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A NONLINEAR GMRES OPTIMIZATION ALGORITHM FOR

CANONICAL TENSOR DECOMPOSITION

H. DE STERCK∗§

Abstract. A new algorithm is presented for computing a canonical rank-R tensor approximation
that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor
consists of the sum of R rank-one components. Each iteration of the method consists of three steps.
In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which
we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by
a nonlinear generalized minimal residual (GMRES) approach, recombining previous iterates in an
optimal way, and essentially using the stand-alone one-step process as a preconditioner. In particular,
the nonlinear extension of GMRES is used that was proposed by Washio and Oosterlee in [ETNA
Vol. 15 (2003), pp. 165-185] for nonlinear partial differential equation problems. In the third
step, a line search is performed for globalization. The resulting nonlinear GMRES (N-GMRES)
optimization algorithm is applied to dense and sparse tensor decomposition test problems. The
numerical tests show that ALS accelerated by N-GMRES may significantly outperform both stand-
alone ALS and a standard nonlinear conjugate gradient optimization method, especially when highly
accurate stationary points are desired for difficult problems. The proposed N-GMRES optimization
algorithm is based on general concepts and may be applied to other nonlinear optimization problems.

Key words. canonical tensor decomposition, alternating least squares, GMRES, nonlinear
optimization

AMS subject classifications. 15A69 Multilinear algebra, 65F10 Iterative methods, 65K10
Optimization, 65F08 Preconditioners for iterative methods

1. Introduction. In this paper, we present a new algorithm for computing a
canonical rank-R tensor approximation that has minimal distance to a given ten-
sor in the Frobenius norm, where the canonical rank-R tensor consists of the sum
of R rank-one components. As one of its components, the optimization algorithm
uses a nonlinear version of the generalized minimal residual (GMRES) method that
was originally proposed for iteratively solving systems of linear equations [15]. More
specifically, we use the nonlinear extension of GMRES that was developed by Washio
and Oosterlee [18] for nonlinear partial differential equation (PDE) systems, and ap-
ply it to the tensor optimization problem, with the purpose of efficiently driving the
gradient of the objective function to zero in a process that uses iterate recombination.
We apply this nonlinear GMRES acceleration to the alternating least squares (ALS)
method, and combine it with a line search for globalization. We perform numerical
tests to investigate the performance of the resulting nonlinear GMRES (N-GMRES)
optimization algorithm for canonical tensor approximation.

N -way tensor T ∈ R
I1×...×IN is an N -dimensional array of size I1 × . . .× IN [9].

The size of mode n is In (n = 1, . . . , N). Let AR ∈ R
I1×...×IN be a canonical rank-R

tensor, given by

AR =

R
∑

r=1

a(1)r ◦ . . . ◦ a(N)
r = [[A(1), . . . ,A(N)]]. (1.1)

Canonical tensor AR is a sum of R rank-one tensors, with the rth rank-one tensor

composed of the outer product of N column vectors a
(n)
r ∈ R

In , n = 1, . . . , N . For
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2 H. De Sterck

each mode n = 1, . . . , N , the R vectors a
(n)
r , r = 1, . . . , R, form the columns of the

mode-n factor matrix A(n), and the double-bracket notation on the right of (1.1) is
used to denote the canonical tensor by the factor matrices.

This paper concerns numerical algorithms for the following optimization problem:

optimization problem I:

given tensor T ∈ R
I1×...×IN , find rank-R

canonical tensor AR ∈ R
I1×...×IN that minimizes

f(AR) =
1

2
‖T − AR‖

2
F . (1.2)

Here, ‖.‖F denotes the Frobenius norm of theN -dimensional array, which is the square
root of the sum of the squares of all the array elements.

We now briefly recall some properties of canonical tensor decomposition, mainly
referring to review article [9], which also contains extensive references to original pa-
pers that the reader may consult for more detail. The exact decomposition of a data
tensor T into a canonical tensor is often called a CP decomposition of the tensor,
with the C standing for ‘CANDECOMP’ and the ‘P’ standing for ‘PARAFAC’, after
the names originally given to this decomposition in early papers on the subject [3, 7].
The smallest number of rank-one components that generate T as their sum is called
the tensor rank of tensor T [9]. If, rather than an exact decomposition, T is approx-
imately decomposed into a low-rank canonical tensor AR of specified rank R that is
smaller than the rank of T , then the resulting tensor AR is called an approximate CP
decomposition. CP decompositions are used for data analysis in many applications
such as chemometrics, signal processing, neuroscience and web analysis. Many criteria
exist for specifying the type of approximation that is sought for approximate CP de-
compositions (see, e.g., [17]). In this paper, we focus on the specific (and practically
relevant) case of computing an approximate CP decomposition AR that minimizes
the Frobenius distance between the data tensor and AR, i.e., we seek to minimize
objective function (1.2). Contrary to the case of best rank-R matrix approximation,
the rank-one terms of the best rank-R CP tensor approximation cannot be solved for
sequentially but must be found simultaneously, since a best rank-R CP approximation
cannot be obtained by truncating a best rank-S approximation with S > R [9].

It is well-known that Optimization Problem I is a non-convex optimization prob-
lem, and as such may exhibit multiple local minima. In the form given above, its local
minima are not isolated, since there is a scaling indeterminacy in each of the rank-one

terms: there is ample freedom to rescale the vectors a
(n)
r in (1.1) without changing

the rank-one product. In our approach, we deal with this by normalizing the a
(n)
r in

a specific way, to be explained below. There is also a permutation indeterminacy in
the order of the rank-one terms, which we deal with by imposing a specific order, also
to be explained below. Even when the scaling and permutation indeterminacies are
removed, CP optimization may still exhibit multiple local minima for some problems,
and depending on the initial guess, iterative methods for approximate CP decompo-
sition may converge to different stationary points. It is also possible that the best
rank-R approximation does not exist, which may happen when some rank-one terms
with opposite signs in the canonical tensor become unbounded in size as the canonical
tensor approaches the target tensor, in a phenomenon called degeneracy [9]. On the
other hand, exact CP decomposition has been shown to be unique up to scaling and
permutation under mild conditions that relate the ranks of the factor matrices with
the tensor rank [9].
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A multitude of algorithms and approaches exist for computing approximate CP
decompositions, see, for example, [17, 9, 1] and references therein. A standard nu-
merical method for computing the CP approximation of Optimization Problem I is
the ALS method, which was already proposed in early papers on CP decomposition
[3, 7]. ALS is simple to understand and implement, and often performs adequately,
but its convergence can also be very slow, depending on the problem and the initial
condition. Alternatives to ALS are described in, for example, [17, 4, 5], see also the
discussion in [9, 1]. Even though ALS is a simple algorithm, it has proven difficult
over the years to develop alternatives that significantly improve on it in a way that
is robust over large classes of problems. As a results, ALS-type algorithms are still
often considered as the ‘workhorse’ algorithms of choice in practice.

In recent work on CP decomposition, Acar et al. [1] consider first-order optimiza-
tion algorithms for Optimization Problem I. In particular, they employ the nonlinear
conjugate gradient (N-CG) method and compare it with ALS and nonlinear least-
squares algorithms. In order to formulate first-order optimization methods, they
derive expressions for the gradient of objective function (1.2) in a systematic way. At
any (local) minimum of Optimization Problem I the following conditions hold:

first-order optimality equations I:

∇f(AR) = g(AR) = 0. (1.3)

Detailed expressions for the gradient vector g(AR) will be given below. Acar et al.
[1] then apply a standard N-CG optimization method with line search and obtain
convergence speeds that are competitive with ALS and sometimes better, depending
on the problem.

In this paper we also follow a first-order optimization approach for Optimization
Problem I, but we propose to use a different optimization method. In particular,
we propose to use a nonlinear GMRES approach to recombine iterates provided by
a standard iterative method for Optimization Problem I (we use ALS as the ‘GM-
RES preconditioner’ in this paper), combined with line search for globalization. The
resulting N-GMRES optimization algorithm will be shown numerically to accelerate
convergence significantly in many cases, especially when stationary points need to be
determined accurately for difficult problems, and we show this for two classes of dense
and sparse test problems. The N-GMRES optimization algorithm proposed is easy to
implement as a wrapper around any iterative solution method for Optimization Prob-
lem I. It combines previous iterates and can thus, in that sense, also be considered
as a generalization of line search methods for ALS [17, 14], but taking more previous
iterates into account (we typically use up to 20). However, our approach is also more
general in that it can potentially be used to accelerate other CP algorithms than
ALS. In fact, the N-GMRES optimization algorithm proposed is based on general
concepts and may be applied to other nonlinear optimization problems, as a potential
alternative to other first-order optimization methods like N-CG.

