
A SYMBOL-BASED ALGORITHM FOR

DECODING BAR CODES

Mark A. Iwen∗ Fadil Santosa†‡ Rachel Ward§

October 29, 2018

Abstract

We investigate the problem of decoding a bar code from a signal mea-
sured with a hand-held laser-based scanner. Rather than formulating the
inverse problem as one of binary image reconstruction, we instead incor-
porate the symbology of the bar code into the reconstruction algorithm
directly, and search for a sparse representation of the UPC bar code with
respect to this known dictionary. Our approach significantly reduces the
degrees of freedom in the problem, allowing for accurate reconstruction
that is robust to noise and unknown parameters in the scanning device.
We propose a greedy reconstruction algorithm and provide robust recon-
struction guarantees. Numerical examples illustrate the insensitivity of
our symbology-based reconstruction to both imprecise model parameters
and noise on the scanned measurements.

1 Introduction

This work concerns an approach for decoding bar code signals. While it is true
that bar code scanning is essentially a solved problem in many domains, as
evidenced by its prevalent use, there is still a need for more reliable decoding
algorithms in situations where the signals are highly corrupted and the scan-
ning takes place in less than ideal situations. It is under these conditions that
traditional bar code scanning algorithms often fail.

The problem of bar code decoding may be viewed as the deconvolution of
a binary one-dimensional image involving unknown parameters in the blurring
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kernel that must be estimated from the signal [6]. Esedoglu [6] was the first
to provide a mathematical analysis of the bar code decoding problem in this
context, and he established the first uniqueness result of its kind for this prob-
lem. He further showed that the blind deconvolution problem can be formulated
as a well-posed variational problem. An approximation, based on the Modica-
Mortola energy [11], is the basis for the computational approach. The approach
has recently been given further analytical treatment in [7].

A recent work [2] addresses the case where the blurring is not very severe.
Indeed the authors were able to treat the signal as if it has not been blurred.
They showed rigorously the variational framework can recover the true bar code
image even if this parameter is not known. A later paper [3] consider the case
where blurring is large and its parameter value known. However, none of these
papers deal rigorously with noise although their numerical simulations included
noise. For an analysis of the deblurring problem where the blur is large and
noise is present, the reader is referred to [7].

The approach presented in this work departs from the above image-based
approaches. We treat the unknown as a finite-dimensional code and develop a
model that relates the code to the measured signal. We show that by exploiting
the symbology – the language of the bar code – a bar code can be identified
with a sparse representation in the symbology dictionary. We develop a recovery
algorithm that fits the observed signal to a code from the symbology in a greedy
fashion, iterating in one pass from left to right. We prove that the algorithm
can tolerate a significant level of blur and noise. We also verify insensitivity of
the reconstruction to imprecise parameter estimation of the blurring function.

We were unable to find any previous symbol-based methods for bar code
decoding in the open literature. In a related approach [4], a genetic algorithm
is utilized to represent populations of candidate barcodes together with likely
blurring and illumination parameters from the observed image data. Successive
generations of candidate solutions are then spawned from those best matching
the input data until a stopping criterion is met. That work differs from the
current article in that it uses a different decoding method and does not utilize the
relationship between the structure of the barcode symbology and the blurring
kernel.

We note that there is a symbol-based approach for super-resolving scanned
images [1]. However, that work is statistical in nature whereas the method we
present is deterministic. Both this work and the super-resolution work are simi-
lar in spirit to lossless data compression algorithms known as ‘dictionary coding’
(see, e.g., [12]) which involve matching strings of text to strings contained in an
encoding dictionary.

The outline of the paper is as follows. We start by developing a model
for the scanning process. In Section 3, we study the properties of the UPC
(Universal Product Code) bar code and provide a mathematical representation
for the code. Section 4 develops the relation between the code and the measured
signal. An algorithm for decoding bar code signals is presented in Section 5.
Section 6 is devoted to the analysis of the algorithm proposed. Results from
numerical experiments are presented in Section 7, and a final section concludes
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the work with a discussion.

2 A scanning model and associated inverse prob-
lem

A bar code is scanned by shining a narrow laser beam across the black-and-
white bars at constant speed. The amount of light reflected as the beam moves
is recorded and can be viewed as a signal in time. Since the bar code consists of
black and white segments, the reflected energy is large when the beam is on the
white part, and small when the beam is on the black part. The reflected light
energy at a given position is proportional to the integral of the product of the
beam intensity, which can be modeled as a Gaussian1, and the bar code image
intensity (white is high intensity, black is low). The recorded data are samples
of the resulting continuous time signal.

Figure 1: Samples of the binary bar code function z(t) and the UPC bar code.
Note that in UPC bar codes, each bar - black or white - is a multiple of the
minimum bar width.

1This Gaussian model has also been utilized in many previous treatments of the bar code
decoding problem. See, e.g., [8] and references therein.
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Let us write the Gaussian beam intensity as a function of time:

g(t) = α
1√
2πσ

e−(t
2/2σ2). (1)

There are two parameters: (i) the variance σ2 and (ii) the constant multiplier
α. We will overlook the issue of relating time to the actual position of the laser
beam on the bar code, which is measured in distance. We can do this because
only relative widths of the bars are important in their encoding.

Because the bar code – denoted by z(t) – represents a black and white image,
we will normalize it to be a binary function. Then the sampled data are

di =

∫
g(ti − τ)z(τ)dτ + hi, i ∈ [m], (2)

where the ti ∈ [0, n] are equally spaced discretization points, and the hi rep-
resent the noise associated with scanning. We have used the notation [m] =
{1, 2, ...,m}. We need to consider the relative size of the laser beam spot to the
width of the narrowest bar in the bar code. We set the minimum bar width to
be 1 in the artificial time measure.

