where the coefficients Flkαβ(ξ) are of class C
1
W (in the sense of Whitney), the vectors

α ≡ (· · · , αn, · · ·)n∈Zd
1
, β ≡ (· · · , βn, · · ·)n∈Zd

1
have finitely many non-zero components

αn, βn ∈ N, zαz̄β denotes
∏

n z
αn
n z̄βn

n and finally 〈·, ·〉 is the standard inner product
in Cb.

We use the following weighted norm for F :

‖F‖r,s = ‖F‖D(r,s),O ≡ sup
‖z‖ρ<r

‖z̄‖ρ<r

∑

α,β,k,l

|Fklαβ |O r2|l|e|k|s |zα||z̄β|,(2.2)

|Fklαβ |O ≡ sup
ξ∈O

(|Fklαβ |+ |∂Fklαβ

∂ξ
|).(2.3)
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(the derivatives with respect to ξ are in the sense of Whitney). To an analytic function
F , we associate a Hamiltonian vector field with coordinates

XF = (FI ,−Fϑ, {iFzn}n∈Zd
1
, {−iFz̄n}n∈Zd

1
).

Consider a vector function G : D(r, s)×O → ℓρ with

G =
∑

klαβ

Gklαβ(ξ)I
lei〈k,ϑ〉zαz̄β,

where Gklαβ = (· · · , G(i)
klαβ , · · ·)i∈Zd

1
. Its norm is similarly defined as

‖G‖D(r,s),O = sup
‖z‖ρ<r

‖z̄‖ρ<r

‖MG‖ρ

where

MG = (· · · ,MG(i), · · ·)i∈Zd
1
, MG(i) =

∑

α,β,k,l

|G(i)
klαβ |O r2|l|e|k|s zαz̄β

is a majorant of G(i). We say that an analytic function F is regular if the function
(z, z̄) → MXF is analytic from Br → ℓρ. Its weighted norm is defined by2

‖XF‖r,s = ‖XF‖D(r,s),O ≡
b
∑

j=1

‖FIj‖D(r,s),O +
1

r2

b
∑

j=1

‖Fϑj‖D(r,s),O

+
1

r
(‖∂zF‖D(r,s),O + ‖∂z̄F‖D(r,s),O).(2.4)

A function F is said to satisfy momentum conservation if {F,M} = 0 with M =
∑b

i=1 n
(i)Ii +

∑

m∈Zd
1
j|zm|2. This implies that

Fk,l,α,β = 0 , if π(k, α, β) :=

b
∑

i=1

n
(i)ki +

∑

m∈Zd
1

m(αm − βm) 6= 0.(2.5)

By Jacobi’s identity momentum conservation is preserved by Poisson bracket.
Remark 2.1. It will be useful to envision the conservation of momentum at fixed

k as a relation between α, β; to make this more evident we write

π(k, α, β) = 0 , as −
∑

m∈Zd
1

m(αm − βm) =
b
∑

i=1

n
(i)ki := π(k)(2.6)

Definition 2.1. We denote by Ar,s the space of regular analytic functions in
D(r, s) and C1

W in O which satisfy momentum conservation (2.5) and with finite
semi-norm (2.4) If S is a set of monomials in Ij , e

iϑj , zm, z̄n, we define the projection
operator ΠS which to a given analytic function F associates the part of the series
only relative to the monomials in S.

We have following useful result

2 The norm ‖ · ‖Dρ(r,s),O for scalar functions is defined in (2.2).
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Lemma 2.1. i) The majorant norm is closed under projections, namely ‖ΠSf‖r,s ≤
‖f‖r,s, and ‖XΠSf‖r,s ≤ ‖Xf‖r,s .
ii) Ar,s is closed under Poisson brackets, with respect to the symplectic form dI∧dϑ+

idz ∧ dz̄, moreover by Cauchy estimates, if we denote δ = ( r
′

r )
2 min(s− s′, 1− r

r
′),

‖[Xf , Xg]‖r′,s′ ≤ 22d+1δ−1‖Xf‖r,s‖Xg‖r,s ,

‖X{f,g}‖r′,s′ ≤ 22d+1δ−1‖Xf‖r,s‖Xg‖r,s ,

Proof. Item i) is obvious. Item ii) is proved in [6], respectively Lemmata 2.15
and 2.16. In [6] the interested reader can find an analysis of the properties of the
majorant norm. Note that in [6] there is the restriction r/2 < r′ < r (same for s)
hence the term ( r

r′ )
2 is substituted by 4.

3. Affine subspaces. An affine space A of codimension ℓ in Rd can be defined
by a list of ℓ equations A := {x | vi ·x = pi} where the vi are independent row vectors
in R

d. We will write shortly that A = [vi; pi]ℓ. We will be interested in particular in
the case when vi, pi have integer coordinates, i.e. are integer vectors and the vectors
vi lie in a prescribed ball BN of radius some constant N . We set C1 := maxi |ni|, and
we denote by

〈vi〉ℓ = Span(v1, . . . , vℓ;R) ∩ Z
d , BN := {x ∈ Z

d \ {0} : |x| < C1N},

here N is any large number. In particular we implicitly assume that BN contains a
basis of Rd.

For given s ∈ N, in the set of vectors Zs we can define the sign lexicographical
order as follows.

Definition 3.1. Given a = (a1, . . . , as) set (|a|) := (|a1|, . . . , |as|) then we set
a ≺ b if either (|a|) < (|b|) in the lexicographical 3 order (in Ns) or if (|a|) = (|b|) and
a > b in the lexicographical order in Z

s. For instance in Z
2, (±1,±5) ≺ (±2,±4)

since (1, 5) < (2, 4); on the other hand we have (1, 4) ≺ (1,−4) ≺ (−1, 4) ≺ (−1,−4).
This is due to the fact that these last vectors have the same components apart from
the sign and (1, 4) > (1,−4) > (−1, 4) > (−1,−4) in the lexicographic ordering of Z2.

Lemma 3.1. Every non empty set of elements in L ⊂ Zs has a unique minimum.
Proof. We first consider the list of vectors |L| ⊂ Ns consisting of the vectors (|a|)

with a ∈ L. This list has a minimum with respect to the lexicographic ordering of Ns.
Naturally there may more than one vector, say a 6= b ∈ L with (|a|) = (|b|), which
attain the minimum of |L|. This vectors are at most 2s and among them we choose
the unique maximum in the lexicographical order in Zs.

Consider a fixed but large enough N .
Definition 3.2. We set HN the set of all affine spaces A which can be pre-

sented as A = [vi; pi]ℓ for some 0 < ℓ ≤ d so that that vi ∈ BN . We display as
(p1, . . . , pℓ; v1, . . . , vℓ) a given presentation, so that it is a vector in Zℓ(d+1). Then we
can say that [vi; pi]ℓ ≺ [wi; qi]ℓ if (p1, . . . , pℓ; v1, . . . , vℓ) ≺ (q1, . . . , qℓ;w1, . . . , wℓ).

Definition 3.3. The N–optimal presentation [li; qi]ℓ of A ∈ HN is the minimum
in the sign lexicographical order of the presentations of A which satisfy the bound
vi ∈ BN .

3 Recall that given two partially ordered sets A and B, the lexicographical order on the Cartesian
product A× B is defined as (a, b) < (a′, b′) if and only if either a < a′ or a = a′ and b < b′.
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Given an affine subspace A := {x |vi · x = pi , i = 1, . . . , ℓ} by the notation

A
N→[vi; pi]ℓ we mean that the given presentation is N optimal.
Remark 3.1. i) Note that each point m = (m1, . . . ,md) ∈ Zd

1 has a N–optimal
presentation (this presentation is usually not the naive one [ei,mi]d where the ei form
the standard basis of Zd).

ii) We may use the ordering given by N optimal presentations of points in order
to define a new lexicographic order on Zd which we shall denote by a ≺N b or a ≺ b
when N is understood.

Example 3.1. We now give an example of the N–optimal presentation of a
point and of an affine subspace. One may easily verify that for any affine subspace
A there exists N̄(A) such that for all N ≥ N̄(A) the N–optimal presentation is N
independent.

Let us start with the case m0 = (−11, 15, 3, 27) ∈ Z4. We have that ∀N >
C−1

1

√
82 (recall that C1 = maxi |ni|)

m0
N→[0, 0, 0, 1; (0, 0, 9,−1), (0, 1, 4,−1), (3, 0, 2, 1), (1, 0,−5, 1)] .

In general given any point m0 we will always find N̄(m0) such that for all N > N̄(m0)

the N–optimal presentation is fixed say [p
(0)
i ; v

(0)
i ]d and p

(0)
i = 0 for i = 1, . . . , d − 1

while p
(0)
d = mcd (m

(0)
1 , . . . ,m

(0)
d ).

Let us now study some affine subspaces.
If d = 2 consider the line A := {m ∈ Z2 : m = m0 + tc , t ∈ R} , with

m0 orthogonal to c (suppose also that the components of m0 are coprime). Then

A
N→[|m0|2;m(0)]1 provided that N ≥ C−1

1 |m0|.
If d = 4 and A := {m ∈ Z4 : m = (−11, 15, 3, 27)+ (1, 0, 0, 0)t , t ∈ R} we have

that

A
N→[0, 0, 3; (0, 0, 9,−1), (0, 1, 4,−1), (0, 0, 1, 0))]3 , ∀N > C−1

1

√
82 .

If B := {m ∈ Z
4 : m = (−11, 15, 3, 27)+ (1, 0, 0, 0)t+ (0, 1, 0, 0)s , t, s ∈ R}

we have that

B
N→[0, 3; (0, 0, 9,−1), (0, 0, 1, 0)]2 ∀N > C−1

1

√
82

Lemma 3.2. i) If the presentation A = [vi; pi]ℓ is N–optimal, we have

0 ≤ p1 ≤ p2 ≤ . . . ≤ pℓ(3.1)

ii) For all j < ℓ and for which v ∈ 〈v1, . . . , vℓ〉 ∩BN \ 〈v1, . . . , vj〉, one has:

|(v, r)| ≥ pj+1 , ∀r ∈ A(3.2)

iii) Given j < ℓ set Aj := {x | vi · x = pi, i ≤ j}, then the presentation Aj =
[vi, pi]j is N–optimal.

iv) Finally −A has a N–optimal presentation −A = [v′i, pi]ℓ with the same con-
stants pi and (|v′i|) = (|vi|).

9



Proof. i) If pi < 0 we can change the presentation changing pi into −pi and vi
into −vi. By definition this is a lower presentation lexicographically, we obtain a con-
tradiction. Suppose now that (3.1) is false -say for instance that p1 > p2 ≥ 0- then by
definition {p2, p1, . . . pℓ; v2, v1, . . . , vℓ} is a presentation of A and it is lexicographically
lower than {p1, p2, . . . pℓ; v1, v2, . . . , vℓ}.

ii) Take v ∈ 〈v1, . . . , vℓ〉 ∩ BN \ 〈v1, . . . , vj〉 and any r ∈ A. We note that (v, r)
is constant on A. There exists an h > j such that if we substitute vh, h > j, with v
we obtain a new presentation. Again we deduce by minimality in the lexicographical
order, that |(v, r)| ≥ ph ≥ pj+1.

iii) Any presentation Aj = [wi, qi]j can be completed to a presentation [wi, qi]ℓ of
A so if [q1, . . . , qj , w1, . . . , wj ] ≺ [p1, . . . , pj ; v1, . . . , vj ] we also have [q1, . . . , qℓ;w1, . . . , wℓ] ≺
[p1, . . . , pℓ; v1, . . . , vℓ] by the definition of lexicographical order, a contradiction.

iv) As for the last statement it is enough to observe that there is a 1–1 correspon-
dence between presentations A = [wj , qj ] of A and −A with the constants qi ≥ 0, if
A = [wj , qj ] we have −A = [−wj , qj ]. The absolute value vectors of the two presenta-
tions are the same, the statement follows.

