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OPTIMAL PROBABILITY INEQUALITIES FOR RANDOM WALKS

RELATED TO PROBLEMS IN EXTREMAL COMBINATORICS

D.DZINDZALIETA †¶, T. JUŠKEVIČIUS ‡ , AND M. ŠILEIKIS §¶

Dedicated to the memory of V.Bentkus

Abstract. Let Sn = X1 + · · ·+Xn be a sum of independent symmetric random variables such
that |Xi| ≤ 1. Denote by Wn = ε1 + · · · + εn a sum of independent random variables such that
P {εi = ±1} = 1/2. We prove that

P {Sn ∈ A} ≤ P {cWk ∈ A} ,

where A is either an interval of the form [x,∞) or just a single point. The inequality is exact and
the optimal values of c and k are given explicitly. It improves Kwapień’s inequality in the case of the
Rademacher series. We also provide a new and very short proof of the Littlewood-Offord problem
without using Sperner’s Theorem. Finally, an extension to odd Lipschitz functions is given.
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1. Introduction. Let Sn = X1 + · · · + Xn be a sum of independent random
variables Xi such that

|Xi| ≤ 1 and EXi = 0. (1.1)

Let Wn = ε1 + · · · + εn be the sum of independent Rademacher random variables,
i.e., such that P {εi = ±1} = 1/2. We will refer to Wn as a simple random walk with
n steps.

By a classical result of Hoeffding [6] we have the estimate

P {Sn ≥ x} ≤ exp
{

−x2/2n
}

, x ∈ R. (1.2)

If we take Sn = Wn on the left-hand side of (1.2), then in view of the Central
Limit Theorem we can infer that the exponential function on the right-hand side
is the minimal one. Yet a certain factor of order x−1 is missing, since Φ(x) ≈
(
√
2πx)−1 exp

{

−x2/2
}

for large x.
Furthermore, it is possible to show that the random variable Sn is sub-gaussian

in the sense that

P {Sn ≥ x} ≤ cP
{√

nZ ≥ x
}

, x ∈ R,

where Z is the standard normal random variable and c is some explicit positive con-
stant (see, for instance, [2]).

Perhaps the best upper bound for P {Sn ≥ x} was given by Bentkus [1], which
for integer x is optimal for martingales with differences Xi satisfying (1.1).
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Although there are numerous improvements of the Hoeffding inequality, to our
knowledge there are no examples where the exact bound for the tail probability is
found. In this paper we give an optimal bound for the tail probability P {Sn ≥ x}
under the additional assumption of symmetry.

We henceforth reserve the notation Sn and Wn for random walks with symmetric
steps satisfying (1.1) and a simple random walk with n steps respectively.

Theorem 1.1. For x > 0 we have

P {Sn ≥ x} ≤
{

P {Wn ≥ x} if ⌈x⌉+ n ∈ 2Z,

P {Wn−1 ≥ x} if ⌈x⌉+ n ∈ 2Z+ 1.
(1.3)

The latter inequality can be interpreted by saying that among bounded random
walks the simple random walk is the most stochastic.

Kwapień proved (see [10]) that for arbitrary i.i.d. symmetric random variables
Xi and real numbers ai with absolute value less than 1 we have

P {a1X1 + . . .+ anXn ≥ x} ≤ 2P {X1 + . . .+Xn ≥ x} , x > 0.

The case n = 2 with Xi = εi shows that the constant 2 cannot be improved.
Theorem 1.1 improves Kwapień’s inequality for Rademacher sequences. We be-

lieve that using the inequality in (1.3) with some conditioning arguments leads to
better estimates for arbitrary symmetric random variables Xi under the assumptions
of Kwapień’s inequality, but we will not go into these details in this paper.

We also consider the problem of finding the quantity

sup
Sn

P {Sn = x} ,

which can be viewed as a non-uniform bound for the concentration of the random
walk Sn at a point.