It remains to explain the roles of the parameters in the Gaussian beam inten-
sity. The variance σ2 models the distance from the scanner to the bar code, with
larger variance signifying longer distance. The width of a Gaussian represents
the length of the interval, centered around the Gaussian mean, over which the
Gaussian is greater than half its maximum amplitude; it is given by 2

√
2 ln 2σ.

Informally, the Gaussian blur width should be of the same order of magnitude
as the size as the minimum bar width in the bar code for possible reconstruc-
tion. The multiplier α lumps the conversion from light energy interacting with
a binary bar code image to the measurement. Since the distance to the bar
code is unknown and the intensity-to-voltage conversion depends on ambient
light and properties of the laser/detector, these parameters are assumed to be
unknown.

To develop the model further, consider the characteristic function

χ(t) =

{
1 for 0 ≤ t ≤ 1,
0 else.

Then the bar code function can be written as

z(t) =

n∑
j=1

cjχ(t− (j − 1)), (3)

where the coefficients cj are either 0 or 1 (see, e.g., Figure 1). The sequence

c1, c2, · · · , cn,

represents the information stored in the bar code, with a ‘0’ corresponding to
a white bar of unit width and a ‘1’ corresponding to a black bar of unit width.
For UPC bar codes, the total number of unit widths, n, is fixed to be 95 for a
12-digit code (further explanations in the subsequent).
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Remark 2.1. One can think of the sequence {c1, c2, · · · , cn} as an instruction
for printing a bar code. Every ci is a command to lay out a white bar if ci = 0,
or a black bar if otherwise.

Substituting the bar code representation (3) back in (2), the sampled data can
be represented as follows:

di =

∫
g(ti − t)

 n∑
j=1

cjχ(t− (j − 1))

 dt+ hi

=

n∑
j=1

[∫ j

(j−1)
g(ti − t)dt

]
cj + hi.

In terms of the matrix G = G(σ) with entries

Gkj =
1√
2πσ

∫ j

(j−1)
e−

(tk−t)
2

2σ2 dt, k ∈ [m], j ∈ [n], (4)

the bar code determination problem reads

d = αG(σ)c+ h. (5)

The matrix entries Gkj are illustrated in Figure 2.2. In the sequel, we will
assume this discrete version of the bar code problem. While it is tempting to
solve (5) directly for c, σ and α, the best approach for doing so is not obvious.
The main difficulty stems from the fact that c is a binary vector, while the
Gaussian parameters are continuous variables.

tk

0 1 2 3 4 5 6 7 8 9 10
t

Figure 2: The matrix element Gkj is calculated by placing a scaled Gaussian
over the bar code grid and integrating over each of the bar code intervals.

3 Incorporating the UPC bar code symbology

We now tailor the bar code reading problem to UPC bar codes, although we
remark that our general framework should apply generally to any bar code of
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fixed length. In the UPC-A symbology, a bar code represents a 12-digit number.
If we ignore the check-sum requirement, then any 12-digit number is permitted,
and the number of unit widths, n, is fixed to 95. Going from left to right, the
UPC bar code has 5 parts – the start sequence, the codes for the first 6 digits,
the middle sequence, the codes for the next 6 digits, and the end sequence. Thus
the bar code has the following structure:

SL1L2L3L4L5L6MR1R2R3R4R5R6E, (6)

where S, M , and E are the start, middle, and end patterns respectively, and Li
and Ri are patterns corresponding to the digits.

In the sequel, we represent a white bar of unit width by 0 and a black bar
by 1 in the bar code representation {ci}.2 The start, middle, and end patterns
are fixed and given by

S = E = [101], M = [01010].

The patterns for Li and Ri are taken from the following table:

digit L-pattern R-pattern

0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 1011100
5 0110001 1001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
9 0001011 1110100

(7)

Note that the right patterns are just the left patterns with the 0’s and 1’s flipped.
It follows that the bar code can be represented as a binary vector c ∈ {0, 1}95.
However, not every binary vector constitutes a bar code – only 1012 of the
possible 295 binary sequences of length 95 – fewer than 10−16 % – are bar codes.
Specifically, the bar code structure (6) indicates that bar codes have specific
sparse representations in the bar code dictionary constructed as follows: write
the left-integer and right-integer codes as columns of a 7-by-10 matrix,

L =



0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0
0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 0 1 1 0 1
1 0 0 1 0 0 1 0 1 0
0 0 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1


,

2Note that identifying white bars with 0 and black bars with 1 runs counter to the natural
light intensity of the reflected laser beam. However, it is the black bars that carry information.
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R =



1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 0 1 0 0 1
0 0 1 0 1 1 0 0 1 0
0 1 1 0 1 1 0 1 0 1
1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

The start and end patterns, S and E, are 3-dimensional vectors, while the
middle pattern M is a 5-dimensional vector

S = E = [010]T , M = [01010]T .

The bar code dictionary is the 95-by-123 block diagonal matrix

D =



S 0 . . . . . . 0

0 L
...

... L
L

L
L

L
M

R
R

R
R

R
...

... R 0
0 . . . . . . 0 E



.

The bar code (6), expanded in the bar code dictionary, has the form

c = Dx, x ∈ {0, 1}123, (8)

where

1. The 1st, 62nd and the 123rd entries of x, corresponding to the S, M , and
E patterns, are 1.

2. Among the 2nd through 11th entries of x, exactly one entry – the entry
corresponding to the first digit in c = Dx – is nonzero. The same is true
for 12th through 22nd entries, etc, until the 61st entry. This pattern starts
again from the 63rd entry through the 122th entry. In all, x has exactly
15 nonzero entries.
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That is, x must take the form

xT = [1, vT1 , · · · , vT6 , 1, vT7 , · · · , vT12, 1], (9)

where vj , for j = 1, · · · , 12, are vectors in {0, 1}10 having only one nonzero
element. In this new representation, the bar code reconstruction problem (5)
reads

d = αG(σ)Dx+ h, (10)

where d ∈ Rm is the measurement vector, the matrices G(σ) ∈ Rm×95 and
D ∈ {0, 1}95×123 are as defined in (4) and (8) respectively, and h ∈ Rm is
additive noise. Note that D has fewer rows than columns, while G will generally
have more rows than columns; we will refer to the ratio of rows to columns as
the oversampling ratio and denote it by r = m/n. Given the data d ∈ Rm, our
objective is to return a valid bar code x ∈ {0, 1}123 as reliably and quickly as
possible.