The nonlinear GMRES acceleration method we propose to use in our algorithm
for nonlinear optimization is the nonlinear extension of GMRES that was developed
by Washio and Oosterlee in [18] to accelerate multigrid solvers for nonlinear PDE
systems (see also [13, 12] for further applications of their method in the nonlinear
PDE systems context). Their method is a generalization of Saad and Schultz’s cele-
brated GMRES method for linear equation systems [15] to the nonlinear case. In the
N-GMRES optimization algorithm we propose, we apply this nonlinear GMRES ap-
proach to combine ALS-generated iterates with the goal of driving the residual of the
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Fig. 1.1. ALS convergence plots for an ‘easy’ instance of Test Problem I (parameters s =50,
c =0.5, R =3, l1 =1, l2 =1, see Section 3 for full problem description). (a) Convergence of

|h(A
(i)
R

) − h∗|, where h∗ is the value of the normalized distance measure, (1.4), in the stationary
point the method converges to. (b) Convergence of the normalized gradient of the objective function,

‖g(A
(i)
R

)‖2/‖T ‖F , indicating convergence to a stationary point. ALS is a fast method for this ‘easy’
problem, and N-GMRES acceleration is not required.

0 200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

iterations

(a) convergence to h*

 

 

ALS
N−GMRES

0 200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

iterations

(b) gradient norm convergence

 

 

ALS
N−GMRES

Fig. 1.2. ALS convergence plots for a ‘difficult’ instance of Test Problem I (parameters

s =50, c =0.9, R =3, l1 =1, l2 =1). (a) Convergence of |h(A
(i)
R

) − h∗|. (b) Convergence of

‖g(A
(i)
R

)‖2/‖T ‖F . ALS is slow for this ‘difficult’ problem, but our proposed N-GMRES optimiza-
tion algorithm significantly reduces the number of iterations.

(nonlinear) first-order optimality equations to zero. A line search method is used to
provide globalization. Just like for GMRES for linear equation systems, the method
that generates the iterates can be seen as a preconditioner for GMRES, or, from an
alternative viewpoint, GMRES can be interpreted as an acceleration mechanism for
the method that generates the iterates [18, 13]. It will be explained in detail below
how this interpretation carries over to the present context of nonlinear optimization
for CP decomposition.

Figs. 1.1-1.3 give a preview of what the N-GMRES optimization algorithm pro-
posed in this paper tries to achieve. The figures present convergence plots for a dense
test problem that is a standard test case for CP decomposition from the literature
[17, 1]. A 3-way data tensor with size 50 × 50 × 50 is generated starting from a
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rank-3 canonical tensor with random factor matrices modified to have pre-specified
collinearity c, and noise is added. (See Test Problem I in Section 3 for a detailed
description of the test case.). A rank-3 CP approximation is sought starting from a
random initial guess. In order to track accuracy during the progress of the iterative
methods, we define a measure of the normalized distance between data tensor T and

rank-R approximation A
(i)
R in iteration i as

h(A
(i)
R ) =

‖T − A
(i)
R ‖F

‖T ‖F
, (1.4)

and define the optimal distance

h∗ = h(A∗
R), (1.5)

where A∗
R is the stationary point that the method converges to in the test. The

accuracy of the approximation as the iterative method progresses is then tracked by

measuring |h(A
(i)
R ) − h∗|. We also track convergence of ‖g(A

(i)
R )‖2/‖T ‖F , the norm

of the gradient of the objective function normalized by the norm of the data tensor,
which gives information about convergence to a stationary point.

Fig. 1.1 shows convergence plots for a case with collinearity c = 0.5. It is known
that this case is ‘easy’ for ALS, and the plots confirm that ALS converges quickly
to a stationary point. It is also known that factor matrices with nearly collinear
columns constitute problems that are more difficult for ALS [17, 1]. Fig. 1.2 shows
convergence plots for a case with c = 0.9, and we can indeed observe that ALS
converges slowly. The plots also show how the N-GMRES optimization algorithm
that is proposed in this paper significantly speeds up ALS and reduces the number
of iterations dramatically. Of course, Fig. 1.2 is only part of the story, because the
N-GMRES iterations are more expensive than simple ALS iterations. However, the
timing plots in Fig. 1.3 show that significant gains can still be made if this extra cost
is taken into account, especially when accurate results are desired.
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Fig. 1.3. Same as Fig. 1.2, but now convergence is plotted as a function of execution time. Even
though N-GMRES iterations take more time per iteration, N-GMRES still substantially accelerates
ALS, especially if accurate approximations are desired.

The rest of this paper is organized as follows. In Section 2 we describe the pro-
posed N-GMRES optimization algorithm for nonlinear optimization problems, and
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explain how it is applied to compute rank-R canonical tensor decompositions. We
also explain the interpretation of the N-GMRES acceleration method as a precondi-
tioned GMRES nonlinear optimization method. In Section 3 we test the N-GMRES
optimization algorithm on dense tensor test cases, and in Section 4 we discuss sparse
test problems. Conclusions are formulated in Section 5.

2. N-GMRES Optimization Algorithm for Canonical Tensor Decompo-

sition. In this section, we describe the proposed N-GMRES optimization algorithm
for nonlinear optimization problems, and explain how it is applied to compute rank-
R canonical tensor decompositions. We start with a description of the N-GMRES
optimization approach, and situate this discussion in the context of a general non-
linear optimization problem, since the approach is general. We then compare the
N-GMRES approach for optimization to GMRES for linear systems, explaining how
the dual viewpoint of preconditioned GMRES and GMRES acceleration applies in the
nonlinear optimization context. In our descriptions we closely follow the derivations
and presentation of Washio and Oosterlee’s nonlinear GMRES for PDE problems from
[18, 13], which we propose to use as the main ingredient in our nonlinear optimization
algorithm. We give extensive details because these details give precise insight into
how the GMRES method generalizes to the nonlinear optimization problem. This
is followed by a discussion of how N-GMRES is applied to CP optimization, giving
details on the first-order optimality equations for CP and the line search algorithm
we use in the numerical results of subsequent sections.

2.1. N-GMRES Optimization Algorithm. Consider the following nonlinear
optimization problem with associated first-order optimality equations:

optimization problem II:

find u∗ that minimizes f(u). (2.1)

first-order optimality equations II:

∇f(u) = g(u) = 0. (2.2)

Assume that we have i + 1 previous iterates u0,u1, . . . ,ui−1,ui, and that we have a
one-step (nonlinear) iterative update process M(.) that generates a new approxima-
tion from an existing approximation:

unew = M(uold). (2.3)

The goal of the N-GMRES optimization algorithm will be to accelerate the conver-
gence of iterative update process M(.).

Every iteration of the N-GMRES optimization algorithm consists of three steps.

Step I:

In the first step, we generate a preliminary new iterate ūi+1 from the last iterate
ui using one-step iterative update process M(.):

ūi+1 = M(ui). (2.4)

Step II:
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In the second step, we find an accelerated iterate ûi+1 that is obtained by recom-
bining previous iterates as follows:

ûi+1 = ūi+1 +
i

∑

j=0

αj (ūi+1 − uj). (2.5)

The N-GMRES algorithm seeks to determine the unknown coefficients αj such that
the two-norm of the gradient of the objective function evaluated at the accelerated
iterate is small. We call g(ûi+1) the residual at ûi+1, and the objective is thus to
determine the αj such that the residual is minimized in the two-norm: we attempt
to minimize ‖g(ûi+1)‖2. However, g(.) is a nonlinear function of the αj (more pre-
cisely, it is a high-order polynomial in the αj), and we proceed by linearization to
allow for inexpensive computation of coefficients αj that may approximately mini-
mize ‖g(ûi+1)‖2. Using the following approximations

g(ûi+1) ≈ g(ūi+1) +
i

∑

j=0

∂g

∂u

∣

∣

∣

∣

ūi+1

αj (ūi+1 − uj)

≈ g(ūi+1) +

i
∑

j=0

αj (g(ūi+1)− g(uj)) (2.6)

we arrive at minimization problem

find coefficients (α0, . . . , αi) that minimize

‖g(ūi+1) +

i
∑

j=0

αj (g(ūi+1)− g(uj))‖2.