Theorem 1.2. For x > 0 and k = ⌈x⌉ we have

P {Sn = x} ≤ P {Wm = k} , (1.4)

where

m =

{

min
{

n, k2
}

, if n+ k ∈ 2Z,

min
{

n− 1, k2
}

, if n+ k ∈ 2Z+ 1.

Equality in (1.4) is attained for Sn = x
k Wm.

We provide two different proofs for both inequalities. The first approach is based on
induction on the number of random variables (§2). To prove Theorem 1.2 we also
need the solution of the Littlewood-Offord problem.

Theorem 1.3. Let a1, . . . , an be real numbers such that |ai| ≥ 1. We have

max
x∈R

P {Sn ∈ (x − k, x+ k]} ≤ P {Wn ∈ (−k, k]} .

That is, the number of the choices of signs for which Sn lies in an interval of length
2k does not exceed the sum of k largest binomial coefficients in n.

Theorem 1.3 was first proved by Erdős [5] using Sperner’s Theorem. We give a
very short solution which seems to be shorter than the original proof by Erdős. We
only use induction on n and do not use Sperner’s Theorem.
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Surprisingly, Theorems 1.1 and 1.2 can also be proved by applying results from
extremal combinatorics (§3). Namely, we use the bounds for the size of intersecting
families of sets (hypergraphs) by Katona [7] and Milner [9].

Using a strengthening of Katona’s result by Kleitman [8], we extend Theorem 1.1
to odd 1-Lipschitz functions rather than just sums of the random variables Xi (§4).
It is important to note that the bound of Theorem 1.1 cannot be true for all Lipschitz
functions since the extremal case is not provided by odd functions (for the description
of the extremal Lipschitz functions defined on general probability metric spaces see
Dzindzalieta [4]).

2. Proofs by induction on dimension. We will first show that it is enough to
prove Theorems 1.1 and 1.2 in case when Sn is a linear combination of independent
Rademacher random variables εi with coefficients |ai| ≤ 1.

Lemma 2.1. Let g : Rn → R be a bounded measurable function. Then we have

sup
X1,...,Xn

E g(X1, . . . , Xn) = sup
a1,...,an

E g(a1ε1, . . . anεn),

where the supremum on the left-hand side is taken over symmetric independent ran-

dom variables X1, . . . , Xn such that |Xi| ≤ 1 and the supremum on the right-hand

side is taken over numbers −1 ≤ a1, . . . , an ≤ 1.
Proof. Define S = supa1,...,an

E g(a1ε1, . . . anεn). Clearly

S ≤ sup
X1,...,Xn

E g(X1, . . . , Xn).

By symmetry of X1, . . . , Xn, we have

E g(X1, . . . , Xn) = E g(X1ε1, . . . , Xnεn).

Therefore

E g(X1, . . . , Xn) = E E [g(X1ε1, . . . , Xnεn) |X1, . . . , Xn] ≤ ES = S.

Thus, in view of Lemma 2.1 we will henceforth write Sn for the sum a1ε1 + · · ·+
anεn instead of a sum of arbitrary symmetric random variables Xi.

Proof of Theorem 1.1. First note that the inequality is true for x ∈ (0, 1] and all
n. This is due to the fact that P {Sn ≥ x} ≤ 1/2 by symmetry of Sn and for all n
the right-hand side of the inequality is given by the tail of an odd number of random
signs, which is exactly 1/2. We can also assume that the largest coefficient ai = 1
as otherwise if we scale the sum by ai then the tail of the this new sum would be
at least as large as the former. We will thus assume, without loss of generality, that
0 ≤ a1 ≤ a2 ≤ . . . ≤ an = 1. Define a function I(x, n) to be 1 if ⌈x⌉+ n is even, and
zero otherwise. Then we can rewrite the right-hand side of (1.3) as

P {Wn−1 + εnI(x, n) ≥ x} ,
making an agreement ε0 ≡ 0.

