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Abstract

We show that the number of geometric permutations of an arbitrary collection of n pairwise
disjoint convex sets in R

d, for d ≥ 3, is O(n2d−3 logn), improving Wenger’s 20 years old bound
of O(n2d−2).
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1 Introduction

Let K be a collection of n convex sets in R
d. A line ℓ is a transversal of K if it intersects all the

sets in K. If the objects in K are pairwise disjoint, an oriented line transversal meets them in a
well-defined order, called a geometric permutation. The study of geometric permutations plays a
central role in geometric transversal theory; see [8, 20] for compherensive surveys.

Previous work. In 1985, Katchalski et al. [11] initiated the study of the maximum possible
number gd(n) of geometric permutations induced by a set K of n pairwise disjoint convex objects in
R
d. They constructed, for any n ≥ 4, a family of n pairwise disjoint convex sets in R

2 that admits
2n − 2 geometric permutations. Edelsbrunner and Sharir [5] showed, five years later, that this
bound is tight in the worst case, implying that g2(n) = 2n − 2. Wenger [19] proved, also in 1990,
that gd(n) = O(n2d−2) in any dimension d ≥ 3. In 1992, Katchalski et al. [12] generalized their
lower bound construction and showed that there exist collections of n pairwise disjoint convex sets
in R

d, for any d ≥ 3, which admit Ω(nd−1) geometric permutations. Since then, closing (or even
reducing) the fairly large gap between these upper and lower bounds on gd(n), in any dimension
d ≥ 3, has remained one of the major long standing open problems in geometric transversal theory.

Several partial steps towards this goal were made in the past decade. Most of them deal
with geometric permutations of certain restricted families of pairwise disjoint convex bodies in R

d.
For example, Smorodinsky et al. [17] derived a tight upper bound of Θ(nd−1) on the number of
geometric permutations induced by an arbitrary collection of n pairwise disjoint balls in R

d. Katz
and Varadarajan [14] generalized this result to arbitrary collections of n pairwise disjoint fat convex
bodies. Other recent works [3, 9, 13, 21] show that the maximum possible number of geometric
permutations induced by pairwise disjoint unit balls (or, more generally, balls of bounded size
disparity) is constant in any dimension.

Other studies bound the number of geometric permutations induced by arbitrary collections of
pairwise disjoint convex sets, whose realizing transversal lines belong to some restricted subfamily
of lines in R

d. For example, Aronov and Smorodinsky [2] derive a tight bound of Θ(nd−1) on the
maximum number of geometric permutations realized by lines that pass through a fixed point in
R
d. A recent paper [10] by the authors studies line transversals of arbitrary convex polyhedra in R

3

and derives (as a byproduct) an improved upper bound of O(n3+ε), for any ε > 0, on the number
of geometric permutations realized by lines which pass through a fixed line in R

3.

The space of line transversals. Lines in R
d have 2d − 2 degrees of freedom, and are naturally

represented in a real projective space (so-called the Grassmannian manifold; see [8]). However,
for the purpose of combinatorial analysis, we can represent them (with the exclusion of some
“negligible” subset which we may ignore) by points in the real Euclidean space R

2d−2; see [8] for
more details.

Let K be a collection of n convex sets in R
d, not necessarily pairwise disjoint. The transversal

space T (K) of K is the set in R
2d−2 of all (points representing) the transversal lines of K.

If the sets of K are pairwise disjoint then any two lines in the same connected component of
T (K) induce the same geometric permutation, so the number of geometric permutations is upper
bounded by the number of components of T (K). In two dimensions, the converse property also
holds. That is, lines that stab K in a fixed order form a single connected component of T (K); see,
e.g., [7]. Thus, according to [5], the transversal space T (K), of any family K of n pairwise disjoint
convex sets in R

2 has at most 2n− 2 connected components.
The situation becomes considerably more complicated already in R

3: There exist collections of
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four (pairwise disjoint) convex sets whose transversal space consists of an arbitrarily large number
of connected components [7, 10]. This is a simple instance of the phenomenon that the shape of
T (K) depends on the shape of the sets in K, and may grow out of control if we do not impose any
restrictions on the sets of K. This might explain (in part) the difficulty of extending the relatively
simple analysis of the number of geometric permutations in R

2 to higher dimensions.
In three dimensions, if the sets in K have constant description complexity (i.e., each set can be

described as a Boolean combination of a constant number of polynomial equalities and inequalities
of constant maximum degree) then one can obtain sharp bounds on the combinatorial complexity
of T (K) (see [15, 20] for a precise definition). Specifically, the analysis of Koltun and Sharir [15]
yields an improved bound of O(n3+ε), for any ε > 0, on the combinatorial complexity, and thus also
on the number of connected components of T (K), for collections K of this kind. (If K is a collection
of n triangles in R

3, an improved bound of O(n3 log n) holds, see [1].) Hence, this also serves as an
upper bound on the number of geometric permutations induced by any such collection K. Using
this approach, and continuing to assume that the sets in K have constant description complexity,
one can strengthen Wenger’s bound of O(n2d−2) [19] to apply to the combinatorial complexity
of T (K), and not just to the number of geometric permutations. The strength (and beauty) of
Wenger’s analysis is that it yields this bound without making any assumptions whatsoever on the
shape of the sets in K (other than being convex and pairwise disjoint).

Our results. We first show that the number of geometric permutations admitted by any collection
of n pairwise disjoint convex sets in R

3 is O(n3 log n), thus improving Wenger’s previous upper
bound on g3(n) roughly by a factor of n. Our approach can be generalized to higher dimensions,
and yields an improved upper bound of O(n2d−3 log n) on gd(n), for any d ≥ 3. (In three dimensions,
our bound is also a slight improvement of the bound O(n3+ε), for any ε > 0, of [15] for the case
where the sets in K have constant description complexity.)

Here is a brief overview of our solution in R
3. Following the approach of Wenger [19], we

represent the directions of transversal lines by points on the unit 2-sphere S2, separate every pair of
objects in K by a plane, and associate with each such plane the great circle on S

2 parallel to it. We
then consider the arrangement A of the resulting

(

n
2

)

great circles on S
2, which consists of O(n4)

2-faces. The crucial observation made in [19] is that all transversal lines, whose directions belong
to the same 2-face of A, stab the sets of K in the same order (if the face contains such directions
at all). Hence, the number of geometric permutations is upper bounded by the total number of
2-faces of A, implying that g3(n) = O(n4).

We improve this bound by showing that the actual number of faces which contain at least one
direction of a transversal line (so-called permutation faces) is only O(n3 log n). Moreover, we show
that the overall number of edges and vertices on the boundaries of these faces is also at most
O(n3 log n).

The analysis proceeds in two steps. First, we use a direct geometric analysis to show that the
number of vertices whose four incident faces are all permutation faces is O(n3). We refer to such
vertices as popular vertices. Informally, we associate with each popular vertex v (with the possible
exception of O(n3) “degenerate” ones) the intersection line λv of the two separating planes h, h′

that correspond to the two circles incident to v, and show that λv stabs exactly n − 4 sets of K
(all but the sets in the two pairs separated by h and h′, respectively). We then apply, within
each of the

(

n
2

)

separating planes, the linear bound on the number of geometric permutations in
R
2, due to Edelsbrunner and Sharir [5], combined with a simple application of the Clarkson-Shor

probabilistic analysis technique [4], and thereby obtain the overall O(n3) asserted bound on the
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number of popular vertices.
We then use this bound to analyze the overall number of vertices incident to permutation faces.

This is achieved by a refined (and simplified) variant of the charging scheme of Tagansky [18].
The analysis can be extended to any dimension d ≥ 4, but its technical details become somewhat

more involved.
The paper is organized as follows. We first derive the nearly-cubic upper bound on g3(n). To

this end, we begin in Section 2 by introducing some notations and the infrastructure, and then
establish this bound in Section 3. In Section 4, we extend the analysis to any dimension d ≥ 4.

2 Preliminaries

The setup in R
3. Let K be a collection of n arbitrary pairwise disjoint convex sets in R

3. We
may also assume, without loss of generality, that the elements of K are compact. Indeed, let gd(n)
be the maximum possible number of geometric permutations induced by a collection of n pairwise
disjoint compact convex sets in R

3. Let K = {K1, . . . ,Kn} be a collection of n arbitrary pairwise
disjoint convex sets in R

3, which induces m geometric permutations, realized by m respective lines
ℓ1, . . . , ℓm. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m, let pij denote an arbitrary point in Ki∩ ℓj. For each
1 ≤ i ≤ n, let K ′

i denote the convex hull of {pij | 1 ≤ j ≤ m}, and observe that K ′
i is a compact

convex subset of Ki. Hence K
′ = {K ′

1, . . . ,K
′
n} is a collection of n pairwise disjoint compact convex

sets, which induces (at least) m geometric permutations (realized by the same lines ℓ1, . . . , ℓm), so
m ≤ gd(n).

We use the following setup, introduced byWenger [19] and briefly mentioned in the introduction,
to analyze geometric permutations of K. Enumerate the elements of K as K1,K2, . . . ,Kn. For each
1 ≤ i < j ≤ n we fix some plane hij which strictly separates Ki and Kj . We orient hij so that Ki

lies in the open negative halfspace h−ij that it bounds, and Kj lies in the open positive halfspace

h+ij . We represent directions of (oriented) lines in R
3 by points on the unit 2-sphere S

2. Without
loss of generality we may assume that the planes hij are in general position, meaning that every
triple of them intersect at a single point, and no four meet at a common point.