This is a standard least-squares problem that can be solved, for example, by using
the normal equations. Defining

α = (α0, . . . , αi)
T ,

pj = g(ūi+1)− g(uj),

P = [p0| . . . |pj ] ,

we minimize ‖Pα+ g(ūi+1)‖2, which leads to normal equation system

PT Pα = −PT g(ūi+1). (2.7)

Step III:

In the third step, we perform a line search that optimizes objective function f(u)
on a half line starting at preliminary iterate ūi+1, which was generated in Step I, and
connecting it with accelerated iterate ûi+1, which was generated in Step II:

find β∗ ∈ [0,∞) that minimizes (2.8)

f(ūi+1 + β(ûi+1 − ūi+1)). (2.9)

This line search step is necessary, because without it erratic convergence behavior
can occur, especially as long as iterates are far from a stationary point. In this case,
the linearization steps in (2.6) may incur large errors, resulting in accelerated iterates
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ûi+1 that may be bad approximations. The result of the line search is finally selected
as the new iterate ui+1:

ui+1 = ūi+1 + β∗(ûi+1 − ūi+1). (2.10)

In practice, to limit the computational cost and especially the memory cost of the
N-GMRES acceleration, we implement the algorithm with a windowed acceleration
process with window size w, in which N-GMRES-accelerated iterates are generated
based on the w last iterations.

Fig. 2.1 gives a schematic representation of the N-GMRES optimization algo-
rithm, and Algorithm 1 describes it in pseudo-code. (Note of course that the w initial
iterates required in the pseudo-code description can naturally be generated by ap-
plying the algorithm with a window size that gradually increases from one up to w,
starting from a single initial guess.)

3

0

u 1

u 2

u 3
d 0

d 1 d 2

u 3

u

u

Fig. 2.1. Schematic representation of one iteration of the N-GMRES optimization algorithm.
Given previous iterations u0, u1 and u2, new iterate u3 is generated as follows. In Step I, pre-
liminary iterate ū3 is generated by the one-step update process M(.): ū3 = M(u2). In Step II,
the nonlinear GMRES step, accelerated iterate û3 is obtained by determining the coefficients αj in
û3 = ū3+α0d0+α1d1+α2d2 such that the gradient of the objective function in û3 is approximately
minimized. In Step III, the new iterate, u3, is finally generated by a line search that minimizes the
objective function f(ū3 + β(û3 − ū3)).

Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates u0, . . . ,uw−1.

i = w − 1
repeat

Step I: (generate preliminary iterate by one-step update process M(.))
ūi+1 = M(ui)

Step II: (generate accelerated iterate by nonlinear GMRES step)
ûi+1 =gmres(ui−w+1, . . . ,ui; ūi+1)

Step III: (generate new iterate by line search process)
ui+1 =linesearch(ūi+1 + β(ûi+1 − ūi+1))

i = i+ 1
until convergence criterion satisfied

We now give some additional remarks about the N-GMRES optimization algo-
rithm proposed and its application to canonical tensor decomposition.

First, for Step I in the algorithm, we use the ALS algorithm as the one-step
update process M(.). The ALS algorithm for CP decomposition will be described in
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Section 2.3, along with specific expressions for the gradient of the objective function
and the first-order optimality equations of Optimization Problem I. The one-step
update processM(.) can be interpreted as the preconditioner of the nonlinear GMRES
procedure, as will be explained in Section 2.2.

Second, Step I and Step II in the N-GMRES optimization algorithm are entirely
analogous to the nonlinear GMRES approach for PDE systems that was proposed by
Washio and Oosterlee in [18]. In their applications, they employ nonlinear GMRES
to drive the residuals of the PDEs to zero, and use multigrid as the preconditioner
[18, 13, 12]. In the present context of canonical tensor decomposition as a nonlinear
optimization problem, we drive the residual of the first-order optimality equations
(the gradient of the objective function) to zero, and use ALS as the preconditioner.

Third, Step III in the N-GMRES optimization algorithm performs a role analo-
gous to the selection mechanism proposed by Washio and Oosterlee in [18] to reduce
erratic convergence. They select either the preliminary iterate or the accelerated one,
based on ingenious but somewhat ad-hoc criteria that consider changes in the norms
of the residuals and in the solution updates. Instead, in the present context of nonlin-
ear optimization problems, we can exploit the final goal of minimizing the objective
function to control erratic behavior, and rather than selecting either the preliminary
iterate or the accelerated one, we perform a line search on the line connecting the
two. Not only does this control erratic behavior, but it also provides an improved
new iterate, at the cost of a line search.

Fourth, it may be beneficial to restart the N-GMRES acceleration with window
size one when indications arise that the current window contains iterates that harm
the acceleration process. In [18] the GMRES procedure is restarted based on criteria
similar to the ones that are used to choose between the preliminary or accelerated
iterate. In the context of N-GMRES for nonlinear optimization problems, we propose
the following simple criterion: we restart whenever the search direction of the line
search, ûi+1 − ūi+1, does not point in a descent direction (so we set the window
size back to one whenever g(ūi+1)

T (ûi+1 − ūi+1) > 0). The motivation for this is
simple: we expect the acceleration mechanism to be effective close to a stationary
point. In that case, the accelerated iterate is expected to be an improvement over the
preliminary iterate, and the search direction is expected to be a descent direction. If
this is not the case, this is taken as an indication that the current N-GMRES sequence
does not help, and N-GMRES is restarted. Our numerical tests have indicated that
this simple approach indeed tends to be beneficial for speed of convergence, for the
test problems we considered. Note that windowing with restarts can be implemented
efficiently in an elegant way, and we refer to the detailed pseudocode in [18] for this.

Fifth, another practical point is that the normal equation system in (2.7) may
become ill-conditioned since the vectors pj may become nearly linearly dependent.
One way to deal with this, as suggested in [18], is to add a small multiple of the
identity matrix, δ I, to the normal equation operator. This was sufficient for the
numerical tests we performed, and [18] provides further theoretical justification for
this fix.

Sixth, for the line search of Step III, we use in our numerical experiments the
Moré-Thuente line search method [10] as implemented in the Poblano toolbox for
Matlab [6]. This line search method was also used in the N-CG method for canonical
tensor decomposition in [1]. This is a rather sophisticated line search method that
employs multiple function and gradient evaluations to improve the solution.

Finally, we briefly discuss the computational cost of the N-GMRES optimization
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algorithm. In terms of memory cost, for window size w the algorithm requires storing
w previous solution vectors and residual vectors. In the numerical results presented
below we will see that, for the CP decomposition test problems we consider, a window
size of approximately w = 20 is optimal in terms of computing time. This requires
substantial additional memory, however, and memory can obviously be traded for
speed. In terms of the computing time, the dominant costs in each iteration of N-
GMRES nonlinear optimization algorithm 1 are applying M(.) in Step I, computing
the gradient of the preliminary iterate, g(ūi+1), in Step II, and the function and gra-
dient evaluations in the line search of Step III. Since the optimization problems we
solve in this paper are quite involved and the ALS, function and gradient evaluations
are very expensive, these calculations strongly dominate all others in practice. The
relevant extra costs of the N-GMRES optimization approach compared to just apply-
ing the one-step update process M(.) are thus the additional function and gradient
evaluations, and the cost of building and solving the normal equation system (2.7)
and computing the accelerated iterate is negligible in practice. The number of func-
tion and gradient evaluations per line search depend on the line search method used
and the accuracy parameters one chooses for the line search calculations, which in
turn influence the number of overall iterations required to achieve a certain accuracy
for the stationary point. It is thus difficult to say much in general about the addi-
tional cost of the line search step. The numerical results to be presented below show
that, for two relevant classes of test problems for canonical tensor decomposition,
N-GMRES optimization can be significantly faster than stand-alone iteration by ap-
plying M(.), especially when high accuracy is desired. We will at this point just give
one example. For the N-GMRES CP calculation shown in Fig. 1.3, up to an accuracy
of |h− h∗| < 10−10 (which required 54 iterations), about 40% of the time is spent in
the ALS iterations (54 calls), 15% in the calculation of g(ūi+1) (54 calls), and about
30% in the function and gradient evaluations in the line search procedure (137 calls
to evaluate f and g). The average number of function/gradient evaluations per line
search was about 2.5. While the generality of this single example is of course limited,
it does illustrate that N-GMRES optimization algorithm 1 mainly adds overhead in
terms of additional function and residual evaluations for the GMRES and the line
search steps. But it is precisely these additional calculations that potentially lead to
a great reduction in the number of iterations and overall execution time, as we will
illustrate with extensive numerical tests below.