For x > 1 we argue by induction on n. Case n = 0 is trivial. Observing that
I(x− 1, n) = I(x+ 1, n) = I(x, n + 1) we have

P {Sn+1 ≥ x} = 1
2P {Sn ≥ x− 1}+ 1

2P {Sn ≥ x+ 1}
≤ 1

2P {Wn−1 + εnI(x− 1, n) ≥ x− 1}
+ 1

2P {Wn−1 + εnI(x + 1, n) ≥ x+ 1}
= P {Wn + εn+1I(x, n+ 1) ≥ x} .
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Proof of Theorem 1.3. We can assume that a1 ≥ a2 ≥ . . . ≥ an ≥ 1. Without
loss of generality we can also take an = 1. This is because

P {Sn ∈ (x− k, x+ k]} ≤ P {Sn/an ∈ (x− k, x+ k]/an}
≤ max

x∈R

P {Sn/an ∈ (x− k, x+ k]} .

The claim is trivial for n = 0. Let us assume that we have proved the statement
for 1, 2, ..., n− 1. Then

P {Sn ∈ (x− k, x+ k]}
=1

2P {Sn−1 ∈ (x− k − 1, x+ k − 1]}+ 1
2P {Sn−1 ∈ (x− k + 1, x+ k + 1]}

=1
2P {Sn−1 ∈ (x− k − 1, x+ k + 1]}+ 1

2P {Sn−1 ∈ (x− k + 1, x+ k − 1]}
≤1

2P {Wn−1 ∈ (−k − 1, k + 1]}+ 1
2P {Wn−1 ∈ (−k + 1, k − 1]}

=1
2P {Wn−1 ∈ (−k − 1, k − 1]}+ 1

2P {Wn−1 ∈ (−k + 1, k + 1]}
=P {Wn ∈ (−k, k]} .

Note that we rearranged the intervals after the second equality so as to have two
intervals of different lengths and this makes the proof work.

Before proving Theorem 1.2, we will obtain an upper bound for P {Sn = x} under
an additional condition that all ai are nonzero.

Lemma 2.2. Let x > 0, k = ⌈x⌉. Suppose that 0 < a1 ≤ · · · ≤ an ≤ 1. Then

P {Sn = x} ≤
{

P {Wn = k} , if n+ k ∈ 2Z,

P {Wn−1 = k} , if n+ k ∈ 2Z+ 1.
(2.1)

Proof. We first prove the lemma for x ∈ (0, 1] and any n. By Theorem 1.3 we have

P {Sn = x} ≤ 2−n

(

n

⌈n/2⌉

)

. (2.2)

On the other hand, if x ∈ (0, 1], then k = 1 and

2−n

(

n

⌈n/2⌉

)

=















2−n

(

n

(n+ 1)/2

)

= P {Wn = 1} , if n+ 1 ∈ 2Z,

2−n

(

n

n/2

)

= P {Wn−1 = 1} , if n+ 1 ∈ 2Z+ 1,

where the second equality follows by Pascal’s identity:

2−n

(

n

n/2

)

= 2−n

[(

n− 1

n/2

)

+

(

n− 1

n/2− 1

)]

= 21−n

(

n− 1

n/2

)

= P {Wn−1 = 1} .

Let N = {1, 2, . . .} stand for the set of positive integers. Let us write Bn(x) for the
right-hand side of (2.1). Note that it has the following properties:

x 7→ Bn(x) is non-increasing; (2.3)

x 7→ Bn(x) is constant on each of the intervals (k − 1, k], k ∈ N; (2.4)

Bn(k) =
1
2Bn−1(k − 1) + 1

2Bn−1(k + 1), if k = 2, 3, . . . . (2.5)
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We proceed by induction on n. The case n = 1 is trivial. To prove the induction
step for n ≥ 2, we consider two cases: (i) x = k ∈ N; (ii) k − 1 < x < k ∈ N.