Each separating plane hij induces a great circle Cij on S
2, formed by the intersection of S2

with the plane parallel to hij through the origin. Equivalently, Cij is the locus of the directions of
all lines parallel to hij . Cij partitions S

2 into two open hemispheres C+
ij , C

−
ij , so that C+

ij (resp.,

C−
ij ) consists of the directions of lines which cross hij from h−ij to h+ij (resp., from h+ij to h−ij). Note

that lines whose directions lie in Cij cannot stab both Ki and Kj . Thus, any oriented common
transversal line of Ki and Kj intersects Kj after (resp., before) Ki if and only if its direction lies
in C+

ij (resp., C−
ij ).

Put C(K) = {Cij | 1 ≤ i < j ≤ n}, and consider the arrangement A(K) of the
(

n
2

)

great circles
of C(K). The assumption that the planes hij are in general position is easily seen to imply that
the circles in C(K) are also in general position, in the sense that no pair of them coincide and no
three have a common point. Each 2-face f of A(K) induces a relation ≺f on K, in which Ki ≺f Kj

(resp., Kj ≺f Ki) if f ⊆ C+
ij (resp., f ⊆ C−

ij ). Clearly, the direction of each oriented line transversal
λ of K belongs to the unique 2-face f of A(K) whose relation ≺f coincides with the order in which
λ visits the sets of K (as noted above, the direction of λ cannot lie on an edge or at a vertex of
A(K)). In particular, the number of geometric permutations is bounded by the number of 2-faces
of A(K), which is O(n4).
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This is the way in which Wenger established this upper bound (in three dimensions) 20 years
ago [19]. Moreover, this approach can be extended to any dimension d ≥ 3, and yields the upper
bound O(n2d−2) on gd(n); see [19] and Section 4 below. The main weakness of this argument
(as follows from the analysis in this paper) is that most faces of A(K) do not induce a geometric
permutation of K. Specifically, for some faces f the relation ≺f might have cycles, in which case
f clearly cannot contain the direction of a transversal of K. But even if ≺f is acyclic (and thus a
total order) there need not exist any line transversal with direction in f .

More definitions. We need a few more notations. We call a 2-face of A(K) a permutation face
if there is at least one line transversal of K whose direction belongs to f . Note, however, that the
directions of the line transversals of K within a fixed permutation face f is only a subset of f , which
need not even be connected; see, e.g., a construction in [7] and the introduction.

Each pair of great circles of C(K) intersect at exactly two antipodal points of S2. By the general
position assumption, all the circles are distinct, and each vertex v of A(K) is incident to exactly two
great circles. Hence, each vertex is incident to exactly four (distinct) faces of A(K). Assuming that
|K| ≥ 3, C(K) contains at least three great circles, so the boundary of each cell of A(K) contains
at least three vertices. This, and the fact that each vertex is incident to four faces, imply that
the number of permutation faces in A(K) is at most proportional to the overall number of their
vertices. It is this latter quantity that we proceed to bound.

We say that vertex v in A(K) is regular if the two great circles Cij , Ckℓ incident to v are defined
by four distinct sets of K; otherwise, when only three of the indices i, j, k, ℓ are distinct, we call v a
degenerate vertex. Clearly, the number of degenerate vertices is O(n3), so it suffices to bound the
number of regular vertices of permutation faces.

In the forthcoming analysis we will use subcollections K′ of K, typically obtained by removing
one set, say Kq, from K. Doing so eliminates all separating planes hiq, for i = 1, . . . , q− 1, and hqi,
for i = q+1, . . . , n. Accordingly, the corresponding circles Ciq, Cqi are also eliminated from C(K′),
and A(K′) is constructed only from the remaining circles. In particular, a regular vertex v of A(K),
formed by the intersection of Cij and Ckℓ, remains a vertex of A(K′) if and only if q 6= i, j, k, ℓ. An
edge (resp., face) of A(K′) may contain several edges (resp., faces) of A(K). Note that if f ′ is a
face of A(K′) which contains a permutation face f of A(K) then f ′ is a permutation face in A(K′);
the permutation that it induces is the permutation of f with Kq removed.

3 The Number of Geometric Permutations in R
3

Our analysis uses the setup of Tagansky [18], somewhat adapted to our context. To make this
paper more self-contained, we will spell out many of the details of the technique as it applies in our
context.

Popular vertices and edges. We say that an edge e of A(K) is popular if its two incident faces
are both permutation faces. We say that a vertex v of A(K) is popular if its four incident faces
are all permutation faces. We establish the upper bound O(n3) on the number of popular vertices,
using a direct geometric argument. The analysis then proceeds by applying two charging schemes.
The first scheme results in a recurrence which expresses the number of popular edges in terms of the
number of popular vertices. The second scheme leads to a recurrence which expresses the number
of vertices of permutation faces in terms of the number of popular edges. The solutions of both
recurrences are nearly cubic. Naive (and simpler) implementation of both schemes incurs an extra
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logarithmic factor in each recurrence, resulting in the overall bound g3(n) = O(n3 log2 n). With a
more careful analysis of the second scheme, we are able to eliminate one of these factors, and thus
obtain the bound g3(n) = O(n3 log n).

3.1 The number of popular vertices

For a regular vertex v of A(K), formed by the intersection of Cij , Ckℓ ∈ C(K), we denote by Kv the
collection {Ki,Kj ,Kk,Kℓ} of the four sets defining (the circles meeting at) v.

Lemma 3.1. Let v be a regular popular vertex of A(K), incident to Cij , Ckℓ ∈ C(K).
(i) Each pair of sets Ka ∈ Kv and Kb ∈ K \ Kv appear in the same order in all four permutations
induced by the faces incident to v.
(ii) The elements of each pair Ki,Kj and Kk,Kℓ are consecutive in all four permutations induced
by the faces incident to v.

Proof. Any two distinct faces f, g incident to v are separated only by one or two great circles from
{Cij , Ckℓ}, so the orders ≺f and ≺g may disagree only over the pairs (Ki,Kj) and (Kk,Kℓ). As a
matter of fact, the four permutations are obtained from each other only by swapping Ki and Kj

and/or swapping Kk and Kℓ. This is easily seen to imply both parts of the lemma.

Lemma 3.2. Let v be a regular popular vertex in A(K), incident to Cij , Ckℓ ∈ C(K). Then the line
λv = hij ∩ hkℓ stabs all the n− 4 sets in K \ Kv, and misses all four sets in Kv.

Proof. By definition, λv misses every set K ∈ Kv, because it is contained in a plane separating K
from another set in Kv . Hence, it suffices to show that λv is a transversal of K \ Kv.

To show this, we fix a set Ka ∈ K\Kv and show that each of the four dihedral wedges determined
by hij and hkℓ meets Ka. The convexity of Ka then implies that λv intersects Ka; see Figure 1
(left).

hij

hkℓ

λv

Ka

h+

ij ∩ h+

kℓ KaKj

Kk

Ki
Kℓ

hij

hkℓ

h+ij

h+kℓ

µ

Figure 1: Left: Ka must cross λv = hij ∩ hkℓ since it meets each of the four incident wedges (one of which is
highlighted). Right: The transversal line µ crosses Ka after Ki,Kj,Kk,Kℓ, so the segment Ka∩µ (highlighted)
is contained in h+

ij ∩ h+

kℓ.

Lemma 3.1 implies that Ka lies at the same position in each of the four permutations induced by
the faces incident to v. Without loss of generality, assume that the consecutive pair Ki,Kj appears
in these permutations before the consecutive pair Kk,Kℓ. Then either Ka precedes both pairs in
all four permutations, or appears in between them, or succeeds both of them. In what follows
we assume that Ka succeeds both pairs in all the permutations, but similar arguments handle the
other two cases too.

Consider the permutation π1 induced by the face f1 incident to v and lying in C+
ij ∩ C+

kℓ, and

let µ be a line transversal which induces π1. Since the direction of µ lies in C+
ij ∩ C+

kℓ, it follows
that µ crosses hij from the side containing Ki to the side containing Kj, and it crosses hkℓ from
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the side containing Kk to the side containing Kℓ. Hence Ki precedes Kj and Kk precedes Kℓ in π1.
Moreover, µ crosses hij in between its intersections with Ki and Kj, and it crosses hkℓ in between
its intersections with Kk and Kℓ. Thus, µ ∩Ka lies in h+ij ∩ h+kℓ; see Figure 1 (right). That is, Ka

intersects the dihedral wedge h+ij ∩ h+kℓ. Fully symmetric arguments, applied to the permutations
induced by the three other faces f2, f3, f4 incident to v, show that Ka intersects each of the three
other dihedral wedges determined by hij and hkℓ, which, as argued above, implies that λv stabs Ka.
As promised, slightly modified variants of this argument (with different correspondences between
the wedges around λv and the faces around v) handle the cases where Ka precedes both pairs
Ki,Kj and Kk,Kℓ in all four permutations, or appears in between these pairs.

Theorem 3.3. Let K be a collection of n pairwise disjoint compact convex sets in R
3. Then the

number of popular vertices in A(K) is O(n3).