Remark 3.2. For fixed N , ℓ, p the number of affine spaces in HN of codimension
ℓ and such that pℓ ≤ p is bounded by (2C1N)ℓd(2p)ℓ.

3.1. Parameters and cuts. We shall need several auxiliary parameters in the
course of our proof. We start by fixing some numbers

τ0 > max(d+ b, 12), τ1 := (4d)d+1(τ0 + 1) ,(3.3)

c ≤ 1

2
, C ≥ 4 , N0 ≥ d!Cd

1Cc−1.

In what follows N will always denote some large number, in particular N > N0, for
the purpose of this paper we may fix c = 1

2 and C = 4, however we give the definitions
in the more general setting so that they are more flexible.

We assume that N has been fixed. Given a point m we write m
N→[vi; pi] for its

optimal presentation dropping the index ℓ which for a point is always ℓ = d. Set by
convention p0 = 0 and pd+1 = ∞.

We then give a definition involving the parameters θ, µ, τ which we call allowable
if

τ0 ≤ τ ≤ τ1/(4d) = (4d)d(τ0 + 1), c < θ, µ < C.

We need to analyze certain cuts, for the values pi associated to an optimal pre-
sentation of a point. This will be an index ℓ where the values of the pi jump according
to the following:

Definition 3.4. The point m
N→[vi; pi] has a cut ℓ ∈ {0, 1, . . . , d} with the param-

eters (N, θ, µ, τ), if ℓ is such that pℓ < µN τ , pℓ+1 > θN4dτ (recall that p0 = 0, pd+1 =
∞).

The space A := {x | vi · x = pi, i = 1, . . . , ℓ} is denoted by [vi; pi]ℓ and called the
affine space associated to the cut of m.

In turn for every affine subspace A
N→[vi; pi]ℓ with pℓ < µN τ , the set of points

m ∈ A with |m| > θKτ1 which have ℓ as a cut with the parameters (N, θ, µ, τ) are
called the (N, θ, µ, τ)–good points of A.

10



Notice that θN4dτ > µN τ (since N (4d−1)τ ≥ N (4d−1)τ0 > Cc−1 > θµ−1), so
for any given m ∈ Zd

1 there is at most one choice of ℓ such that m has a ℓ cut
with parameters (N, θ, µ, τ). Note moreover that the affine subspace associated to a
(N, θ, µ, τ)–good point of A is A.

Remark 3.3. The purpose of defining a cut ℓ is to separate the numbers pi
into small and large. The parameters (N, θ, µ, τ) give a quantitative meaning to this
statement.

Example 3.2. Fix N > C−1
1

√
82, θ, µ, τ and consider the affine subspace

A
N→[0, 0, 3; (0, 0, 9,−1), (0, 1, 4,−1), (0, 0, 1, 0))]3 of Example 3.1. For all t large enough

(i.e. t > 66C1N ), setting

m(t) = (−11, 15, 3, 27)+ (1, 0, 0, 0)t

we have

m(t)
N→[0, 0, 3, p4(N, t); (0, 0, 9,−1), (0, 1, 4,−1), (0, 0, 1, 0), v4(N))],

where v4(N) = (v
(1)
4 (N), . . . , v

(4)
4 (N)) is a vector such that: |v4(N)| < C1N , the first

component v
(1)
4 (N) = 1; finally p4(N, t) = t−P (N) with |P (N)| < 33C1N . Hence m

is a (N, θ, µ, τ) good point of A provided that t > θN4dτ − 33C1N .

Remark 3.4. 1) If ℓ is a cut for the point m
N→[vi; pi], with allowable parameters

(N, θ′, µ′, τ) it is also so for all parameters (N, θ, µ, τ) with c < θ ≤ θ′ < C, c < µ′ ≤
µ < C.

2) If for a given ℓ, τ0 ≤ τ ≤ τ1/4d we have pℓ ≤ cN τ , pℓ+1 ≥ CN4dτ , then ℓ is
a cut with parameters (N, θ, µ, τ) for every choice of c < θ, µ < C.

Lemma 3.3. Consider m, r ∈ Zd
1 with m

N→[vi; pi], r
N→[wi; qi] suppose that ℓ is a

cut for m with the allowable parameters N, θ′, µ′, τ , and suppose there exist parameters
c < θ < θ′ < C, c < µ′ < µ < C:

|r −m| < C−1
1 (µ− µ′)N τ−1, C−1

1 (θ′ − θ)N4dτ−1.(3.4)

then:
(1) ℓ is a cut for the point r, for all allowable parameters (N, θ, µ, τ) for which

(3.4) holds.

(2) 〈w1, . . . , wℓ〉 = 〈v1, . . . , vℓ〉.
(3) [wi; qi]ℓ = [vi; pi]ℓ + r −m.
Proof. Fix θ, µ satisfying (3.4). Write (vi, r) = (vi, r −m) + pi. For i ≤ ℓ, since

|vi| ≤ C1N we have:

|(vi, r)| ≤ pi + |vi||r −m| < µ′N τ + (µ− µ′)N τ = µN τ .(3.5)

From Formula (3.1) by the definition of N–optimal, for all v ∈ BN \ 〈v1, . . . , vℓ〉 one
has

|(v, r)| = |(v,m)+(v, r−m)| ≥ pℓ+1−|v||r−m| > θ′N4dτ−C1N |r−m| = θN4dτ .(3.6)

(1), (2) By induction on i we wish to show that qi < µN τ and wi ∈ 〈v1, . . . , vℓ〉
for all i ≤ ℓ. For i = 0 this is trivial, so assume that for 0 ≤ i < ℓ, we have
〈w1, . . . , wi〉 ⊂ 〈v1, . . . , vℓ〉. Since the vi are independent, there exists h ≤ ℓ such that
vh /∈ 〈w1, . . . , wi〉. By (3.5) qi+1 ≤ |(vh, r)| < µN τ .
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By contradiction suppose that wi+1 ∈ BN \ 〈v1, . . . , vℓ〉, applying formula (3.6)
we would get (wi+1, r) := qi+1 > θN4dτ > µN τ , a contradiction.

Since the wi (as well as the vi) are linearly independent, clearly 〈v1, . . . , vℓ〉 =
〈w1, . . . , wℓ〉. This proves (2). As a consequence for s > ℓ, we apply again formula
(3.6) to ws ∈ BN \ 〈v1, . . . , vℓ〉; we obtain qj+1 > θN4dτ . This completes the proof of
(1).

(3) By (2) the space [wi; qi]ℓ is the one parallel to [vi; pi]ℓ and passing through
r. The result follows.

Remark 3.5. Note that if we know that m, r both have an ℓ cut with parameters
N, θ, µ, τ then we can deduce that the subspace [wi; qi]ℓ is the one parallel to [vi; pi]ℓ
and passing through r provided that:

|r −m| < C−1
1 c(N4dτ−1 − Cc−1N τ−1)(3.7)

notice that C−1
1 c(N4dτ−1 − Cc−1N τ−1) ≥ N τ , actually in our computations we will

have |r −m| < N3.
Remark 3.6. With the above lemma we are stating that if m has a ℓ cut with

parameters θ′, µ′, τ then, for all choices of θ < θ′, µ′ < µ, for which θ, µ are allowable
parameters, there exists a spherical neighborhood B of m such that all points r ∈ B
have a ℓ cut with parameters N, θ, µ, τ . The radius of B is determined by Formula
(3.4). Note moreover that if r has a cut ℓ for some parameters then so has −r and
with the same parameters. Then lemma 3.3 holds verbatim if in formula (3.4) we
substitute |m− r| with |m+ r|.

The definitions which we have given are sufficient to define and analyze the quasi–
Töplitz functions, which are introduced in section 4. In the next subsection we collect
some definitions which are useful for the measure estimates and which are independent
of the auxiliary parameters θ, µ.

3.2. Standard cuts. The following construction will be useful: we divide

[CN4dτ0 , cN τ1/4d) = ∪d−1
i=1 [N

Si , NSi+1) ∪ [NSd , cN τ1/4d)

by setting NS1 := CN4dτ0 and defining recursively

c−1NSi+1 = c−1C · (c−1NSi)4d , i = 1, . . . d− 1.

By definition we get

c−1NSj = (c−1C)
∑j−1

i=0 (4d)
i

N (4d)jτ0

Recalling that N > N0 = Cc−1 and τ1 = (4d)d+1(τ0 + 1), we get

c−1NSd ≤ Nd(4d)d−1+(4d)dτ0 ≤ N τ1/4d.

We set

̺0 := τ0, ̺d :=
τ1
4d

, cN̺i := NSi , 0 < i < d.

Lemma 3.4. For all allowable parameters c < θ, µ < C and for each point

m
N→[vi; pi] we construct a standard cut ℓ, 0 ≤ ℓ ≤ d for m for which the parameter

τ is one of the previously defined numbers ̺i, i = 0, . . . , d.

12



If |m| ≥ N τ1 , then ℓ < d, if p1 < CN4dτ0 then ℓ > 0.

Proof. Let m
N→[vi; pi]. If pd ≤ cN τ1/4d then we set ℓ = d and τ = ̺d = τ1/4d. If

p1 ≥ CN4dτ0 then we set ℓ = 0 and τ = ̺0 = τ0.
Otherwise if p1 < CN4dτ0 and pd > cN τ1/4d then at least one of the d−1 intervals

(NSi , NSi+1) with i = 1, . . . , d − 1 does not contain any element of the ordered list
{p2, . . . , pd−1}. The parameters ℓ, τ are fixed by setting τ = ̺ı̄ where cN̺ı̄ = NSı̄

and ı̄ is the smallest among the indices i such that the interval (NSi , NSi+1) does
not contain any points of the list {p2, . . . , pd−1}; finally ℓ < d is the index for which
pℓ ≤ NSı̄ = cN τ and pℓ+1 ≥ NSı̄+1 = C(c−1NSı̄)4d = CN4dτ .

If pd ≤ cN
τ1
4d , we apply Cramer’s rule to the equations V m = p given by the

presentation. We have |m| = |V −1p| ≤ cd!N τ1/4d(C1N)d−1 < N τ1 since τ1
4d + d < τ1

and as soon as N > cd!Cd−1
1 .

3.3. Cuts and good points. As shown in the introduction we need a decom-
position of Zd

1 as in formula (1.7). For any given N we set

A0 = A0(N) := {m ∈ Z
d
1 : m

N→[vi; pi] with p1 > CK4dτ0}(3.8)

In order to define Aℓ we set
Definition 3.5. For all [vi; pi]ℓ ∈ HN with 1 ≤ ℓ < d and pℓ ≤ cN

τ1
4d , the set:

[vi; pi]
g
ℓ :=(3.9)

{

x ∈ [vi, pi]ℓ | |x| > N τ1 , |(v, x)| ≥ Cmax(N4dτ0 , c−4dp4dℓ ), ∀v ∈ BN \ 〈vi〉ℓ
}

will be called the N−good portion of the subspace A = [vi; pi]ℓ.
Remark 3.7. Notice that every v ∈ BN \〈vi〉ℓ gives a non constant linear function

v · x on A. Thus the good points of A form a non empty open set complement of a
finite union of strips around subspaces of codimension 1 in A. Note moreover that we
are interested only in integral points and the integral points in A which are not good
form a finite union of affine subspaces of codimension one in A.

Lemma 3.5. Given p ≤ cN τ1/(4d) we fix τ(p) so that N τ(p) = max(N τ0 , c−1p)
(note that τ0 ≤ τ ≤ τ1/(4d)). The following holds: for all c < θ, µ < C and for all
affine subspaces [vi; pi]ℓ ∈ HN such that pℓ = p, we have that every point m ∈ [vi; pi]

g
ℓ

is an (N, θ, µ, τ(p))–good point for [vi; pi]ℓ.
Proof. By hypothesis (Formula (3.9))

pℓ+1 = (vℓ+1,m) ≥ Cmax(N4dτ0 , c−4dp4d),

recall that pℓ = p. If p ≤ cN τ0 then τ(p) = τ0 by definition. Since pℓ+1 ≥ CN4dτ0

m has the cut ℓ for all choices of c < θ, µ < C. Otherwise cN τ1/(4d) ≥ p > cN τ0 and
pℓ+1 ≥ Cc−4dp4d. So in conclusion for all c < θ, µ < C we have pℓ = p = cN τ(p) <
µN τ(p) and pℓ+1 ≥ CN4dτ(p) > θN4dτ(p), hence the cut.