4 Properties of the forward map

Incorporating the bar code dictionary into the inverse problem (10), we see that
the map between the bar code and observed data is represented by the matrix
P = αG(σ)D ∈ Rm×123. We will refer to P, which is a function of the model
parameters α and σ, as the forward map.

4.1 Near block-diagonality

For reasonable levels of blur in the Gaussian kernel, the forward map P inherits
an almost block-diagonal structure from the bar code matrix D as illustrated
in Figure 3. In the limit as the amount of blur σ → 0, the forward map
P becomes exactly the block-diagonal bar code matrix. More precisely, we
partition the forward map P according to the block-diagonal structure of the
bar code dictionary D,

P =
[
P (1) P (2) . . . P (15)

]
. (11)

The 1st, 8th, and 15th sub-matrices are special as they correspond to the known
start, middle, and end patterns of the bar code. In accordance with the structure
of x where c = Dx, these sub-matrices are column vectors of length m,

P (1) = p
(1)
1 , P (8) = p

(8)
1 , and P (15) = p

(15)
1 .

The remaining sub-matrices are blurred versions of the left-integer and right-
integer codes L and R, represented as m-by-10 nonnegative real matrices. We
write each of them as

P (j) =
[
p
(j)
1 p

(j)
2 . . . p

(j)
10

]
, j 6= 1, 8, 15, (12)
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Figure 3: A representative bar code forward map P = αG(σ)D corresponding
to oversampling parameter r = 10, amplitude α = 1, and Gaussian standard
deviation σ = 1.5. The lone column vectors at the start, middle, and end
account for the known start, middle, and end patterns in the bar code.

where each p
(j)
k , k = 1, 2, ..., 10, is a column vector of length m.

Recall that the over-sampling rate r = m/n indicates the number of time
samples per minimal bar code width. Given r, we can partition the rows of
P into 15 blocks, each block with index set Ij of size |Ij |, so that each sub-
matrix is well-localized within a single block. We know that if P (1) and P (15)

correspond to samples of the 3-bar sequence “101” or “black-white-black”, so
|I1| = |I15| = 3r. The sub-matrix P (8) corresponds to samples from the middle
5 bar-sequence so |I8| = 5r. Each remaining sub-matrix corresponds to samples
from a digit of length 7 bars, therefore |Ij | = 7r for j 6= 1, 8, 15.

We can now give a quantitative measure describing how ‘block-diagonal’ the
forward map is. To this end, let ε be the infimum of all ε > 0 satisfying both∥∥∥∥p(j)k ∣∣∣

[m]\Ij

∥∥∥∥
1

< ε, for all j ∈ [15], k ∈ [10], (13)

and∥∥∥∥∥∥∥
 15∑
j′=j+1

p
(j′)
kj′

∣∣∣∣∣∣
Ij

∥∥∥∥∥∥∥
1

< ε, for all j ∈ [15], and all choices of kj+1, . . . , k15 ∈ [10].

(14)
The magnitude of ε indicates to what extent the energy of each column of P
is localized within its proper block. If there were no blur, there would be no
overlap between blocks and ε = 0.
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Simulation results such as those in Figure 4 suggest that for α = 1, the value
of ε in the forward map P can be expressed in terms of the oversampling ratio
r and Gaussian standard deviation σ according to the formula ε = (2/5)σr, at
least over the relevant range of blur 0 ≤ σ ≤ 1.5. By linearity of the forward map
with respect to the amplitude α, this implies that more generally ε = (2/5)ασr.

Figure 4: For oversampling ratios r = 10 (left) and r = 20 (right) and α = 1,
the thick line represents the minimal value of ε satisfying (13) and (14) in terms
of σ. The thin line in each plot represents the function (2/5)σr.

4.2 Column incoherence

We now highlight another property of the forward map P that allows for ro-
bust bar code reconstruction. The left-integer and right-integer codes for the
UPC bar code, as enumerated in Table (7), are well-separated by design: the
`1-distance between any two distinct codes is greater than or equal to 2. Conse-
quently, ifDk are the columns of the bar code dictionaryD, then mink1 6=k2 ‖Dk1−
Dk2‖1 = 2. This implies for the forward map P = αG(σ)D that when there is
no blur, i.e. σ = 0,

µ := min
j,k1 6=k2

∥∥∥p(j)k1 − p(j)k2 ∥∥∥1 = min
j,k1 6=k2

∥∥∥∥p(j)k1 ∣∣∣Ij − p
(j)
k2

∣∣∣
Ij

∥∥∥∥
1

= 2αr, (15)

where r is the over-sampling ratio. As the blur increases from zero, the column
separation factor µ = µ(σ, α, r) decreases smoothly. In Figure 5 we plot µ ver-
sus σ for different oversampling ratios, as obtained from numerical simulation.
Simulations such as these suggest that µ closely follows the curve µ ≈ 2αre−σ,
at least in the range σ ≤ 1.

5 A simple decoding procedure for UPC bar
codes

We know from the bar code determination problem (10) that without additive
noise, the observed data d is the sum of 15 columns from P, one column from
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Figure 5: For oversampling ratios r = 10 (left) and r = 20 (right), we plot the

minimal column separation µ = mink1 6=k2

∥∥∥p(j)k1 − p(j)k2 ∥∥∥1 for the forward map

P = G(σ)D, as a function of the standard deviation σ of the Gaussian kernel.
The plots suggest that µ ≈ 2αre−σ for σ ≤ 1.

each block P (j). Based on this observation, we will employ a reconstruction
algorithm which, once initialized, selects the column from the successive block
to minimize the norm of the data remaining after the column is subtracted.
This greedy algorithm is described in pseudo-code as follows.