Proof. Note first that each popular vertex must be regular. Indeed, if v is a degenerate popular
vertex incident to, say, Cij , Cik ∈ C(K), then, arguing as in Lemma 3.1, each of the two pairs Ki,Kj

and Ki,Kk appears consecutively in each of the four permutations near v. Let f be one of the four
permutation faces incident to v, and assume, without loss of generality, that Kk ≺f Ki ≺f Kj . Let
g be the permutation face neighboring to f and separated from it only by the circle Cik. Then we
must have Ki ≺g Kk ≺g Kj, contradicting the fact that Ki,Kj are consecutive also under ≺g.

Now let v be a regular popular vertex in A(K), incident to Cij , Ckℓ ∈ C(K), and let λv = hij∩hkℓ
be the line considered in Lemma 3.2. Put K∗

q = Kq ∩ hij , for each index q 6= i, j, and denote by
K∗ the collection of these n− 2 planar cross-sections within hij . Clearly, all sets in K∗ are pairwise
disjoint, compact, and convex.

K∗

k = K∗

a

K∗

b

λv

µv

K∗

ℓ

Figure 2: View inside hij : The line λv = hij ∩ hkℓ misses K∗

k ,K
∗

ℓ but stabs all other sets in K∗. The line µv is
tangent to K∗

a = K∗

k and to K∗

b , so it misses only K∗

ℓ .

By Lemma 3.2, λv lies in hij , stabs all the sets in K∗ \{K∗
k ,K

∗
ℓ } (so they are all nonempty) and

misses the two sets K∗
k ,K

∗
ℓ . (As can be easily verified, both of K∗

k ,K
∗
ℓ are also nonempty, although

our analysis does not rely on this property.)
Translate λv within hij until it becomes tangent to some set K∗

a ∈ K∗, and then rotate the
resulting line around K∗

a , say counterclockwise, keeping it tangent to that set, until it becomes
tangent to another set K∗

b ∈ K∗ \ {K∗
a}. The sets K∗

k ,K
∗
ℓ ,K

∗
a ,K

∗
b need not all be distinct, so the

resulting extremal tangent µv misses at most two sets of K∗ and intersects all the other sets; see
Figure 2.

We charge λv to µv, and argue that each extremal line µ in hij , which is tangent to two sets
of K∗ and misses at most two other sets of K∗, is charged in this manner at most twice. Indeed,
by the general position assumption, µ lies in a single plane hij . Within that plane, if µ misses two
sets of K∗ then these must be the sets K∗

k ,K
∗
ℓ . If µ misses only one set of K∗ then this set must be

one of the sets K∗
k ,K

∗
ℓ , and the other set is one of the two sets µ is tangent to. Finally, if µ does
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not miss any set of K∗ then K∗
k ,K

∗
ℓ are the two sets µ is tangent to. Hence µ determines at most

two quadruples Ki,Kj ,Kk,Kℓ whose lines λv can charge µ, and the claim follows.
It therefore suffices to bound the number of extremal lines µ charged in this manner. This

can be done using the Clarkson-Shor technique [4], by observing that each such line µ is defined
by two sets of K∗ (those it is tangent to; any such pair of sets determine four common tangents)
and is “in conflict” with at most two other sets (those that it misses). Thus, the Clarkson-Shor
technique implies that the number of lines µv is O (L0(n/2)), where L0(r) is the (expected) number
of extremal lines which are transversals to a (random) sample of r sets of K∗. Edelsbrunner and
Sharir [5] establish an upper bound of O(r) on the complexity of the space of line transversals to
a collection of r pairwise-disjoint compact convex sets in the plane, implying that L0(r) = O(r).
Hence the number of charged lines µ in a single plane hij is O(n), for a total of O

((

n
2

)

· n
)

= O(n3).
Since, as noted above, each line is charged at most twice in its plane, this also bounds the number
of popular vertices.

3.2 The number of popular edges

We next bound the number of popular edges in A(K), using the bound on popular vertices just
derived. We define an edge border in A(K) to be a pair (v,Q), where v is a vertex of A(K), incident
to two great circles Cij , Ckℓ, and Q is one of the four open hemispheres C−

ij , C
+
ij , C

−
kℓ, C

+
kℓ determined

by one of these circles. See Figure 3 (left). Note that Q determines a unique edge e of A(K) which
is incident to v and is contained in Q. If, in addition, e is a popular edge, we say that (v,Q) is a
popular edge border. For the purpose of the analysis, we will also refer to (v,Q) as a 0-level edge
border.

e

e1 Cij

Ckℓ

vQ

Q1

Cpq
v1

e1

e

Cij

Ckℓ

Cpq
v1

v

Figure 3: Left: Charging a 0-level edge border (v,Q) to a 1-level edge border (v1, Q1). Right: If the edges e, e1
are both popular then v is a popular vertex.

One useful feature of the border notation is that if (v,Q) is an edge border in A(K) and K′ is a
subcollection of K so that v is still a vertex of A(K′), then (v,Q) is also an edge border in A(K′).
The edge e′ of A(K′) associated with (v,Q) in A(K′) either is equal to e, or strictly contains e (in
the latter case both e and e′ have v as a common endpoint).

If an edge border (v,Q), which is not a 0-level edge border, becomes a 0-level edge border after
removing from K some single set Ka ∈ K, we call it a 1-level edge border. In this case we say that
(v,Q) is in conflict with Ka. Note that the set Ka, whose removal makes (v,Q) a 0-level edge
border, need not be unique; see Section 3.3 for further discussion.

Clearly, to bound the number of popular edges it suffices to bound the number of 0-level edge
borders, which is twice the number of popular edges in A(K) (each edge is counted once at each of
its endpoints).
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Since each vertex of A(K) participates in exactly four edge borders, the number of edge borders
which are incident to a degenerate vertex is O(n3). We bound the number of remaining 0-level
edge borders using the following charging scheme.

Let (v,Q) be a 0-level edge border, where v is incident to Cij and Ckℓ, so that Q = C+
ij , say.

Let e be the popular edge associated with (v,Q). Trace Ckℓ from v away from e (into C−
ij ), and let

v1 be the next encountered vertex. Let e1 be the edge connecting v and v1. Let Cpq be the other
circle incident to v1 and assume, without loss of generality, that v lies in C+

pq. See Figure 3 (left).
Note that, assuming |K| ≥ 3, we have Cpq 6= Cij (i.e., v1 is not antipodal to v), because otherwise
Cij would have intersected only Ckℓ. One of the following cases must arise:

(i) v1 is degenerate.

(ii) The edge e1 is also popular, so v is a popular vertex; see Figure 3 (right).

(iii) e1 is not popular. Since Cpq 6= Cij , one of i, j, say i, is different from both p and q. This
(and the fact that i 6= k, ℓ) implies that removing Ki from K also removes Cij from A, keeps
v1 intact, and makes the appropriate extension of e reach (and terminate at) v1, thereby making
(v1, Q1) a 0-level edge border in A(K \ {Ki}), where Q1 = C+

pq. See Figure 3 (left).

In case (i) we charge (v,Q) to v1. The number of degenerate vertices is O(n3) and each of them
can be charged only O(1) times in this manner. Hence, the number of 0-level edge borders that
fall into this subcase is O(n3).

In case (ii) we can charge (v,Q) to v. Since a popular vertex participates in exactly four
0-level edge borders, the number of 0-level edge borders that fall into this subcase is O(n3), by
Theorem 3.3.

In case (iii) we charge (v,Q) to the 1-level edge border (v1, Q1). Note that (v1, Q1) is charged
in this manner only by (v,Q).

Let us denote by E0(K) (resp., E1(K)) the number of 0-level edge borders (resp., 1-level edge
borders) in A(K). Then we have the following recurrence:

E0(K) ≤ E1(K) +O(n3). (1)

To solve this recurrence, we apply the technique of Tagansky [18]. Specifically, we remove from
K a randomly chosen set K ∈ K, and denote by R the collection of the n − 1 remaining sets. A
0-level edge border (v,Q) in A(K), where v is an intersection point of Cij and Ckℓ and is regular,
appears as a 0-level edge border in A(R) if and only if K is different from each of the four sets
Ki,Kj ,Kk,Kℓ defining v, which happens with probability n−4

n
. A 1-level edge border (v,Q) in

A(K) becomes a 0-level edge border in A(R) if and only if K is in conflict with (v,Q), which
happens with probability at least 1

n
. No other edge border in A(K) can appear as a 0-level edge

border in A(R). Hence, we obtain

E {E0(R)} ≥
n− 4

n
E0(K) +

1

n
E1(K), (2)

where E denotes expectation with respect to the random sample R, as constructed above. Com-
bining (1) and (2) yields

1

n
E0(K) ≤

1

n
E1(K) +O(n2) ≤ E {E0(R)} −

n− 4

n
E0(K) +O(n2).
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Denoting by E0(n) the maximum number of 0-level edge borders in A(K), for any collection K of
size n with the assumed properties, we get the recurrence

n− 3

n
E0(n) ≤ E0(n− 1) +O(n2),

whose solution is easily seen to be E0(n) = O(n3 log n) (see, e.g., [18, Proposition 3.1]).