We now show that Formula (1.7) provides a decomposition of Zd
1.

Proposition 1. Each point m
N→[vi, pi] with |m| > N τ1 and p1 < CN4dτ0 belongs

to the set [vi; pi]
g
ℓ for some choice 0 < ℓ < d.

Proof. According to Lemma 3.4, each point m has a normalized cut 0 < ℓ < d for
all allowable θ, µ and for some τ0 < τ < τ1/4d with τ in the finite list {̺1, . . . , ̺d}.
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Fig. 3.1. A drawing of the standard decomposition in Z2
1. A0 is Z2

1 minus the
dashed lines (each dashed line is described by an equation [v; p]1). On each dashed
line the set [v; p]g1 is signed in solid boldface. Note that [v; p]g1 is [v; p]1 ∩Z2

1 minus a
finite number of subspaces of codimension two, i.e. points.

Thus for all w ∈ BN \〈vi〉ℓ we have |(m,w)| > θN4dτ for all θ < C, moreover pℓ < µN τ

for all µ > c. Hence |(m,w)| ≥ CN4dτ > CN4dτ0 and pℓ ≤ cN τ . Combining these
relations we obtain

|(m,w)| ≥ Cmax(N4dτ0, c−4dp4dℓ ),

hence m ∈ [vi; pi]
g
ℓ by Definition 3.5.

Lemma 3.6. Given p ≤ cN τ1/4d fix τ(p) as in Lemma 3.5, then the following
holds. Given m ∈ Zd

1 with m ∈ [vi; pi]
g
ℓ and pℓ = p, then for all r ∈ Zd

1 and for all
parameters c < θ, µ < C such that

|r −m| < C−1
1 (µ− c)N τ0−1, C−1

1 (C − θ)N4dτ0−1,(3.10)
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r,m have the same cut ℓ with parameters (N, θ, µ, τ(p)) with parallel corresponding
affine spaces.

Proof. We can apply Lemma 3.5 to m, obtaining the cut ℓ with parameters
(N, θ′, µ′, τ) for all c < θ′, µ′ < C. Then, we may apply Lemma 3.3 obtaining the
required cut for r for any choice of θ, µ satisfying Formula (3.4) with respect to θ′, µ′.
Since θ′, µ′ can be taken arbitrarily close to c, C Formula (3.4) follows from Formula
(3.10).

4. Quasi–Töplitz functions. Now and in the following we fix c = 1
2 , C = 4.

Definition 4.1. Given N, θ, µ, τ such that 1/2 < θ, µ < 4, τ0 ≤ τ ≤ τ1/4d and
4N3 < 1

2N
τ1 we say that a monomial

ei(k,ϑ)I lzαz̄βzσmzσ
′

n

is (N, θ, µ, τ)–bilinear if it satisfies momentum conservation (2.5) i.e.

σm+ σ′n = −π(k, α, β),

|k| < N , |n|, |m| > θN τ1 ,
∑

j

|j|(αj + βj) < µN3 .(4.1)

and moreover there exists 0 < ℓ < d such that both n,m have a ℓ cut with parameters

N, θ, µ, τ . By convention if m
N→[vi; pi] and n

N→[wi; qi] with (p1, · · · , pℓ, v1, · · · , vℓ) �
(q1, · · · , qℓ, w1, · · · , wℓ) we say that the monomial has the cut [vi; pi]ℓ. (this defines
univocally an affine subspace associated to the monomial). Note that by Lemma 3.4 we
are sure that ℓ < d. In Ar,s we consider the subspace of (N, θ, µ, τ)–bilinear functions
and call Π(N,θ,µ,τ) the projection onto this subspace. Notice that by Remark 3.5 the
cut [wi; qi]ℓ is completely fixed by [vi; pi]ℓ and σm+ σ′n.

Having chosen 1/2, 4 as bounds for the parameters θ, µ we will call low momentum
variables, denoted by wL and spanning the space ℓLρ , the zσj such that |j| < 4N3.

Similarly we call high momentum variables, denoted by wH and spanning the space
ℓHρ , the zσj such that |j| > N τ1/2. Notice that the low and high variables are separated.
We may write uniquely

Π(N,θ,µ,τ)f =
∑

σ,σ′=±

∑

|m|,|n|>θNτ1
∃ℓ: m,n have a ℓ cut

with parameters N,θ,µ,τ

fσ,σ′
m,n (I, ϑ, w

L)zσmzσ
′

n(4.2)

where

fσ,σ′
m,n (I, ϑ, w

L) =
∑

|k|<N , |α|+|β|<µN3 ,

−π(k,α,β)=σm+σ′n

fσ,σ′

m,n,k,α,β(I)e
i〈k,ϑ〉zαz̄β ,

finally fσ,σ′

m,n,k,α,β(I) is an analytic function of I for |I| < r2.

Given an affine subspaceA
N→[vi; pi]ℓ, we construct (N, θ, µ, τ, A)–restricted Töplitz

functions by setting:

g(A, I, ϑ, z) :=

(N,θ,µ,τ,A)
∑

n,m,σ,σ′,k,α,β

gσ,σ
′

k,α,β(σm+ σ′n,A; I)ei〈k,ϑ〉zαz̄βzσmzσ
′

n ,(4.3)
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here the sum
(N,θ,µ,τ,A)
∑

means the sum over those n,m, σ, σ′, k, α, β such that ei〈k,ϑ〉zαz̄βzσmzσ
′

n

is a (N, θ, µ, τ)–bilinear monomial with cut given by A. Finally gσ,σ
′

k,α,β(h,B; I) is an

analytic function of I, for |I| < r2, which is well defined for all σ, σ′ = ±1, k ∈ Zb,

h ∈ Zd
1 α, β ∈ NZ

d
1 and B

N→[wi; qi]ℓ ∈ HN such that |k| < N , h = −π(k, α, β),
∑

j∈Zd
1
|j|(αj + βj) < µN3 and |qℓ| < 4N τ1/4d.

Notice that the coefficient gσ,σ
′

k,α,β(σm + σ′n,A; I) depends on m,n only through

σm+σ′n,A; I. The sum
∑(N,θ,µ,τ,A)

n,m,σ,σ′,k,α,β instead selects those m,n such that |m|, |n| >
θN τ1 , |σm+ σ′n| < µN3 +N , m,n have a cut ℓ, τ and the cut of m is A .

Definition 4.2. A function g is called piecewise Töplitz if it is of the form:

g =
∑

A∈HN

A
N→[vi;pi]ℓ : |pℓ|<µNτ

g(A, I, ϑ, z).

We denote the space of piecewise Töplitz functions as F(N, θ, µ, τ) = F ⊂ Ar,s

Remark 4.1. Notice that F(N, θ, µ, τ) is a subset of the (N, θ, µ, τ) bilinear
functions. Hence given g ∈ F(N, θ, µ, τ) we may write it in the form (4.2)

g =
∑

σ,σ′=±

∑

|m|,|n|>θNτ1
∃ℓ: m,n have a ℓ cut

with parameters N,θ,µ,τ

gσ,σ
′

m,n(I, ϑ, w
L)zσmzσ

′
n

and one has that

gσ,σ
′

m,n(I, ϑ, w
L) = gσ,σ

′
(σm+ σ′n, [vi; pi]ℓ, I, ϑ, w

L) :=(4.4)

∑

|k|<N , |α|+|β|<µN3 ,

−π(k,α,β)=σm+σ′n

gσ,σ
′

k,α,β(σm+ σ′n, [vi; pi]ℓ; I)e
i〈k,ϑ〉zαz̄β

if |n|, |m| > θN τ1 , m
N→[vi; pi] and there exists ℓ such that m,n have a cut at ℓ with

parameters (N, θ, µ, τ). Otherwise gσ,σ
′

m,n = 0.

Notice that gσ,σ
′
(σm + σ′n, [vi; pi]ℓ, I, ϑ, w

L) depends on m,n only through the
subspace [vi; pi]ℓ and σm + σ′n. In other words the quadratic form representation
(4.2) of a (N, θ, µ, τ)–piecewise Töplitz function has translation invariance in the
sense that gσ,σ

′
m,n = gσ,σ

′
m1,n1

provided that: σm + σ′n = σm1 + σ′n1, there exists ℓ such
that m,n,m1, n1 all have an ℓ, τ cut and both m,m1 have the same associated subspace
[vi; pi]ℓ.

Given f ∈ Ar,s and F ∈ F, we define

f̄ := N4dτ
(

Π(N,θ,µ,τ)f −F
)

.(4.5)

Finally set

‖Xf‖Tr,s := sup
N≥K ,N∈N,
τ0≤τ≤τ1/4d

[ inf
F∈F

(max(‖Xf‖r,s, ‖XF‖r,s, ‖Xf̄‖r,s))].(4.6)

Definition 4.3. We say that f ∈ Ar,s is quasi- Töplitz of parameters (K, θ, µ)
if ‖Xf‖Tr,s < ∞. We call ‖Xf‖Tr,s the quasi-Töplitz norm of f .

Remark 4.2. Notice that our definition includes the Töplitz and anti-Töplitz
functions by setting, for any N, θ, µ, τ , F = Π(N,θ,µ,τ)f and hence f̄ = 0. In the case
of Töplitz functions one trivially has ‖Xf‖Tr,s = ‖Xf‖r,s.
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Remark 4.3. Intuitively a quasi-Töplitz function is a function whose bilinear
part is “well approximated” by a piecewise Töplitz function.

Given K, θ, µ and a function f ∈ Ar,s we proceed as follows. For any choice of
N > K and τ0 ≤ τ ≤ τ1/4d we compute a “weighted distance” between ΠN,θ,µ,τf
and the subspace F. First, for any F ∈ F, we define f̄ := N4dτ (ΠN,θ,µ,τf − F) and
compute ‖Xf̄‖r,s( since f and F are in Ar,s all this quantities are finite); then, in
order to obtain a “distance”, we perform the infimum over F ∈ F. Essentially a
function f is quasi-Töplitz if this weighted distance stays bounded as N → ∞. Note
that one could probably prove that the inf in our definition is actually a min, thus
associating to f a “canonical choice” F (depending on N, θ, µ, τ), this however is not
needed in our construction, we only need a weaker decomposition as follows.

If f is quasi-Töplitz with parameters (K, θ, µ) then for any N ≥ K and τ0 ≤ τ ≤
τ1/4d there exist functions F ∈ F(N, θ, µ, τ), such that setting

f̄ := N4dτ (ΠN,θ,µ,τf −F) , wehave ‖XF‖r,s, ‖Xf̄‖r,s < 2‖Xf‖Tr,s.

We now concentrate on the very special case of diagonal quadratic functions Q(z) :=
∑

m∈Zd
1

Qmzmz̄m. We notice that in this case we may reformulate the projection on

(N, θ, µ, τ)–bilinear functions as:

Π(N,θ,µ,τ)Q(z) =
∑

A
N→[vi;pi]ℓ∈H(N)

|pℓ|≤µNτ

(N,θ,µ,τ,A)
∑

m∈Zd
1

Qmzmz̄m

where
(N,θ,µ,τ,A)
∑

m
coincides with

(N,θ,µ,τ,A)
∑

m,m,+,−,0,0,0
of formula (4.3) namely it is the sum over

those m with |m| > θN τ1 which have an ℓ cut with parameters (N, θ, µ, τ) associated
to the affine space A.