2.2. Interpretation as a GMRES Method: Acceleration and Precondi-

tioning. In this subsection we briefly recall some particulars of the GMRES method
for linear equation system

Au = b, (2.11)

and give a detailed exposition of the parallels with the N-GMRES optimization al-
gorithm proposed in the previous subsection. We follow the presentation of [18], but
explain in detail how the parallels apply in the nonlinear optimization context. As in
[18], we discuss GMRES for (2.11) in a particular, perhaps non-standard way, which
will allow us to draw parallels to the nonlinear optimization algorithm.

Our starting point for explaining the principles of preconditioned GMRES for
linear equation system (2.11) is to consider so-called stationary iterative methods for
(2.11) of the following form:

ui+1 = ui +M−1 ri. (2.12)
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Here, ri is the ith residual, defined by

ri = b−Aui, (2.13)

and matrix M is an approximation of A that has an easily computable inverse, i.e.,
M−1 ≈ A−1. For example, M can be chosen to correspond to Gauss-Seidel or Jacobi
iteration, or to a multigrid cycle [18]. General form (2.12) of a stationary iterative
method can be motivated as follows. Defining the error of the ith iterate as ei = u−ui

(with u the exact solution of (2.11)), it is easy to see that Aei = ri. Observing that
u = ui + ei = ui +A−1 ri, and that knowledge of A−1 would (obviously) lead to the
exact solution in one step, one can conclude that, if one does not know A−1 but does
have access to an easily computable approximation M−1, update formula (2.12) may
lead to a useful iteration process.

Consider a sequence of iterates u0, . . . ,ui generated by update formula (2.12),
starting from some initial guess u0. Note that the residuals of these iterates are
related as follows:

ri = b−Aui

= (I−AM−1) ri−1

= (I−AM−1)i r0. (2.14)

This motivates the definition of the following vector spaces:

V1,i+1 = span{r0, . . . , ri},

V2,i+1 = span{r0,AM−1 r0, (AM−1)2 r0}, . . . , (AM−1)i r0}

= Ki+1(AM−1, r0), (2.15)

V3,i+1 = span{M (u1 − u0),M (u2 − u1), . . . ,M (ui+1 − ui)},

V4,i+1 = span{M (ui+1 − u0),M (ui+1 − u1), . . . ,M (ui+1 − ui)}. (2.16)

Vector space V2,i+1 is the so-called Krylov space Ki+1(AM−1, r0) of order i + 1,
generated by matrix AM−1 and vector r0. It is easy to see that the vector spaces
defined above are equal [18]:

Lemma 2.1. V1,i+1 = V2,i+1 = V3,i+1 = V4,i+1.
Proof. First, V1,i+1 = V2,i+1 by (2.14), which directly shows that rj ∈ V2,i+1 for

all j, and (AM−1)j r0 ∈ V1,i+1 for all j follows by recursion.
Second, V2,i+1 = V3,i+1 because M (ui+1 − ui) = ri, by (2.12).

Third, V3,i+1 = V4,i+1 because, for k < i + 1, ui+1 − uk =
∑i+1

j=k+1 (uj − uj−1), and
uk − uk−1 = (ui+1 − uk−1)− (ui+1 − uk).

We know that M (ui+1−ui) ∈ Ki+1(AM−1, r0). The GMRES procedure can be
seen as a way to accelerate stationary iterative method (2.12), by recombining iterates
(or, equivalently, by reusing residuals). In particular, we seek a better approximation
ûi+1, with M (ûi+1 − ui) in the Krylov space Ki+1(AM−1, r0), such that r̂i+1 =
b−Aûi+1 has minimal two-norm. In other words, we seek optimal coefficients βj in

M (ûi+1 − ui) =

i
∑

j=0

βj M (ui+1 − uj),
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or in

ûi+1 = ui +

i
∑

j=0

βj (ui+1 − uj)

= ui+1 − (ui+1 − ui) +
i

∑

j=0

βj (ui+1 − uj).

Equivalently, we can seek optimal coefficients αj in

ûi+1 = ui+1 +

i
∑

j=0

αj (ui+1 − uj), (2.17)

such that ‖r̂i+1‖2 is minimized (which leads to a small least-squares problem). Apart
from the power of the minimization principle, GMRES for linear systems is especially
powerful because this minimization can be done very efficiently, using the Arnoldi
iteration to generate orthogonal bases for Krylov spaces of increasing order [15]. For
nonlinear problems, such an advantageous implementation is not possible, but the
general ideas of optimal acceleration remain powerful and can still be applied.

We now explain two complementary viewpoints of GMRES for linear system
(2.11). We have presented the method as a way to accelerate simple one-step sta-
tionary iterative method (2.12). A more customary way to see GMRES is in terms
of preconditioning. With M = I, the approach described above reduces to ‘non-
preconditioned’ GMRES. Preconditioned GMRES can then also be derived by apply-
ing non-preconditioned GMRES to the preconditioned linear equation system
AM−1(Mu) = b. In this viewpoint, the matrix M−1 is called the preconditioner ma-
trix, because its role is viewed as to pre-condition the spectrum of the linear system op-
erator such that the (non-preconditioned) GMRES method applied to (AM−1)y = b

becomes more effective. By extension, it is also customary to say that the stationary
iterative method preconditions GMRES (in the sense of, for example, Gauss-Seidel or
multigrid being used as preconditioners for GMRES). In this viewpoint, the role of
the stationary iterative method is to generate a preconditioned residual that builds
the Krylov space.

The stage is now set for discussing the interpretation of the N-GMRES optimiza-
tion algorithm of the previous subsection as a preconditioned GMRES method (along
the lines of [18] for nonlinear GMRES applied to nonlinear PDE systems). Before we
do so, we need to add one important remark regarding GMRES for linear systems.
In the presentation above, all iterates uj for j = 0, . . . , i (for instance, in the right-
hand side of (2.17)) refer to iterates generated by stationary iterative method (2.12),
without acceleration. However, the formulas remain valid when we use accelerated
iterates instead; this merely changes the values of the coefficients αj , but leads to
the same accelerated iterates [18]. The reason is that all the GMRES optimization
does is to produce improved iterates with residuals that are optimal elements of the
Krylov spaces, but the Krylov spaces are still the ones generated by the residuals of
the stationary iterative method, and do themselves not change, due to linearity.

The N-GMRES optimization algorithm presented in Subsection 2.1 can be inter-
preted as a preconditioned GMRES method as follows. With ui+1 the preliminary
i + 1st iterate generated by (2.12) and the uj with j ≤ i the previous accelerated
iterates, the expression for the accelerated iterate ûi+1 we seek in (2.17) for the linear
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case corresponds directly to the expression in (2.5) for the nonlinear case. The defi-
nition of V2,i+1 in (2.15) does not provide a nonlinear generalization for the Krylov
space in which we seek an optimal approximation in the linear case, but the definition
of V4,i+1 (2.16) does: the image of the linear Krylov space Ki+1(AM−1, r0) under the
preconditioning matrix M−1 is span{(ui+1 − u0), (ui+1 − u1), . . . , (ui+1 − ui)}, and
this can trivially be generalized to the nonlinear case: the nonlinear generalization of
the Krylov space is precisely given by this vector space. And it is precisely in this
space that we seek an optimal vector, both in the linear and in the nonlinear case (see
(2.17) and (2.5), respectively). Stationary iterative method (2.12) is the precondition-
ing process for GMRES in the linear case, responsible for generating a preliminary
approximation with the help of a residual calculation and a preconditioning matrix,
and in the same way one-step approximation method (2.4) is the preconditioner for
GMRES in the nonlinear case. In the present case of the N-GMRES optimization
algorithm applied to canonical tensor decomposition, we can say that ALS is used
as the preconditioner of N-GMRES. The alternative viewpoint is that N-GMRES
accelerates ALS.

