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GLOBAL EXPONENTIAL CONVERGENCE TO VARIATIONAL
TRAVELING WAVES IN CYLINDERS

C. B. MURATOV∗ AND M. NOVAGA†

Abstract. We prove, under generic assumptions, that the special variational traveling wave that
minimizes the exponentially weighted Ginzburg-Landau functional associated with scalar reaction-
diffusion equations in infinite cylinders is the long-time attractor for the solutions of the initial value
problems with front-like initial data. The convergence to this traveling wave is exponentially fast.
The obtained result is mainly a consequence of the gradient flow structure of the considered equation
in the exponentially weighted spaces and does not depend on the precise details of the problem. It
strengthens our earlier generic propagation and selection result for “pushed” fronts.
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exponentially weighted spaces

AMS subject classifications. 35B40, 35C07, 35K57, 35A15

1. Introduction. One of the most fundamental problems in the theory of reaction-
diffusion equations has to do with the long-time asymptotic behavior of solutions of
the associated initial value problem on unbounded domains [6, 38, 39]. In its simplest
form, it may be formulated for a one-dimensional scalar reaction-diffusion equation

ut = uxx + f(u), u : R× R
+ → [0, 1], (1.1)

with an unbalanced bistable nonlinearity f(u), i.e., when f is a smooth function which
has precisely three non-degenerate zeros in [0, 1], with

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0,

∫ 1

0

f(u)du > 0, (1.2)

e.g. f(u) = u(1 − u)(u − 1
4 ). For such an equation, it was first proved by Kanel’

that initial data u(x, t) = u0(x) with the property that u0(x) = 0 for all x > b,
u0(x) = 1 for all x < a, and u0(x) is monotone decreasing for x ∈ (a, b), with
some −∞ < a < b < +∞, converges uniformly to a (unique up to translations)
traveling wave solution, i.e., a solution u(x, t) = ū(x−ct) of (1.1), with some uniquely
determined speed c > 0, connecting monotonically u = 0 at x = +∞ with u = 1 at
x = −∞, in a reference frame moving with speed c [14, 15]. In a subsequent work, Fife
and McLeod extended this result to a much wider class of initial data and also showed
that the convergence is exponentially fast [7]. Qualitatively, the conclusion of these
analyses is that the solution of the considered initial value problem with front-like
initial data converges exponentially fast to a traveling front invading the “less stable”
equilibrium u = 0 by a “more stable” equilibrium u = 1. We note that a similar result
was proved for a certain class of monostable nonlinearities [31], but it does not hold
(in the reference frame moving with constant speed and in the sense of exponential
convergence) in the case of the Fisher’s equation [17, 35, 4, 16].
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2 C. B. MURATOV AND M. NOVAGA

In the multi-dimensional setting, these kinds of results were subsequently obtained
for initial boundary value problems for equations in infinite cylindrical domains:

ut = ∆u+ f(u, y), u(x, 0) = u0(x), (1.3)

where u : Σ × R
+ → R, Σ = Ω × R ⊂ R

n, Ω ⊂ R
n−1 is a bounded domain with

sufficiently smooth boundary, f : R×Ω → R is a nonlinear reaction term, with either
Neumann or Dirichlet boundary conditions. By x = (y, z) ∈ Σ, we always denote
a point with coordinate y ∈ Ω on the cylinder cross-section and z ∈ R along the
cylinder axis. More generally, one can consider either Dirichlet or Neumann boundary
conditions on different connected portions of ∂Ω:

u
∣∣
∂Σ±

= 0, ν · ∇u
∣∣
∂Σ0

= 0, (1.4)

where ∂Σ± = ∂Ω± × R and ∂Σ0 = ∂Ω0 × R, allowing for more than one connected
component for ∂Ω (for motivation and further discussion of the boundary conditions,
see [24, 25]). Note that transverse advection by a potential flow can also be straight-
forwardly included in the present treatment, as was done in [24, 25]. For simplicity
of presentation, in this paper we do not consider the advection term and concentrate
on pure reaction-diffusion problems.

Without loss of generality, we may assume that u = 0 is a trivial solution of (1.3)
and consider traveling waves that invade the u = 0 equilibrium, i.e., the solutions of
(1.3) and (1.4) in the form u(x, t) = ū(y, z − ct), for some c > 0, which converge to
zero uniformly as z → +∞. These solutions satisfy the elliptic equation

∆ū+ cūz + f(ū, y) = 0, (1.5)

together with the respective boundary conditions in (1.4) (by a solution, we mean a
pair (c, ū), with ū ∈ C2(Σ) ∩C1(Σ) being a classical solution of (1.5) and (1.4)). We
refer to [3, 38, 24] and references therein, for a comprehensive treatment of the subject
of traveling waves. In particular, under certain specific assumptions one obtains
uniqueness (up to translations) and global exponential convergence to these solutions
for the initial value problem with front-like initial data [22, 29, 30] (see the end of
Sec. 2 for a more detailed discussion and a comparison with the present results).
This property, therefore, indicates the ubiquitous role of the traveling fronts in the
behavior of the solutions of (1.3).

Since in general (1.5) may have many solutions, an important question is which
of these solutions, if any, can be a long-time limit of the evolution governed by (1.3),
for a given class of initial data. As was recently pointed out in [23], in the case of
initial data with sufficiently fast exponential decay at z = +∞ the relevant class
of traveling wave solutions consists of the so-called variational traveling waves, even
for systems of reaction-diffusion equations in which the nonlinearity is a gradient.
More recently, we showed that a special class of variational traveling wave solutions
that minimize the exponentially weighted Ginzburg-Landau functional (see Sec. 2
for precise definitions and statements) are relevant for the long-time behavior of the
initial value problem in the sense of propagation of the leading edge and, in particular,
determine the propagation speed for front-like initial data [24]. It is then natural to
ask whether these special traveling fronts are also the long-time attractors for the
solutions of (1.3) in the moving reference frame. In this paper, we give a positive
answer to this question under a few extra non-degeneracy assumptions to those of
[24] which hold generically in the considered class of problems.
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Our paper is organized as follows. In Sec. 2, we introduce the variational formu-
lation for the traveling waves of interest, state the main result and compare it with
those available in the literature. In Sec. 3, we list and discuss our assumptions, as
well as state a number of auxiliary results used in the paper. In Sec. 4, we perform
local stability analysis of the traveling waves of interest in the exponentially weighted
Sobolev spaces, and in Sec. 5 we prove convergence to the traveling wave in the large,
completing the proof of the main theorem.

Some notation. For every−∞ ≤ a < b ≤ +∞ and c > 0, the symbol L2
c(Ω×(a, b))

denotes the Hilbert space of all functions u : Ω × (a, b) → R with ||u||2L2
c(Ω×(a,b)) =

∫ b
a

∫
Ω
eczu2(y, z) dy dz. Likewise, by L2

c(Σ), H
1
c (Σ) and H

2
c (Σ), we denote the spaces

of functions which are square integrable with the above exponential weight, together
with their first and second derivatives, respectively, in Σ. We also use the symbol
Cb(A) to denote the space of bounded continuous function on A equipped with the
sup-norm. In all statements and proofs the constants are always assumed to implicitly
depend on f , Ω and the choice of the boundary conditions. In the proofs the numbers
C,M , etc., may change from line to line. We will also use the symbol TR to denote
a translation by R along the z-axis, i.e., TRu(·, z) = u(·, z −R).

2. Variational formulation and main result.

The fact that (1.5) possesses a variational structure in exponentially weighted
Sobolev spaces was, to our knowledge, first pointed out by Heinze [11, 12] (see also
[7, 38, 29, 19, 9, 24] in the context of (1.3), and [23, 20, 27, 8] in the context of
its extensions). As we recently showed in [24], for scalar reaction-diffusion equations
considered here the solution of (1.5) which determines the asymptotic speed of prop-
agation with front-like initial data is a special variational traveling wave which is the
minimizer of the the exponentially weighted Ginzburg-Landau functional

Φc[u] :=

∫

Σ

ecz
(
1

2
|∇u|2 + V (u, y)

)
dx c > 0, (2.1)

where

V (u, y) = −
∫ u

0

f(s, y)χ[0,1](s) ds, χ[0,1](s) =

{
1, s ∈ [0, 1]

0, s 6∈ [0, 1]
, (2.2)

over all functions lying in the exponentially weighted Sobolev space H1
c (Σ). We point

out that such a minimizer can only exist for a specific value of c = c† > 0 (see Theorem
2 below). Under quite general assumptions on the potential V , in [24, Theorem 5.8]
we proved that the asymptotic speed of propagation of solutions to (1.3) is precisely
given by c†, assuming that the initial datum is front-like, i.e., if it stays sufficiently far
away from zero as z → −∞ and decays sufficiently fast to zero as z → +∞. In this
paper, we discuss the local and global stability of such variational traveling waves.