Lemma 4.1. Let Q(z) be a quasi-Töplitz diagonal quadratic function. There
exist two diagonal quadratic functions Q(z) ∈ F, Q̄(z):

Q(z) =
∑

A
N→[vi;pi]ℓ∈H(N)

|pℓ|≤µNτ

(N,θ,µ,τ,A)
∑

m∈Zd
1

Q(A)zmz̄m ,(4.7)

N−4dτ Q̄(z) = Π(N,θ,µ,τ)Q(z)−Q(z) ,

such that for all m which have a cut at ℓ with parameters (N, θ, µ, τ) associated
to A one has

Qm = Q(A) +N−4dτ Q̄m.(4.8)

Moreover one has

|Qm|, |Q(A)|, |Q̄m| ≤ 2|XQ|Tr(4.9)

Proof. Since Q is quasi-Töplitz we may approximate it by a function F ∈ F;
moreover since Q is quadratic and diagonal we may choose F of the same form.
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Hence we can we can fix quadratic and diagonal functions Q ∈ F and Q̄ =
N4dτ (ΠN,θ,µ,τQ − Q) so that ‖XQ‖r, ‖XQ̄‖r ≤ 2‖XQ‖Tr . To conclude we need to
show that a quadratic, diagonal and piecewise Töplitz Q is of the form (4.7). Indeed
by Formula (4.3) an (N, θ, µ,A)–restricted Töplitz function which is is quadratic and
diagonal is of the form:

g(A, z) = g(A)

(N,θ,µ,τ,A)
∑

m

zmz̄m

Our last statement is proved by noting that

‖XQ‖r = 2 sup
‖z‖ρ<r

∑

h∈Zd
1

|Qh|
|zh|
r

eρ|h| ≥ |Qj |

by evaluating at z
(j)
h := δjhe

−ρ|j|r/2. The same holds for Q and Q̄.
Remark 4.4. It is interesting to compare the set of quasi-Töplitz functions with

the Töplitz-Lipschitz functions of [13]. The first observation is that the set of quasi-
Töplitz functions is closed with respect to Poisson brackets, while the Töplitz-Lipschitz
functions are closed only with respect to to Poisson brackets when one of the func-
tions is quadratic. This is due to the fact that the property of being quasi-Töplitz
depends on the idea of (N, θ, µ, τ) bilinear projection, and not on the Hessian of the
function. Indeed one may easily produce functions which are quasi-Töplitz but not
Töplitz-Lipschitz (even in the class of functions which preserve momentum).

A second more subtle point is weather the class of quadratic quasi-Töplitz and
Töplitz-Lipschitz functions coincide, this should be true at least for d ≤ 2 and we
expect some inclusions to hold even in higher dimension.

5. An abstract KAM theorem. The starting point for our KAM Theorem is
a family of Hamiltonians

H = N + P, N = 〈ω(ξ), I〉+
∑

n∈Zd
1

Ωn(ξ)znz̄n, P = P (I, ϑ, z, z̄, ξ).(5.1)

defined in D(r, s) × O, where O ⊂ Rb is open and bounded, say it is contained in a
set of diameter D. The functions ω(ξ),Ωn(ξ) are well defined for ξ ∈ O.

It is well known that, for each ξ ∈ O, the Hamiltonian equations of motion for
the unperturbed N admit the special solutions (ϑ, 0, 0, 0) → (ϑ + ω(ξ)t, 0, 0, 0) that
correspond to invariant tori in the phase space.

Our aim is to prove that, under suitable hypotheses, there is a set O∞ ⊂ O of
positive Lebesgue measure, so that, for all ξ ∈ O∞ the Hamiltonians H still admit
invariant tori.

We require the following hypotheses on N and P .

(A1) Non–degeneracy: The map ξ → ω(ξ) is a C1
W diffeomorphism between O and

its image with |ω|C1
W
, |∇ω−1|O ≤ M .

(A2) Asymptotics of normal frequency:

Ωn(ξ) = |n|2 + Ω̃n(ξ),(5.2)
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where Ω̃n’s are C
1
W functions of ξ with C1

W -norm uniformly bounded by some positive
constant L with LM < 1

2 .

(A3) Momentum conservation: The perturbation P satisfies momentum conserva-
tion, it is real analytic and C1

W in ξ ∈ O. Namely P ∈ Ar,s.

(A4) Quasi-Töplitz property and Regularity: the functions P and
∑

j Ω̃j |zj|2 are
quasi-Töplitz with parameters (K, θ, µ) where

1

2
< θ, µ < 4 , (µ− 1

2
)Kτ0 , (4− θ)K4dτ0 > 5K4.

One has the bounds:

‖XP ‖TD(r,s),O < ∞ , ‖〈Ω̃z, z〉‖T
D(r,s),O < L

Now we state our infinite dimensional KAM theorem.
Theorem 2. Assume Hamiltonian N +P in (5.1) satisfies (A1−A4). Let γ > 0

small enough, there exists a positive constant ε = ε(γ, b, d, L,M,K, θ, µ) such that: if
‖XP ‖TD(r,s),O ≤ ε, then there exists a Cantor set Oγ ⊂ O with meas(O \ Oγ) = O(γ)

and two maps (analytic in ϑ and C1
W in ξ)

Ψ : Tb ×Oγ → D(r, s), ω̃ : Oγ → R
b,

where Ψ is ε
γ2 -close to the trivial embedding Ψ0 : Tb ×O → Tb × {0, 0, 0} and ω̃ is ε-

close to the unperturbed frequency ω, such that for any ξ ∈ Oγ and ϑ ∈ T
b, the curve

t → Ψ(ϑ + ω̃(ξ)t, ξ) is a linearly stable quasi-periodic solution of the Hamiltonian
system governed by H = N + P .

5.1. Application to the NLS. The NLS (1.1) is a Hamiltonian equation. We
expand the solution in Fourier series as u =

∑

m∈Zd

umφm(x) and obtain that the um(t)

are the Hamiltonian flow of

N + P =

b
∑

i=1

(|ni|2 + ξi)|uni |2 +
∑

n∈Zd
1

|n|2unūn +

∫

Td

g(|
∑

m∈Zd

umφm(x)|2)dx(5.3)

with respect to the symplectic form i
∑

m∈Zd dum ∧ dūm. Here g is a primitive of
the analytic function f so it has a zero of degree at least two. The conservation of
momentum follows by translation invariance.

As an example, if f(u) = |u|2u, then P =
∑

mi∈Zd

m1−m2+m3−m4=0

um1 ūm2um3 ūm4 , and

the constraintm1−m2+m3−m4 = 0 ensures that P satisfies momentum conservation.

We introduce standard action-angle coordinates: unj =
√

I
(0)
j + Ije

iϑj , j = 1, · · · , b;
un = zn, n 6= {n(1), · · · , n(b)} where 4r2 > I

(0)
i > 2r2 and obtain equations (1.3),

where P is the last summand of (5.3). Let us suppose without loss of generality that
g(y) = yp + O(yp+1), so that P is regular and XP is of order |I0|2pr−2. It is easily
seen that P is Töplitz (hence by Remark 4.2 P is quasi-Töplitz for all choices of θ, µ).
Conditions (A1)–(A4) hold with M = 1 and any L (since Ω̃ = 0).

In order to apply Theorem 2 we fix r = cε
1

4p−2 , with c small. We have ‖XP ‖Tr,s ≤
C|I0|2pr−2 so the smallness condition is achieved.
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6. KAM step. Theorem 2 is proved by an iterative procedure. We produce a
sequence of hamiltonians Hν = Nν+Pν and a sequence of symplectic transformations
X1

Fν−1
Hν−1 := Hν , well defined on a domain D(rν , sν) ×Oν . At each step, the per-

turbation becomes smaller at cost of reducing the analyticity and parameter domain.
More precisely, the perturbation should satisfy ‖XPν+1‖TD(rν+1,sν+1),Oν

≤ εκν , κ > 1.

The sequence rν → 0 while sν → s/4 and Oν → O∞. For simplicity of notation, we
denote the quantities in the ν-th step without subscript, i.e. Oν = O, ων = ω and so
on. The quantities in the (ν+1)th step are denoted with subscript ”+”. Most of the
KAM procedure is completely standard, see [14] for proofs. The new part is: 1. to
show that Quasi Töplitz property (A4) for P and 〈Ω̃z, z̄〉 is kept by KAM iteration
and 2. prove the measure estimate using the Quasi Töplitz property.

For simplicity, below we always use the same symbol C to denote constants inde-
pendent on the iteration.

One step Suppose that the Hamiltonian (5.1), well defined in D(r, s)×O, sat-
isfies (A1−A4). Moreover P and 〈Ω̃z, z̄〉 are Quasi Töplitz with parameters (K, θ, µ)
and we have

|ω|C1
W
, |∇ω−1|O ≤ M, |Ω̃n|C1

W
≤ L,(6.1)

‖〈Ω̃z, z̄〉‖TD(r,s),O ≤ L, ‖XP‖TD(r,s),O ≤ ε.

Our aim is to construct: (1) an open set O+ ⊂ O of positive measure, (2) a 1-
parameter group of symplectic transformations Φt

F , well defined for all ξ ∈ O+, t ≤ 1
, such that Φ1

FH := H+ = N++P+ still satisfies (A1)−(A4) in the domain D(r+, s+).
Finally P+ and 〈Ω̃+z, z̄〉 are Quasi Töplitz with new parameters (K+, θ+, µ+), and
we have

|ω+|C1
W
, |∇ω−1

+ |O ≤ M+; |Ω̃+
n |C1

W
, ‖〈Ω̃+z, z̄〉‖TD(r+,s+),O+

≤ L+

‖XP+‖TD(r+,s+),O+
≤ ε+ = εκ.

Let us define

R :=
∑

k,2|p|+|α|+|β|≤2

Pk,p,α,βe
i〈k,ϑ〉Ipzαz̄β , 〈R〉 :=

b
∑

i=1

P0,ei,0,0Ii +
∑

j∈Zd
1

P0,0,ej ,ej |zj |2

Remark 6.1. The quadratic function R is quasi-Töplitz and satisfies the bounds
‖XR‖Tr,s ≤ 2‖XP‖Tr,s. The generating function of our symplectic transformation,
denoted by F , solves the “homological equation”:

{N , F} = Π≤KR− 〈R〉(6.2)

where Π≤K is the projection which collects all terms in R with |k| ≤ K and K is fixed

to be the quasi-Töplitz parameter of P, Ω̃. It’s well known (and immediate) that F is
uniquely defined by homological equation for those ξ such that 〈ω(ξ), k〉+Ω(ξ) · l 6= 0.
In order to have quantitative bounds, we restrict to a set O+ where (see Lemma 6.1):

|〈ω(ξ), k〉+Ω(ξ) · l| ≥ γK−2dτ1 , |k| ≤ K, |l| ≤ 2, (k, l) 6= 0,(6.3)
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where k ∈ Zb, l ∈ ZZ
d
1 and (k, l = α− β) satisfy momentum conservation (2.5). Then

H in the new variables is:

H+ := e{F,·}H = N+ + P+

where N+ = N + 〈R〉 and P+ = e{F,·}H −N+.

6.1. The set O+. The set of no-resonant parameter is defined:
Definition 6.1. O+ is defined to be the open subset of O such that:
i) For all |k| < K, h ∈ Z, (h, k) 6= (0, 0).

|〈ω, k〉+ h| > 2γK−τ0 .(6.4)

ii) For all |k| < K, l ∈ ZZ
d
1 , such that |l| = 1 and l, k satisfy momentum conser-

vation (i.e. l = ±em with −π(k) = ±m):

|〈ω, k〉+Ω · l| > 2γK−τ0.(6.5)

iii) For all |k| < K, |l| = 2, such that l, k satisfy momentum conservation and
moreover l 6= em − en or l = em − en and max(|m|, |n|) ≤ 8Kτ1, we set:

|〈ω, k〉+Ω · l| > 2γK−2dτ1.(6.6)

iv) For all N with K ≤ N ≤ 2Kτ1/τ0 , for all affine spaces [vi, pi]ℓ in HN (1 ≤
ℓ < d) with |pℓ| < cN τ1/4d we choose a point mg ∈ [vi; pi]

g
ℓ . For each such

mg and for all k such that |k| ≤ K, we require:

|〈ω, k〉+Ωmg − Ωng | > 2γmin(N−2dτ0 , 2−4d|pℓ|−2d)(6.7)

where ng = mg + π(k) (see Formula (2.6) for the definition of π(k)).
The set O+ is defined in order to ensure Lemma 6.1 below.