3.3 The number of permutation faces

Finally, we bound the number of vertices of permutation faces using the bound on popular edges
just derived. This will also serve as an upper bound on the number of permutation faces, and thus
also on g3(n). We present the analysis in two stages. The first stage derives the slightly weaker
upper bound O(n3 log2 n), but is considerably simpler. The second stage involves a more careful
examination of the possible charging scenarios, and leads to a sharper recurrence, whose soution is
only O(n3 log n).

Each vertex v is incident to exactly four faces of A(K), so we need to count v with multiplicity
of at most 4—once for each permutation face incident to v. For this we extend the notion of borders
as follows. The two great circles passing through v partition S

2 into four wedges, or rather slices.
Each such slice R contains a unique face f incident to v, and defines, together with v, a border
(v,R). We call f the face associated with (v,R). Similarly to the notation involving edge borders
in Section 3.2, we call (v,R) a popular border, or a 0-level border, if the face associated with (v,R)
is a permutation face. It thus suffices to bound the number of 0-level borders in A(K).

If (v,R) is a border in A(K) with an associated face f , and K′ is a subcollection of K, so that
v is still a vertex of A(K′), then (v,R) is also a border in A(K′), except that the face f ′ of A(K′)
associated with (v,R) may be different from f (or, more precisely, properly contain f).

If a border (v,R), which is not a 0-level border in A(K), becomes a 0-level border after removing
from K some set K, we call it a 1-level border. The set K is said to be in conflict with (v,R). Note
that K cannot be one of the (at most) four sets defining v, and that a 1-level border may be in
conflict with more than one set of K. See Figure 4 (left).

R
Cij

Ckℓ

v

e3

e1

f

f2

f3

f1 e2
Cij

R2

R1R

v1

e2
e1

Cpq

Ckℓ

v2

v

Figure 4: Left: A non-permutation face f , associated with the 1-level border (v,R), is separated from permu-
tation faces f1, f2, f3 by the respective edges e1 ⊂ Cp1q1 , e2 ⊂ Cp2q2 , e3 ⊂ Cp3q3 . If none of p1, q1, p2, q2, p3, q3
belongs to {i, j, k, ℓ} then (v,R) is a 1-level border in conflict with each of Kp1

,Kq1 ,Kp2
,Kq2 ,Kp3

,Kq3 . Right:
Charging a 0-level border (v,R) to the two 1-level borders (v1, R1), (v2, R2), along the two edges e1, e2 emanating
from v away from R.

We bound the number of 0-level borders using a charging scheme similar to that in Section 3.2.
Let (v,R) be a 0-level border, and let f be the permutation face associated with it. Note that the

9



number of borders incident to degenerate vertices is O(n3). We may therefore assume that v is
regular, and let Cij and Ckℓ denote the two great circles incident to v (so i, j, k, ℓ are all distinct).
Without loss of generality, assume that R = C+

ij ∩ C+
kℓ.

Let e1 and e2 be the two edges incident to v and emanating from it away from R, where
e1 ⊂ Cij ∩C−

kℓ and e2 ⊂ Ckℓ ∩C−
ij ; see Figure 4 (right). Let v1 (resp., v2) be the other endpoint of

e1 (resp., of e2).
Our charging scheme is based on the following case analysis:
(i) If one of the two edges incident to v and bounding R is popular, we charge (v,R) to this

edge. Since the number of popular edges is O(n3 log n), and each of them is charged by at most
four 0-level borders (twice for each of its endpoints), the number of 0-level borders that fall into
this subcase is also O(n3 log n).

(ii) If no edge incident to v and bounding R is popular, we charge (v,R) to two 1-level borders,
one incident to v1 and one to v2. Specifically, consider v1, say, and let Cpq be the circle whose
intersection with Cij forms v1, and assume, again without loss of generality, that v lies in C+

pq. We

then charge (v,R) to (v1, R1), where R1 = C+
pq ∩ C+

ij . Let f1 be the face of A(K) associated with
(v1, R1) (this is the face whose boundary we trace from v to v1 along e1, and it is also incident to
v). Since the edge incident to f, f1 (and to v) is not popular, f1 is not a permutation face. Clearly,
one of the indices k, ℓ, say k, is different from both p, q. Thus, removing Kk keeps v1 as a vertex
in the new spherical arrangement, and makes Ckℓ disappear, so both faces f, f1 fuse into a single
larger permutation face contained in R1. Hence, (v1, R1) is a 1-level border which is in conflict
with Kk. A fully symmmetic argument applies to v2. We say that the 1-level borders (v1, R1) and
(v2, R2), which we charge, are the neighbors of (v,R) in A(K).

Note that each 1-level border (v′, R′) is charged by at most two 0-level borders in this manner
(at most once along each of the two edges incident to v′ and bounding the face associated with the
border).

Let V0(K) and V1(K) denote, respectively, the number of 0-level borders and the number of
1-level borders in A(K) (where we also include degenerate vertices in both counts). Then we have
the following recurrence:

V0(K) ≤ V1(K) +O(n3 log n). (3)

Indeed, each 0-level border which falls into case (ii) charges two 1-level borders, and each 1-level
border is charged at most twice. The number of all other 0-level borders is O(n3 log n), as argued
above. Combining this inequality with the random sampling technique of Tagansky [18], as in
Section 3.2, results in the recurrence

n− 3

n
V0(n) ≤ V0(n− 1) +O(n2 log n),

where V0(n) is the maximum value of V0(K), over all collections K of n pairwise disjoint compact
convex sets in R

3. The solution of this recurrence is V0(n) = O(n3 log2 n), which yields the same
upper bound on the number of geometric permutations induced by K.

An improved bound. We next improve the bound by replacing the recurrence (3) by a refined
recurrence. Let (v,R) be a 1-level border which is in conflict with w ≥ 1 sets of K. Then (v,R)
becomes a 0-level border in A(K \ {K}), after removing a random set K ∈ K, with probability
exactly w

n
. Namely, this happens if and only if K is one of the w sets in conflict with (v,R). We

refer to w as the weight of (v,R).

10



In the refined setting, V1(K) counts the total weight of all the 1-level borders in A(K), so now
the contribution of each 1-level border to V1(K) is equal to its weight. By an appropriate adaptation
of the argument in Section 3.2, we obtain the following equality:

E{V0(R)} =
n− 4

n
V0(K) +

1

n
V1(K), (4)

where R denotes a random sample of n − 1 sets of K. This follows by noting that the probability
of a 1-level border of weight w to be counted in V0(R) is w

n
, and it contributes w to V1(K).

In the refined charging scheme, each 1-level border (v,R) of weight w ≥ 1 gets a supply of w
units of charge, which it can give to its charging neighboring 0-level borders. Hence, as long as the
number of these charging 0-level borders, which is at most two, does not exceed w, (v,R) can pay
each of its neighbors 1 unit. Hence, the only problematic case is when w = 1 and (v,R) is charged
twice. The following technical lemma takes care of this case.

Lemma 3.4. The number of 1-level borders having weight 1 and charged by two 0-level borders is
O(n3 log n).

Before proving Lemma 3.4, we show how to use it to replace 3 by a better recurrence, and
thereby establish an improved bound on the number of geometric permutations in R

3.
If a 1-level border (v,R) has only one neighboring 0-level border (v′, R′) then (v′, R′) can receive

one unit of charge from (v,R), regardless of what the weight of (v,R) is. Similarly, if (v,R) has
weight at least 2, and it has two neighboring 0-level borders, each of these 0-level borders can
receive one unit of charge from (v,R). The number of remaining 1-level borders, namely the 1-level
borders of weight 1 with two neighboring 0-level borders, is O(n3 log n), by Lemma 3.4.

To recap, each 0-level border, except possibly for O(n3 log n) ones, receives 1 unit of charge
from each of its two neighboring 1-level borders. Moreover, the number of charges made to each of
the remaining 1-level borders, by its neighboring 0-level borders, does not exceed its weight. Thus,
we can replace (3) by the following inequality:

2V0(K) ≤ V1(K) +O(n3 log n).

Combining this with (4) we get

2

n
V0(K) ≤

1

n
V1(K) +O(n2 log n) ≤ E {V0(R)} −

n− 4

n
V0(K) +O(n2 log n),

or
n− 2

n
V0(K) ≤ E {V0(R)}+O(n2 log n).

Replacing V0(K), V0(R) by their respective maximum values V0(n), V0(n − 1), we thus obtain the
recurrence

n− 2

n
V0(n) ≤ V0(n− 1) +O(n2 log n),

whose solution is easily seen to be V0(n) = O(n3 log n) (again, see [18, Proposition 3.1]).
As mentioned earlier, V0(n) serves as an upper bound on the number of geometric permutations

induced by K. We thus conclude with the following main result of this section.