Our main result is contained in the following theorem (for the details of the
definitions and hypotheses, see Sec. 3):

theorem 1. Assume hypotheses (H1)–(H3) and (N1)–(N2) are satisfied, and
let c†, ū, v be as in Theorem 2. Then there exist α > 0 and σ > 0, such that if
u0 ∈ C0(Σ) ∩W 1,∞(Σ) ∩ L2

c†(Σ) satisfies 0 ≤ u0 ≤ 1 and

lim inf
z→−∞

u0(·, z) ≥ v − α uniformly in Ω , (2.3)
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there exists R∞ ∈ R, such that if u is the solution of (1.3) and (1.4) with initial datum
u0, then

||TR∞−c†tu(·, t)− ū||H2

c†
(Σ) ≤ Ce−σt (2.4)

for every t ≥ t0, with arbitrary t0 > 0 and some C > 0 independent of t.
Note that by Proposition 3.1 below we know that u(·, t) is bounded in W 2,p(Ω×

[M,M + 1]) uniformly in M ∈ R and t ∈ [t0,+∞), for all t0 > 0 and p < ∞. Since
this bound also applies to ū, from (2.4) we get the following

Corollary 2.1. In the statement of Theorem 1, the inequality (2.4) may be
replaced with

‖TR∞−c†tu(·, t)− ū‖C1(Ω×[z0,z1])
≤ Ce−σt, (2.5)

for all z0 < z1, t ≥ t0 > 0, and some C > 0 independent of t and z1.
Let us point out that the upper bound u0 ≤ 1 in Theorem 1 can be replaced with

the condition u0(·, z) ≤ v̄ for every z ∈ R, where v̄ ∈ C2(Ω) ∩C1(Ω) satisfies

v̄ > 0, ∆y v̄ + f(v̄, y) ≤ 0 for all y ∈ Ω, (2.6)

together with the boundary conditions from (1.4). In this case, the condition f(1, y) ≤
0 in assumption (H1) below should be replaced by (2.6), the conditions in (H2) should
hold for 0 ≤ u ≤ v̄, and the definition of V in (2.2) should be modified accordingly.
We note that, in particular, one can choose v̄ to be any positive critical point of the
energy functional E associated with Φc:

E[v] :=

∫

Ω

(
1

2
|∇yv|2 + V (v, y)

)
dy, v ∈ H1(Ω), v

∣∣
∂Ω±

= 0. (2.7)

To each such v̄ one can associate a minimizer of Φc in the admissible class of functions
that are bounded above by v̄. Then, under the assumption that the initial data
approaches v̄ uniformly from below as z → −∞ one can make the conclusion (under
generic non-degeneracy assumptions) that the solution of the initial value problem
converges exponentially to the corresponding minimizer. Thus, every front-like initial
data in a more restricted sense of connecting zero to a critical point v̄ of E converges
to the minimizer associated with that critical point. More precisely, we have

Corollary 2.2. Under hypotheses (H1)–(H3), (N1)–(N2), with the trial func-
tion u in hypothesis (H3) satisfying u ≤ v̄, where v̄ > 0 is a critical point of E,
let ū be the unique (up to translations) non-trivial minimizer of Φc† over functions
u ∈ H1

c†(Σ) satisfying (1.4) and 0 ≤ u ≤ v̄. Let u0 ∈ C0(Σ) ∩ W 1,∞(Σ) ∩ L2
c†(Σ)

satisfy 0 ≤ u0 ≤ v̄ and u0(·, z) → v̄ uniformly in Ω as z → −∞. Then the conclusion
of Theorem 1 holds.

An important implication of Corollary 2.2 is that v̄ selects the attracting varia-
tional traveling wave solution in the long time limit. This kind of conclusion was made
by us earlier for the propagation speed of the leading edge without the non-degeneracy
assumptions of the present paper [24].

We note that the problem of convergence to traveling waves for solutions of (1.3)
has been widely considered in the mathematical literature. We refer to [6, 38, 30] and
references therein, for a general overview on the subject. Specifically, our result should
be compared with [30, Theorem 3.7] by Roquejoffre, where, in particular, convergence
to variational traveling waves is proved (in our notation) for initial data that approach
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zero from above as z → +∞ and a non-degenerate local minimizer v̄ > 0 of E from
below as z → −∞.

Roquejoffre makes a crucial assumption that there exists a variational traveling
wave connecting v̄ at z = −∞ with zero at z = +∞. In contrast, our results do not
require existence of such a traveling wave. Instead, we require that the initial data
decay sufficiently rapidly to zero as z → +∞ and stay approximately above the local
minimizer v of E corresponding to the limit at z = −∞ for the special variational
traveling wave ū given by Theorem 2 as z → −∞. Under this condition the solution
of (1.3) is attracted to a translate of ū on compacts in the moving reference frame (see
Theorem 1 for a precise statement). We note that in the class of front-like initial data
with sufficiently fast exponential decay considered by us global stability of a traveling
wave connecting zero to v̄ is a simple consequence of Corollary 2.2. Indeed, if there
exists a variational traveling wave uc connecting zero to v̄, then by Proposition 3.3
we have uc = ū, where ū is as in Corollary 2.2 (note that in this case hypotheses (H3)
and (N2) are unnecessary). Thus, within the scope of (1.3) and front-like initial data
decaying sufficiently fast, our results are applicable to more general initial data than
the ones considered in [30] and, most importantly, provide a selection criterion for
the limit front in terms of the asymptotic behavior of the initial data as z → −∞.
We also point out that our assumptions concerning the nonlinearity f (see (H1)–(H3)
below) are quite general compared to the assumptions usually made in the literature
[3, 36, 30]. In particular, these assumptions can be readily verified in practice (for
examples see [19, 20, 25]).

3. Preliminaries. Throughout this paper we assume Ω to be a bounded domain
(connected open set, not necessarily simply connected) with a boundary of class C2.
We start by listing the assumptions on the nonlinearity f which we need in Theorem
1. The function f : [0, 1]× Ω → R satisfies:

(H1) f(0, y) = 0 f(1, y) ≤ 0 for all y ∈ Ω,

(H2) f ∈ C0,γ([0, 1]× Ω) fu =
∂f

∂u
∈ C0,γ([0, 1]× Ω) for some γ ∈ (0, 1).

Hypotheses (H1) and (H2) are needed to guarantee, in particular, existence and
basic regularity properties of solutions of (1.3). Indeed, from [24, Proposition 5.1]
and [21, Chapter 7] we have the following

Proposition 3.1. Under assumptions (H1) and (H2), let u0 ∈ C0(Σ)∩W 1,∞(Σ).
Let also u0 satisfy the boundary conditions (1.4) and assume u0(x) ∈ [0, 1] for all
x ∈ Σ. Then there exists a unique solution (using notation of [5])

u ∈ C2
1 (Σ× (0,∞)) ∩C0(Σ× [0,+∞))

of (1.3) with boundary conditions (1.4) and initial condition u(·, 0) = u0, which satis-
fies 0 ≤ u ≤ 1 and ||∇u||Cb(Σ×(0,+∞)) <∞. Moreover, letting ΣM := Ω× [M,M + 1]
for all M ∈ R, we have

‖u(·, t)‖W 2,p(ΣM ) ≤ C(t0, p) for all t ≥ t0 > 0, p > 1. (3.1)

Finally, if u0 ∈ L2
c(Σ) for some c > 0, we also have

u ∈ Cα((0,+∞);H2
c ) ∩C1,α((0,+∞);L2

c(Σ)) for all α ∈ (0, 1), (3.2)

and

ut ∈ C((0,+∞);H1
c (Σ)). (3.3)
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We now turn to the assumption which is both necessary and sufficient for the
existence of the special variational traveling wave solution considered in this paper
[19, 24].

(H3) There exist c > 0, satisfying c2 + 4ν0 > 0, where

ν0 = min
ψ∈H1(Ω)
ψ|∂Ω±

=0

∫
Ω(|∇yψ|2 − fu(0, y)ψ

2) dy∫
Ω
ψ2 dy

, (3.4)

and u ∈ H1
c (Σ), such that Φc[u] ≤ 0 and u 6≡ 0.