Lemma 6.1. For all ξ ∈ O+, for all k ∈ Zb, |k| ≤ K and l ∈ ZZ
d
1 , |l| ≤ 2 which

satisfy momentum conservation, we have

|〈ω, k〉+ l · Ω| ≥ γK−2dτ1 .(6.8)

Before proving the Lemma we give some relevant notations.
We know that Ω̃(z) :=

∑

m
Ω̃m|zm|2 is quasi-Töplitz quadratic and diagonal, hence

given θ, µ, τ , we apply Lemma 4.1 with Q(z) = Ω̃(z) to obtain the bounds (4.8) and

(4.9) for all m
N→[vi; pi] which have a cut at ℓ with parameters (N, θ, µ, τ):

Ω̃m = Ω̂([vi; pi]ℓ) +N−4dτ Ω̄m.(6.9)

Let us fix an affine subspace A
N→[vi; pi]ℓ. By Lemma 3.5 there exists τ := τ(pℓ)

(depending only on pℓ) such that every m ∈ [vi; pi]
g
ℓ has a cut at ℓ with parameters

(N, θ, µ, τ(pℓ)) for all
1
2 < θ, µ < 4, hence:

|Ω̃m − Ω̂([vi; pi]ℓ)| < 2LN−4dτ(pℓ),(6.10)

here Ω̂([vi; pi]ℓ) plays the role of Q(A) while by (6.1) L dominates the Töplitz norm
of Ω̃. Note that in particular this relation holds for mg.
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Proof. (Lemma 6.1) The cases with |l| = 0, 1 follow trivially from the definitions
(6.4) and (6.5) since τ1 is large with respect to τ0; same for ±l = em + en and
l = em − en with max(|m|, |n|) < 8Kτ1.

For the remaining cases we proceed in two steps: first we fix k, N = K and one

subspace A
K→[vi; pi]ℓ, we consider (6.7) with this choice of k, [vi; pi]ℓ. We show that

this inequality implies that (6.8) holds for all l = em − en such that m ∈ [vi; pi]
g
ℓ and

n = m + π(k). We prove this fact by using (6.10) with N = K. Finally Proposition
6.1 ensures that every point m /∈ A0 with |m| > 4Kτ1 must belong to some [vi; pi]

g
ℓ .

Let m be any point in [vi; pi]
g
ℓ . Let us first notice that

〈ω, k〉+ |m|2 − |n|2 = 〈ω, k〉+ |π(k)|2 − 2〈π(k),m〉,(6.11)

hence (6.8) with l = em − en is surely satisfied if |(π(k),m)| ≥ 2K3 because in that
case (6.11) is greater than 2K3 − C2

1K
2 − |ω|K > K3 provided that K is large with

respect to C1 and ω .
If on the other hand |(π(k),m)| < 2K3, then π(k) ∈ Ba

K is in 〈vi〉ℓ, otherwise we
would have |(π(k),m)| > 1

2K
4dτ0 by definition of [vi; pi]

g
ℓ and recalling that K4dτ0 >

4K3 by hypothesis. Thus for all m ∈ [vi; pi]
g
ℓ either (6.8) is trivially satisfied or

|m|2 − |n|2 = |π(k)|2 − 2〈π(k),m〉 = |π(k)|2 − 2〈π(k),mg〉,

recall that mg is one fixed point in [vi; pi]
g
ℓ on which we have imposed the non–

resonance conditions (6.7).
We apply (6.10) with N = K to m,mg and n = m + π(k), ng = π(k) +mg. We

set n
K→[wi; qi], since (µ − 1

2 )K
τ(pℓ), (4 − θ)K4dτ(pℓ) > 5K4 we may apply Lemma 3.6

(with r = n) to conclude that n has an ℓ cut [wi; qi]ℓ with parameters θ, µ, τ . Note
moreover that, by Lemma 3.3 (3) [wi; qi]ℓ is completely fixed by [vi; pi]ℓ and k. We
have

|Ω̃n − Ω̂([wi; qi]ℓ)| < 2LK−4dτ(pℓ),

and this relation holds also for ng = mg + π(k). This implies that

|Ω̃m − Ω̃n − Ω̃mg + Ω̃ng | ≤ 8LK−4dτ(pℓ),

where by definition of τ , Kτ(pℓ) = max(Kτ0, 2|pℓ|) and hence:

|〈ω, k〉+Ωm − Ωn| ≥ |〈ω, k〉+Ωmg − Ωng | − 8LK−4dτ(pℓ) ≥

γ

2
min(K−2dτ0 , 2−4d|pℓ|−2d) ≥ γK−τ1.(6.12)

Now we may apply Proposition 1 with N = K to conclude that every point m
with |m| > 8Kτ1 and p1 < CK4dτ0 belongs to some [vi; pi]

g
ℓ . So the measure estimates

for the points m which fall in this case are covered by (6.6).
Finally if m ∈ A0 of Formula (3.8), i.e. If we have p1 > CK4dτ0 then

| ± 〈ω, k〉+Ωm − Ωn| > | ± 〈ω, k〉+ |π(k)|2 − 2(π(k),m) + Ω̃m − Ω̃n| > K4dτ0 − 2K2

since π(k) ∈ BK and hence |(π(k),m)| > p1.
We have shown that conditions ii)-iv) in O+ imply (6.8).

22



Remark 6.1. This lemma essentially saying that by improving only one non
resonant condition (6.7), we impose all the conditions (6.8) with l = em − en such
that m ∈ [vi; pi]

g
j and n = m+ π(k).

Remark 6.2. Notice that up to now we only use (6.7) and (6.10) with N = K.
Indeed the other non–resonance conditions are only required in order to show that the
quasi–Töplitz property is preserved in solving the homological equation.

Lemma 6.2. The set O+ is open and has |O \ O+| ≤ CγK−τ0+b+d/2. For the
measure estimates, given ̺ > 0 we define

R̺
k,l :=

{

ξ ∈ O| |〈ω, k〉+Ω · l| < γK−̺
}

,

Lemma 6.3. For all (k, l) 6= (0, 0) |k| ≤ K and |l| ≤ 2, which satisfy momentum
conservation, one has |R̺

k,l| ≤ CγK−̺.
Proof. By assumption O is contained in some open set of diameter D.
Choose a to be a vector such that 〈k, a〉 = |k|, we have

|∂t(〈k, ω(ξ + ta)〉+Ω · l)| ≥ M(|k| −ML) ≥ M

2
.

which leads to
∫

R̺
k,l

dξ ≤ 2M−1γK−̺

∫

ξ+ta∩R̺
k,l

dt

∫

dξ2 . . . dξb ≤ 2M−1Db−1γK−̺

Proof. Lemma 6.2.The first statement is trivial, indeed ii)-iv) are a finite number
of inequalities; notice that in iv) for each [vi, pi]

g
ℓ and k we impose only one condition

by choosing one couple mg, ng. Finally by Remark 3.2 there are a finite number of
[vi, pi]

g
ℓ . Item i) apparently has infinitely many conditions since h ∈ Z, however we

note that all but a finite number (i.e. |h| < 2|ω|K) are trivially satisfied.
Let us prove the measure estimates; to impose (6.4) with h = 0 we have to remove

| ∪|k|≤K Rτ0
k,0| ≤ C(b)γK−τ0+b.(6.13)

For h ∈ Z we set

R̺̃
k,h :=

{

ξ ∈ O| |〈ω, k〉+ h| < γK−̺
}

,

and note that R̺̃
k,h is empty if |h| > 2|ω||k|. As in Lemma 6.3 for fixed (k, h) we have

|R̺̃
k,h| ≤ CγK−̺. Then

| ∪|k|≤K,|h|≤2|ω||k| R̃τ0
k,h| ≤ C(b)γK−τ0+b+1.(6.14)

In order to impose the first Melnikov condition (6.5) we note that by momentum
conservation in Rτ0

k,l we have l = ±e∓π(k). Then we have to remove:

| ∪|k|≤K , l=±e∓π(k)
Rτ0

k,l| ≤ C(b)γK−τ0+b.(6.15)

If l = ±(em + en) the momentum conservation fixes n = ∓π(k) −m; we notice that
the condition

| ± 〈ω, k〉+ |m|2 + |n|2 + Ω̃m + Ω̃n| <
1

2
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implies | ± 〈ω, k〉 + |m|2 + |n|2| < 1 and hence |m|2 + |n|2 < 2|ω|K, and we have to
remove a set of parameters:

| ∪ k≤K,
l=±(em+en)

Rτ0
k,l| = | ∪k≤K ∪ l=±(em+en)

|m|≤C(b)
√

K ,n=−π(k)−m

Rτ0
k,l| ≤ CγK−τ0+b+d/2,(6.16)

In conclusion one gets (6.4) and (6.5) with τ0 > b + d/2 and l 6= ±(em − en) by
removing an open set of measure CγK−τ0+b+d/2 .

One trivially has

| ∪k≤K ∪ l=±(em−en) ,m−n=∓π(k) ,

max(|m|,|n|)≤8Kτ1

R2dτ1
k,l | ≤ CγK−dτ1+b,(6.17)

so we have (6.6) by removing an open set of measure CγK−dτ1+b.
In order to deal with the last case, for all natural N such that K ≤ N ≤ 2Kτ1/τ0 ,

for all affine subspaces [vi; pi]ℓ and for all |k| ≤ K we set

RN
k,[vi;pi]

g
ℓ
:= {ξ | |〈ω, k〉+Ωmg − Ωng | < 2γmin(N−2dτ0 , 2−4d|pℓ|−2d)}(6.18)

Following Lemma 6.3, |RN
k,[vi ;pi]

g
ℓ
| < Cγmin(N−2dτ0 , 2−4d|pℓ|−2d). By Remark

3.2 we have:

| ∪K≤N≤Kτ1/τ0 ∪ℓ=0,···,d−1 ∪ 1
2N

τ0≤|pℓ|≤4N
τ1
4d

∪ [vi;pi]
g
ℓ

|k|<K

RN
k,[vi;pi]

g
ℓ
|

≤ Cγ
∑

N≥K

d−1
∑

ℓ=0

∑

|pℓ|>
1
2N

τ0

|pℓ|−2d−1+dN ℓdKb ≤ 4dC2γK
−dτ0+b,

so that we have (6.7) by removing an open set of measure CγK−dτ0+b.

6.2. Quasi-Töplitz property. The main proposition of our paper is following:
Proposition 2. The functions P+, Ω̃+|z|2 are quasi-Töplitz with parameters

(K+, θ+, µ+) such that:

4K+ <
√

(µ− µ+)(K+)
3/2, 4µ+K

4
+ < (θ+ − θ)K4dτ0−1

+ .

The key of our strategy is based on the following three propositions which are
proved in the appendix.