Theorem 3.5. Any collection K of n pairwise disjoint convex sets in R
3 admits at most O(n3 log n)

geometric permutations.
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Proof of Lemma 3.4. Consider a 1-level border (v,R) of weight 1, where v is incident to two
great circles Cij , Ckℓ, which is charged twice. We may assume that v is regular (i.e., the four
indices i, j, k, ℓ are distinct), since the number of remaining borders is O(n3). Let (v1, R1) be the
0-level border that charges (v,R) along Cij , and let (v2, R2) be the 0-level border that charges
(v,R) along Ckℓ. By construction, both v1 and v2 are regular (otherwise they do not charge v).
Let Cp1q1 denote the other circle incident to v1, and let Cp2q2 denote the other circle incident to v2.
Clearly, each index in {p1, q1, p2, q2} which does not belong to {i, j, k, ℓ} contributes to the weight
of (v,R), so, by assumption, there is only one such index, call it q. Since v1 is regular, neither
p1 nor q1 belongs to {i, j}, so (exactly) one of them must belong to {k, ℓ}, say p1 = k and then
q1 = q. Symmetrically, we may assume that p2 = i, say, and then q2 = q. Since v is regular and
q /∈ {i, j, k, ℓ}, the two circles Cp1q1 , Cp2q2 (i.e., Ckq, Ciq) are distinct. See Figure 5.

R

f

v1

Cij

v

v2

f2

Ciq

Cab

R2

R1 u

Ckq

Ckℓ

f1

e

R

f

v1

Cij

v

v2

Ciq

R2

R1

Ckq

Ckℓ

e

f1

Cai

u

f2

Ckb

w

Figure 5: Two scenarios depicting a 1-level border (v,R) of weight 1 that is charged by two 0-level borders
(v1, R1), (v2, R2).

In this special scenario we have two distinct permutation faces f1 and f2, where f1 is the face
associated with (v1, R1) and f2 is the face associated with (v2, R2).

There are two possible subcases: Assume first that the face f associated with (v,R) is just
the quadrangle bounded by Cij, Ckℓ, Ciq and Ckq. In this case the fourth vertex of f , formed by
intersection of Ciq and Ckq, is degenerate. Since each degenerate vertex is incident to at most four
faces, the number of 1-level borders falling into this subcase is O(n3).

Suppose then that f has additional edges and vertices. Consider, for example, the vertex u
which is the other endpoint (other than v1) of the edge e of f lying on Ckq. Let Cab denote the
other circle incident to u. Assume with no loss of generality that v lies in the hemisphere C+

ab. We
may also assume that neither a nor b is in {k, q}, for otherwise u is a degenerate vertex, so we can
argue similarly to the previous subcase.

Suppose first that neither a nor b is equal to i. Then removing Ki keeps u as a vertex of
A(K\{Ki}). The edge e extends at its other end into a longer popular edge (it bounds on one side
an extension of f ∪ f2 and on the other side an extension of f1, both of which are now permutation
faces; see Figure 5 (left)), so (u,C+

ab) is a 1-level edge border. We charge the 1-level border (v,R)
to (u,C+

ab). By construction, such an edge border is charged only once, as is easily checked.
The number of 1-level edge borders can be bounded using the Clarkson-Shor analysis technique

[4], similar to the way it was used in the proof of Theorem 3.3. That is, since each 1-level edge
border is defined by at most four sets of K and becomes a 0-level edge border when we remove (at
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least) one set from K, the number of 1-level edge borders is O (E{E0(K
′)}), where K′ is a random

sample of n/2 sets of K. Hence, the analysis in the preceding subsection implies that the number
of 1-level edge borders in A(K) is O(n3 log n), and therefore the same bound holds for the number
of 1-level borders (v,R) under consideration.

We are therefore left with the situation where, say, b = i. Applying a fully symmetric argument
to the edge of f lying on Ciq, we conclude that the only problematic case is where f is at least
pentagonal, with five consecutive vertices u, v1, v, v2, w, so that u is incident to Cai and Ckq, v1 is
incident to Ckq and Cij, v is incident to Cij and Ckℓ, v2 is incident to Ckℓ and Ciq, and w is incident
to Ciq and Ckb; here a and b are two indices, neither of which belongs to {i, j, k, ℓ, q}; a and b may
be equal. See Figure 5 (right).

Let Ai be the arrangement of the n − 1 great circles of the form Cir or Cri, for r 6= i. Let f0
be the face of Ai containing f . By assumption, the boundary of f touches three distinct boundary
edges of f0. We charge the 1-level border (v,R) to the triple (f0, e0, e1), where e0 ⊂ Cij and
e1 ⊂ Ciq are the two boundary edges of f0 which contain the respective edges of ∂f . To complete
the proof of Lemma 3.4, we need the following two lemmas.

Lemma 3.6. Let 1 ≤ i ≤ n, and let Ai be the arrangement of the n − 1 great circles Cir or Cri,
for r 6= i. Let f0 be a face in Ai, and let e0, e1 be two edges of f0. Then there exist at most two
faces of A which are contained in f0 and are bounded by a portion of e0, by a portion of e1, and by
a portion of some other edge of f0.

Proof. The edges e0 and e1 partition ∂f0 into up to four connected portions, e0, γ
−, e1, γ

+. We
claim that there can be at most one face f of A which is contained in f0 and which is bounded by
a portion of e0, a portion of e1, and a portion of γ+. A symmetric claim holds if we replace γ+ by
γ−, and the lemma follows. The latter claim follows by observing that the existence of two distinct
faces f1, f2 of A contained in f0 and touching e0, e1 and γ+ would lead to an impossible planar
drawing of K3,3, as illustrated in Figure 6. See, e.g., [6] for a similar argument.

f0

γ+f1

f2

γ−

e1

e0

Figure 6: A face f0 of Ai cannot contain two distinct faces f1, f2 of A(K) that touch e0, e1 and γ+.

Lemma 3.7. The number of triples (f0, e0, e1), where f0 is a face in Ai, as defined in Lemma 3.6,
and e0, e1 are two edges of f0, summed over all i, is O(n3).

Proof. This follows from the well known result that the sum of the squares of the face complexities
in an arrangement of n lines in the plane is O(n2); see, e.g., [16]. The same analysis applies to
an arrangement of great circles on the unit sphere. Summing this bound over all i, the lemma
follows.
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Lemma 3.6 implies that any triple (f0, e0, e1), as above, is charged by at most four 1-level
borders (v,R). Indeed, the triple determines at most two possible faces f of A, and the edge e0
determines a unique edge of f with v as one of its endpoints. By Lemma 3.7, the overall number of
charged triples (f0, e0, e1) is O(n3), so the overall number of 1-level borders (v,R) falling into the
last subcase is O(n3). This completes the proof of Lemma 3.4. �

4 Geometric Permutations in Higher Dimensions

In this section we generalize Theorem 3.5 by showing that the number of geometric permutations in-
duced by any collection K = {K1, . . . ,Kn} of n pairwise disjoint convex sets in R

d is O(n2d−3 log n),
for any d ≥ 3.

Setup. The basic setup is similar to that in three dimensions, but we repeat it here for the sake
of readability. Specifically, we may assume, using the same reasoning as before, that the sets of
K are compact (in addition to being pairwise disjoint and convex). For each 1 ≤ i < j ≤ n we
fix some hyperplane hij which strictly separates Ki and Kj. We orient hij so that Ki lies in the
negative open halfspace h−ij that it bounds, and Kj lies in the positive open halfspace h+ij . We

represent directions of lines in R
d by points on the unit (d− 1)-sphere S

d−1. We may assume that
the separating hyperplanes hij are in general position, so that every d of them intersect in a unique
point, and no d+ 1 of them have a point in common.

Each separating hyperplane hij induces a great (d−2)-sphere Cij on S
d−1, which is the locus of

the directions of all lines parallel to hij . Cij partitions S
d−1 into two open hemispheres C+

ij , C
−
ij , so

that C+
ij (resp., C−

ij ), consists of the directions of lines which cross hij from h−ij to h+ij (resp., from

h+ij to h−ij). Any oriented common transversal line of Ki and Kj visits Kj after (resp., before) Ki

if and only if its direction lies in C+
ij (resp., in C−

ij ).

Put C(K) = {Cij | 1 ≤ i < j ≤ n}, and consider the arrangement A(K) of these
(

n
2

)

(d − 2)-
spheres on S

d−1. It partitions Sd−1 into relatively open cells of dimensions 0, 1, . . . , d− 1; we refer
to an s-dimensional cell of A(K) simply as an s-cell. The assumption that the hyperplanes hij are
in general position implies that the (d−2)-spheres of C(K) are also in general position, in the sense
that the intersection of any s distinct spheres of C(K), for 1 ≤ s ≤ d−1, is a (d−s−1)-sphere, and
the intersection of any d distinct spheres of C(K) is empty. Each (d − 1)-cell f of A(K) induces a
relation ≺f on K, in which Ki ≺f Kj (resp., Kj ≺f Ki) if f ⊆ C+

ij (resp., f ⊆ C−
ij ). The direction

of each oriented line transversal λ of K belongs to the unique (d− 1)-cell f of A(K) whose relation
≺f coincides with the linear order in which λ visits the sets of K. In particular, as noted by Wenger
[19], the number of geometric permutations is bounded by the number of (d − 1)-cells of A(K),
which is O(n2d−2).

We call a (d − 1)-cell f of A(K) a permutation cell if there is at least one line transversal of
K whose direction belongs to f . As in the three-dimensional case, we improve the above bound
by showing that the number of permutation cells in A(K) is O(n2d−3 log n), which also bounds the
number of geometric permutations induced by K.

We refer to 0-cells in A(K) as vertices, and to 1-cells as edges. We say that a vertex v of A(K) is
regular if the d− 1 (d− 2)-spheres of C(K) that are incident to v are defined by 2d− 2 distinct sets
of K; otherwise v is a degenerate vertex. Clearly, the number of degenerate vertices is O(n2d−3), so
it suffices to bound the number of regular vertices of permutation cells.