Remark 3.2. As was shown in [24], in the case ν0 ≥ 0 the hypothesis (H3) is
equivalent to the condition

inf
v∈H1(Ω)
v|∂Ω±

=0

E[v] < 0. (3.5)

Under the above assumptions, we can state the existence result concerning the
variational traveling wave which is the minimizer of Φc with a suitably fixed transla-
tion.

theorem 2. Under hypotheses (H1)–(H3), there exists a unique value of c† ≥ c,
where c is defined by hypothesis (H3), and a unique function ū ∈ C2(Σ) ∩ C1(Σ),
ū 6≡ 0, such that (c†, ū) solve (1.5) and (1.4), and ū satisfies ||ū(·, 0)||L∞(Ω) =
1
2 supz∈R

||ū(·, z)||L∞(Ω) and minimizes Φc† in H
1
c†(Σ). Moreover ū ∈ H2

c†(Σ)∩W 1,∞(Σ),
ūz ∈ H2

c†(Σ), ūz < 0 in Σ, and

lim
z→+∞

ū(·, z) = 0, lim
z→−∞

ū(·, z) = v in C1(Ω), (3.6)

where v : Ω → R is a local minimizer of E defined in (2.7), with E[v] < 0.

For the proof see [24, Theorem 3.3] and [20, Proposition 3.3(ii)] (the latter argument
also applies to ūz by differentiating (1.5) in z).

Let us point out that the minimizer of Theorem 2 is in some sense the “maximal”
variational traveling wave solution. More precisely, we have the following result:

Proposition 3.3. Let hypotheses (H1)–(H3) be satisfied, and let (c, u) solve
(1.5) and (1.4), with c > 0, u ∈ H1

c (Σ) and 0 < u < 1. Then, if v, c†, ū are as in
Theorem 2, and

lim inf
z→−∞

u(·, z) ≥ v uniformly in Ω, (3.7)

we have c = c† and u = TRū, for some R ∈ R. In particular, the inequality in (3.7)
is, in fact, equality.

Proof. First note that we cannot have c > c†. Indeed, if this inequality were true,
by [20, Proposition 3.5] the pair (c, u) can be taken as a trial function in hypothesis
(H3), contradicting the conclusion of Theorem 2 that c† ≥ c. On the other hand, it
is easy to see that c < c† is also impossible. Indeed, arguing as in the proof of [24,
Proposition 5.5], for any c′ ∈ (c, c†) there exists a non-trivial minimizer ūc′ of Φc′ in the
class of functions inH1

c′(Σ) which stay below v and vanish outside ΣR = Ωσ×(−R,R),
with Ωσ = {y ∈ Ω : dist(y, ∂Ω±) > σ}, where R > 0 is large enough and σ > 0 is



CONVERGENCE TO VARIATIONAL TRAVELING WAVES 7

small enough.1 Furthermore, ūc′ is a classical solution of (1.5) with c = c′ in ΣR and
ūc′ ≤ max(0, v − ε) for some ε > 0. Therefore, by (3.7) the function TR′ ūc′ < u in
Σ for some R′ ∈ R sufficiently large negative, and by parabolic comparison principle
[26] we have ūc′ < T(c−c′)t−R′u for all t > 0. However, the latter is impossible, since

the right-hand side of this inequality converges to zero in H1
c (Σ). Thus c = c†, hence

u is a minimizer by [20, Proposition 3.5], and the result follows from [24, Theorem
3.3(v)].

We note that, in particular, the result in Proposition 3.3 allows to extend the
statements about monotonicity and uniqueness of traveling waves established in the
classical work of Berestycki and Nirenberg [3] for (1.3) and (1.4) (see also [36, 37]), in
the class of variational traveling waves, under only an assumption that the traveling
wave approaches a limit from below as z → −∞, zero from above as z → +∞, and
is sandwiched between these two limits. Indeed, suppose (c, u) is such a traveling
wave, with u(·, z) → v̄ as z → −∞, with 0 < v̄ ≤ 1. Then by the argument of
[20, Proposition 6.6] v is a critical point of E, and by [24, Proposition 3.5] we have
c2+4ν0 > 0. So by Proposition 3.3 this traveling wave is a non-trivial minimizer of Φc
in H1

c (Σ) over all positive functions bounded above by v̄, and the result follows from
[24, Theorem 3.3]. In particular, we do not require any non-degeneracy assumptions
for the limits of u(·, z) as z → ±∞, as is done [3]. Thus, we have:

Corollary 3.4. Under hypotheses (H1) and (H2), let c > 0, and let u ∈ H1
c (Σ)

be a solution of (1.5) and (1.4), satisfying u(·, z) → v̄ uniformly in Ω as z → −∞,
where 0 < v̄ ≤ 1 and 0 < u < v̄. Then c2 + 4ν0 > 0, the value of c is unique, uz < 0,
and u is unique up to translations.

We now list two additional technical assumptions (see also [30]), which are gener-
ically satisfied and are needed to prove global exponential stability of the minimizers
of Φc for initial data bounded below by v as z → −∞.

(N1) For v as in Theorem 2 we have

ν̃0 = min
ψ∈H1(Ω)
ψ|∂Ω±

=0

∫
Ω
(|∇yψ|2 − fu(v, y)ψ

2) dy∫
Ω
ψ2 dy

> 0. (3.8)

(N2) For v < 1 as in Theorem 2 there is no solution (c†, ū) of (1.5) and (1.4),
with c† as in Theorem 2, such that v < ū < 1 on Σ.

Conditions (N1) and (N2) are generic in the sense that the set of nonlinearities
f such that (N1) or (N2) do not hold is a meager subset of all f ’s obeying (H1)-
(H3), in the natural topology (for similar notions related to perturbations of Ω see
[13]). Indeed, condition (N1) is generic, since by the results of [24] we have ν̃0 ≥ 0,
so that (N1) only excludes the degenerate case of ν̃0 = 0. Similarly, condition (N2)
excludes the non-generic possibility of existence of a traveling front invading v from
above with the same speed c† as the front invading zero by v. To see that the only
non-trivial alternative would be to have a front invading v with lower speed, consider
the following variational problem. Given c > 0 and h ∈ H1

c (Σ) satisfying (1.4), let

Ψvc [h] :=

∫

Σ

ecz
( |∇h|2

2
+ V (v + h, y)− V (v, y)− V ′(v, y)h

)
dx, (3.9)

1This choice of ΣR also corrects a minor inaccuracy in the proof of [24, Proposition 5.5].
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where we used the notation V ′(s, y) := ∂V (s, y)/∂s. Notice that, if h̄ is a critical
point of Ψvc† , then ū = v + h̄ is a solution of (1.5) and (1.4). We set

c†v := inf
{
c > 0 : Ψvc [h] ≥ 0 for all h ≥ 0

}
. (3.10)

Then the following result concerning c†v holds.
lemma 3.5. The functional Ψvc is weakly sequentially lower semicontinuous and

coercive in H1
c (Σ) for all c > c†v, and c

†
v ≤ c†, where c† is as in Theorem 2. Moreover,

under hypothesis (N2) we have c†v < c†.
In other words, under hypothesis (N2) it is only possible to have such a system of
stacked waves [38] invading zero, that the front connecting zero with v moves faster
than the front invading v from above.

Proof of Lemma 3.5. First of all, reasoning as in [20, Proposition 5.5] and using
the fact that ν̃0 ≥ 0, where ν̃0 is defined in (3.8) [24, Theorem 3.3(iv)], one can see
that Ψvc is weakly lower semicontinuous in H1

c (Σ) for all c > 0, so the results of [24]
apply to Ψvc . Moreover, reasoning as in the proof of [20, Proposition 6.9], we also get
that Ψvc is coercive in H1

c (Σ) for all c > c†v.
Let us now prove that c†v ≤ c†. Assume by contradiction that there exists w ≥ v,

such that Ψvc† [w−v] < 0. Slightly perturbing w, we can ensure that w = v for z ≥ z0,
with z0 ∈ R big enough. Let ū be the minimizer of Φc† given by Theorem 2, and
let ε ≤ −Ψvc† [w − v]/2. Since ū(·, z) → v in H1(Ω) as z → −∞, up to a suitable
translation we can perturb ū into a function ũ ∈ H1

c†(Σ) such that ũ = v for z ≤ z0
and Φc† [ũ] ≤ ε. Define û ∈ H1

c†(Σ) as

û(y, z) :=

{
w(y, z) if z ≤ z0
ũ(y, z) if z > z0.