Proposition 3. For any N ≥ K, k ∈ Zb with |k| < K and for all |m|, |n| ≥ θN τ1

such that m−n = −π(k), m
N→[vi; pi], n

N→[wi; qi] and m,n have a ℓ cut with parameters
θ, µ, τ for some choice of ℓ, τ one has

|〈ω, k〉+|m|2−|n|2+Ω̂([vi ; pi ]ℓ)−Ω̂([wi ; qi ]ℓ)| =

|〈ω, k〉+ |π(k)|2 − 2〈π(k),m〉+ Ω̂([vi ; pi ]ℓ)− Ω̂([wi ; qi ]ℓ)| ≥

{

γK−2dτ1τ/τ0 , π(k) ∈ 〈vi〉ℓ
1
2N

4dτ , otherwise
,
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where Ω̂([vi; pi]ℓ) and Ω̂([wi; qi]ℓ) are defined by Formula (6.9).
Proposition 4. For ξ ∈ O+, the solution of the homological equation F is

quasi-Töplitz for parameters (K, θ, µ), moreover one has the bound

‖XF ‖Tr,s ≤ Cγ−2K3τ1
2/τ0‖XP ‖Tr,s ,(6.19)

where C is some constant.
Analytic quasi-Töplitz functions are closed under Poisson bracket. More precisely:
Proposition 5. Given f (1), f (2) ∈ Ar,s, quasi-Töplitz with parameters (K, θ, µ)

we have that {f (1), f (2)} ∈ Ar′,s′ , is quasi-Töplitz for all parameters (K ′, θ′, µ′) such
that K ′, θ′, µ′, r′, s′ satisfy:

1

(K ′)2
≤ (µ− µ′),

2µ′

(K ′)4dτ0−4
< (θ′ − θ) , e−(s−s′)K′

(K ′)τ1 < 1(6.20)

We have the bounds

‖X{f(1),f(2)}‖Tr′,s′ ≤ C1δ
−1‖Xf(1)‖Tr,s‖Xf(2)‖Tr,s(6.21)

where δ = ( r
′

r )
2 min(s− s′, 1− r

r
′)

(ii) Given f (1), f (2) as in item (i), with C1e‖Xf(1)‖Tr,sδ−1 ≪ 1, the function

f (2) ◦ φt
f(1) := et{f

(1),·}f (2), for t ≤ 1, is quasi-Töplitz in D(r′, s′) for all parame-

ters (K ′, θ′, µ′) such that

(lnK ′)2

(K ′)2
≤ (µ− µ′),

2µ′(lnK ′)2

(K ′)4dτ0−4
< (θ′ − θ) , e

−(s−s′) K′
(ln K′)2 (K ′)τ1 < 1,(6.22)

we have the bounds:

‖Xf(2)◦φt

f(1)
‖Tr′,s′ ≤ (1− C1eδ

−1‖Xf(1)‖Tr,s)−1‖Xf(2)‖Tr,s

7. Estimate and KAM Iteration.

7.1. Estimate on the coordinate transformation. We estimate XF and φ1
F

where F is given by (6.2).
Lemma 7.1. Let Di = D( i

4r, s+ + i
4 (s− s+)), 0 < i ≤ 4. Then

‖XF ‖D3×O+ ≤ cγ−2K4dτ1ε , ‖XF ‖TD3×O+
≤ Cγ−2K3τ1

2/τ0ε(7.1)

Lemma 7.2. Let η = ε
1
3 , Diη = D( i

4ηr, s+ + i
4 (s − s+)), 0 < i ≤ 4. If ε ≪

(12γ
2K−3τ1

2/τ0)3, we then have that

φt
F : D2η → D3η, −1 ≤ t ≤ 1,(7.2)

is an analytic map, moreover,

‖φt
F (z)− (z)‖D1η×O+ ≤ Cγ−2K4dτ1ε1/3 ,(7.3)
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Proof. We first notice that

‖XF‖T3η ≤ c′η−2‖XF ‖TD3×O+
≤ Cε−2/3γ−2K3τ1

2/τ0ε < 1

by our smallness assumption. Let us denote by B2η the space of close to identity
analytic symplectic maps D2η → C2b × ℓρ with finite norm (2.4). Similarly we call
C
(

[0, 1],B2η

)

the Banach space of all continuous functions t 7→ φt from [0, 1] to B2η

endowed with the norm supt∈[0,1] ‖ ·‖2η. Consider the ball of radius ρ := 2‖XF‖3η < 1

and centered in φ0 = id. For φt in such ball consider the map

P (φt) := id+

∫ t

0

XF ◦ φsds(7.4)

It is simple to see that the above map is a contraction, in particular

sup
t∈[0,1]

∥

∥

∥

∫ t

0

XF ◦ φsds
∥

∥

∥

2η
≤ sup

t∈[0,1]

‖XF ◦ φt‖2η ≤ (1 + ρ)‖XF ‖3η ≤ ρ ,

The Lemma follows since the Hamiltonian flow φt
F generated by F at time t ∈ [0, 1]

is found as the fixed point of P .

7.2. Estimate of the new perturbation. The symplectic map φ1
F defined

above transforms H into H+ = N+ + P+, where N+ = N + 〈R〉 and

P+ =

∫ 1

0

(1 − t){{N , F}, F} ◦ φt
F dt+

∫ 1

0

{Π≤KR,F} ◦ φt
F dt+ (P −Π≤KR) ◦ φ1

F

=

∫ 1

0

{R(t), F} ◦ φt
Fdt+ (P −Π≤KR) ◦ φ1

F ,(7.5)

with R(t) = (1− t)(N+ −N ) + tΠ≤KR. Hence

XP+ =

∫ 1

0

(φt
F )

∗X{R(t),F}dt+ (φ1
F )

∗X(P−Π≤KR).

Lemma 7.3. The new perturbation P+ satisfies the estimate

‖XP+‖D(r+,s+) ≤ Cγ−2K4dτ1ε4/3.

Proof According to Lemma 7.2,

‖Dφt
F − Id‖D1η ≤ cγ−2K4dτ1ε1/3, −1 ≤ t ≤ 1,

thus

‖Dφt
F ‖D1η ≤ 1 + ‖Dφt

F − Id‖D1η ≤ 2, −1 ≤ t ≤ 1.

‖X{R(t),F}‖D2η ≤ η−2‖X{R(t),F}‖D2 ≤ Cγ−2K4dτ1η−2ε2,

and

‖X(P−Π≤KR)‖D2η ≤ Cηε,
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we have

‖XP+‖D(r+,s+) ≤ Cηε+ C(γ−2K4dτ1)η−2ε2 ≤ Cγ−2K4dτ1ε4/3.

We need to show that P+ is quasi–Töplitz and estimate its Töplitz norm. We
notice that R(t) and P −Π≤KR in (7.5) are quasi–Töplitz, by hypothesis (A4). Then,
by Proposition 5 ii), we have that R(t) ◦ φt

F = e{F,·}R(t) and (P − Π≤KR) ◦ φt
F are

quasi–Töplitz as well. Recalling Proposition 5, and repeating the reasoning of Lemma
7.3 with Quasi- Töplitz norm, one has

Lemma 7.4. Set ε+ := Cγ−2K3τ1
2/τ0ε4/3, then

‖XP+‖TD(r+,s+) ≤ ε+.

7.3. Iteration lemma. In order to make the KAM machine work fluently, for
any given s, ε, r, γ and for all ν ≥ 1, we define the following sequences

sν = s(1−
ν+1
∑

i=2

2−i),

rν =
1

4
ην−1rν−1 = 2−2ν(

ν−1
∏

i=0

εi)
1
3 r0,(7.6)

εν = cγ−2K
3τ1

2/τ0
ν−1 ε

4
3
ν−1, ην = ε

1
3
ν

Mν = Mν−1 + εν−1, Lν = Lν−1 + εν−1,

µν = µ−
ν
∑

i=1

(χ)−i , θν = θ +

ν
∑

i=1

(χ)−i

Kν = c(sν−1 − sν)
−1 ln ε−1

ν ,

where c, 1 < χ < 4
3 is a constant, and the parameters r0, ε0, L0, s0 and K0 are defined

to be r, ε, L, s and bounded by ln ε−1 respectively.
We iterate the KAM step, and proceed by induction.
Lemma 7.5. Suppose at the ν–step of KAM iteration, the hamiltonian

Hν = Nν + Pν ,

is well defined in D(rν , sν)×Oν , where Nν is usual ”integrable normal form”, Pν and
∑

Ω̃ν
n|zn|2 satisfy (A4) for (Kν , θν , µν), ων and Ων

n are C1
W smooth

|ων |C1
W
, |∇ω−1

ν |O ≤ Mν , |Ω̃ν
n|C1

W
≤ Lν , |Ων

n − Ων−1
n |Oν ≤ εν−1;

‖XPν‖TD(rν ,sν),Oν
≤ εν . ‖〈Ω̃νz, z̄〉‖TD(rν ,sν),Oν

≤ Lν

Then there exists a symplectic and Quasi-Töplitz change of variables for parameter
(Kν+1, θν , µν),

Φν : D(rν+1, sν+1)×Oν+1 → D(rν , sν),(7.7)

where |Oν+1\Oν |⋖ γK
−τ0+b+ d

2
ν+1 , such that on D(rν+1, sν+1)×Oν+1 we have

Hν+1 = Hν ◦ Φν = eν+1 +Nν+1 + Pν+1 = eν+1 + 〈ων+1, I〉+ 〈Ων+1z, z̄〉+ Pν+1,
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with ων+1 = ων +
∑

|l|=1

lP0,l,0,0, Ω
ν+1
n = Ων

n + P ν
0,0,en,en .

Nν+1 is an ”integrable normal form”. Pν+1 and
∑

Ω̃ν+1
n |zn|2 satisfy (A4) for

parameters (Kν+1, θν+1, µν+1). Functions ων+1 and Ων+1
n are C1

W smooth

|ων+1|C1
W
, |∇ω−1

ν+1|O ≤ Mν+1, |Ω̃ν+1
n |C1

W
≤ Lν+1, |Ων+1

n − Ων
n|Oν+1 ≤ εν ;

‖XPν+1‖TD(rν+1,sν+1),Oν+1
≤ εν+1, ‖〈Ω̃ν+1z, z̄〉‖TD(rν+1,sν+1),Oν+1

≤ Lν+1

• By Proposition 2, the new perturbation Pν+1 and 〈Ω̃ν+1z, z〉 satisfy the
Quasi-Töplitz property for parameters (Kν+1, θν+1, µν+1). As we can see,
when we require τ1 > τ0 > 12:

∀N ≥ Kν+1 = c(sν−1 − sν)
−1 ln ε−1

ν > K02
ν

implies the inequality

2N ≤
√

(µν − µν+1)N
3/2, 4µ′N4 < (θν+1 − θν)N

4dτ0−1.

• Since the set of Hamiltonians which Poisson commute with M (the momen-
tum) is closed under Poisson brackets (or by using Lemma 4.4 in [14]) we Pν+1

satisfies momentum conservation (namely it Poisson commutes with M).

7.4. Convergence. Suppose that the assumptions of Theorem 2 are satisfied.
Recall

ε0 = ε, r0 = r, s0 = s, M0 = M, L0 = L, N0 = N , P0 = P,

O is an open set. The assumptions of the iteration lemma are satisfied when ν = 0 if
ε0, γ are sufficiently small. Inductively, we obtain sequences:

Oν+1 ⊂ Oν ,

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν : D(rν+1, sν+1)×Oν+1 → D(r0, s0), ν ≥ 0,

H ◦Ψν = Hν+1 = Nν+1 + Pν+1.

Let Õ = ∩∞
ν=0Oν , since at ν step the parameter we excluded is bounded by

CγK
−τ0+b+d/2
ν , the total measure we excluded with infinity step of KAM iteration is

bounded by γ which guarantee Õ is a nonempty set, actually it has positive measure.
As in [23, 24], with Lemma 7.2, Nν ,Ψ

ν , DΨν , ων converge uniformly on D(0, s
2 )×

Õ with

N∞ = e∞ + 〈ω∞, I〉+
∑

n

Ω∞
n znz̄n.

Since Kν = c(sν−1 − sν)
−1 ln ε−1

ν , we have εν = cγ2K
3τ1

2

τ0

ν−1 ε
4
3
ν−1 → 0 once ε is suffi-

ciently small. And with this we have ω∞ is slightly different from ω.
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Let φt
H be the flow of XH . Since H ◦Ψν = Hν+1, there is

φt
H ◦Ψν = Ψν ◦ φt

Hν+1
.(7.8)

The uniform convergence of Ψν , DΨν , ων and XHν implies that the limits can be taken
on both sides of (7.8). Hence, on D(0, s

2 )× Õ we get

φt
H ◦Ψ∞ = Ψ∞ ◦ φt

H∞(7.9)

and

Ψ∞ : D(0,
s

2
)× Õ → D(r, s)×O.