Case (i). For k = 1 the lemma has been proved, so we assume that k ≥ 2. By the
inductional hypothesis we have

P {Sn = k} = 1
2P {Sn−1 = k − an}+ 1

2P {Sn−1 = k + an}
≤ 1

2Bn−1(k − an) +
1
2Bn−1(k + an). (2.6)

By (2.3) we have

Bn−1(k − an) ≤ Bn−1(k − 1), (2.7)

and by (2.4) we have

Bn−1(k + an) = Bn−1(k + 1). (2.8)

Combining (2.6), (2.7), (2.8), and (2.5), we obtain

P {Sn = k} ≤ Bn(k). (2.9)

Case (ii). For x ∈ (0, 1] Lemma has been proved, so we assume k ≥ 2. Consider
two cases: (iii) x/an ≥ k; (iv) x/an < k.

Case (iii). Define S′
n = a′1ε1 + · · · + a′nεn, where a′i = kai/x, so that S′

n = k
xSn.

Recall that an = maxi ai, by the hypothesis of Lemma. Then a′i ≤ kan/x and the
assumption x/an ≥ k imply that 0 < a′1, . . . , a

′
n ≤ 1. Therefore, by (2.9) and (2.4) we

have

P {Sn = x} = P {S′
n = k} ≤ Bn(k) = Bn(x).

Case (iv). Without loss of generality, we can assume that an = 1, since

P {Sn = x} = P

{

a1
an

ε1 + · · ·+ an
an

εn =
x

an

}

and k − 1 < x/an < k, by the assumption of the present case. Sequentially applying
the induction hypothesis, (2.4), (2.5), and again (2.4), we get

P {Sn = x} = 1
2P {Sn−1 = x− 1}+ 1

2P {Sn−1 = x+ 1}
≤ 1

2Bn−1(x − 1) + 1
2Bn−1(x+ 1)

= 1
2Bn−1(k − 1) + 1

2Bn−1(k + 1)

= Bn(k) = Bn(x).

Proof of Theorem 1.2. Writing Bn(k) for the right-hand side of (2.1), we have,
by Lemma 2.2, that

P {Sn = x} ≤ n
max
j=k

Bj(k).

If j + k ∈ 2Z, then Bj(k) = P {Wj = k} = Bj+1(k) and therefore

n
max
j=k

Bj(k) = max
k≤j≤n
k+j∈2Z

P {Wj = k} . (2.10)
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To finish the proof, note that the sequence P {Wj = k} = 2−j
(

j
(k+j)/2

)

, j = k, k +

2, k + 4, . . . is unimodal with a peak at j = k2, i.e.,

P {Wj−2 = k} ≤ P {Wj = k} , if j ≤ k2,

and

P {Wj−2 = k} > P {Wj = k} , if j > k2.

Indeed, elementary calculations yield that the inequality

2−j+2

(

j − 2

(k + j)/2− 1

)

≤ 2−j

(

j

(k + j)/2

)

, j ≥ k + 2,

is equivalent to the inequality j ≤ k2.

3. Proofs based on results in extremal combinatorics. Let [n] stand for
the finite set {1, 2, . . . , n}. Consider a family F of subsets of [n]. We denote by |F|
the cardinality of F . The family F is called:

(i) k-intersecting if for all A,B ∈ F we have |A ∩B| ≥ k.
(ii) an antichain if for all A,B ∈ F we have A * B.

A well known result by Katona [7] (see also [3, p. 98, Theorem 4]) gives the exact
upper bound for a k-intersecting family.

Theorem 3.1 (Katona [7]). If k ≥ 1 and F is a k-intersecting family of subsets

of [n] then

|F| ≤



























n
∑

j=t

(

n

j

)

, if k + n = 2t,

n
∑

j=t

(

n

j

)

+

(

n− 1

t− 1

)

, if k + n = 2t− 1.