Letting h = w − v ∈ H1
c†(Σ) and satisfying (1.4), after an integration by parts and

using the Euler-Lagrange equation for E satisfied by v, we get

Φc† [û] =

∫ z0

−∞

∫

Ω

ec
†z

( |∇(v + h)|2
2

+ V (v + h, y)

)
dy dz

+

∫ +∞

z0

∫

Ω

ec
†z

( |∇ũ|2
2

+ V (ũ, y)

)
dy dz

=

∫ z0

−∞

∫

Ω

ec
†z

( |∇h|2
2

+ V (v + h, y)− V (v, y)− V ′(v, y)h

)
dy dz

+

∫ z0

−∞

∫

Ω

ec
†z

( |∇yv|2
2

+ V (v, y)

)
dy dz

+

∫ +∞

z0

∫

Ω

ec
†z

( |∇ũ|2
2

+ V (ũ, y)

)
dy dz

= Ψvc† [h] + Φc† [ũ] ≤
Ψvc† [h]

2
< 0

which contradicts the minimizing property Φc† [ū] = 0 of ū [20, Proposition 3.2].
To conclude the proof, it remains to prove that c†v < c† under hypothesis (N2). If

c†v = c†, then for every c ∈ (0, c†), there exists a function hc 6≡ 0, such that Ψvc [hc] < 0.
Hence, the analog of hypothesis (H3) holds for Ψvc , and, therefore, there exists a non-
trivial minimizer h̄ of Ψvĉ for some ĉ ≥ c†. On the other hand, by the argument of
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[24, Proposition 5.5], we have ĉ ≤ c†v. So ĉ = c†, and since û = v+ h̄ > v is a solution
of (1.5) and (1.4) with c = ĉ, this violates assumption (N2).

Finally, we note that if either (N1) or (N2) are violated, one would not expect
exponential stability of ū in the reference frame moving with speed c† any more.
Therefore, in some sense these conditions are also necessary for the results obtained
by us.

4. Local stability in L2
c†(Σ). In this section we prove stability of the variational

traveling wave ū minimizing Φc† in the reference frame moving with speed c† up to
perturbations which are small in the L2

c†-norm and stay approximately above v behind
the front.

theorem 3. Assume hypotheses (H1)–(H3) and (N1)–(N2) hold, and let ū and
c† be as in Theorem 2. Then there exist α > 0 and σ > 0, such that for every u0 as
in Theorem 1 and for every ω > 0 there exists ε > 0, such that if

||u0 − ū||L2

c†
(Σ) ≤ ε, (4.1)

the solution u(x, t) of

ut = ∆u + c†uz + f(u, y), (4.2)

with boundary conditions in (1.4) and u(x, 0) = u0(x) satisfies

||u(·, t)− TR∞ ū||L2

c†
(Σ) ≤ ωe−σt, |R∞| ≤ ω, (4.3)

for some R∞ ∈ R.
We note that our approach differs somewhat from the conventional approach to

the studies of front stability [32, 2, 28, 29] in the way we treat translations along the
cylinder axis. We track the front position by minimizing the L2

c†-distance between the
solution of (4.2) and a translate of ū. As a consequence, the deviation between the
solution and the closest translate of ū is automatically orthogonal to the null-space of
the linearization operator, allowing to readily establish the exponential decay of the
L2
c†-distance. Thus, our method is more variational in nature. Let us also point out

that, in contrast to the usual approach, our initial data do not need to be close to ū
in L∞ in the whole cylinder, they may be significantly larger than ū at large negative
z.

Throughout the rest of this section, hypotheses (H1)–(H3) and (N1)–(N2) are
assumed to hold, and c†, ū, v always refer to the minimizer in Theorem 2. We begin
with the following basic lemma concerning the linearization around ū.

lemma 4.1. There exists K > 0, such that
∫

Σ

ec
†z
(
|∇w|2 − fu(ū, y)w

2
)
dx ≥ K

∫

Σ

ec
†zw2dx, (4.4)

for all w ∈ H1
c†(Σ) satisfying

∫
Σ e

c†zwūzdx = 0.
Proof. First of all, observe that by choosing R1 and R2 sufficiently large, we have

∫ −R1

−∞

∫
Ω e

c†z
(
|∇w|2 − fu(ū, y)w

2
)
dy dz

∫ −R1

−∞

∫
Ω e

c†zw2 dy dz
≥ K1 > 0, (4.5)

∫ +∞

R2

∫
Ω
ec

†z
(
|∇w|2 − fu(ū, y)w

2
)
dy dz

∫ +∞

R2

∫
Ω e

c†zw2 dy dz
≥ K2 > 0, (4.6)
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for all w ∈ H1
c†(Σ). Indeed, if z is large enough negative, then ū(·, z) is sufficiently

close in L∞(Ω) to v. Hence, (4.5) holds in view of (3.8). On the other hand, by the
estimate of [20, Lemma 5.1], we have

∫ +∞

R2

∫

Ω

ec
†z
(
|∇w|2 − fu(0, y)w

2
)
dy dz

≥
∫ +∞

R2

∫

Ω

ec
†z

(
c†

2

4
w2 + |∇yw|2 + fu(0, y)w

2

)
dy dz

≥
(
c†

2

4
+ ν0

)∫ +∞

R2

∫

Ω

ec
†zw2 dy dz.

So, by hypothesis (H3) and (3.6), the inequality in (4.6) holds for some K2 > 0 and
R2 large enough.

Let us now show that the inequality in (4.4) holds with K = 0 for all w ∈ H1
c†(Σ)

and that equality holds if and only if w is a multiple of ūz (the proof essentially follows
the ideas of concentration compactness principle in the case of exponentially weighted
Sobolev spaces [18, 33] and relies on the maximum principle). Indeed, denote by H [w]
the left-hand side of (4.4) and let (wn) be a minimizing sequence for H subject to
the constraint ||wn||L2

c†
(Σ) = 1. By coercivity of H on the constraint, ensured by

hypothesis (H2), we have wn ⇀ w0 in H
1
c†(Σ). In fact, w0 6= 0, since otherwise wn → 0

in L2
loc(Σ), and so

∫ −R1

−∞

∫
Ω
ec

†zw2
ndx+

∫ +∞

R2

∫
Ω
ec

†zw2
ndx ≥ 1−ε for any ε > 0 and large

enough n. Therefore, by (4.5) and (4.6) we would have H [wn] ≥ K > 0. However,
this contradicts the fact (first pointed out in [1]) that ūz is an eigenfunction associated
with zero eigenvalue of the linearization of (1.5) around ū (related to the translational
symmetry in the z-direction [1, 32, 2, 28]), which can be seen by differentiating (1.5)
with respect to z and noting that ūz ∈ H2

c†(Σ) by Theorem 2.
In view of lower semicontinuity of H with respect to the weak convergence in

H1
c†(Σ), which follows from [20, Proposition 5.5], hypothesis (H3) and Theorem 2, we

have H [w0] ≤ lim inf
n→∞

H [wn] ≤ ||ūz||−2
L2

c†
(Σ)
H [ūz] = 0. Then, since w0 6= 0, the function

w̄ = ||w0||−1
L2

c†
(Σ)

|w0| ≥ 0 is a minimizer of the considered constrained minimization

problem. In fact, H [w̄] = 0, since otherwise w̄ must be orthogonal to ūz, which is
impossible due to the fact that ūz < 0 by Theorem 2. So H [w] ≥ 0 for all w ∈ H1

c†(Σ).
Moreover, H [w] = 0 implies that w is a multiple of ūz (compare also with [2, 28, 30]).
If not, there exists a minimizer w′ which is orthogonal to ūz in L2

c†(Σ) and, therefore,
changes sign. But |w′| is also a minimizer, hence both w′ and |w′| satisfy the linearized
version of (1.5) in the classical sense, thanks to hypothesis (H2) and Theorem 2. So
by strong maximum principle |w′| = 0, leading to a contradiction.

To complete the proof of the lemma, suppose, to the contrary of its statement,

there exists a sequence (wn) with the properties that ||wn||L2

c†
(Σ) = 1,

∫
Σ
ec

†z ūzwn dx =

0 and H [wn] → 0 as n → ∞. Hence wn is a minimizing sequence and converges to
a non-trivial multiple of ūz weakly in H1

c†(Σ). But this contradicts the orthogonality
of wn to ūz, which is preserved in the limit as n→ ∞.