Algorithm 1: Recover UPC Bar Code

initialize:

for ` = 1, 62, 123, x` = 1
else x` = 0
δ ← d

for j = 2 : 7, 9 : 14

kmin = arg mink

∥∥∥δ − p(j)k ∥∥∥
1

if j ≤ 7, `← 1 + 10(j − 2) + kmin

else `← 62 + 10(j − 9) + kmin

x` ← 1
r ← δ − p(j)kmin

end

6 Analysis of the algorithm

Algorithm 1 recovers the bar code one digit at a time by iteratively scanning
through the observed data. The runtime complexity of the method is dominated
by the 12 calculations of kmin performed by the algorithm’s single loop over
the course of its execution. Each one of these calculations of kmin consists of
10 computations of the `1-norm of a vector of length m. Thus, the runtime



SYMBOL-BASED BAR CODE DECODING 12

complexity of the algorithm is O(m), and can be executed in less than a second
for standard UPC bar code proportions.3

6.1 Recovery of the unknown bar code

Recall that the 12 unknown digits in the unknown bar code c are represented
by the sparse vector x in c = Dx. We already know that x1 = x62 = x123 = 1 as
these elements corresponds to the mandatory start, middle, and end sequences.
Assuming for the moment that the forward map P is known, i.e., that both
σ and α are known, we now prove that the greedy algorithm will reconstruct
the correct bar code from noisy data d = Px + h as long as P is sufficiently
block-diagonal and if its columns are sufficiently incoherent. In the next section
we will extend the analysis to the case where σ and α are unknown.

Theorem 1. Suppose I1, . . . , I15 ⊂ [m] and ε ∈ R satisfy the conditions (13)-
(14). Then, Algorithm 1 will correctly recover a bar code signal x from noisy
data d = Px+ h provided that∥∥∥∥p(j)k1 ∣∣∣Ij − p

(j)
k2

∣∣∣
Ij

∥∥∥∥
1

> 2
(∥∥h|Ij∥∥1 + 2ε

)
(16)

for all j ∈ [15] and k1, k2 ∈ [10] with k1 6= k2.

Proof:

Suppose that

d = Px+ h =

15∑
j=1

p
(j)
kj

+ h.

Furthermore, denoting kj = kmin in the for-loop in Algorithm 1, suppose that
k2, . . . , kj′−1 have already been correctly recovered. Then the residual data, δ,
at this stage of the algorithm will be

δ = p
(j′)
kj′

+ δj′ + h,

where δj′ is defined to be

δj′ =

15∑
j=j′+1

p
(j)
kj
.

We will now show that the j′th execution of the for-loop will correctly recover

p
(j′)
kj′

, thereby establishing the desired result by induction.

Suppose that the j′th execution of the for-loop incorrectly recovers kerr 6= kj′ .
This happens if ∥∥∥δ − p(j′)kerr

∥∥∥
1
≤
∥∥∥δ − p(j′)kj′

∥∥∥
1
.

3In practice, when σ is not too large, a ‘windowed’ vector of length less than m can be

used to approximate
∥∥∥δ − p(j)k ∥∥∥

1
for each k, j. This can reduce the constant of proportionality

associated with the runtime complexity.
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In other words, we have that∥∥∥δ − p(j′)kerr

∥∥∥
1

=

∥∥∥∥δ∣∣Ij′ − p
(j′)
kerr

∣∣∣
Ij′

∥∥∥∥
1

+

∥∥∥∥∥δ∣∣Icj′ − p
(j′)
kerr

∣∣∣
Ic
j′

∥∥∥∥∥
1

≥
∥∥∥∥p(j′)kj′

∣∣∣
Ij′
− p

(j′)
kerr

∣∣∣
Ij′

∥∥∥∥
1

−
∥∥∥δj′ ∣∣Ij′∥∥∥1 −

∥∥∥h∣∣
Ij′

∥∥∥
1

+

∥∥∥∥δj′ ∣∣Ic
j′

+ h
∣∣
Ic
j′

∥∥∥∥
1

−

∥∥∥∥∥p(j′)k′j

∣∣∣
Ic
j′

∥∥∥∥∥
1

−

∥∥∥∥∥p(j′)kerr

∣∣∣
Ic
j′

∥∥∥∥∥
1

≥
∥∥∥∥p(j′)kj′

∣∣∣
Ij′
− p

(j′)
kerr

∣∣∣
Ij′

∥∥∥∥
1

+

∥∥∥∥δj′ ∣∣Ic
j′

+ h
∣∣
Ic
j′

∥∥∥∥
1

−
∥∥∥h∣∣

Ij′

∥∥∥
1
− 3ε

from conditions (13) and (14). To finish, we simply simultaneously add and
subtract ‖δj′ |Ij′ + h|Ij′‖1 from the last expression to arrive at a contradiction
to the supposition that kerr 6= kj′ :∥∥∥δ − p(j′)kerr

∥∥∥
1
≥
(∥∥∥∥p(j′)kj′

∣∣∣
Ij′
− p

(j′)
kerr

∣∣∣
Ij′

∥∥∥∥
1

− 2
∥∥∥h∣∣Ij′∥∥∥1 − 4ε

)
+ ‖δj′ + h‖1

=

(∥∥∥∥p(j′)kj′

∣∣∣
Ij′
− p

(j′)
kerr

∣∣∣
Ij′

∥∥∥∥
1

− 2
∥∥∥h∣∣

Ij′

∥∥∥
1
− 4ε

)
+
∥∥∥δ − p(j′)kj′

∥∥∥
1

>
∥∥∥δ − p(j′)kj′

∥∥∥
1
. (17)

�

Remark 6.1. Equation (13) implies that

min
j,k1 6=k2

∥∥∥∥p(j)k1 ∣∣∣Ij − p
(j)
k2

∣∣∣
Ij

∥∥∥∥
1

≥ min
j,k1 6=k2

∥∥∥p(j)k1 − p(j)k2 ∥∥∥1 − 2ε = µ− 2ε.4

Thus, the recovery condition (16) in Theorem 1 will hold whenever

µ− 2ε > 2
(∥∥h|Ij∥∥1 + 2ε

)
.