A variety of preconditioners exist for linear systems of equations, and research
in this area has been a very active field ever since GMRES was proposed. In this
paper, we accelerate ALS for the canonical tensor decomposition optimization prob-
lem, but the preconditioning interpretation of the N-GMRES optimization algorithm
suggests that it may be worthwhile to explore different N-GMRES preconditioners for
the canonical tensor decomposition optimization problem in future work. Similarly,
it may be interesting to explore preconditioned N-GMRES algorithms for other non-
linear optimization problems. (Or, put in another way, there appears to be potential
for N-GMRES to accelerate already existing iterative methods for other nonlinear
optimization problems.)

2.3. First-Order Optimality Equations for the CP Optimization Prob-

lem. In this subsection, we briefly recall the first-order optimality equations for CP
Optimization Problem I, following [1]. The gradient of objective function (1.2) can
be written as a vector of matrices

∇f(AR) = ~G(AR) = (G(1), . . . ,G(N)), (2.18)

with G(n) ∈ R
In×R (n = 1, . . . , N). The matrices G(n) for n = 1, . . . , N are given by

G(n) = −T(n)Φ̄
(n)

+A(n) Γ̄
(n)

, (2.19)

with variables defined as follows.

With T and AR ∈ R
I1×...×IN , define size parameters

K =

N
∏

l=1

Il, (2.20)

K̄(n) =
N
∏

l=1
l 6=n

Il. (2.21)

Then T(n) ∈ R
In×K̄(n)

is the mode-n matricization of T , obtained by stacking the
n-mode fibres of T in its columns in a regular way, see [9]. Similar to size parameters
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K and K̄(n), we define matrices Φ ∈ R
K×R and Φ̄

(n)
∈ R

K̄(n)×R by

Φ = A(1) ⊙ . . .⊙A(N), (2.22)

Φ̄
(n)

= A(1) ⊙ . . .⊙A(n−1) ⊙A(n+1) ⊙ . . .⊙A(N), (2.23)

where ⊙ is the Khatri-Rao product [9]. Finally, the matrices Γ ∈ R
R×R and Γ̄

(n)
∈

R
R×R are defined by

Γ = (A(1)TA(1)) ∗ . . . ∗ (A(N)TA(N)), (2.24)

Γ̄
(n)

= (A(1)TA(1)) ∗ . . . ∗ (A(n−1)TA(n−1))∗

(A(n+1)TA(n+1)) ∗ . . . ∗ (A(N)TA(N)), (2.25)

where ∗ means element-wise multiplication.
The first-order optimality equations are then given by

G(n) = 0 = −T(n)Φ̄
(n)

+A(n) Γ̄
(n)

, n = 1, . . . , N. (2.26)

They offer an easy way to describe the ALS method for CP optimization: an ALS it-
eration proceeds by sequentially solving for each of the factor matrices A(1), . . . ,A(N)

using the corresponding optimality equation G(n) = 0, updating the matrices Φ̄
(n)

and Γ̄
(n)

along the way. As such, it is an example of a nonlinear block Gauss-Seidel
method to solve the nonlinear equation system provided by the first-order optimality
equations. The Matlab Tensor Toolbox [2] implements efficient methods for comput-

ing the product T(n)Φ̄
(n)

both for sparse and dense tensors.
One point that deserves special attention is the following: if no special care is

taken during ALS iterations, it may happen that vectors in some modes diverge
while others approach zero size, even if the process is converging to the desired CP
decomposition; this is indeed possible due to the scaling indeterminacy. This type of
anomalous behavior can be avoided by normalizing the columns of the factor matrices.
After each complete ALS iteration, for each rank-one term we first normalize all factor
vectors to size one, and then distribute the product of the normalization factors evenly
to all factor vectors (using the nth root). We also order the rank-one terms in order
of decreasing product of normalization factors. We apply this normalization and
reordering after each ALS iteration, but also after each calculation of new accelerated
or line search iterates in the N-GMRES optimization procedure. This controls possible
erratic behavior in the order of the rank-one components and balances the relative
sizes of the factor vectors as they are stacked in the iterate vectors ui, which is
expected to be beneficial for the convergence of the N-GMRES acceleration process.
This consistent normalization thus appears to take care of the scaling and permutation
indeterminacies present in the CP optimization problem, at least for the problems we
have tested, as our numerical results confirm.

2.4. Application of N-GMRES to CP Optimization: Further Particu-

lars and Parameter Choices for Numerical Tests. In this subsection we discuss
some further particulars of our application of N-GMRES to CP optmization, and
discuss some parameters for the numerical results to be presented in the next two
sections. As we mentioned before, and as in [1], we utilize the Moré-Thuente line
search method [10] as implemented in the Poblano toolbox for Matlab [6]. For all
experiments, the Moré-Thuente line search parameters used were as follows: 10−4 for
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the function value tolerance, 10−2 for the gradient norm tolerance, a starting search
step length of 1 and a maximum of 20 iterations. These values were also used for
the N-CG tests in [1], and we use them for our N-CG comparison runs as well. We
use the N-CG variant with Polak-Ribière update formula [11]. As suggested in [18],
the parameter δ in the term δ I added to normal equation matrix PT P in (2.7), was
chosen as ǫ times the size of the largest diagonal element of PT P, with ǫ = 10−12.
We normally choose the N-GMRES window size w equal to 20, which is confirmed
to be a good choice in numerical tests described below. All initial guesses are deter-
mined uniformly randomly, as in [14], and when we compare different methods they
are given the same random initial guess. All numerical tests were run on a laptop with
a dual-core 2.53 GHz Intel Core i5 processor and 4GB of 1067 MHz DDR3 memory.
Matlab version 7.11.0.584 (R2010b) 64-bit (maci64) was used for all tests.

3. Numerical Results: Dense Tensor Test Problem. In this and the next
section, we present extensive numerical tests for the N-GMRES optimization algo-
rithm, compared with ALS and the N-CG algorithm of [1], accessed via the Matlab
Tensor Toolbox [2]. In this section we present a class of dense test problems, and the
next section deals with a sparse problem class.

Our dense test problem generates 3-way data tensors of various sizes starting from
a canonical tensor with specified rank and random factor matrices that are modified
to have pre-specified collinearity c, and noise is added. This is a standard CP test
problem from [17], and was also used in [1]. The collinearity between different columns
of factor matrix A(n) is defined as

c =
a
(n)T
r a

(n)
s

‖a
(n)
r ‖2 ‖a

(n)
s ‖2

. (3.1)

Collinearity close to 1 is known to lead to slow ALS convergence [17].

Test Problem I. Generate a 3-way data tensor T of noise-free rank R, size s×s×s,
collinearity c, and noise levels l1 and l2 as follows. First generate an R×R matrix K

that has diagonal elements 1 and off-diagonal elements c, and compute the Cholesky
factor C of K. Then generate n uniformly random s × R matrices, orthonormalize
their columns using the QR decomposition, and multiply on the right with C. Then
let TR be the canonical rank-R tensor generated by these matrices as factor matrices.
Two types of noise are added to TR. Generate tensors N1 and N2 ∈ R

s×s×s with
elements drawn from the standard normal distribution. An intermediate tensor T̂ is
generated as T̂ = TR + (100/l1 − 1)−1/2 ‖TR‖F N1/‖N1‖F , and finally T is obtained
as T = T̂ +(100/l2− 1)−1/2 ‖T̂ ‖F (N2 ∗ T̂ )/‖N2 ∗ T̂ ‖F , where * denotes element-wise
multiplication.

We perform a series of tests computing a rank-R CP decomposition of the ten-
sors T , for various values of s, c, R, l1 and l2. Note that in this paper we do not
study so-called overfactoring effects [17, 1], in which numerical methods may produce
approximations that do not give physically relevant information when the CP-rank
R is chosen larger than some rank intrinsic to the data tensor. Our reason for not
considering overfactoring is that in this paper we accelerate ALS by the N-GMRES
optimization approach, and we have observed that we almost always converge to the
same stationary point as ALS. Since the overfactoring properties of ALS have been
studied extensively elsewhere [17, 1], we do not consider them here.
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Fig. 3.1. Test Problem I with parameters (s = 50, c = 0.9, R = 3, l1 = 1, l2 = 1). Convergence

plots as a function of the N-GMRES window size, w. (a) Convergence of |h(A
(i)
R

)−h∗|, where h∗ is
the value of the normalized distance measure, (1.4), in the stationary point the method converges to.