Let us note that one may naturally think that the result of Lemma 4.1 may be
used to show that the minimizer ū is, in fact, a strict minimizer of Φc† on a suitable
subset of H1

c†(Σ). This, however, proves difficult, since the functional Φc[u] is not a
priori twice continuously differentiable in H1

c (Σ). We will get back to this question
after Proposition 4.4 below.
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Our next result shows that, if a solution to (4.2) with initial datum satisfying (2.3)
with α sufficiently small is close enough to a suitable translate of ū in L2

c†(Σ), then
it is also close in L∞ on some growing portion of Σ, provided that ε is small enough.
More precisely, let R : [0,∞) → R. For a given δ > 0, we define zδ : [0,∞) → R as

zδ(t) := sup
{
z ∈ R : ‖u(·, z, t)− ū(·, z −R(t))‖L∞(Ω) > δ

}
∀t ≥ 0. (4.7)

Then, the following result holds true.
Proposition 4.2. There exists b > 0, such that for every δ > 0 sufficiently small

there exist α = α(δ) > 0, a = a(δ) > 0, z̄0 = z̄0(δ, u0) ∈ R and η = η(δ, u0) > 0, such
that for every z0 ≤ z̄0 there exists ε = ε(δ, z0) > 0 such that for all T > 0

zδ(t) ≤ z0 + a− bt ∀t ∈ [0, T ], (4.8)

whenever

|R(t)| ≤ δ and ‖u(·, t)− TR(t)ū‖L2

c†
(Σ) ≤ η ∀t ∈ [0, T ], (4.9)

where u0, u, α, ε are as in Theorem 3.
Proof. By (4.9) and the uniform Lipschitz continuity of u(·, t) in Σ, reasoning as

in the proof of [20, Proposition 3.3(iii)] we have the following L∞-estimate:

||u(·, t)− TR(t)ū||n+2

Cb(Ω×[z0,+∞))
≤ Cη2e−c

†z0 , (4.10)

for any z0 ∈ R, any t ∈ [0, T ] and some C > 0 depending on ||∇u||Cb(Σ×(0,+∞)) (see

Proposition 3.1). On the other hand, by Theorem 2 for any α > 0 there exists z̄0 ∈ R,
such that

||ū(·, z −R(t))− v||C0(Ω) ≤ α ∀z ≤ z̄0, ∀t ∈ [0, T ]. (4.11)

Recalling (2.3) and possibly reducing z̄0, we can also assume that

u0(·, z) ≥ v − 2α ∀z ≤ z̄0. (4.12)

Now, choosing η > 0 sufficiently small, the right-hand side of (4.10) can be bounded
by αn+2 at z0 = z̄0, so we have

||u(·, t)− TR(t)ū||Cb(Ω×[z̄0,+∞)) ≤ α ∀t ∈ [0, T ]. (4.13)

Therefore,

||u(·, z, t)− ū(·, z −R(t))||C0(Ω) ≤ δ ∀z ≥ z̄0, ∀t ∈ [0, T ], (4.14)

as long as α ≤ δ, so that zδ(t) ≤ z̄0 for all t ∈ [0, T ].
It remains to show that the inequality in (4.14) also holds for z ∈ [z0+ a− bt, z̄0],

for some positive a and b, for small enough α and ε. We proceed by constructing
explicit upper and lower barriers for (4.2) in Ω× (−∞, z̄0]× [0, T ].

Subsolution. First, consider the case of ∂Ω± = ∅, i.e., pure Neumann boundary
conditions in (1.4). Then, it is straightforward to verify that by hypotheses (H1)–(H2)
and (N1) the function v−δ = v − Cδψ̃0, where ψ̃0 > 0 is an eigenfunction associated

with ν̃0 in (3.8) and C = ||ψ̃0||−1

C0(Ω)
, is the desired subsolution, provided that δ is

sufficiently small.
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The construction is more delicate in the presence of Dirichlet boundary conditions,
since we do not wish to put any restrictions on the derivative of the initial data near the
Dirichlet portion of the boundary. So, let us now assume that ∂Ω± 6= ∅, implying, in
particular, that v < 1 in Ω. We construct a subsolution in the form of a non-negative
local minimizer of E that lies sufficiently close to and below v, and vanishes identically
within some small distance to ∂Ω±.

We proceed in the usual way by introducing the modified energy Ẽ, given by (2.7)
in which V is replaced by Ṽ (u, y) = −

∫ u
0
f̃(s, y)ds, where f̃ is obtained from f by

the odd extension for u < 0 and the C1 linear extrapolation for |u− v| > δ, for some
fixed 0 < δ ≪ 1 and each y ∈ Ω. We note that f̃(u, y) = f(u, y) whenever |u− v| ≤ δ
and u ≥ 0. Now, by hypotheses (H2) and (N1) the energy Ẽ is strictly convex for all
functions vanishing on ∂Ω± and, hence, admits a unique minimizer v−δ ∈ H1(Ω) in
the class of functions vanishing outside Ωσ = {y ∈ Ω : dist(y, ∂Ω±) > σ}, with σ > 0
sufficiently small. Moreover, we have |v−δ − v| = O(σ) in Ωσ. Indeed, testing Ẽ with
ṽ = max(0, v − Cσ) for C > 0 so large that ṽ ≡ 0 in Ω\Ωσ and using coercivity of
Ẽ and the fact that v satisfies the Euler-Lagrange equation for Ẽ in the whole of Ω,
we obtain that ||v−δ − v||L2(Ω) = O(σ). Therefore, by elliptic regularity theory [10]

and possibly reducing σ, we have ||v−δ − v||L∞(Ω) = O(σ) ≤ δ, and so v−δ satisfies the

Euler-Lagrange equation for the original energy E whenever v−δ > 0.
In fact, v−δ ≥ 0 in Ω and is strictly positive in Ωσ. Indeed, by its definition the

function Ṽ (u, ·) is even, whenever |u−v| ≤ δ. Hence, if v−δ is a minimizer satisfying the
latter inequality, so is |v−δ |. But by uniqueness the two must be equal. On the other
hand, this implies that v−δ is a critical point of the original energy E. Therefore, by
strong maximum principle we have v−δ > 0 in Ωσ. Similarly, we must have v−δ < v in

Ω, since v̄ = v+aψ̃0 is a strict supersolution for any 0 < a≪ 1 and, therefore, cannot
touch v−δ from above. Thus, we constructed a function v−δ which is a non-negative
subsolution of the Euler-Lagrange equation for E, and 0 ≤ v−δ ≤ v. In particular, by
construction

v − δ ≤ v−δ ≤ max(0, v − 2α), (4.15)

in Ω, for α sufficiently small, depending only on δ. Finally, extending this function
to Σ× [0, T ] by defining u−(y, z, t) := v−δ (y), we obtain a subsolution on the desired
domain.

Supersolution. Let σ > 0 be sufficiently small. By the same type of argument as
in the construction of v−δ above, there exists a local minimizer v+δ of E, such that
v+δ (y) = σ for all y ∈ ∂Ω±, and we have v + β ≤ v+δ ≤ v + 1

4δ, for some β > 0.

Now, let c ∈ (c†v, c
†), and consider Ψ

v+
δ
c defined in (3.9) with v+δ in place of v.

Then, by an extension of the argument of Lemma 3.5 it is not difficult to see that

there exists a minimizer h̄ of Ψ
v+
δ
c in the set

X :=
{
h ∈ H1

c (Σ) : 0 ≤ h ≤ 1− v+δ , h = 1− v+δ in Ω× (−∞, 0],

h(y, z) = (1 − v+δ (y))η(z) for (y, z) ∈ ∂Ω± × R

}
,

where η ∈ C∞(R) is a cutoff function with the property that η(z) = 1 for all z < 0 and

η(z) = 0 for all z > 1. Indeed, semicontinuity and coercivity of Ψ
v+
δ
c only depend on

the behavior of the functional for large values of z. Since v+δ is still a local minimizer of
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E, the functional Ψ
v+
δ
c is lower semicontinuous by [20, Proposition 5.5]. Furthermore,

by hypothesis (H2) and Taylor formula

Ψ
v+
δ
c [h] = Ψvc [h] +

∫

Σ

∫ h

0

ecz
(
fu(v + s, y)− fu(v

+
δ + s, y)

)
(h− s)ds dx

≥ Ψvc [h]− C||v+δ − v||γL∞(Σ)

∫

Σ

∫ h

0

ecz(h− s)ds dx

≥ Ψvc [h]− Cδγ ||h||2L2
c(Σ),

for some C > 0, implying coercivity of Ψ
v+
δ
c for small enough δ by the argument of

[20, Proposition 6.9]. So the minimizer h̄ of Ψ
v+
δ
c exists, and h̄(·, z) → 0 uniformly in

Ω, as z → +∞ (indeed, the convergence is exponential by [20, Proposition 3.3(iii)]).
Therefore, there exists a > 0 such that h̄(·, z) ≤ 1

4δ for all z ≥ a.

We finally let u+(y, z, t) := v+δ (y) + h̄(y, z − z0 + bt), with b := c† − c > 0, which
is a supersolution for (4.2) on Σ× [0, T ]. Notice that

u+(·, 0) = 1 on Ω× (−∞, z0], (4.16)

and

u+(·, z, t) ≤ v +
δ

2
on Ω ∀t ≥ 0 ∀z ≥ z0 + a− bt. (4.17)

Comparison. From (4.12) and (4.15) for α small enough we have

u−(·, 0) ≤ u0 on Ω× (−∞, z̄0] .