(3.1)

Notice that if k + n = 2t, then

n
∑

j=t

(

n

j

)

= 2nP {Wn ≥ k} . (3.2)

If k + n = 2t− 1, then using the Pascal’s identity
(

n
j

)

=
(

n−1
j

)

+
(

n−1
j−1

)

we get

n
∑

j=t

(

n

j

)

+

(

n− 1

t− 1

)

= 2
n−1
∑

j=t−1

(

n− 1

j

)

= 2nP {Wn−1 ≥ k} . (3.3)

The exact upper bound for the size of a k-intersecting antichain is given by the
following result of Milner [9].

Theorem 3.2 (Milner [9]). If a family F of subsets of [n] is a k-intersecting
antichain, then

|F| ≤
(

n

t

)

, t =

⌈

n+ k

2

⌉

. (3.4)

Note that we have
(

n

t

)

= 2nP {Wn = k} , if n+ k = 2t, (3.5)
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and
(

n

t

)

= 2nP {Wn = k + 1} , if n+ k = 2t− 1. (3.6)

By Lemma 2.1 it is enough to prove Theorems 1.1 and 1.2 for the sums

Sn = a1ε1 + · · ·+ anεn,

where 0 ≤ a1, . . . , an ≤ 1. Denote as Ac the complement of the set A. For each
A ⊂ [n], write sA =

∑

i∈A ai −
∑

i∈Ac ai. We define two families of sets:

F≥x = {A ⊂ [n] : sA ≥ x}, and Fx = {A ⊂ [n] : sA = x}.

Proof of Theorem 1.1. We have

P {Sn ≥ x} = 2−n|F≥x|.

Let k = ⌈x⌉. Since Wn takes only integer values, we have

P {Wn ≥ k} = P {Wn ≥ x} and P {Wn−1 ≥ k} = P {Wn−1 ≥ x} .

Therefore, in the view of (3.1), (3.2), and (3.3), it is enough to prove that F≥x is
k-intersecting. Suppose that there are A,B ∈ F≥x such that |A∩B| ≤ k− 1. Writing
σA =

∑

i∈A ai, we have

sA = σA − σAc = (σA∩B − σAc∩Bc) + (σA∩Bc − σAc∩B) (3.7)

and

sB = σB − σBc = (σA∩B − σAc∩Bc)− (σA∩Bc − σAc∩B). (3.8)

Since

σA∩B − σAc∩Bc ≤ σA∩B ≤ |A ∩B| ≤ k − 1 < x,

from (3.7) and (3.8) we get

min{sA, sB} < x,

which contradicts the fact sA, sB ≥ x.
The following lemma implies Theorem 1.2. It also gives the optimal bound for

P {Sn = x} and thus improves Lemma 2.2.
Lemma 3.3. Let 0 < a1, . . . , an ≤ 1 be strictly positive numbers, x > 0, k = ⌈x⌉.

Then

P {Sn = x} ≤
{

P {Wn = k} , if n+ k ∈ 2Z,

P {Wn = k + 1} , if n+ k ∈ 2Z+ 1.

Proof. We have

P {Sn = x} = 2−n|Fx|.

In the view of (3.4), (3.5), and (3.6), it is enough to prove that Fx is a k-intersecting
antichain. To see that Fx is k-intersecting it is enough to note that Fx ⊂ F≥x. To
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show that Fx is an antichain is even easier. If A,B ∈ Fx and A ( B, then sB − sA
= 2

∑

i∈B\A ai > 0, which contradicts the assumption that sB = sA = x.
Proof of Theorem 1.2. Lemma 3.3 gives

P {Sn = x} ≤ n
max
j=k

P {Wj = k + 1− I(k, j)} ,

where again I(k, j) = I {k + j ∈ 2Z}. Note that if k + j ∈ 2Z we have

P {Wj = k} ≥ 1/2P {Wj = k}+ 1/2P {Wj = k + 2}
= P {Wj+1 = k + 1} , k > 0.

Hence

n
max
j=k

P {Wj = k + 1− I(k, j)} = max
k≤j≤n
k+j∈2Z

P {Wj = k} ,

the right-hand side being the same as the one of (2.10). Therefore, repeating the
argument following (2.10) we are done.