(b) Convergence of the normalized gradient of the objective function, ‖g(A
(i)
R

)‖2/‖T ‖F , indicating
convergence to a stationary point. Window size w = 20 emerges as a good choice for fast convergence
when high accuracy is required.

Before performing tests for a wide range of parameter values s, c, R, l1 and l2, we
look at a specific case and study the choice of N-GMRES window size w. Fig. 3.1
shows convergence results for an instance of Test Problem I with parameters s =50,
c =0.9, R =3, l1 =1 and l2 =1. This constitutes a ‘difficult’ case with c = 0.9, for
which ALS converges rather slowly. It is the same case as in Figs. 1.2-1.3. Fig. 3.1
shows the effect of the window size w on convergence speed. Several observations can
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h∗ accuracy 10−3 ALS N-GMRES N-CG
problem parameters it time it time it time

1 s =20, c =0.5, R =3, l1 =1, l2 =1 18 0.083 16 0.21 34 0.17
2 s =20, c =0.5, R =5, l1 =10, l2 =5 9 0.083 8 0.17 64 0.51
3 s =20, c =0.9, R =3, l1 =0, l2 =0 186 0.8 153 1.7 137 0.57

4 s =20, c =0.9, R =5, l1 =1, l2 =1 19 0.15 13 0.34 195 1.4
5 s =50, c =0.5, R =3, l1 =1, l2 =1 11 0.089 8 0.21 38 0.46
6 s =50, c =0.5, R =5, l1 =10, l2 =5 10 0.15 9 0.3 50 0.97
7 s =50, c =0.9, R =3, l1 =0, l2 =0 314 2.2 56 1.6 200 1.8
8 s =50, c =0.9, R =5, l1 =1, l2 =1 15 0.2 10 0.43 >1821 >32
9 s =100, c =0.5, R =3, l1 =1, l2 =1 9 0.31 9 1.1 71 5.7
10 s =100, c =0.5, R =5, l1 =10, l2 =5 15 0.68 13 2.2 66 7.5
11 s =100, c =0.9, R =3, l1 =0, l2 =0 178 5.9 30 3.9 340 23
12 s =100, c =0.9, R =5, l1 =1, l2 =1 12 0.52 9 1.7 260 24

Table 3.1

Test Problem I. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−h∗|
is reduced to 10−3. Here, h∗ is the value of the normalized distance measure, (1.4), in the stationary
point the methods converge to. The smallest times appear in bold. ALS is the fastest for most of
these low-accuracy tests.

be made. The choice w = 1 does not converge much faster than ALS, but w = 2
already leads to significant gains when high accuracy is desired, and w = 3 already
performs reasonably similar to the best choice. (Note again that these convergence
plots take into account the extra costs of the N-GMRES optimization and line search
in each iteration.) The optimal performance appears to occur, for this test problem,

when w ≈ 20 is chosen. Fast convergence of h(A
(i)
R ) to the optimal value h∗ (see

(1.4)) is already fast obtained with high accuracy for w ≈ 10, but Fig. 3.1(b) shows
that w ≈ 20 leads to faster convergence to a stationary point with high accuracy.
Convergence plots as a function of iteration (not shown due to space constraints)
show the same pattern, indicating that speed differences are almost entirely due to
differing iteration counts, and not to differences in the amount of work to build and
solve normal equation system (2.7) for varying window size. We use window size
w = 20 in the numerical tests below.

Tables 3.1-3.3 show convergence results for a series of tests with a wide range
of parameter values s, c, R, l1 and l2. Table 3.1 compares the number of iterations
and times (in seconds) that the ALS, N-GMRES and N-CG (from [1]) methods need

to reduce the accuracy measure |h(A
(i)
R ) − h∗| to 10−3, where h∗ is the value of the

normalized distance measure, (1.4), in the stationary point the method converges
to. All methods start from the same random initial guess, and converge to the same
stationary point in these tests. This table compares the methods for a situation where
low-accuracy results are considered sufficient. The smallest times appear in bold.
Table 3.1 shows that ALS is normally the fastest when low accuracy is sufficient.
This is consistent with what many others have observed for ALS-type algorithms,
for CP decomposition and other problems, see, for example, [17, 1]. Note that the
relative performance of the methods may be somewhat dependent on the initial guess,
but this effect is partially averaged out by considering multiple tests with different
parameters, and the results in the table give a representative overview of the relative
performance of the methods.
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h∗ accuracy 10−6 ALS N-GMRES N-CG
problem parameters it time it time it time

1 s =20, c =0.5, R =3, l1 =1, l2 =1 25 0.11 19 0.25 42 0.2
2 s =20, c =0.5, R =5, l1 =10, l2 =5 21 0.17 13 0.28 77 0.58
3 s =20, c =0.9, R =3, l1 =0, l2 =0 949 4.1 167 1.9 197 0.79

4 s =20, c =0.9, R =5, l1 =1, l2 =1 582 4.2 109 3.6 614 3.9
5 s =50, c =0.5, R =3, l1 =1, l2 =1 20 0.15 11 0.29 50 0.56
6 s =50, c =0.5, R =5, l1 =10, l2 =5 20 0.26 14 0.53 67 1.3
7 s =50, c =0.9, R =3, l1 =0, l2 =0 1134 8 77 2.4 454 3.9
8 s =50, c =0.9, R =5, l1 =1, l2 =1 518 5.9 154 9.2 >1821 >32
9 s =100, c =0.5, R =3, l1 =1, l2 =1 19 0.64 12 1.4 98 7.3
10 s =100, c =0.5, R =5, l1 =10, l2 =5 27 1.2 16 2.9 115 11
11 s =100, c =0.9, R =3, l1 =0, l2 =0 >800 >27 69 8.4 673 44
12 s =100, c =0.9, R =5, l1 =1, l2 =1 457 19 85 19 620 52

Table 3.2

Test Problem I. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−h∗|
is reduced to 10−6. The smallest times appear in bold. For these medium-accuracy tests, ALS is still
fastest for all ‘easy’ cases (c = 0.5), but N-GMRES or N-CG are faster for most of the ‘difficult’
cases (c = 0.9).

h∗ accuracy 10−10 ALS N-GMRES N-CG
problem parameters it time it time it time

1 s =20, c =0.5, R =3, l1 =1, l2 =1 37 0.16 22 0.3 52 0.24
2 s =20, c =0.5, R =5, l1 =10, l2 =5 37 0.28 17 0.39 97 0.7
3 s =20, c =0.9, R =3, l1 =0, l2 =0 >1600 >6.9 189 2.4 >400 >6.1
4 s =20, c =0.9, R =5, l1 =1, l2 =1 >1200 >8.6 139 4.5 1100 6.8
5 s =50, c =0.5, R =3, l1 =1, l2 =1 32 0.23 16 0.42 67 0.69
6 s =50, c =0.5, R =5, l1 =10, l2 =5 36 0.44 17 0.67 89 1.6
7 s =50, c =0.9, R =3, l1 =0, l2 =0 >1200 >8.5 104 3.5 >553 >7.6
8 s =50, c =0.9, R =5, l1 =1, l2 =1 1252 14 171 10 >1821 >32
9 s =100, c =0.5, R =3, l1 =1, l2 =1 31 1 16 2 136 9.6
10 s =100, c =0.5, R =5, l1 =10, l2 =5 42 1.8 22 4.1 178 16
11 s =100, c =0.9, R =3, l1 =0, l2 =0 >800 >27 99 17 >748 >60
12 s =100, c =0.9, R =5, l1 =1, l2 =1 1218 51 112 26 880 72

Table 3.3

Test Problem I. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−h∗|
is reduced to 10−10. The smallest times appear in bold. For these high-accuracy tests, ALS is still
fastest for all ‘easy’ cases (c = 0.5), but N-GMRES is substantially faster for all the ‘difficult’ cases
(c = 0.9).

Tables 3.2 and 3.3 show convergence results when higher accuracy is required,

with |h(A
(i)
R ) − h∗| < 10−6 and |h(A

(i)
R ) − h∗| < 10−10, respectively. Table 3.2, for

medium accuracy 10−6, shows that ALS is (not unexpectedly) still fastest for all ‘easy’
cases (c = 0.5), but N-GMRES or N-CG are faster for most of the ‘difficult’ cases
(c = 0.9). Table 3.3, for high accuracy 10−10, confirms that ALS is still fastest for
all ‘easy’ cases (c = 0.5), but N-GMRES is substantially faster for all ‘difficult’ cases
(c = 0.9). Note also that N-GMRES is faster than N-CG for all of the ‘difficult’ cases,
sometimes substantially.
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Fig. 3.2. Test Problem I. Convergence plots for case 3 from Tables 3.1-3.3. Panel (b) shows
that N-GMRES convergence kicks in only when ALS has gotten over a ‘bump’ in the gradient size.
N-CG performs better in this case.