Also, by (4.11), (4.13) and (4.15) for η small enough we have

u−(·, z̄0, t) ≤ u(·, z̄0, t) on Ω ∀t ∈ [0, T ]. (4.18)

Therefore, by parabolic comparison principle [26] we obtain

u− ≤ u on Ω× (−∞, z̄0]× [0, T ] . (4.19)

In particular, by (4.15) and the fact that by Theorem 2 we have ū(·, z) < v for every
z ∈ R, it follows that

u(·, z, t) ≥ ū(·, z −R(t))− δ ∀z ≤ z̄0, ∀t ≥ 0. (4.20)

On the other hand, in view of (4.16), the fact that u+ ≥ v + β, (4.10) with η
replaced by ε at t = 0 due to (4.1), and the fact that |R(0)| ≤ δ, for every z0 it is
possible to choose ε small enough, so that

u0 ≤ u+(·, 0) on Σ. (4.21)

Then, by parabolic comparison principle we have

u ≤ u+ on Σ× [0,+∞), (4.22)

and, possibly reducing z̄0 to ensure that ū(·, z̄0+a+δ) ≥ v− 1
2δ, in view of monotonicity

of ū(·, z) by Theorem 2, for every z0 ≤ z̄0 we obtain

u(·, z, t) ≤ ū(·, z −R(t)) + δ ∀z ∈ [z0 + a− bt, z̄0 + a] ∀t ≥ 0. (4.23)
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Finally, combining (4.20) with (4.23) and (4.14), we get (4.8).

We now prove a technical lemma that will be useful in the proof of Proposition
4.4.

lemma 4.3. There exist 0 < C1 < C2, such that for all |R| ≤ 1 we have

C1|R| ≤ ||TRū− ū||L2

c†
(Σ) ≤ C2|R|. (4.24)

Furthermore,

||TRū− ū||L2

c†
(Σ) ≥ C1, (4.25)

for all |R| ≥ 1.

Proof. Let us first prove the upper bound. Notice that, thanks to Theorem 2,
the functions ū belongs to H1

c†(Σ), hence in particular the map η 7→ Tηū defines a
differentiable curve in L2

c†(Σ). A direct computation then gives

||TRū− ū||L2

c†
(Σ) =

∥∥∥∥∥

∫ R

0

Tηūz dη

∥∥∥∥∥
L2

c†
(Σ)

≤
∫ |R|

−|R|

||Tηūz||L2

c†
(Σ) dη

≤
(∫ |R|

−|R|

e
c†

2
η dη

)
||ūz||L2

c†
(Σ) ≤ C|R|,

where we used the identity ||Tηūz||L2

c†
(Σ) = e

c†η
2 ||ūz||L2

c†
(Σ).

To obtain the lower bound in (4.24), we observe that for any Σ0 ⋐ Σ compact,
we have

||TRū− ū||2L2

c†
(Σ) ≥

∫

Σ0

ec
†z(ū(y, z −R)− ū(y, z))2dx

= R2

∫

Σ0

ec
†z ū2z(y, z − R̃(y, z)) dx, (4.26)

for some 0 < |R̃(y, z)| < |R|. The lower bound then follows from the fact that ūz < 0
in Σ and, hence, |uz(y, z − R̃(y, z))| is bounded away from zero in Σ0, as long as
|R| ≤ 1. Finally, to get (4.25) we observe that ||TRū − ū||2

L2

c†
(Σ)

is monotonically

increasing in |R|.
We now look for a suitable translation of ū which serves as the best approximation,

in some sense, to the solution of (4.2). For a given u ∈ H1
c†(Σ) and R ∈ R, we define

the function h as:

h(u,R) :=
1

2

∫

Σ

ec
†z(u(y, z)− ū(y, z −R))2dx ≥ 0. (4.27)

In the following proposition, we show that the optimal approximation to u can be
naturally introduced by minimizing h in (4.27) with respect to R.

Proposition 4.4. For any δ > 0 sufficiently small there exists ε > 0 such that,
for any u ∈ H1

c†(Σ) satisfying ‖u− ū‖L2

c†
(Σ) ≤ ε the function h(u, ·) attains its global

minimum. Furthermore, this minimum is unique, is contained in (−δ, δ) and there
are no other critical points in (−δ, δ).
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Proof. First of all, observe that η 7→ ū(y, z − η) is a twice differentiable curve in
L2
c† , thanks to Theorem 2. By assumption

inf
R∈R

h(u,R) ≤ h(u, 0) ≤ ε2. (4.28)

Furthermore, from the lower bound in Lemma 4.3 we get that

Cmin{1, |R|} ≤ ||TRū− ū||L2

c†
(Σ)

≤ ||u− ū||L2

c†
(Σ) +

√
2h(u,R) ≤ ε+

√
2h(u,R), (4.29)

for some C > 0. Therefore, by continuity of h(u, ·) its minimum is attained and lies
in (−δ, δ) for any δ > 0, provided that ε is sufficiently small.

We now calculate the first and the second derivative of h(u, ·) with respect to R:

h′(u,R) =

∫

Σ

ec
†z(u(y, z)− ū(y, z −R))ūz(y, z −R) dx, (4.30)

h′′(u,R) = c†h′(u,R) +

∫

Σ

ec
†zuz(y, z)ūz(y, z −R) dx, (4.31)

where from now on the prime denotes the derivative with respect to R. Recalling
Lemma 4.3, for all |R| ≤ δ ≤ 1 we have

|h′(u,R)| ≤ C ||u− TRū||L2

c†
(Σ)

≤ C
(
||u− ū||L2

c†
(Σ) + ||ū− TRū||L2

c†
(Σ)

)

≤ C (ε+ |R|), (4.32)

for some C > 0. Now, observe that upon integration by parts we have

∫

Σ

ec
†z ūz(y, z −R)(uz(y, z)− ūz(y, z −R)) dx

= −
∫

Σ

ec
†z(ūzz(y, z −R) + c†ūz(y, z −R))(u(y, z)− ū(y, z −R)) dx.

Therefore, since ūz ∈ H1
c†(Σ) by Theorem 2, applying Cauchy-Schwarz inequality we

obtain
∣∣∣∣
∫

Σ

ec
†zūz(y, z − R)(uz(y, z)− ūz(y, z −R)) dx

∣∣∣∣

≤ Cec
†R/2||u− TRū||L2

c†
(Σ), (4.33)

for some C > 0. Applying this estimate to (4.31) and combining it with the estimates
in (4.32), we obtain

h′′(u,R) ≥ ec
†R ||ūz||2L2

c†
(Σ) − C(ε+ |R|), (4.34)

for some constant C > 0. This implies that h′′(u,R) ≥ M for some M > 0 and all
|R| ≤ δ, provided that δ and ε are small enough. Hence h(u, ·) is a strictly convex
function on [−δ, δ], and the minimum of h(u, ·) is the unique critical point in (−δ, δ).



16 C. B. MURATOV AND M. NOVAGA

Recalling the comment following Lemma 4.1, we can now formulate a nonlinear
analog of the result of that lemma.

Remark 4.5. Suppose that u is sufficiently close to ū in L2
c†(Σ) ∩L∞(Σ). Then

by Proposition 4.4 there exists R0 ∈ R, such that the function h(u,R) in (4.27)
is minimized with respect to R at R = R0. Therefore, we have that u − TR0

ū
is orthogonal to TR0

ū in L2
c†(Σ), and so by Lemma 4.1, hypothesis (H2) and the

minimizing property of ū we have Φc† [u] ≥ 1
2K||u− TR0

ū||2
L2

c†
(Σ)

, where K > 0 is as

in Lemma 4.1. Hence ū is, in fact, a strict local minimizer of Φc† in the above sense.
We now conclude the proof of Theorem 3.