Using the empirical relationships ε = (2/5)αrσ and µ = 2αre−σ, we obtain the
following upper bound on the level of sufficient noise for successful recovery:

max
j∈[12]

∥∥h|Ij∥∥1 < αr(e−σ − (6/5)σ). (18)

In practice the Gaussian blur width 2
√

2 ln(2)σ does not exceed the minimum
width of the bar code, which we have normalized to be 1. This translates to a
maximal standard deviation of σ ≈ .425, and a noise ceiling in (18) of

max
j∈[12]

∥∥h|Ij∥∥1 ≤ .144αr. (19)

This should be compared to the `1-norm of the bar code signal over a block; the
average `1 norm between the left-integer and right-integer codes is 3.5α.

4See equation (15) for the definition of µ.
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Remark 6.2. In practice it may be beneficial to apply Algorithm 1 several
times, each time changing the order in which the digits are decoded. For exam-
ple, if the distribution of the noise is known in advance, it would be beneficial
to to initialize the algorithm in regions of the bar code with less noise.

6.2 Stability of the greedy algorithm with respect to pa-
rameter estimation

Insensitivity to unknown α

In the previous section we assumed a known Gaussian convolution matrix αG(σ).
In fact, this is generally not the case. In practice both σ and α must be estimated
since these parameters depend on the distance from the scanner to the bar code,
the reflectivity of the scanned surface, the ambient light, etc. This means that in
practice, Algorithm 1 will be decoding bar codes using only an approximation to
αG(σ). Suppose that the true standard deviation generating a sampled sequence
d is σ, but that Algorithm 1 uses a different value σ̂ for reconstruction. We can
regard the error incurred by σ̂ as additional additive noise in our sensitivity
analysis, setting h′ = h+ α

(
G(σ)−G(σ̂)

)
Dx and rewriting the inverse problem

as

d = αG(σ)Dx+ h

= αG(σ̂)Dx+
(
h+ α

(
G(σ)− G(σ̂)

)
Dx
)

= αG(σ̂)Dx+ h′. (20)

We now describe a procedure for estimating α. Note that the middle portion
of the observed data of length 5r, dmid = d|I8 , represents a blurry image of
the known middle pattern M = [01010]. Let P = G(σ̂)D be the forward map
generated by the estimate σ̂ when α = 1, and consider the sub-matrix

pmid = P (8)
∣∣∣
I8

which is also a vector of length 5r. If σ̂ = σ or σ̂ ≈ σ,5 we expect a good
estimate for α to be the least squares solution

α̂ = arg min
a
‖apmid − dmid‖2 = pTmiddmid/‖ pmid‖22. (21)

Dividing both sides of the equation (20) by α̂, the inverse problem becomes

d

α̂
=

α

α̂
G(σ̂)Dx+

1

α̂
h′. (22)

Suppose that 1 − γ ≤ α/α̂ ≤ 1 + γ for some 0 < γ < 1. Then fixing the

data to be d̂ = d/α̂ and fixing forward map to be P = G(σ̂)D, the recovery
conditions (13), (14), and (16) become respectively

5Here we have assumed that the noise level is low. In noisier settings it should be possible
to develop more effective methods for estimating α by incorporating the characteristics of the
scanning noise.
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1.

∥∥∥∥p(j)k ∣∣∣
[m]\Ij

∥∥∥∥
1

< ε
1+γ for all j ∈ [15] and k ∈ [10].

2.

∥∥∥∥(∑15
j′=j+1 p

(j′)
kj′

)∣∣∣
Ij

∥∥∥∥
1

< ε
1+γ for all j ∈ [14] and valid kj′ ∈ [10].

3.

∥∥∥∥p(j)k1 ∣∣∣Ij − p
(j)
k2

∣∣∣
Ij

∥∥∥∥
1

> 2
(

1
α

∥∥∥h|Ij∥∥∥1 +
∥∥∥(G(σ)− G(σ̂)

)
Dx
∣∣
Ij

∥∥∥
1

+ 2ε
1−γ

)
Consequently, if σ ≈ σ̂ and 1 / α ≈ α̂, the conditions for correct bar code
reconstruction do not change much.

Insensitivity to unknown σ

We have seen that one way to estimate the scaling α is to guess a value for σ
and perform a least-squares fit of the observed data. In doing so, we found that
the sensitivity of the recovery process with respect to σ is proportional to the
quantity ∥∥∥ (G(σ)− G(σ̂))Dx|Ij

∥∥∥
1

(23)

in the third condition immediately above. Note that all the entries of the matrix
G(σ) − G(σ̂) will be small whenever σ̂ ≈ σ. Thus, Algorithm 1 should be able
to tolerate small parameter estimation errors as long as the “almost” block
diagonal matrix formed using σ̂ exhibits a sizable difference between any two
of its digit columns which might (approximately) appear in any position of a
given UPC bar code.

To get a sense of the size of the term (23), let us further investigate the
expressions involved. Recall that using the dictionary matrix D, a bar code
sequence of 0’s and 1’s is given by c = Dx. When put together with the bar
code function representation (3), we see that

[G(σ)Dx]i =

∫
gσ(ti − t)z(t)dt,

where

gσ(t) =
1√
2πσ

e−(
t2

2σ2
).