It is instructive to consider convergence histories in some more detail for some of
the test problems in Tables 3.1-3.3. Fig. 3.2 shows convergence plots for case 3 from
Tables 3.1-3.3. For this problem (and the random initial guess used), convergence of N-
GMRES only sets in after more than 150 iterations. Fig. 3.2(b) gives some indication
as to why this is the case. N-GMRES accelerates ALS, but ALS needs to get over
a ‘bump’ in the size of the gradient before it gets close enough to a stationary point
for the N-GMRES acceleration to become effective. This points out a fundamental
property of the N-GMRES acceleration procedure that is the topic of this paper: N-
GMRES is not expected to offer a systematic improvement in the global convergence
properties of the ‘preconditoning’ process it accelerates. The only potential help with
global convergence would come from the line search in Step III of the algorithm, but
this will only be effective when the search direction jointly determined by ALS and
N-GMRES is suitable, and, as we argued before, we can only expect this to be the
case consistently when the process approaches a stationary point. So N-GMRES still
mainly relies on the preconditioning process to guide convergence on the global scale,
and kicks in when close enough to a stationary point. In the case of Fig. 3.2, N-CG
appears to perform better in getting close to a stationary point. Indeed, N-CG works
in a way that is fundamentally different from N-GMRES: N-CG does not accelerate
an underlying one-step method, but follows its own strategy for exploring the global
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search space, with globalization provided by its line search. For the computation in
Fig. 3.2, this leads to faster N-CG convergence.

However, we have observed that convergence behavior like in Fig. 3.2, while it may
occur for some problem parameters and initial conditions, is not typical for Test Prob-
lem I with c = 0.9. Rather, convergence behavior as in Fig. 3.3, in which N-GMRES
converges kicks in sooner, is more common (this is also indicated by the timing results
in Tables 3.1-3.3). Fig. 3.3 shows convergence plots for case 11 from Tables 3.1-3.3.
In this case, N-GMRES convergence kicks in early, and N-CG’s strategy for global
convergence does not appear successful. For high accuracy, N-GMRES is much faster
in this case than both ALS and N-CG, and this is generally the case (for the ‘difficult’
problems with c = 0.9), as confirmed by the numbers in Table 3.3. We recall that
ALS convergence plots of an ‘easy’ case with c = 0.5 are given in Fig. 1.1.
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Fig. 3.3. Test Problem I. Convergence plots for case 11 from Tables 3.1-3.3. N-GMRES
convergence kicks in early, which leads to fast convergence, as is the case for most tests in Table 3.3
with c = 0.9.

Fig. 3.2 shows another conspicuous difference in convergence behavior between
N-GMRES and N-CG. N-CG convergence to a stationary point as measured by the
size of the normalized gradient of the objective function (panel (b) in Fig. 3.2) stalls at
a value of approximately 10−7. This is so because convergence of N-CG is limited by
the accuracy of the line search, since it is the line search mechanism that ultimately
determines the solution N-CG converges to. In principle this could be remedied by a
more accurate line search, but this may incur extra cost, and we have found it difficult
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to significantly increase the accuracy of the Moré-Thuente line search by changing its
parameters. We have found that this gradient stalling occurs consistently for all
problems we have considered; see also the other convergence plots in this paper. In
the test of Fig. 3.2, this convergence stalling also limits the accuracy of the stationary
point to about 10−7, but this is not always the case (in some of the forthcoming plots
N-CG converges to machine accuracy in terms of the |h−h∗|measure). It is interesting
to note that N-GMRES does not appear to suffer from this stalling in the gradient
norm convergence. The likely explanation of this goes as follows: the N-GMRES
procedure is such that, close to a stationary point, the accelerated iterates provided
by N-GMRES may converge efficiently to the stationary point, even without the help
of the globalizing line search. This is so because the linearization of (2.6) is expected
to be highly accurate close to a stationary point (for problems that are sufficiently
smooth), and the accelerated iterate is highly accurate by itself. N-GMRES does thus
not need to rely on the line search mechanism for accuracy once near a stationary
point, in contrast to N-CG, which relies on the line search for accurate convergence.
This difference points to a potential advantage of N-GMRES over N-CG.
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Fig. 4.1. Test Problem II. Parameters are d = 3 (and thus N = 6), s = 6 and R = 3, leading
to a 6-way tensor of size 6 × 6 × 6 × 6 × 6 × 6 for which an R = 3 CP approximation is sought.
Convergence plots for ALS, N-CG, and N-GMRES with window size w = 20.

4. Numerical Results: Sparse Tensor Test Problem. In this section, we
present numerical results for a simple sparse test problem:

Test Problem II: Standard finite difference Laplacian tensor on a regular grid of
size sd in d dimensions. This test problem results in an N -way sparse data tensor T
with N = 2 d and nonzero elements of value 2 d and −1. For example, for d = 2, T ∈
R

s×s×s×s, and the nonzero tensor elements are t(i, j, i, j) = 2 d = 4, for i = 1, . . . , s
and j = 1, . . . , s, and t(i, j, i+1, j) = −1, t(i, j, i, j+1) = −1, t(i, j, i−1, j) = −1, and
t(i, j, i, j−1) = −1 (with the usual exceptions at boundary points of the d-dimensional
regular grid).

This is an academic test problem, but it provides sparse tensors that are suitable
for testing our numerical method.

As in the previous section, we first consider the effect of varying the N-GMRES
window size. Fig. 4.1 shows convergence plots for an instance of Test Problem II with
parameters d = 3 and s = 6. Tensor T is a 6-way tensor of size 6× 6× 6× 6× 6× 6,
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Fig. 4.2. Test Problem II (N = 6, s = 6, R = 3). Convergence plots as a function of the
N-GMRES window size, w. Window size w = 20 emerges as a good choice for fast convergence
when high accuracy is required.

and we seek a CP decomposition with R = 3. Fig. 4.1, with N-GMRES window size
w = 20, shows that ALS is rather slow for this problem. N-GMRES significantly
reduces the number of iterations, faster than N-CG.

Fig. 4.2 shows convergence plots as a function of time for this test problem, for
varying window size w. For this test problem, as in the previous section, window size
w = 20 also appears a suitable choice, and we use it for the remaining numerical tests
in this section.

Tables 4.1-4.3 show convergence results for a series of sparse Test Problem II runs
with a wide range of parameter valuesN, s and R. We have found that the convergence
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h∗ accuracy 10−3 ALS N-GMRES N-CG
problem parameters it time it time it time

1 N =4, s =8, R =6 25 0.66 22 1.2 45 0.83
2 N =4, s =8, R =6 9 0.26 9 0.53 57 0.96
3 N =4, s =16, R =3 10 0.15 7 0.2 23 0.36
4 N =4, s =16, R =3 12 0.19 9 0.27 18 0.3
5 N =6, s =4, R =2 12 0.22 9 0.29 30 0.53
6 N =6, s =4, R =2 9 0.17 7 0.25 325 2.7
7 N =6, s =8, R =5 9 0.37 9 1.1 100 24
8 N =6, s =8, R =5 8 0.37 8 1.6 86 22
9 N =8, s =4, R =2 11 0.34 8 0.53 52 3.1
10 N =8, s =4, R =2 14 0.42 9 0.61 120 8.7

Table 4.1

Test Problem II. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−
h∗| is reduced to 10−3. The smallest times appear in bold. ALS is fastest for these low-accuracy
tests.

h∗ accuracy 10−6 ALS N-GMRES N-CG
problem parameters it time it time it time
1 N =4, s =8, R =6 182 4.4 44 2.5 91 1.4

2 N =4, s =8, R =6 67 1.6 20 1.2 163 2.2
3 N =4, s =16, R =3 410 5.9 94 3 103 1.3

4 N =4, s =16, R =3 203 3 53 1.7 124 1.4

5 N =6, s =4, R =2 29 0.53 13 0.44 75 1
6 N =6, s =4, R =2 27 0.51 12 0.45 351 3
7 N =6, s =8, R =5 212 8.3 63 14 138 32
8 N =6, s =8, R =5 55 2.2 23 5.2 147 34
9 N =8, s =4, R =2 38 1.1 15 1.1 75 4.3

10 N =8, s =4, R =2 42 1.3 19 1.4 >280 >19
Table 4.2

Test Problem II. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−
h∗| is reduced to 10−6. The smallest times appear in bold. N-GMRES and N-CG are competitive
with ALS for these medium-accuracy tests.

behavior has more variation for Test Problem II than for Test Problem I. In particular,
it happens more often that ALS, N-GMRES and N-CG converge to stationary points
with different values of h, and the convergence profiles appear more sensitive to the
initial guess. For this reason, we present two runs with different initial conditions for
each parameter choice in Tables 4.1-4.3, which give a more representative idea of how
the methods perform on average. In the tables, we only present cases for which the
three methods converge to a stationary point with the same value of h (which still
happens commonly).