Proof of Theorem 3. Let δ > 0 be sufficiently small, so that Proposition 4.4
applies with u = u0 and all 0 < ε ≤ ε0, for some ε0 > 0. Then by Propositions 3.1
and 4.4 there exists T0 > 0, such that there exists a minimizer R(t) of h(u(·, t), R) in
R for each t ∈ [0, T0]. Furthermore, R(t) is the unique critical point of h(u(·, t), R) in
(−δ, δ). In fact, R(t) is a continuously differentiable function of t on [0, T0]. Indeed,
since R(t) minimizes h(u(·, t), R) in R, we have

h′(u(·, t), R) =
∫

Σ

ec
†z(u(y, z, t)− ū(y, z −R))ūz(y, z −R) dx = 0, (4.35)

whenever R = R(t). In view of the continuity of ut(·, t) in L2
c†(Σ) guaranteed by

Proposition 3.1, as well as Theorem 2 and Lemma 4.3, the function in (4.35) is con-
tinuously differentiable in R and t in some small neighborhood of the origin. Then,
arguing as in Proposition 4.4 one can see that h′′(u(·, t), R) > 0 there, so we can apply
the implicit function theorem to (4.35). Furthermore, after some algebra we obtain

dR(t)

dt
= −

∫
Σ e

c†zut(y, z, t)ūz(y, z −R(t)) dx∫
Σ
ec†zuz(y, z, t)ūz(y, z − R(t)) dx

. (4.36)

For t ∈ (0, T0] and u solving (4.2) we define

w(y, z, t) := u(y, z, t)− ū(y, z −R(t)). (4.37)

The function w satisfies the equation

wt = ∆w + c†wz +
dR

dt
ūz + fu(ũ, y)w, (4.38)

for some ũ, with |ũ− TR(t)ū| ≤ |w|. Also, by construction we have

∫

Σ

ec
†zw(y, z, t)ūz(y, z −R(t)) dx = 0. (4.39)

We now introduce

m(t) :=

∫

Σ

ec
†zw2(x, t) dx t ≥ 0,

so that m(0) ≤ ε2. Multiplying (4.38) with ec
†zw and integrating over Σ, we obtain

dm(t)

dt
= −2

∫

Σ

ec
†z
(
|∇w|2 − fu(ũ, y)w

2
)
dx (4.40)
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where we used (4.39) to erase the term multiplying dR/dt. By Lemma 4.1 we have

∫

Σ

ec
†z
(
|∇w|2 − fu(ũ, y)w

2
)
dx =

∫

Σ

ec
†z
(
|∇w|2 − fu(ū, y)w

2
)
dx

+

∫

Σ

ec
†z (fu(ū, y)− fu(ũ, y))w

2dx

≥Km(t) +

∫

Σ

ec
†z (fu(ū, y)− fu(ũ, y))w

2dx.

(4.41)
Possibly reducing δ and recalling assumption (H2), we have

∫

{|w|<δ}

ec
†z |fu(ū, y)− fu(ũ, y)|w2dx ≤ K

2
m(t),

which, combined with (4.41), gives

∫

Σ

ec
†z
(
|∇w|2 − fu(ũ, y)w

2
)
dx ≥K

2
m(t)−

∫

{|w|≥δ}

ec
†z |fu(ū, y)− fu(ũ, y)|w2dx

≥K
2
m(t)−

∫ zδ(t)

−∞

∫

Ω

ec
†z |fu(ū, y)− fu(ũ, y)|w2 dy dz

≥K
2
m(t)− Cec

†zδ(t),

for some C > 0, where zδ(t) is defined in (4.7).
We can now apply Proposition 4.2 with z0 = 4

c† logω, which yields some ε > 0
and η > 0, with η independent of ω, and T ∈ (0, T0] depending on η. We then get

∫

Σ

ec
†z
(
|∇w|2 − fu(ũ, y)w

2
)
dx ≥K

2
m(t)− Cec

†(z0−bt) ≥ K

2
m(t)− Cω4e−c

†bt

(4.42)
for some b > 0 and C > 0 and all t ∈ [0, T ]. From (4.40) and (4.42) we, therefore,
obtain

dm(t)

dt
≤ −Km(t) + 2Cω4e−c

†bt ∀t ∈ [0, T ], (4.43)

which gives

||w(·, t)||L2

c†
(Σ) ≤Mω2e−σt ∀t ∈ [0, T ], (4.44)

for some σ > 0 and M > 0, provided that ε is small enough.
To estimate the behavior of R(t), we substitute ut = wt − ūzdR/dt into (4.36)

and take into account (4.38) and (1.5) differentiated in z, noting that ūz ∈ H2
c (Σ) by

Theorem 2. After a few integrations by parts we obtain

dR(t)

dt
=

∫
Σ
ec

†z(fu(ū(y, z −R(t)), y)− fu(ũ, y))w(y, z, t)ūz(y, z −R(t))dx∫
Σ
ec†z(ūz(y, z −R(t)) + wz(y, z, t))ūz(y, z −R(t))dx

. (4.45)

By the same argument as the one leading to (4.33), we have

∣∣∣∣
∫

Σ

ec
†z ūz(y, z −R(t))wz(y, z, t) dx

∣∣∣∣ ≤ Cec
†R(t)/2||w(·, t)||L2

c†
(Σ). (4.46)
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With hypothesis (H2), this leads to the following estimate for dR/dt:

∣∣∣∣
dR(t)

dt

∣∣∣∣ ≤
C||w(·, t)||L2

c†
(Σ)

C̃ec†R(t)/2 − ||w(·, t)||L2

c†
(Σ)

(4.47)

for some constants C, C̃ > 0, provided that ω is so small that by (4.44) the denomi-
nator in (4.47) is positive for all t ∈ [0, T ]. Then we have

∣∣∣∣
dR(t)

dt

∣∣∣∣ ≤ Cω2e−σt ∀t ∈ [0, T ], (4.48)

and hence

|R(t)| ≤ M̃ω2 ≤ ω ∀t ∈ [0, T ], (4.49)

for some M̃ > 0 and ω small enough. Moreover, since η and δ are independent of
ω, (4.44) also implies that (4.9) holds uniformly in T for ω small enough, whence
T = T0. Indeed, if T1 < T0 is the maximum value of T for which Proposition 4.4 can
be applied, then by (4.44) the left-hand side of (4.9) is bounded by η/2 at t = T1,
provided that ω is sufficiently small. Therefore, by continuity of w(·, t) in L2

c†(Σ)
guaranteed by Proposition 3.1, the inequality in (4.9) also holds for some interval
beyond T1, contradicting the maximality of T1.

Moreover, by (4.49) the function R(t) is in fact defined and continuously differ-
entiable for all t ≥ 0. Indeed, let us take T0 to be the largest possible value for which
||u(·, t)− ū||L2

c†
(Σ) ≤ ε0 for all t ∈ [0, T0], so that Proposition 4.4 still applies. In view

of Lemma 4.3, (4.44) and (4.49), we have

||u(·, t)− ū||L2

c†
(Σ) ≤ ||u(·, t)− TR(t)ū||L2

c†
(Σ)

+||ū− TR(t)ū||L2

c†
(Σ) (4.50)

≤Mω2 ∀t ∈ [0, T0],

for some M > 0. Therefore, choosing ω so small that the right-hand side of (4.50) is
bounded by 1

2ε0 and, once again, taking into account continuity of w(·, t) in L2
c†(Σ),

we can then make sure that the assumptions of Proposition 4.4 are satisfied on some
interval beyond T0, contradicting maximality of T0. We thus proved that we can take
an arbitrarily large T0 > 0 in all the arguments above.

Finally, using (4.44) and (4.47) again and keeping in mind that by (4.49) the
denominator in (4.47) is bounded away from zero, we finally obtain that the limit
R∞ := lim

t→+∞
R(t) exists, and recalling Lemma 4.3 we have

||u(·, t)− TR∞ ū||L2

c†
(Σ) ≤ ωe−σt ∀t ≥ 0, (4.51)

for some σ > 0, provided that ω is small enough, yielding the thesis of the theorem.

5. Proof of the main result. We will prove Theorem 1 in the reference frame
moving with speed c†, that is, we will prove that if u is the solution of (4.2) with the
initial datum satisfying the assumptions of Theorem 1, then it converges in H2

c†(Σ)
to TR∞ ū for some R∞ as t→ ∞. The result then follows by noting that Tc†tu solves
(1.3) with the same initial condition, upon applying T−R∞ .

From now on, u always refers to the solution of (4.2). We divide the proof into
five steps.
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Step 1. We begin by constructing an appropriate pair of barrier solutions of (4.2)
to ensure that the solution of the initial value problem for (4.2) does not move too
far towards the ends of the cylinder. The barriers are obtained by considering the
solutions ū± of (4.2) with the initial data

ū−0 (y, z) = min{u0(y, z −R), ū(y, z)}, (5.1)

ū+0 (y, z) = max{u0(y, z +R), ū(y, z)}, (5.2)

where R > 0 is so big that both ū±0 satisfy the assumptions of Theorem 3, provided
that α in (2.3) is small enough. Indeed, by definition and (3.6) the assumption in
(2.3) is satisfied for both ū±0 . Moreover, for ū+0 − ū = max(T−Ru0 − ū, 0) we have

0 ≤ ū+0 − ū ≤ T−Ru0 → 0 in L2
c†(Σ) as R → +∞, (5.3)

so ū+0 → ū in L2
c†(Σ) as R → +∞. By a similar argument for ū − ū−0 = max(ū −

TRu0, 0) we have

0 ≤ ū− ū−0 ≤ ū→ 0 in L2
c†(Ω× (M,+∞)) as M → +∞, (5.4)

uniformly in R. At the same time, by boundedness of ū−0 and ū we have ||TRu0 −
ū||L2

c†
(Ω×(−∞,−M)) → 0 as M → +∞, again, uniformly in R. Finally, in view of

(2.3), (3.6) and the Hopf lemma, for every M > 0 and R > 0 large enough we have
|{x ∈ Ω × (−M,M) : ū−0 (x) < ū(x)}| ≤ Cα, with some C = C(M) > 0, for small
enough α. Therefore, it is possible to choose M large enough, then R large enough,
and then α small enough, so that ||ū − ū−0 ||L2

c†
(Σ) can be made as small as desired.