As in the three-dimensional case, we will also consider subcollections K′ of K, typically obtained
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by removing one set, say Kq, from K. Doing so eliminates all separating hyperplanes hiq, hqi, as
well as all the corresponding (d − 2)-spheres Ciq, Cqi, and A(K′) is constructed only from the
remaining spheres. In particular, a vertex1 v of the intersection Ci1j1 ∩ Ci2j2 ∩ · · · ∩ Cid−1jd−1

of
A(K) remains a vertex of A(K′) if and only if q 6∈ {i1, j1, . . . , id−1, jd−1}. A cell of A(K′), of any
dimension s ≥ 1, may contain several cells of A(K). As before, if f ′ is a (d− 1)-cell of A(K′) which
contains a permutation cell f of A(K) then f ′ is a permutation cell in A(K′); the permutation that
it induces is the permutation of f with Kq removed.

Each s-cell f of A(K) is incident to 2d−s−1 (d−1)-cells of A(K). If all these cells are permutation
cells, f is called popular. In particular, a popular vertex is incident to 2d−1 permutation cells, a
popular edge is incident to 2d−2 permutation cells, and a popular (d− 1)-cell is a permutation cell.

Overview. We show that the number of popular vertices is O(n2d−3) by a straightforward general-
ization of the analysis in Section 3.1. The analysis then proceeds by applying, for each 1 ≤ s ≤ d−1,
a charging scheme, which expresses the number of popular s-cells in terms of the number of
popular (s − 1)-cells (and degenerate vertices). A naive charging scheme produces a recurrence
whose solution incurs an additional logarithmic factor for each s, resulting in the weaker bound
gd(n) = O(n2d−3 logd−1 n). A more careful analysis, as in the three-dimensional case, leads to
refined recurrences, whose solution yields the improved bound gd(n) = O(n2d−3 log n). (We lose a
logarithmic factor only when passing from vertices to edges, as in the three-dimensional case.)

4.1 The number of popular vertices

For a regular vertex v ∈
⋂d−1

q=1 Ciqjq of A(K), we denote by Kv the collection {Kiq ,Kjq | 1 ≤ q ≤
d− 1} of the 2d− 2 sets defining v.

Lemma 4.1. Let v ∈
⋂d−1

q=1 Ciqjq be a regular popular vertex of A(K).

(i) Each pair of sets Ka ∈ Kv and Kb ∈ K\Kv appear in the same order in all the 2d−1 permutations
induced by the (d− 1)-cells incident to v.
(ii) The elements of each pair Kiq ,Kjq ∈ Kv, for 1 ≤ q ≤ d − 1, are consecutive in all these 2d−1

permutations.

Proof. Each pair of distinct (d− 1)-cells f, g incident to v are separated by at most d− 1 (d− 2)-
spheres from {Ci1j1 , . . . , Cid−1jd−1

}, and only by these spheres. Hence the orders ≺f and ≺g may
disagree only over the pairs (Kiq ,Kjq ), for 1 ≤ q ≤ d − 1. As in the proof of Lemma 3.1, this is
easily seen to imply both parts of the lemma.

Lemma 4.2. Let v ∈
⋂d−1

q=1 Ciqjq be a regular popular vertex in A(K). Then the line λv =
⋂d−1

q=1 hiqjq
stabs all the n− 2d+ 2 sets in K \ Kv, and misses all the 2d− 2 sets in Kv.

Proof. By definition, λv misses every set K ∈ Kv, because it is contained in a hyperplane separating
K from another set in Kv . Hence, it suffices to show that λv is a transversal of K \ Kv.

To show this, we fix a set Ka ∈ K \ Kv and show that each of the 2d−1 wedges determined by
{hiqjq | 1 ≤ q ≤ d−1} meets Ka. Each of these wedges is the intersection of d−1 halfspaces, where
the q-th halfspace is either h+iqjq or h−iqjq , for q = 1, . . . , d − 1. All these wedges have λq on their
boundary, and the convexity of Ka then implies, exactly as in the three-dimensional case, that λv

intersects Ka.

1As in the three-dimensional case, the intersection consists of two antipodal points, so there are two choices for v.
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For specificity, we show that Ka intersects the wedge
⋂d−1

q=1 h
+
iqjq

; the proof for the other wedges

is essentially the same. Lemma 4.1 implies that Ka lies at the same position in each of the 2d−1

permutations induced by the cells incident to v. For each index q, if Kiq ,Kjq appear before Ka

(resp., after Ka) in all permutations induced by the cells incident to v, put Cq = C+
iqjq

(resp.,

Cq = C−
iqjq

).

Let f be the cell incident to v and contained in
⋂d−1

q=1 Cq, and let µf be a transversal line stabbing
K in the order ≺f (so its direction lies in f). By the choice of f and by our assumption, we have
either Kiq ≺f Kjq ≺f Ka, or Ka ≺f Kjq ≺f Kiq . This implies in the former case that µf visits Ka

after crossing hiqjq from h−iqjq (the side containing Kiq) to h+iqjq (the side containing Kjq). In the

latter case, µf first visits Ka and then crosses hiqjq from h+iqjq to h−iqjq . Thus, in either case, the

segment λf ∩Ka lies in h+iqjq , and this holds for every 1 ≤ q ≤ d− 1. Hence λf ∩Ka ⊂
⋂d−1

q=1 h
+
iqjq

,
and the claim follows.

Theorem 4.3. Let K be a collection of n pairwise disjoint compact convex sets in R
d. Then the

number of popular vertices in A(K) is O(n2d−3).

Proof. As in the three-dimensional case, it is easily checked that a popular vertex must be regular.
Let v ∈

⋂d−1
q=1 Ciqjq be a (regular) popular vertex inA(K), and let λv =

⋂d−1
q=1 hiqjq be the intersection

line of the corresponding hyperplanes. Consider the plane H =
⋂d−2

q=1 hiqjq , put K
∗
a = Ka ∩H, for

each index a 6∈ {iq, jq | 1 ≤ q ≤ d− 2}, and denote by K∗ the collection of these n− 2d + 4 planar
cross-sections. Clearly, all sets in K∗ are pairwise disjoint, compact, and convex.

By Lemma 4.2, λv lies in H, stabs all the sets in K∗ \ {K∗
id−1

,K∗
jd−1

}, and misses the two sets
K∗

id−1
,K∗

jd−1
. As in Theorem 3.3, we charge λv to an extremal line µ = µv within H which is

tangent to two sets of K∗, and misses only the sets among K∗
id−1

,K∗
jd−1

that it does not touch. As
in the preceding analysis, each extremal line µ of this kind is charged at most twice. Applying
the Clarkson-Shor analysis [4], similarly to Theorem 3.3, the number of lines µ, charged within
H, is O(n). Summing over all possible choices of the 2-planes H, namely over all choices of
d − 2 of the hyperplanes hij , the number of lines λv, and thus the number of popular vertices, is
O(n · n2d−4) = O(n2d−3).

4.2 The number of permutation cells

We next generalize the analysis of Section 3.3 to higher dimensions. We first extend the notion of
borders. Let v be a vertex of A(K), so that v ∈

⋂

1≤q≤d−1 Ciqjq . For any subset J of {1, . . . , d− 1},

let R ⊆ S
d−1 be a connected component of Sd−1 \

⋃

q∈J Ciqjq . Equivalently, it is the intersection

of |J | hemispheres, where the q-th hemisphere, for q ∈ J , is either C+
iqjq

or C−
iqjq

. Note that there

are 2|J | such regions (for any fixed J). We call (v,R) an s-border, where s = |J |. Given v and R,
for s ≥ 1, there is a unique s-dimensional cell f of A(K) which is incident to v and is contained in
the interior of R. This cell f lies in the intersection of the interior of R with

⋂

q∈Jc Ciqjq , where
Jc = {1, . . . , d − 1} \ J . We refer to f as the s-cell of A(K) associated with (v,R). For s = 0 we
define the s-cell of A(K) associated with (v,R) to be v itself, and for s = d− 1 we define the s-cell
of A(K) associated with (v,R) to be the unique (d− 1)-cell incident to v and contained in R. The
reader is invited to check that, for d = 3, a 0-border, in the new definition, is a vertex of A(K), a
1-border is an edge border, and a 2-border is what we simply called a border.
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Let (v,R) be an s-border and let f be the s-cell associated with (v,R). If f is a popular cell,
we say that (v,R) is a 0-level s-border of A(K). An s-border (v,R) is a 1-level s-border in A(K)
if it is not a 0-level s-border, but becomes such a border after removing from K some single set K.
In this case we say that K is in conflict with (v,R). As in the three-dimensional case, K need not
be unique.

For each t = 0, 1 and 0 ≤ s ≤ d − 1, let N
(s)
t (K) be the number of t-level s-borders in A(K),

and let N
(s)
t (n) denote the maximum value of N

(s)
t (K), over all collections K of n pairwise disjoint

compact convex sets in R
d.

Note that N
(0)
0 (K) is the number of popular vertices in A(K), so we have N

(0)
0 (n) = O(n2d−3).