Tables 4.1-4.3 largely confirm the observations we made for Test Problem I in the
previous section. Table 4.1 shows that ALS is the fastest method for low accuracy
computations. Table 4.2 shows that N-GMRES and N-CG become competitive for
medium-accuracy computations, and Table 4.3 shows that N-GMRES is almost always
faster than ALS for high accuracy, sometimes substantially. N-GMRES is generally
also faster than N-CG.

It is again instructive to consider convergence histories in some more detail for
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h∗ accuracy 10−10 ALS N-GMRES N-CG
problem parameters it time it time it time
1 N =4, s =8, R =6 >400 >9.6 55 3.1 380 3.7
2 N =4, s =8, R =6 242 5.8 26 1.5 327 3.5
3 N =4, s =16, R =3 >800 >12 119 3.8 419 3.5

4 N =4, s =16, R =3 724 11 84 2.7 375 3.2
5 N =6, s =4, R =2 52 0.94 19 0.65 153 1.6
6 N =6, s =4, R =2 51 0.95 18 0.67 386 3.3
7 N =6, s =8, R =5 613 24 81 18 213 40
8 N =6, s =8, R =5 127 5.1 31 6.8 262 46
9 N =8, s =4, R =2 70 2 21 1.5 111 5.2

10 N =8, s =4, R =2 72 2.1 24 1.8 >280 >19
Table 4.3

Test Problem II. Number of iterations and time (in seconds) until accuracy measure |h(A
(i)
R

)−
h∗| is reduced to 10−10. The smallest times appear in bold. N-GMRES outperforms ALS for most
of these high-accuracy tests, and is normally also faster than N-CG.

0 50 100 150 200

10
−15

10
−10

10
−5

10
0

iterations

(a) convergence to h*

 

 

ALS
N−GMRES
N−CG

0 50 100 150 200

10
−15

10
−10

10
−5

10
0

iterations

(b) gradient norm convergence

 

 

ALS
N−GMRES
NC−G

0 1 2 3 4 5 6

10
−15

10
−10

10
−5

10
0

time (s)

(c) convergence to h*

 

 

ALS
N−GMRES
N−CG

0 1 2 3 4 5 6

10
−15

10
−10

10
−5

10
0

time (s)

(d) gradient norm convergence

 

 

ALS
N−GMRES
N−CG

Fig. 4.3. Test Problem II. Convergence plots for case 4 from Tables 4.1-4.3.

some of the test problems in Tables 4.1-4.3. Fig. 4.3 shows convergence plots for case
4 from Tables 4.1-4.3. In this case, N-CG is fastest for medium accuracy, and N-
GMRES for high accuracy. ALS converges rather slowly. Fig. 4.4 shows convergence
plots for case 5 from Tables 4.1-4.3. In this case, ALS converges fast, but N-GMRES
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Fig. 4.4. Test Problem II. Convergence plots for case 4 from Tables 4.1-4.3.

acceleration is still able to improve its convergence speeds for medium and high ac-
curacy. We see again that the gradient convergence of N-CG stalls around 10−7, but
h does converge to h∗ up to machine accuracy in this case.

5. Conclusion. We have presented a new optimization algorithm for computing
a canonical rank-R tensor approximation that has minimal distance to a given tensor
in the Frobenius norm. The optimization algorithm uses a nonlinear version of GM-
RES iterate recombination that was proposed by Washio and Oosterlee for systems
of nonlinear PDEs [18]. We apply this nonlinear GMRES acceleration to the ALS
method, with the goal of efficiently driving the gradient of the CP objective function
to zero, and combine it with a line search for globalization. The resulting 3-step
N-GMRES optimization algorithm can be interpreted as an acceleration process of a
one-step stand-alone method, or, alternatively, the stand-alone method can be consid-
ered as a preconditioning process for N-GMRES. We have explained how N-GMRES
can be applied to the (approximate) canonical tensor decomposition problem.

Extensive numerical tests on dense and sparse tensors with varying sizes and
dimensions (up to 8) show that N-GMRES with ALS preconditioning in many cases
outperforms pure ALS when high accuracy is required, while ALS remains faster for
low accuracy and ‘easy’ problems. N-GMRES is also competitive with the N-CG
method studied in [1], and appears to outperform it significantly in some cases. In
cases where ALS-preconditioned N-GMRES is slower than pure ALS, it is rarely so
by much, and in the other cases the potential speed gain is very substantial. For this
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reason, it may be a good strategy to put an N-GMRES acceleration wrapper around
ALS if one does not know in advance whether ALS would converge slowly (which
may depend on the problem and on the initial guess). Generally speaking, one may
expect that adding an N-GMRES acceleration wrapper makes ALS convergence more
robust.

It is a question of extensive current interest how Krylov methods can be general-
ized to tensor computations, see, for example, [16]. Our work presents the application
of a nonlinear Krylov-type method to a tensor optimization problem, and we obtain
acceleration that is significant in many cases. Our approach uses a nonlinear gener-
alization of Krylov techniques, and it is perhaps not surprising that this seems to be
a promising approach for tensor minimization problems, which are indeed inherently
nonlinear (more specifically, multilinear).

A promising avenue for further research is to explore how the proposed N-GMRES
optimization algorithm can be used to accelerate existing methods other than ALS for
canonical tensor decomposition. Similarly, it would also be interesting to investigate
how the N-GMRES optimization algorithm can accelerate ALS-type algorithms (or
other algorithms) for other tensor approximation problems, for example, the best
rank-(R1, R2, R3) approximation of a tensor, see, e.g., [8]. Furthermore, the nonlinear
GMRES optimization algorithm proposed in this paper is based on general concepts
and may be applied to other nonlinear optimization problems.

REFERENCES

[1] E. Acar, D.M. Dunlavy, and T.G. Kolda, A Scalable Optimization Approach for Fitting
Canonical Tensor Decompositions, Journal of Chemometrics, 25 (2011), pp. 67–86.

[2] B.W. Bader and T.G. Kolda, MATLAB Tensor Toolbox Version 2.4,
http://csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/, March 2010.

[3] J.D. Carroll and J.J. Chang, Analysis of individual differences in multidimensional scaling
via an N-way generalization of Eckart-Young decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[4] L. De Lathauwer, A link between the canonical decomposition in multilinear algebra and
simultaneous matrix diagonalization, SIAM Journal on Matrix Analysis and Applications,
28 (2006), pp. 642–666.

[5] L. De Lathauwer, B. De Moor, and J. Vandewalle, Computation of the canonical decom-
position by means of a simultaneous generalized Schur decomposition, SIAM Journal on
Matrix Analysis and Applications, 26 (2004), pp. 295–327.

[6] D.M. Dunlavy, T.G. Kolda, and E. Acar, Poblano v1.0: A Matlab Toolbox for Gradient-
Based Optimization, Technical Report SAND2010-1422, Sandia National Laboratories, Al-
buquerque, NM and Livermore, CA, March 2010.

[7] R.A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
explanatory multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970),
pp. 1–84.

[8] M. Ishteva, L. De Lathauwer, P. Absil, and S. Van Huffel, Differential-geometric Newton
method for the best rank-(R1 ,R2,R3) approximation of tensors, Numerical Algorithms, 51
(2009), pp. 179–194.

[9] T.G. Kolda and B.W. Bader, Tensor Decompositions and Applications, SIAM Review, 51
(2009), pp. 455–500.
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