Note that both functions ū±0 obtained above satisfy (2.3) uniformly in R.
We now claim that ū±(y, z ∓ R, t), i.e., the solutions of (4.2) with initial data

ū±0 (y, z∓R), are the appropriate barrier solutions. Indeed, by construction the initial
data u0 is sandwiched between ū±(y, z∓R, t) at t = 0, hence by parabolic comparison
principle [26] the solution of (4.2) will remain so for all times. By Theorem 3 we know
that there exist R±

∞ such that

||ū±(y, z ∓R, t)− ū(y, z ∓R±
∞)||L2

c†
(Σ) ≤ e−σt, (5.5)

for some σ > 0 and any z0 ∈ R, provided that α is sufficiently small and R is
sufficiently large.

Step 2. We now use the functional Φc† as a Lyapunov functional to establish
existence of a sequence tn → +∞ on which u(·, tn) converges to a translate of ū.
Indeed, multiplying (4.2) by a test function ϕ ∈ C∞

0 (Rn) vanishing on ∂Σ± and
integrating over Σ, we can write (4.2) in the weak form as

∫

Σ

ec
†zϕut dx = −

∫

Σ

ec
†z (∇u · ∇ϕ− f(u, y)ϕ) dx, (5.6)

where the integral in the right-hand side is the Gâteaux derivative of Φc† at u(·, t) in
the direction of ϕ. Therefore, (4.2) is the gradient flow generated by Φc† in L2

c†(Σ),
and in view of (3.3) for all t2 ≥ t1 > 0, we have

Φc† [u(·, t1)]− Φc† [u(·, t2)] =
∫ t2

t1

‖ut(·, t)‖2L2

c†
(Σ)dt. (5.7)
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Letting t2 → +∞ and recalling that Φc† [u] is bounded below by Theorem 2, from
(5.7) it follows that there exists a sequence tn → +∞ such that

lim
n→+∞

‖ut(·, tn)‖L2

c†
(Σ) = 0. (5.8)

Also note that, since 0 ≤ u(y, z, t) ≤ ū+(y, z − R, t) for all (y, z) ∈ Σ and t ≥ 0,
and ū+(·, t) is uniformly bounded in L2

c†(Σ) by Theorem 3, in view of hypotheses
(H1)–(H2) we have that

‖u‖2H1

c†
(Σ) ≤ 2Φc† [u] + C‖u‖2L2

c†
(Σ) ≤M(t0) ∀t ≥ t0 > 0 (5.9)

for some constants C,M(t0) > 0.
From (5.8) and (5.9), up to a possible subsequence, we can pass to the limit in

(5.6) and get that u(·, tn) converges to a critical point of Φc† weakly in H1
c†(Σ). In

fact, the limit must be a non-trivial critical point u∞ of Φc† , in view of Step 1, hence
a translate of ū by [20, Propositions 3.2 and 3.5] and Theorem 2.

Step 3. We now prove that u(·, tn) → u∞ in L2
c†(Σ). Notice first that since both

u and u∞ are uniformly bounded, for a given ε > 0 we can find M such that

‖u(·, tn)− u∞‖L2

c†
(Ω×(−∞,−M ]) ≤ ε. (5.10)

Moreover, since u(y, z, t) ≤ ū+(y, z −R, t), from (5.5) it also follows that

‖u(·, tn)‖L2

c†
(Ω×(M,+∞)) ≤ ‖ū+(·, tn)‖L2

c†
(Ω×(M,+∞))

≤ ‖ū(y, z −R+
∞)‖L2

c†
(Ω×(M,+∞)) (5.11)

+‖ū+(·, tn)− ū(y, z −R+
∞)‖L2

c†
(Σ)

≤ ε,

for M big enough and all n ≥ N , for some N = N(M) ∈ N. Recalling that H1
c†(Σ)

compactly embeds into L2
c†(Ω × (−M,M)), from Proposition 3.1, (5.10) and (5.11)

we obtain that

u(·, tn) → u∞ in L2
c†(Σ).

Step 4. Take n big enough so that

‖u(·, tn)− u∞‖L2

c†
(Σ) ≤ ε ∀t ≥ tn , (5.12)

where ε is the same as the one corresponding to ω = 1 in Theorem 3. On the other
hand, for every α′ > 0 it is possible to choose δ ≤ α′ in Proposition 4.2, such that
the subsolution u− constructed there satisfies u−(·, z, t) ≥ v − α′ for all z ≤ z̄0, with
some z̄0 ∈ R independent of ε and R in the definition of ū−, and all t ≥ 0, if α is
sufficiently small. Therefore, we have ū− ≥ u− in Ω× (−∞, z̄0]× [0,+∞), and since
ū− ≤ u for all t ≥ 0, the same inequality holds for u. So we can apply Theorem 3 to
u(·, tn) in place of u0 (also applying suitable translations in z and t), and obtain

‖u(·, t)− u∞‖L2

c†
(Σ) ≤ e−σ(t−tn) (5.13)

for some σ > 0 independent of u0 and all t ≥ tn.
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Step 5. We now demonstrate that the exponential convergence of (5.13) also holds
in spaces of higher regularity. We first show this for H1

c†(Σ), and then for H2
c†(Σ). In

the following, we denote by A : D(A) → L2
c†(Σ) the sectorial operator A = ∆+ c†∂z ,

with domain D(A) = H2
c†(Σ) dense in L2

c†(Σ) (see also [24, 21]).
Letting w(·, t) := u(·, t)− u∞, we have

wt = Aw + g(x, t)w, (5.14)

where g(y, z, t) = fu(ũ(y, z, t), y) for some ũ such that |ũ − u∞| ≤ |w|, i.e., g is such
that |g| ≤ C, for some C > 0. As a consequence, by parabolic regularity theory [34,
Chapter 15] (see also [21, Proposition 2.1.1 and Theorem 3.1.1]) and recalling (5.13),
for all t ≥ 1 we have

‖u(·, t)− u∞‖H1

c†
(Σ) ≤ C

(
‖w(·, t− 1)‖L2

c†
(Σ) +

∫ t

t−1

‖w(·, s)‖L2

c†
(Σ)

√
t− s

ds

)

≤ Ce−σt,

(5.15)

for some C > 0. In particular, from [20, Proposition 3.2], (5.15), the minimizing
property of u∞ and hypothesis (H2) we get

Φc† [u(·, t)] = Φc† [u(·, t)]− Φc† [u∞]

=

∫

Σ

ec
†z

(
1

2
|∇w|2 + V (u∞ + w, y)− V (u∞, y)− V ′(u∞, y)w

)
dx

≤ C‖w‖2H1

c†
(Σ) ≤ Ce−2σt, (5.16)

for all t ≥ t0, with any t0 > 0 and some C = C(t0) > 0.
Let us now rewrite (5.14) in the form

wt = Aw + h(·, t), h(·, t) := f(u(·, t))− f(u∞). (5.17)

Recalling hypothesis (H2), (5.7) and (5.16), for all t2 ≥ t1 ≥ t0 > 0 we have

‖h(·, t2)− h(·, t1)‖L2

c†
(Σ) = ‖f(u(·, t2))− f(u(·, t1))‖L2

c†
(Σ)

≤ C‖u(·, t2)− u(·, t1)‖L2

c†
(Σ)

≤ C

∫ t2

t1

‖ut(·, s)‖L2

c†
(Σ)ds

≤ C
√

(t2 − t1)Φc† [u(·, t1)] ≤ C
√
t2 − t1 e

−σt1 ,

for some C = C(t0) > 0. Then, reasoning as in [21, Theorem 4.3.1] with t1 = t − 1
and t2 = t and using (5.15), we have

‖w(·, t)‖H2

c†
(Σ) ≤ C(‖Aw(·, t)‖L2

c†
(Σ) + ||w(·, t)||H1

c†
(Σ))

≤ C

(
‖w(·, t− 1)‖L2

c†
(Σ) + ‖w(·, t)‖H1

c†
(Σ)

+

∫ t

t−1

‖h(·, s)− h(·, t)‖L2

c†
(Σ)

t− s
ds

)

≤ C e−σt, (5.18)

for all t ≥ t0 + 1, for any t0 > 0 and some C = C(t0) > 0. In writing (5.18), we used
the same reasoning as in the standard estimate of the H2-norm of a function in terms
of the L2-norm of the Laplacian to obtain the inequality in the first line. This gives
(2.4) and concludes the proof of Theorem 1.
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