Therefore, we have

[G(σ)Dx]i =

n∑
j=1

cj

∫ j

j−1
gσ(ti − t)dt. (24)

Now, using the definition for the cumulative distribution function for normal
distributions

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt,
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we see that ∫ j

j−1
gσ(ti − t)dt = Φ

(
ti − j + 1

σ

)
− Φ

(
ti − j
σ

)
.

and we can now rewrite (24) as

[G(σ)Dx]i =

n∑
j=1

cj

[
Φ

(
ti − j + 1

σ

)
− Φ

(
ti − j
σ

)]
.

We now isolate the term we wish to analyze:

[(G(σ)− G(σ̂))Dx]i

=

n∑
j=1

cj

[
Φ

(
ti − j + 1

σ

)
− Φ

(
ti − j + 1

σ̂

)
− Φ

(
ti − j
σ

)
+ Φ

(
ti − j
σ̂

)]
.

We are interested in the error

|[(G(σ)− G(σ̂))Dx]i|

≤
n∑
j=1

cj

∣∣∣∣Φ( ti − j + 1

σ

)
− Φ

(
ti − j + 1

σ̂

)
− Φ

(
ti − j
σ

)
+ Φ

(
ti − j
σ̂

)∣∣∣∣
≤

n∑
j=1

∣∣∣∣Φ( ti − j + 1

σ

)
− Φ

(
ti − j + 1

σ̂

)∣∣∣∣+

∣∣∣∣Φ( ti − jσ

)
− Φ

(
ti − j
σ̂

)∣∣∣∣ ,
≤ 2

n∑
j=0

∣∣∣∣Φ( ti − jσ

)
− Φ

(
ti − j
σ̂

)∣∣∣∣ .
Suppose that ξ = (ξk) is the vector of values |ti − j| for fixed i, running j,

sorted in order of increasing magnitude. Note that ξ1 and ξ2 are less than or
equal to 1, and ξ3 ≤ ξ1 + 1, ξ4 ≤ ξ2 + 1, and so on. We can center the previous
bound around ξ1 and ξ2, giving

|[(G(σ)− G(σ̂))Dx]i| ≤
n∑
j=0

∣∣∣∣Φ(ξ1 + j

σ

)
− Φ

(
ξ1 + j

σ̂

)∣∣∣∣+

∣∣∣∣Φ(ξ2 + j

σ

)
− Φ

(
ξ2 + j

σ̂

)∣∣∣∣ . (25)

Next we simply majorize the expression

f(x) = Φ
(x
σ

)
− Φ

(x
σ̂

)
.

To do so, we take the derivative and find the critical points, which turn out to
be

x∗ = ±
√

2σσ̂

√
log σ − log σ̂

σ2 − σ̂2
.



SYMBOL-BASED BAR CODE DECODING 17

Therefore, each term in the summand (25) can be bounded by∣∣∣∣Φ(ξ + j

σ

)
− Φ

(
ξ + j

σ̂

)∣∣∣∣ ≤

∣∣∣∣∣Φ
(
√

2σ̂

√
log σ − log σ̂

σ2 − σ̂2

)
− Φ

(
√

2σ

√
log σ − log σ̂

σ2 − σ̂2

)∣∣∣∣∣
:= 41(σ, σ̂). (26)

On the other hand, the terms in the sum decrease exponentially as j in-
creases. To see this, recall the simple bound

1− Φ(x) =
1√
2π

∫ ∞
x

e−t
2/2dt ≤ 1√

2π

∫ ∞
x

t

x
e−t

2/2dt =
e−x

2/2

x
√

2π
.

Writing σmax = max{(σ, σ̂)}, and noting that Φ(x) is a positive, increasing
function, we have for ξ ∈ [0, 1)∣∣∣∣Φ(ξ + j

σ

)
− Φ

(
ξ + j

σ̂

)∣∣∣∣ ≤ 1− Φ

(
ξ + j

σmax

)
≤ σmax

(ξ + j)
√

2π
e−(ξ+j)

2/(2σ2
max)

≤ σmax

(ξ + j)
√

2π
e−(ξ+j)/(2σ

2
max) if j ≥ 1

=
σmax

(ξ + j)
√

2π

(
e−(2σ

2
max)

−1
)ξ+j

≤ σmax

j
√

2π

(
e−(2σ

2
max)

−1
)j

:= ∆2(σmax, j). (27)

Combining the bounds (26) and (27),∣∣∣∣Φ(ξ + j

σ

)
− Φ

(
ξ + j

σ̂

)∣∣∣∣ ≤ min
(

(41(σ, σ̂),42(σmax, j)
)
.

Suppose that j1 is the smallest integer in absolute value such that42(σmax, j1) ≤
41(σ, σ̂). Then from this term on, the summands in (25) can be bounded by a
geometric series:

n∑
j≥j1

∣∣∣∣Φ(ξ + j

σ

)
− Φ

(
ξ + j

σ̂

)∣∣∣∣ ≤ 2σmax

j1
√

2π

∑
j≥j1

aj , a = e−(2σ
2
max)

−1

≤ 2σmax

j1
√

2π
· aj1(1− a)−1.

We then arrive at the bound

|[(G(σ)− G(σ̂))Dx]i| ≤ 2 · j141(σ, σ̂) +
4σmax · aj1(1− a)−1

j1
√

2π

=: B(σ, σ̂). (28)
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The term (23) can then be bounded according to∥∥∥ (G(σ)− G(σ̂))Dx|Ij
∥∥∥
1
≤ |Ij |B(σ, σ̂) ≤ 7rB(σ, σ̂), (29)

where r = m/n is the over-sampling rate.
Recall that in practice the width 2

√
2 ln(2)σ of the Gaussian kernel is on

the order of the minimum bar width in the bar code, which we normalized to 1.
When the blur exactly equals the minimum bar width, we arrive at σ ≈ .425.
Below, we compute the error bound B(σ, σ̂) for σ = .425 and several values of
σ̂.