The term N
(d−1)
0 (K) counts the overall number of vertices incident to permutation cells, where each

vertex is counted once for each permutation cell incident to it. Assuming n ≥ d, each permuta-
tion cell in A(K) is incident to at least one vertex (and each vertex is incident to at most 2d−1

permutation cells). Thus, the number of geometric permutations of K is at most N
(d−1)
0 (K).

For each 1 ≤ s ≤ d − 1, we apply a charging scheme, which results in a recurrence which

expresses N
(s)
0 (K) in terms of N

(s−1)
0 (K) and N

(s)
1 (K).

Fix 1 ≤ s ≤ d − 1. Let (v,R) be a 0-level s-border in A(K), and let f be the popular s-cell
associated with (v,R). Let Ci1j1 , Ci2j2 , . . . , Cid−1jd−1

be the d− 1 (d − 2)-spheres of C(K) incident
to v, and assume, with no loss of generality, that R =

⋂s
q=1 C

+
iqjq

. Moreover, we may assume that

v is regular, since the number of s-borders incident to degenerate vertices is clearly O(n2d−3). To
simplify the notation, we refer to borders incident to a regular (resp., degenerate) vertex as regular
borders (resp., degenerate borders).

For each 1 ≤ q ≤ s there exists a unique edge e+q of f which is incident to v and not contained

in Ciqjq . Indeed, by construction, f lies in the intersection s-sphere
⋂d−1

q=s+1Ciqjq (for s = d−1, this

is the entire S
d−1), and each edge of f incident to v is formed by further intersecting this sphere

with s − 1 additional spheres from Ci1j1 , . . . , Cisjs . The claim follows since only one side of the
resulting intersection circle lies (near v) in the closure of R. Let e−q denote the other edge of A(K)
which is incident to v and lies on the same intersection circle γ as e+q , so e−q emanates from v away
from R. Let vq denote the other endpoint of e−q , and let gq denote the (unique) (s − 1)-cell which

bounds f , lies in Ciqjq ∩
(

⋂d−1
t=s+1 Citjt

)

, is incident to v and is contained in Rq =
⋂

1≤t≤s, t6=q C
+
itjt

.

Also, gq is the (s− 1)-cell associated with (v,Rq). See Figure 7. There are two possible cases:

fq

Ckqℓq

Ciqjq

vq

v

R′
q

e+q R f

e−q
Rq gq

Figure 7: Charging a 0-level s-border along the edge eq.

(i) If one of the (s − 1)-cells g1, g2, . . . , gs, say gs, is popular, we charge (v,R) to the 0-level
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(s − 1)-border (v,Rs), noting, as above, that gs is the (s− 1)-cell associated with this border. By
construction, each 0-level (s − 1)-border (v,R) is charged at most 2(d − s) times in this manner,
once from each s-border associated with an s-cell which is bounded by the (s − 1)-cell associated
with this border (there are d−s choices for the great sphere Citjt that participates in the definition
of (v,R) but is absent in the s-border, and two choices of the corresponding hemisphere C+

itjt
, C−

itjt
).

Hence, the number of 0-level s-borders falling into subcase (i) is O
(

N
(s−1)
0 (K)

)

.

(ii) None of the (s − 1)-cells g1, g2, . . . , gs is popular. For each 1 ≤ q ≤ s, let Ckqℓq be the
additional great sphere incident to vq, and suppose, for specificity, that v ∈ C+

kqℓq
. The vertex vq

participates in the 1-level s-border (vq, R
′
q), where R′

q = C+
kqℓq

∩
(

⋂

1≤t≤s, t6=q C
+
itjt

)

.

Since gq is not popular, (vq, R
′
q) is not a 0-level s-border. Let fq be the s-cell associated with

(vq, R
′
q). Clearly, at least one of iq, jq does not belong to {kq, ℓq}; say it is iq. Thus, and since v is

regular, removing Kiq keeps vq (and hence (vq, R
′
q)) intact, and makes f and fq fuse into a larger

s-cell f ′ containing both of them. Clearly, f ′ is the cell associated with (vq, R
′
q) in A(K \ {Kiq}),

and it is popular there because f ⊂ f ′ was popular in A(K). We say that the borders (v,R),
(vq, R

′
q) are neighbors in A(K).

We then charge (v,R) to its s neighboring 1-level s-borders (vq, R
′
q), for q = 1, . . . , s. Note that

each 1-level s-border (v,R) is charged at most s times, once along each of the s edges, incident to
v, of the s-cell associated with it. We thus obtain the following recurrence.

N
(s)
0 (K) ≤ N

(s)
1 (K) +O

(

N
(s−1)
0 (K) + n2d−3

)

, (5)

where the first term in the right hand side bounds the number of 0-level s-borders falling into case
(ii), and the second term bounds the number of the remaining 0-level s-borders.

Similarly to the three-dimensional case, we combine the system (5) of recurrences with the anal-
ysis technique of Tagansky, and solve the resulting recurrences to obtain a slightly inferior bound
(involving a larger polylogarithmic factor). We then refine the recurrences, using a more careful
analysis, similar to the one in Section 3, and thereby obtain the improved bound O(n2d−3 log n).

Applying Tagansky’s technique: The simpler variant. We prove thatN
(s)
0 (n) = O(n2d−3 logs n)

by induction on s. For the base case s = 0, we have N
(0)
0 (n) = O(n2d−3) by Theorem 4.3. Consider

a fixed s ≥ 1 and assume that the bound holds for s− 1, so (5) becomes

N
(s)
0 (K) ≤ N

(s)
1 (K) +O(n2d−3 logs−1 n). (6)

Let R be a random sample of n− 1 sets of K, obtained by removing a random set K from K.
The expected number of 0-level popular s-borders in A(R) satisfies

E{N
(s)
0 (R)} ≥

n− 2d+ 2

n
N

(s)
0 (K) +

1

n
N

(s)
1 (K). (7)

This follows since a 0-level s-border (v,R) (with v regular) survives after removing K if and only
if K 6∈ Kv, and a 1-level s-border becomes a 0-level s-border if and only if it is in conflict with K.
Combining this inequality with (6), we get

1

n
N

(s)
0 (K) ≤

1

n
N

(s)
1 (K) +O(n2d−4 logs−1 n) ≤

E
{

N
(s)
0 (R)

}

−
n− 2d+ 2

n
N

(s)
0 (K) +O(n2d−4 logs−1 n),
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or
n− 2d+ 3

n
N

(s)
0 (K) ≤ E

{

N
(s)
0 (R)

}

+O(n2d−4 logs−1 n).

Replacing N
(s)
0 (K) and N

(s)
0 (R) by their respective maximum possible values N

(s)
0 (n) and N

(s)
0 (n−

1), we get the recurrence

n− 2d+ 3

n
N

(s)
0 (n) ≤ N

(s)
0 (n− 1) +O(n2d−4 logs−1 n),

whose solution is easily seen to be N
(s)
0 (n) = O(n2d−3 logs n). This establishes the induction step

and thus proves the asserted bound. In particular, we have so far

gd(n) = O(n2d−3 logd−1 n).

Improved bounds for s ≥ 2. As promised, we next refine the analysis, and show that

N
(s)
0 (K) = O(n2d−3 log n), (8)

for any 1 ≤ s ≤ d− 1, by establishing a sharper variant of (5).
As in the three-dimensional case, the weakness of the preceding analysis lies in the random

sampling inequality (7), or, more precisely, in the term N
(s)
1 (K)/n thereof.

Specifically, if a 1-level s-border (v,R) is in conflict with w > 1 sets of K then removing any
one of these sets will make (v,R) a 0-level s-border, so the probability of this to happen is w/n,
which is significantly larger than the bound 1/n used in (7). As above, we refer to w as the weight

of (v,R). We can therefore modify the definition of N
(s)
1 (K) so a border of weight w is counted w

times. The preceeding discussion ensures that (7) still holds in the new setting.
We proceed to prove 8 by induction on s. The base case s = 1 has already been analyzed, and

we have shown that N
(1)
0 (n) = O(n2d−3 log n). Fix 2 ≤ s ≤ d−1, and suppose that we have already

proved that N
(s′)
0 (K) = O(n2d−3 log n), for all 1 ≤ s′ < s.

The following lemma generalizes Lemma 3.4 to arbitrary dimension d ≥ 4.

Lemma 4.4. (i) The number of 1-level 2-borders, having weight 1 and charged by two 0-level

neighboring 2-borders, is O(N
(1)
1 (K) + n2d−3).

(ii) For s ≥ 3, there are no 1-level s-borders incident to a regular vertex, having weight 1, and
charged by s 0-level neighboring s-borders.

Proof of Lemma 4.4. The proof of (i) is very similar to the proof of Lemma 3.4, and will be
briefly presented later, after we prove (ii).

So we assume that s ≥ 3. Let (v,R) be a 1-level s-border which has weight 1 and is charged by
s 0-level neighboring s-borders, so that v is regular. Let Ci1j1 , Ci2j2 , . . . , Cid−1jd−1

be the (d − 2)-
spheres incident to v. Without loss of generality, assume that R =

⋂s
q=1C

+
iqjq

. Let f be the

s-cell associated with (v,R), and let e1, . . . , es be the s edges of f incident to v, so that, for each
k = 1, . . . , s, the edge ek lies on the circle

⋂

1≤q≤d−1,q 6=k Ciqjq . For k = 1, . . . , s, let vk denote the
other endpoint of ek, and let Cakbk denote the (unique) great sphere incident to vk and not containing
ek. Assume, without loss of generality, that v lies in C−

akbk
, and put Rk = C+

akbk
∩
⋂

1≤q≤s,q 6=kC
+
iqjq

.