From 7.9, for ξ ∈ Õ, Ψ∞(Tb × {ξ}) is an embedded torus which is invariant for
the original perturbed Hamiltonian system at ξ ∈ Õ. The normal behavior of this
invariant tori is governed by normal frequency Ω∞.

Appendix A. Proof of Propositions 3, 4 and 5.

A.1. Proposition 3. Proof. By hypothesis

|m|, |n| ≥ θN τ1 , m
N→[vi; pi] , n

N→[wi; qi] ,

|qℓ|, |pℓ| ≤ µN τ , |qℓ+1|, |pℓ+1| ≥ θN4dτ , [vi; pi]ℓ ≺ [wi; qi]ℓ(A.1)

By definition of quasi–Töplitz (see Formula (6.10)), one has:

|Ω̃m − Ω̂([vi; pi]ℓ)|, |Ω̃n − Ω̂([wi; qi]ℓ)| ≤ 2LN−4dτ(A.2)

Recall that m− n = −π(k), so one has

|m|2 − |n|2 = 〈m+ n,m− n〉 = |π(k)|2 − 2〈π(k),m〉.

If π(k) /∈ 〈vi〉ℓ then |〈π(k),m〉| > N4dτ > K3 and the denominator is not small:

|〈ω, k〉+ |m|2 − |n|2 + Ω̂([vi; pi]ℓ)− Ω̂([wi; qi]ℓ)| >
1

2
N4dτ ,

since (again by definition of quasi–Töplitz) |Ω̂([vi; pi]ℓ)|,|Ω̂([wi; qi]ℓ)| ≤ 2L.
If π(k) ∈ 〈vi〉ℓ then the value of 〈π(k),m〉 is fixed for all m ∈ [vi; pi]ℓ.

We know that m
K→[v′i; p

′
i] has a standard cut, so that m ∈ [v′i; p

′
i]
g

ℓ̄
for some ℓ̄. If

24dKτ1 < N τ0 then

|〈ω, k〉+ |π(k)|2 − 2〈π(k),m〉+ Ω̂([vi; pi]ℓ)− Ω̂([wi; qi]ℓ)|
(A.2)
≥ |〈ω, k〉+Ωm − Ωn| − 4LN−4dτ

(6.12)
≥ γmin(K−2dτ0 , 2−4d|p′ℓ̄|−2d)− 4L|N |−4dτ ≥ γ

2
min(K−2dτ0, |p′ℓ̄|−2d),

since |p′
ℓ̄
| < 4Kτ1/4d by the definition of standard cut.

If on the other hand we have 24dKτ1 > N τ0 we proceed as follows. We have seen
that we may restrict to the case π(k) ∈ 〈vi〉j , where

|m|2 − |n|2 = |π(k)|2 − 2〈π(k),m〉 = |π(k)|2 − 2(π(k),mg),
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where (notice that N < 2Kτ1/τ0), mg := mg(N) is the point in [vi; pi]
g
ℓ chosen for the

measure estimates (6.7).
We notice thatmg, ng satisfy the conditions (A.1), so we apply (A.2) tom,n,mg, ng.

We have

|〈ω, k〉+ |π(k)|2 − 2〈π(k),m〉+ Ω̂([vi; pi]ℓ)− Ω̂([wi; qi]ℓ)|

≥ |〈ω, k〉+Ωmg − Ωng | − 4LN−4dτ

≥ γ

2
min(N−2dτ0, 2−2d|pℓ|−2d)− 4LN−4dτ

≥ γ

4
min(N−2dτ0 , 2−2d|pℓ|−2d)⋗ γK

−2dττ1
τ0

since by definition |pj | < µ′N τ < 4N τ , N ≤ 2Kτ1/τ0 .

A.2. Proposition 4. Proof. The quasi–Töplitz property is a condition on the
(N, θ, µ, τ)–bilinear part of F , where F is at most quadratic. Hence we only need to
consider the quadratic terms:

Π(N,θ,µ,τ)F =
∑

|k|<N , |m|,|n|>θNτ1
∃ℓ: m,n have a ℓ cut

with parameters N,θ,µ,τ

ei〈k,ϑ〉(Fk,0,em,enzmz̄n + Fk,0,em+en,0zmzn) + c.c .(A.3)

Recall that

Fk,0,em,en =
Pk,0,em,en

〈k, ω〉+Ωm − Ωn
, Fk,0,em+en,0 =

Pk,0,em+en,0

〈ω, k〉+Ωm +Ωn
.(A.4)

By hypothesis |m|, |n| > θN τ1 so in the case of Fk,0,em+en,0 one has

|Fk,0,em+en,0| =
|Pk,0,em+en,0|

〈k, ω〉+ |m|2 + |n|2 + Ω̃m + Ω̃n

≤ |Pk,0,em+en,0|N−τ1 ,

since

|〈k, ω〉+ |m|2 + |n|2 + Ω̃m + Ω̃n| > 2N τ1 − cK − 2L.

We proceed in the same way for ∂ξFk,0,em+en,0. This means that Fk,0,em+en,0 is
quasi-Töplitz with the “Töplitz approximation” equal to zero. Recalling that P is

quasi-Töplitz we deduce, by Remark 4.1, that if m
N→[vi; pi], |m|, |n| > θN τ1 and m,n

have a cut ℓ, τ , then we have:

Pk,0,em,en = Pk(m− n, [vi; pi]ℓ) +N−4dτ P̄k,0,em,en .

Note that by definition (see formula (4.4)) for allm,n which have a ℓ, τ cut the Töplitz
approximation Pk(m− n, [vi; pi]ℓ) must depend only on m− n on the affine subspace
[vi; pi]ℓ and on k. Moreover the approximation (A.5) must hold for all m ∈ [vi; pi]ℓ
which have a cut ℓ, τ (naturally if we fix τ and an affine subspace [vi; pi]ℓ it may well
be possible that no integer point m ∈ [vi; pi]ℓ has a cut ℓ, τ).
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Finally since
∑

m Ω̃mzmz̄m is quasi-Töplitz, diagonal and quadratic we have:

Ω̃m = Ω̂([vi; pi]ℓ) +N−4dτ Ω̄m

for all m
N→[vi; pi] which have an ℓ, τ cut.

We wish to show that

Fk,0,em,en = Fk(m− n, [vi; pi]ℓ) +N−4dτ F̄k,0,em,en ,(A.5)

here Fk is the k Fourier coefficient of the Töplitz approximation F .
By hypothesis we have conditions (A.1) and 〈v1, · · · , vℓ〉 = 〈w1, · · · , wℓ〉. This

in turn implies that the subspace [wi, qi]ℓ is obtained from [vi, pi]ℓ by translation by
m− n = −π(k). If π(k) /∈ 〈vi〉ℓ then the denominator in the first of (A.4) is

|〈k, ω〉+Ωm − Ωn| > |〈k, ω〉+ |π(k)|2 − 2〈π(k),m〉| − 2L >
1

4
N4dτ

and we may again set Fk(m− n, [vi, pi]ℓ) = 0. Otherwise we set

Fk(m− n, [vi, pi]ℓ) =
Pk(m− n, [vi, pi]ℓ)

〈ω, k〉+ |π(k)|2 − 2〈π(k),m〉+ Ω̂([vi; pi]ℓ)− Ω̂([wi; qi]ℓ)
.

We notice that 〈π(k),m〉 depends only on the subspace [vi, pi]ℓ and on π(k). Moreover
by definition Ω̂(·) depends only on the affine subspace on which it is computed; finally
[wi; qi]ℓ depends only on [vi; pi]ℓ and on k. Hence Fk(m − n, [vi, pi]ℓ) depends only
on k,m− n and [vi, pi]ℓ as was our claim. Finally we apply Proposition 3 to bound
the denominator. In order to bound the derivatives in ξ of F we proceed in the same
way, only the denominators may appear to the power two.

Finally to bound F̄ we notice that

F̄k,m,n =
P̄k,m,n

D +N4dτPk(m− n, [vi, pi]ℓ)
Ω̃m − Ω̂([vi; pi]ℓ)− Ω̃n + Ω̂([wi; qi]ℓ)

DD
where

D = 〈ω, k〉+ |π(k)|2−2〈π(k),m〉+ Ω̂([vi; pi]ℓ)− Ω̂([wi; qi]ℓ) , D = 〈ω, k〉+Ωm−Ωn,

and N4dτ |Ω̃m − Ω̂([vi; pi]ℓ)| ≤ 2L. In conclusion taking the supN>K,τ<τ1:

‖XF ‖Tr,s ≤ Cγ−2N
3τ1

2

τ0 ‖XP ‖Tr,s
A.3. Proposition 5. Before proving Proposition 5, we discuss some technical

Lemma and set up some notation. We divide the Poisson bracket in four terms:
{·, ·} = {·, ·}I,ϑ + {·, ·}L + {·, ·}H + {·, ·}R where the superscript L,H,R identifies
the variables in which we are performing the derivatives (the symbol R summarizes
the derivatives in all the wi which are neither low nor high momentum). We call a
monomial

ei〈k,ϑ〉I lzαz̄β

1. of (N,µ)-low momentum if |k| < N and
∑

j |j|(αj + βj) < µN3. Denote by

ΠL
N,µ the projection on this subspace.
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2. of N -high frequency if |k| ≥ N . Denote ΠU
N the projection on this subspace.

Recall that the projection symbol ΠN,θ,µ,τ is given in definition 4.1. A function
f then may be uniquely represented as f = ΠN,θ,µ,τf +ΠL

N,µf + ΠU
Nf + ΠRf where

ΠRf is by definition the projection on those monomials which are neither (N, θ, µ, τ)
bilinear nor of (N,µ)-low momentum nor of N -high frequency.

A technical lemma is given below.
Lemma A.1. The following splitting formula holds:

ΠN,θ′,µ′,τ{f (1), f (2)} = ΠN,θ′,µ′,τ

(

{ΠN,θ,µ,τf
(1),ΠN,θ,µ,τf

(2)}H+(A.6)

{ΠN,θ,µ,τf
(1),ΠL

N,2µf
(2)}I,ϑ + {ΠN,θ,µ,τf

(1),ΠL
N,2µf

(2)}L + {ΠU
Nf (1), f (2)}

{ΠL
N,2µf

(1),ΠN,θ,µ,τf
(2)}I,ϑ + {ΠL

N,2µf
(1),ΠN,θ,µ,τf

(2)}L + {f (1),ΠU
Nf (2)}

)

Proof. We perform a case analysis: we replace each f (i) with a single monomial to
show which terms may contribute non trivially to the projection ΠN,θ′,µ′,τ{f (1), f (2)}.

Consider the expression

ΠN,θ′,µ′,τ{ei〈k
(1),ϑ〉I l

(1)

zα
(1)

z̄β
(1)

, ei〈k
(2),ϑ〉I l

(2)

zα
(2)

z̄β
(2)}.

If one or both of the |k(i)| > N then one or both monomials are of high frequency
and we obtain the last term in the second and third line of (A.6).