σ̂ 0.2 0.4 .5 0.6 .8
B(.425, σ̂) .3453 .0651 .1608 .3071 .589

While the bound (29) is very rough, note that the tabulated error bounds
incurred by inaccurate σ are at least roughly the same order of magnitude as the
empirical noise level tolerance for the greedy algorithm, as discussed in Remark
6.1.

7 Numerical Evaluation

In this section we illustrate with numerical examples the robustness of the greedy
algorithm to signal noise and imprecision in the α and σ parameter estimates.
We assume that neither α nor σ is known a priori, but that we have an estimate
σ̂ for σ. We then compute an estimate α̂ from σ̂ by solving the least-squares
problem (21).

The phase diagrams in Figure 6 demonstrate the insensitivity of the greedy
algorithm to relatively large amounts of noise. These diagrams were con-
structed by executing Algorithm 1 on many trial input signals of the form
d = αG(σ)Dx + h, where h is mean zero Gaussian noise. More specifically,
each trial signal, d, was formed as follows: a 12 digit number was first gener-
ated uniformly at random, and its associated blurred bar code, αG(σ)Dx, was
formed using the oversampling ratio r = m/n = 10. Second, a noise vector n
with independent and identically distributed entries nj ∼ N (0, 1) was generated
and then rescaled to form the additive noise vector h = ν‖αG(σ)Dx‖2 (n/‖n‖2).

Hence, the parameter ν = ‖h‖2
‖αG(σ)Dx‖2 represents the noise-to-signal ratio of each

trial input signal d.
We note that in laser-based scanners, there are two major sources of noise:

electronic noise [9], which is often modeled as 1/f noise [5], and speckle noise
[10], caused by the roughness of the paper. However, the Gaussian noise used
in our numerical experiments is sufficient for the purpose of this work.

To create the phase diagrams in Figure 6, the greedy recovery algorithm was
run on 100 independently generated trial input signals for each of at least 100
equally spaced (σ̂, ν) grid points (a 10× 10 mesh was used for Figure 6(a), and
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(a) True parameter values: σ = .45, α = 1. (b) True parameter values: σ = .75, α = 1

Figure 6: Recovery Probabilities when α = 1 for two true σ settings. The
shade in each phase diagram corresponds to the probability that the greedy
algorithm will correctly recover a randomly selected bar code, as a function

of the relative noise-to-signal level, ν = ‖h‖2
‖αG(σ)Dx‖2 , and the σ estimate, σ̂.

Black represents correct bar code recovery with probability 1, while pure white
represents recovery with probability 0. Each data point’s shade (i.e., probability
estimate) is based on 100 random trials.

a 20 × 20 mesh for Figure 6(b)). The number of times the greedy algorithm
successfully recovered the original UPC bar code determined the color of each
region in the (σ̂, ν)-plane. The black regions in the phase diagrams indicate
regions of parameter values where all 100 of the 100 randomly generated bar
codes were correctly reconstructed. The pure white parameter regions indicate
where the greedy recovery algorithm failed to correctly reconstruct any of the
100 randomly generated bar codes.

Looking at Figure 6 we can see that the greedy algorithm appears to be
highly robust to additive noise. For example, when the σ estimate is accurate
(i.e., when σ̂ ≈ σ) we can see that the algorithm can tolerate additive noise
with Euclidean norm as high as 0.25‖αG(σ)Dx‖2. Furthermore, as σ̂ becomes
less accurate the greedy algorithm’s accuracy appears to degrade smoothly.

The phase diagrams in Figures 7 and 8 more clearly illustrate how the recon-
struction capabilities of the greedy algorithm depend on σ, α, the estimate of σ,
and on the noise level. We again consider Gaussian additive noise on the signal,
i.e. we consider the inverse problem d = αG(σ)Dx + h, with independent and
identically distributed hj ∼ N (0, ξ2), for several noise standard deviation levels

ξ ∈ [0, .63]. Note that E
( ∥∥h|Ij∥∥1 ) = 7rξ

√
2/π.6 Thus, the numerical results

are consistent with the bounds in Remark 6.1. Each phase diagram corresponds
to different underlying parameter values (σ, α), but in all diagrams we fix the
oversampling ratio at r = m/n = 10. As before, the black regions in the phase
diagrams indicate parameter values (σ̂, ξ) for which 100 out of 100 randomly
generated bar codes were reconstructed, and white regions indicate parameter
values for which 0 out of 100 randomly generated bar codes were reconstructed.

Comparing Figures 7(a) and 8(a) with Figures 7(b) and 8(b), respectively,

6This follows from the fact that the first raw absolute moment of each hj , E(|hj |), is

ξ
√

2/π.
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(a) True parameter values: σ = .45, α = 1. (b) True parameter values: σ = .75, α = 1

Figure 7: Recovery probabilities when α = 1 for two true σ settings. The shade
in each phase diagram corresponds to the probability that the greedy algorithm
correctly recovers a randomly selected bar code, as a function of the additive
noise standard deviation, ξ, and the σ estimate, σ̂. Black represents correct
bar code recovery with probability 1, while pure white represents recovery with
probability 0. Each data point’s shade (i.e., probability estimate) is based on
100 random trials.

we can see that the greedy algorithm’s performance appears to degrade with
increasing σ. Note that this is consistent with our analysis of the algorithm in
Section 6. Increasing σ makes the forward map P = αG(σ)D less block diagonal,
thereby increasing the effective value of ε in conditions (13) and (14). Hence,
condition (18) will be less likely satisfied as σ increases.