By construction, the s s-borders (vk, Rk), for k = 1, . . . , s, are precisely those that charge (v,R),
so they are all regular 0-level s-borders.
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Note that (v,R) is in conflict with each of the sets Ka1 ,Kb1 , . . . ,Kas ,Kbs for which the corre-
sponding index ak or bk is not one of i1, j1, . . . , id−1, jd−1. Indeed, removing such a set Kak , say,
eliminates the sphere Cakbk and thereby exposes v to the extended 2d−1−s permutation cells that
surround vk, so that they are all now contained in R, so (v,R) becomes a 0-level s-border. However,
since the weight of (v,R) is 1, only one of these sets, call it Kb, can be in conflict with (v,R) (so
b /∈ {i1, j1, . . . , id−1, jd−1}). This, and the fact that each of the vk’s is regular, is easily seen to
imply the following property: For each k, one of ak, bk, say ak, belongs to {ik, jk}, and the other
index bk is b.

Fix a pair of distinct vertices vk, vℓ, and denote by Πk (resp., Πℓ) the collection of the 2d−1−s

permutations induced by the permutation cells that surround vk (resp., vℓ) and are contained in
Rk (resp., Rℓ). Any pair of permutations in Πk differ from each other only by swaps of some of the
pairs (iq, jq), for q = s+ 1, . . . , d− 1. Hence the indices of each of these pairs appear consecutively
in any of these permutations, and the locations of these pairs are fixed for all permutations. The
set Kb appears, somewhere in between these pairs, in a fixed location in all permutations. A similar
property holds for the permutations in Πℓ.

Fix a permutation π ∈ Πk. It has a “twin” permutation π′ in Πℓ, in which the order of the two
indices in each of the pairs (iq, jq), for q = s + 1, . . . , d − 1, is the same as their order in π. To
gain more insight into the structure of π and π′, let ϕ and ϕ′ denote, respectively, the permutation
cells of A(K) in which π and π′ are generated. We can get from ϕ to ϕ′ by first crossing Cikb into
a corresponding (d − 1)-cell ϕ0 surrounding f and then cross Ciℓb into ϕ′. This means that ≺ϕ

and ≺ϕ′ (i.e., π and π′) are obtained from each other by first swapping Kb with Kik and then by
swapping Kb with Kiℓ . As is easily checked, this implies that Kik and Kiℓ must be adjacent in π
and in π′. This however cannot hold for every pair of distinct indices in {i1, . . . , is} if s ≥ 3. This
contradiction shows that for s ≥ 3 there are no 1-level s-borders which satisfy the assumptions in
the lemma. This completes the proof of part (ii).

We now consider the case s = 2, which, as noted above, can be handled in a manner that is
very similar to the analysis in Lemma 3.4. Specifically, let (v,R) be a regular 1-level 2-border of
weight 1 which is charged by two 0-level 2-borders (v1, R1), (v2, R2). (The number of degenerate
1-level 2-borders is O(n2d−3).) As in the proof of part (i), we may assume that both v1 and v2 are
regular (for otherwise they would not charge (v,R)). Let Ci1j1 , Ci2j2 , . . . , Cid−1jd−1

∈ C(K) be the
(d − 2)-spheres incident to v, and assume that R = C+

i1j1
∩ C+

i2j2
. Let f be the 2-face associated

with (v,R). For k = 1, 2, let ek denote the edge of f incident to v and contained in Cikjk , and
assume that vk is the other endpoint of ek. Let Cakbk be the (unique) great sphere passing through
vk and not containing ek.

As in the three-dimensional case, and similar to the preceding analysis, since (v,R) has weight
1, the only case to be considered, up to symmetry, is where a1 = i2, a2 = i1, and b1 = b2 = b,
where b 6= {i1, j1, . . . , id−1, jd−1}.

The proof now continues as in the three-dimensional case, and we only provide a brief sketch of
it. For k = 1, 2, we consider the other edge e′k of f incident to vk, denote by uk the other endpoint
of ek, and assume that neither of u1, u2 is degenerate. See Figure 8. We then consider the other
great sphere Crksk incident to uk, for k = 1, 2, and distinguish between the following two cases:
(a) i1 6= r1, s1 or i2 6= r2, s2. In the former case, removing Ki1 leaves u1 intact and extends e′1 into
a 0-level 1-border; the proof is argued exactly as in the three-dimensional case. The latter case is

handled symmetrically, and we conclude that the number of 2-borders of this kind is O(N
(1)
1 (K)).

(b) i1 = r1 and i2 = r2 (or any of the symmetric pairs of equalities). In this case we consider the
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v2
u2

v

Ci1j1

f

Cr1s1

u1

Cr2s2

e2

e1

v1

R ∩ σ0

e′1

Ci2j2

e′2

Ci1b

Ci2b

Figure 8: The setup in the proof of Theorem 4.4 for s = 2: View within the sphere σ0 =
⋂d−1

q=3
Ciqjq .

2-sphere σ0 =
⋂d−1

q=3 Ciqjq which contains f , and construct in it the arrangement A
(σ0)
i1

, formed by
the circles Ci1x ∩ σ0, for x /∈ {i1} ∪ {i3, j3, . . . , id−1, jd−1}. We note that f is contained in a face f0

of A
(σ0)
i1

and touches its boundary at three distinct edges. This allows us to bound the number of
2-borders under consideration by O(n3), for a fixed choice of i3, j3, . . . , id−1, jd−1, arguing exactly as
in the three-dimensional case. In total, the number of these 2-borders is O(n3 · n2d−6) = O(n2d−3).
This completes the proof of the lemma. �

First, for s = 2, we bound the quantity N
(1)
1 (K) using the Clarkson-Shor analysis technique [4],

as we did in the proof of Lemma 3.4. That is, since each 1-level 1-border is defined by at most
2d − 2 sets of K and becomes a 0-level 1-border when we remove (at least) one set from K, the

number of 1-level 1-borders is O
(

E{N
(1)
0 (K′)}

)

, where K′ is a random sample of n/2 sets of K.

Thus, combining this with the bound already established for s = 1, we have

N
(1)
1 (K) = O

(

E{N
(1)
0 (K′)}

)

= O
(

N
(1)
0 (n/2)

)

= O(n2d−3 log n). (9)

With these preparations, we are now ready to complete the induction step for s.

Let N
(s)
1,1 (K) denote the number of 1-level s-borders having weight 1, and let N

(s)
1,2 (K) denote

the number of 1-level s-borders having weight at least 2. Since a 1-level s-border of weight wi

contributes to N
(s)
1 (K) wi units, we have

N
(s)
1 (K) ≥ N

(s)
1,1 (K) + 2N

(s)
1,2 (K). (10)

Recall that we charge every 0-level s-border (falling into subcase (ii)) to s neighboring 1-level
s-borders. By Lemma 4.4 (and (9)), all but O(n2d−3 log n) 1-level s-borders, that have weight 1,
are charged by at most s − 1 neighboring 0-level s-borders. (This is the situation for s = 2; the
bound drops to O(n2d−3) for s ≥ 3.) Thus, we obtain the following refinement of 5:

sN
(s)
0 (K) ≤ (s− 1)N

(s)
1,1 (K) + sN

(s)
1,2 (K) +O(n2d−3 log n). (11)

The combination of (10) and (11), and the assumption that s ≥ 2 (so s/(s−1) ≥ 2) imply that,

s

s− 1
N

(s)
0 (K) ≤ N

(s)
1 (K) +O(n2d−3 log n).
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Substituting t = s
s−1 − 1 = 1

s−1 > 0 and combining this with (7), we get

1 + t

n
N

(s)
0 (K) ≤

1

n
N

(s)
1 (K) +O(n2d−4 log n)

≤ E
{

N
(s)
0 (R)

}

−
n− 2d+ 2

n
N

(s)
0 (K) +O(n2d−4 log n),

or
n− 2d+ 3 + t

n
N

(s)
0 (K) ≤ E

{

N
(s)
0 (R)

}

+O(n2d−4 log n).

Thus, as above, we get the following recurrence

n− 2d+ 3 + t

n
N

(s)
0 (n) ≤ N

(s)
0 (n− 1) +O(n2d−4 log n),

whose solution is easily seen to be

N
(s)
0 (n) = O(n2d−3 log n)

(see, e.g., [18, Proposition 3.1]), which readily implies Theorem 4.5. This completes the induction
step and thus establishes 8 for all s. We thus obtain the main result of the paper.

Theorem 4.5. Any collection K of n pairwise disjoint convex sets in R
d, for any d ≥ 3, admits at

most O(n2d−3 log n) geometric permutations.

5 Discussion

Although the improvement presented in this paper is significant, especially since no progress was
made on the problem during the past 20 years, it is far from satisfactory, since we strongly believe
(and tend to conjecture) that the correct upper bounds are close to O(nd−1), for any d ≥ 3.
Improving further the bounds is the main open problem left by this study. A modest subgoal is to
get rid of the logarithmic factor in our bounds, and show, e.g., that g3(n) = O(n3).
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