4. Extension to Lipschitz functions. One can extend Theorem 1.1 to odd
Lipschitz functions taken of n independent random variables. Consider the cube
Cn = [−1, 1]n with the ℓ1 metric d. We say that a function f : Cn → R is K-Lipschitz
with K > 0 if

|f(x) − f(y)| ≤ Kd(x, y), x, y ∈ Cn. (4.1)

We say that a function f : Cn → R is odd if f(−x) = −f(x) for all x ∈ Cn. An
example of an odd 1-Lipschitz function is the function mapping a vector to the sum
of its coordinates:

f(x1, . . . , xn) = x1 + · · ·+ xn.

Note that the left-hand side of (1.3) can be written as P {f(X1, . . . , Xn) ≥ x}.
As in Theorems 1.1 and 1.2, the crux of the proof is dealing with two-valued

random variables. The optimal bound for a k-intersecting family is not sufficient for
this case, therefore we use the following generalization of Theorem 3.1 due to Kleitman
[8] (see also [3, p. 102]) which we state slightly reformulated for our convenience. Let
us define the diameter of a set family F by diamF = maxA,B∈F |A△B|.

Theorem 4.1 (Kleitman [8]). If k ≥ 1 and F is a family of subsets of [n] with
diamF ≤ n− k, then

|F| ≤



























n
∑

j=t

(

n

j

)

, if k + n = 2t,

n
∑

j=t

(

n

j

)

+

(

n− 1

t− 1

)

, if k + n = 2t− 1.

(4.2)

To see that Theorem 4.1 implies Theorem 3.1, observe that |A ∩ B| ≥ k implies
|A△B| ≤ n− k.

Theorem 4.2. Suppose that a function f : Cn → R is 1-Lipschitz and odd. Let

X1, . . . , Xn be symmetric independent random variables such that |Xi| ≤ 1. Then, for
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x > 0, we have that

P {f(X1, . . . , Xn) ≥ x} ≤
{

P {Wn ≥ x} , if n+ ⌈x⌉ ∈ 2Z,

P {Wn−1 ≥ x} , if n+ ⌈x⌉ ∈ 2Z+ 1.
(4.3)

Proof. Applying Lemma 2.1 with the function

g(y1, . . . , yn) = I{f(y1, . . . , yn) ≥ x},

we can see that it is enough to prove (4.3) with

X1 = a1ε1, . . . , Xn = anεn

for any 1-Lipschitz odd function f . In fact, we can assume that a1 = · · · = an = 1,
since the function

(x1, . . . , xn) 7→ f(a1x1, . . . , anxn)

is clearly 1-Lipschitz and odd.

Given A ⊆ [n], write fA for f(2 IA(1)−1, . . . , 2 IA(n)−1), where IA is the indicator
function of the set A. Note that

|fA − fB| ≤ 2|A△ B| (4.4)

by the Lipschitz property. Consider the family of finite sets

F = {A ⊆ [n] : fA ≥ x},

so that

P {f(ε1, . . . , εn) ≥ x} = 2−n|F|.

Write k = ⌈x⌉. Note that Wn−1 and Wn take only integer values. Therefore by
(3.2) and (3.3) we see that the right-hand side of (4.2) is equal, up to the power of
two, to the right-hand side of (4.3). Consequently, if diamF ≤ n− k, then Theorem
4.1 implies (4.3). Therefore, it remains to check that for any A,B ∈ F we have
|A△B| ≤ n− k.

Suppose that for some A,B we have fA, fB ≥ x but |A△ B| ≥ n− k + 1. Then

|A△Bc| = |(A△B)c| = n− |A△B| ≤ k − 1,

and hence by (4.4) we have

|fA − fBc | ≤ 2k − 2. (4.5)

On the other hand we have that fBc ≤ −x, as f is odd. Therefore

fA − fBc ≥ 2x > 2k − 2,

which contradicts (4.5).
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