Suppose now that |k(1)|, |k(2)| < N we wish to understand under which conditions
on the α(i), β(i) this expression is not zero. By direct inspection, one of the following
situations (apart from a trivial permutation of the indexes 1, 2) must hold:

1. one has zα
(1)

z̄β
(1)

= zᾱ
(1)

z̄β̄
(1)

zσmzσ1

j and zα
(2)

z̄β
(2)

= zᾱ
(2)

z̄β̄
(2)

zσ
′

n z−σ1

j , where
|m|, |n| ≥ θ′N τ1 have a cut for some ℓ with parameters (N, θ′, µ′, τ) and

zᾱ
(1)

z̄β̄
(1)

zᾱ
(2)

z̄β̄
(2)

is of (N,µ′)–low momentum. The derivative in the Poisson
bracket is on wj ;

2. one has zα
(1)

z̄β
(1)

= zᾱ
(1)

z̄β̄
(1)

zσmzσ
′

n and zα
(2)

z̄β
(2)

= zᾱ
(2)

z̄β̄
(2)

, where |m|, |n| ≥
θ′N τ1 have a cut for some ℓ with parameters (N, θ′, µ′, τ)and zᾱ

(1)

z̄β̄
(1)

zᾱ
(2)

z̄β̄
(2)

is of (N,µ′)–low momentum. The derivative in the Poisson bracket is on I, ϑ;

3. one has zα
(1)

z̄β
(1)

= zᾱ
(1)

z̄β̄
(1)

zσmzσ
′

n zσ1

j and zα
(2)

z̄β
(2)

= zᾱ
(2)

z̄β̄
(2)

z−σ1

j where
|m|, |n| ≥ θ′N τ1 have a cut for some ℓ with parameters (N, θ′, µ′, τ) and

zᾱ
(1)

z̄β̄
(1)

zᾱ
(2)

z̄β̄
(2)

is of (N,µ′)–low momentum. The derivative in the Poisson
bracket is on wj ;

4. one has zα
(1)

z̄β
(1)

= zᾱ
(1)

z̄β̄
(1)

zσm and zα
(2)

z̄β
(2)

= zᾱ
(2)

z̄β̄
(2)

zσ
′

n where |m|, |n| ≥
θ′N τ1 have a cut for some ℓ with parameters (N, θ′, µ′, τ) and zᾱ

(1)

z̄β̄
(1)

zᾱ
(2)

z̄β̄
(2)

is of (N,µ′)–low momentum. The derivative in the Poisson bracket is on I, ϑ.
Case 1. We apply momentum conservation to both monomials and obtain

σ1j = −σm− π(k(1), ᾱ(1), β̄(1)) = σ′n+ π(k(2), ᾱ(2), β̄(2)).

Recall that
∑

l∈Zd
1

|l|(ᾱ(1)
l + β̄

(1)
l + ᾱ

(2)
l + β̄(2)l) ≤ µ′N3 −→

∑

l∈Zd
1

|l|(ᾱ(i)
l + β̄

(i)
l ) ≤ µ′N τ1
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and by hypothesis |k(i)| ≤ N , this implies that |j| > θ′N τ1 − µ′N3 − CN > θN τ1

for N > K ′ respecting (6.20) (recall that C is a constant so that |π(k)| ≤ C|k|).
Hence min(|m|, |n|, |j|) > θN τ1 . By momentum conservation |σm + σ1j|, | − σ1j +
σ′n| ≤ CN + µ′N3 ≤ 5N3; by hypothesis n,m have a cut ℓ with parameters

(N, θ′, µ′, τ). By Lemma 3.3 also j
N→[wi; qi] has a cut ℓ with parameters (N, θ, µ, τ).

Then ei(k
(i),ϑ)zα

(i)

z̄β
(i)

are by definition (N, θ, µ, τ) bilinear. The derivative in the
Poisson bracket is on j which is a high momentum variable.

As m,n run over all possible vectors in Z
d
1 with |m|, |n| ≥ θ′N , we obtain the first

term in formula (A.6).

Case 2. Following the same argument ei〈k
(1),ϑ〉zα

(1)

z̄β
(1)

is (N, θ′, µ′, τ) bilinear

and ei〈k
(2),ϑ〉zα

(2)

z̄β
(2)

is (N,µ′) low momentum. We obtain the second contribution
in formula (A.6).

Case 3. We apply momentum conservation to the second monomial and obtain
−σ1j = −π(k(2), ᾱ(2), β̄(2)). This implies that

|j|+
∑

l∈Zd
1

|l|(ᾱ(1)
l + β̄

(1)
l ) ≤ |π(k(2), ᾱ(2), β̄(2)|+

∑

l∈Zd
1

|l|(ᾱ(1)
l + β̄

(1)
l ) ≤

CN +
∑

l∈Zd
1

|l|(ᾱ(1)
l + β̄

(1)
l + ᾱ

(2)
l + β̄

(2)
l ) ≤ µ′N3 + CN ≤ µN3

if N > K ′ with K ′ satisfying (6.20). Then ei〈k
(1),ϑ〉zα

(1)

z̄β
(1)

is, by definition,

(N, θ, µ, τ) bilinear and ei〈k
(2),ϑ〉zα

(2)

z̄β
(2)

is (N, 2µ) low momentum. The deriva-
tive in the Poisson bracket is on j which is a low momentum variable. We obtain the
third contribution in formula (A.6).

Case 4. We apply momentum conservation to both monomials, we get

min(|σm|, |σ′n|) ≤ max
i=1,2

(| − π(k(i), ᾱ(i), β̄(i))| ≤ CN + µ′N3,

which is in contradiction to the hypothesis |m|, |n| ≥ θ′N τ1 . Hence case 4. does not
give any contribution.

The third line in formula (A.6) is dealt just as the second line by exchanging the
indexes 1, 2.

In order to show that {f (1), f (2)} is quasi–Töplitz, for all N > K ′ and τ we have
to provide a decomposition

ΠN,θ′,µ′,τ{f (1), f (2)} = F (1,2) +N−4dτ f̄ (1,2)

so that F (1,2) ∈ F and

‖XF(1,2)‖r′,s′ , ‖Xf̄(1,2)‖r′,s′ < δ−1C‖Xf(1)‖Tr,s‖Xf(1)‖Tr,s.(A.7)

for some constant C.
Using Remark 4.3, we substitute in formula (A.6) ΠN,θ′,µ′,τf

(i) = F (i)+N−4dτ f̄ (i),
with F (i) ∈ F.

Lemma A.2. Consider the function

F (1,2) = ΠN,θ′,µ′,τ

(

{F (1),F (2)}H + {F (1),ΠL
N,2µf

(2)}(I,ϑ)+L + {ΠL
N,2µf

(1),F (2)}(I,ϑ)+L
)
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where we have denoted {·, ·}(I,ϑ)+L = {·, ·}(I,ϑ) + {·, ·}L. (i) One has F (1,2) ∈ F. (ii)
Setting f̄ (1,2) = N4dτ (ΠN,θ′,µ′,τ{f (1), f (2)} − F (1,2)) one has that the bounds (A.7)
hold.

Proof. In order to prove the first statement it is useful to write

F (i) =
∑

A=[vi;pi]ℓ∈HN
|pℓ|<µNτ

∑

σ,σ′=±1

(N,θ′,µ′,τ,A)
∑

m,n

[F (i)]σ,σ
′
(I, ϑ, wL;σm+ σ′n, [vi; pi]ℓ)z

σ
mzσ

′
n

where
(N,θ′,µ′,τ,A)

∑

is the sum over those n,m which respect (4.1) and have the ℓ cut at
A = [vi; pi]ℓ with the parameters θ′, µ′, τ . For compactness of notation we will omit
the dependence on (I, ϑ, wL).

The fact that {F (1),ΠL
N,2µf

(2)}I,ϑ+L ∈ F is obvious. Indeed the coefficient of

zσmzσ
′

n is

{F (1)(σm+ σ′n, [vi; pi]ℓ),Π
L
N,2µf

(2)}I,ϑ+L,

the same for {F (2),ΠL
N,2µf

(1)}I,ϑ+L.
Suppose now that n,m respect (4.1) and have the ℓ cut [vi; pi]ℓ with the parame-

ters θ′, µ′, τ . By the rules of Poisson brackets the coefficient of zσmzσ
′

n in the expression
{F (1),F (2)}H is

∑

r∈Zd
1
,σ1=±1

|r|≥θNτ1

|σm+σ1r|≤µN3

|−σ1r+σ′n|≤µN3

−σ1[F (1)]σ,σ1(σm+ σ1r, [vi; pi]ℓ)[F (2)]−σ1,σ
′
(−σ1r + σ′n; [wi; qi]ℓ);(A.8)

Since |σm+ σ1r|, |σ′n− σ1r| ≤ µN3 and |m|, |n| > θ′N τ1 we have that the condition
|r| > θN τ1 is automatically fulfilled. By Lemma 3.3 r, n,m all have a ℓ cut with

parameters (θ, µ, τ). We set m
N→[vi; pi], n

N→[v′i; p
′
i], r

N→[wi; qi]. Again by Lemma 3.3
〈vi〉ℓ = 〈v′i〉ℓ = 〈wi〉ℓ, moreover [wi; qi]ℓ is completely fixed by [vi; pi]ℓ, σ, σ1 and by
σm+ σ1r := h. We may suppose (the other cases are done in the same way) that

(p1, · · · , pℓ, v1, · · · , vℓ) � (q1, · · · , qℓ, w1, · · · , wℓ) � (p′1, · · · , p′ℓ, v′1, · · · , v′ℓ),

note that also this order relation depends only on σ, σ′, σ1, [vi; pi]ℓ, σm + σ′n and
σm+ σ1r = h. Then we may change variables in the sum over r in (A.8):

∑

σ1=±1

∑

h :|h|<µN3

|σm+σ′n−h|≤µN3

−σ1[F (1)]σ,σ1(h, [vi; pi]ℓ)[F (2)]−σ1,σ
′
(σm+ σ′n− h; [wi; qi]ℓ),

this expression only depends on [vi; pi]ℓ. The estimate (A.7) for F (1,2) follows by
Cauchy estimates since

‖XF(1,2)‖r′,s′ ≤ ‖X{F(1),F(2)}‖r′,s′ + ‖X{F(1),f(2)}‖r′,s′ + ‖X{F(2),f(1)}‖r′,s′ .

We now compute:

f̄ = ΠN,θ′,µ′,τ

(

{ΠN,θ,µ,τf
(1), f̄ (2)}H + {f̄ (1),F (2)}H
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+{f̄ (1),ΠL
N,µf

(2)}I,ϑ + {f̄ (1),ΠL
N,µf

(2)}L +N4dτ{ΠU
Nf (1), f (2)}

{ΠL
N,µf

(1), f̄ (2)}I,ϑ + {ΠL
N,µf

(1), f̄ (2)}L +N4dτ{f (1),ΠU
Nf (2)}

)

.

Since e−N(s−s′) < N−τ1 , one has

‖X{f(1),ΠU
Nf(2)}‖r′,s′ ≤ N−τ122d+1δ−1‖Xf(1)‖r,s‖Xf(2)‖r,s,

by the Cauchy and smoothing estimates. The estimate (A.7) follows.
Proof. (Proposition 5) Proposition 5(i) follows from the previous Lemma.
(ii) Given f (i), i = 1, · · · , J as in item (i), and applying repeatedly (6.20), the

nested Poisson bracket

{f (1), {f (2), · · · , {f (J−1), f (J)} · · ·}

is quasi-Töplitz in D(r+, s+) with parameters (K+, θ+, µ+) if

1

N2
≤ (µ− µ′)

J
,

2µ′

N4dτ0−4
<

θ′ − θ

J
, e−

s−s′
J N (N)τ1 < 1(A.9)

for all N > K+

For given N we bound all the terms in e{F,·}G containing J > (lnN)2 Poisson
brackets by N−τ1 by using the standard bound:

∑

k>J

‖Xad(f(1))kf2‖r′,s′
k!

≤ (2eδ−1‖Xf(1)‖r,s)J+1‖Xf(2)‖r,s ≤

CN−τ1‖Xf(1)‖r,s‖Xf(2)‖r,s

provided that 2eδ−1‖Xf(1)‖r,s < 1
2 . We then apply (A.9) with J = (lnN)2, we get

the restriction (6.22). So applying item (i) repeatedly we get for all k < J :

1

k!
‖Xad(f(1))kf2‖Tr′,s′ ≤ (Ceδ−1‖Xf(1)‖Tr,s)k‖Xf(2)‖r,s,

the result follows.
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