Comparing Figures 7 and 8 reveals the effect of α on the likelihood that the
greedy algorithm correctly decodes a bar code. As α decreases from 1 to .25
we see a corresponding deterioration of the greedy algorithm’s ability to handle
additive noise of a given fixed standard deviation. This is entirely expected since
α controls the magnitude of the blurred signal αG(σ)Dx. Hence, decreasing α
effectively decreases the signal-to-noise ratio of the measured input data d.

Finally, all four of the phase diagrams in Figures 7 and 8 demonstrate how
the greedy algorithm’s probability of successfully recovering a randomly selected
bar code varies as a function of the noise standard deviation, ξ, and σ estimation
error, |σ̂ − σ|. As both the noise level and σ estimation error increase, the
performance of the greedy algorithm smoothly degrades. Most importantly, we
can see that the greedy algorithm is relatively robust to inaccurate σ estimates
at low noise levels. When ξ ≈ 0 the greedy algorithm appears to suffer only a
moderate decline in reconstruction rate even when |σ̂ − σ| ≈ σ.

Figure 9 gives examples of two bar codes which the greedy algorithm cor-
rectly recovers when α = 1, one for each value of σ presented in Figure 7. In
each of these examples the noise standard deviation, ξ, and estimated σ value,
σ̂, were chosen so that they correspond to dark regions of the example’s asso-
ciated phase diagram in Figure 7. Hence, these two examples represent noisy
recovery problems for which the greedy algorithm correctly decodes the under-
lying UPC bar code with relatively high probability.7 Similarly, Figure 10 gives

7The ξ and σ̂ values were chosen to correspond to dark regions in a Figure 7 phase diagram,
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(a) True parameter values: σ = .45, α = .25. (b) True parameter values: σ = .75, α = .25

Figure 8: Recovery Probabilities when α = .25 for two true σ settings. The
shade in each phase diagram corresponds to the probability that the greedy
algorithm will correctly recover a randomly selected bar code, as a function of
the additive noise standard deviation, ξ, and the σ estimate, σ̂. Black repre-
sents correct bar code recovery with probability 1, while pure white represents
recovery with probability 0. Each data point’s shade (i.e., probability estimate)
is based on 100 random trials.

two examples of two bar codes which the greedy algorithm correctly recovered
when α = 0.25. Each of these examples has parameters that correspond to a
dark region in one of the Figure 8 phase diagrams.

8 Discussion

In this work, we present a greedy algorithm for the recovery of bar codes from
signals measured with a laser-based scanner. So far we have shown that the
method is robust to both additive Gaussian noise and parameter estimation
errors. There are several issues that we have not addressed that deserve further
investigation.

First, we assumed that the start of the signal is well determined. By the start
of the signal, we mean the time on the recorded signal that corresponds to when
the laser first strikes a black bar. This assumption may be overly optimistic if
there is a lot of noise in the signal. Preliminary numerical experiments suggest
that the algorithm is not overly sensitive to uncertainties in the start time, and
we are currently working on the development of a fast preprocessing algorithm
for locating the start position from the samples.

Second, while our investigation shows that the algorithm is not sensitive to
the parameter σ in the model, we did not address the best means for obtaining
reasonable approximations to σ. In applications where the scanner distance
from the bar code may vary (e.g., with handheld scanners) other techniques
for determining σ̂ will be required. Given the robustness of the algorithm to
parameter estimation errors it may be sufficient to simply fix σ̂ to be the ex-
pected optimal σ parameter value in such situations. In situations where more
accuracy is required, the hardware might be called on to provide an estimate

not necessarily to purely black regions.
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(a) True parameter values: σ = .45, α = 1. Estimated σ̂ = .3 and Noise Standard Deviation
ξ = .3. Solving the least-squares problem (21) yields an α estimate of α̂ = .9445 from σ̂. The

relative noise-to-signal level, ν =
‖h‖2

‖αG(σ)Dx‖2
, is 0.4817.

(b) True parameter values: σ = .75, α = 1. Estimated σ̂ = 1 and Noise Standard Deviation
ξ = .2. Solving the least-squares problem (21) yields an α estimate of α̂ = 1.1409 from σ̂.

The relative noise-to-signal level, ν =
‖h‖2

‖αG(σ)Dx‖2
, is 0.3362.

Figure 9: Two example recovery problems corresponding to dark regions in
each of the phase diagrams of Figure 7. These recovery problems are examples
of problems with α = 1 for which the greedy algorithm correctly decodes a
randomly selected UPC bar code approximately 80% of the time.
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(a) True parameter values: σ = .45, α = .25. Estimated σ̂ = .5 and Noise Standard Deviation
ξ = .1. Solving the least-squares problem (21) yields an α estimate of α̂ = 0.2050 from σ̂.

The relative noise-to-signal level, ν =
‖h‖2

‖αG(σ)Dx‖2
, is 0.7001.

(b) True parameter values: σ = .75, α = .25. Estimated σ̂ = .8 and Noise Standard Deviation
ξ = .06. Solving the least-squares problem (21) yields an α estimate of α̂ = 0.3057 from σ̂.

The relative noise-to-signal level, ν =
‖h‖2

‖αG(σ)Dx‖2
, is 0.4316.

Figure 10: Two example recovery problems corresponding to dark regions in
each of the phase diagrams of Figure 8. These recovery problems are examples
of problems with α = .25 for which the greedy algorithm correctly decodes a
randomly-selected UPC bar code approximately 60% of the time.
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of the scanner distance from the bar code it is scanning, which could then be
used to help produce a reasonable σ̂ value. In any case, we leave more careful
consideration of methods for estimating σ to future work.

The final assumption we made was that the intensity distribution is well
modeled by a Gaussian. This may not be sufficiently accurate for some distances
between the scanner and the bar code. Since intensity profile as a function of
distance can be measured, one can conceivably refine the Gaussian model to
capture the true behavior of the intensities.
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