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ON THE ACCURACY OF SOLVING CONFLUENT PRONY SYSTEMS∗

DMITRY BATENKOV†
AND YOSEF YOMDIN‡

Abstract. In this paper we consider several nonlinear systems of algebraic equations which can be called “Prony-type”.

These systems arise in various reconstruction problems in several branches of theoretical and applied mathematics, such as

frequency estimation and nonlinear Fourier inversion. Consequently, the question of stability of solution with respect to errors

in the right-hand side becomes critical for the success of any particular application. We investigate the question of “maximal

possible accuracy” of solving Prony-type systems, putting stress on the “local” behavior which approximates situations with low

absolute measurement error. The accuracy estimates are formulated in very simple geometric terms, shedding some light on

the structure of the problem. Numerical tests suggest that “global” solution techniques such as Prony’s algorithm and ESPRIT

method are suboptimal when compared to this theoretical “best local” behavior.
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1. Introduction.

1.A. Problem definition. Consider the following system of algebraic equations:

K∑

i=1

aiξ
k
i = mk (1.1)

where ai, ξi ∈ C are unknown parameters and the measurements {mk}k=0,1,..., are given. This “exponential

fitting” system, or “Prony system”, appears in several branches of theoretical and applied mathematics, such

as frequency estimation, Padé approximation, array processing, statistics, interpolation, quadrature, radar

signal detection, error correction codes, and many more. The literature on this subject is huge (for instance,

the bibliography on Prony’s method from [3] is some 50+ pages long). Our interest in this system (and

other, more general systems of this kind, to be specified below) is motivated by its central role in Algebraic

Sampling – a recent approach to reconstruction of non-linear parametric models from measurements. There,

it arises as the problem of reconstructing a signal modeled by a linear combination of Dirac δ-distributions:

f(x) =
K∑

i=1

aiδ(x− ξi), ai, ξi ∈ R (1.2)

from the measurements given by the power moments

mk(f)
def
=

∫ 1

0

xkf(x) dx. (1.3)

While the above problem may be considered mainly of theoretical interest, it is actually one of the

most basic ones in Algebraic Sampling. On one hand, if s(x) is a piecewise-constant signal with jump

∗Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
†dima.batenkov@weizmann.ac.il. This author is supported by the Adams Fellowship Program of the Israel

Academy of Sciences and Humanities.
‡yosef.yomdin@weizmann.ac.il. This author is supported by ISF grant 264/09 and the Minerva Foundation.

1

http://arxiv.org/abs/1106.1137v3


discontinuities at the locations ξ1, . . . , ξK, then s′(x) = f(x) as in (1.2). Thus, the “signal” f(x) essentially

captures the non-smooth nature of s(x). On the other hand, the moments (1.3) are convenient to consider

because of the respective simplicity of the arising algebraic equations, while other types of measurements

(e.g. Fourier coefficients) may be recast into moments after change of variables.

An important generalization of the Prony system, which is of great interest to us, arises when the simple

model (1.2) is extended to include higher-order derivatives (see [8, 46] for examples of such constructions):

f(x) =

K∑

i=1

li−1∑

j=0

aijδ
(j)(x− ξi), ai,j , ξj ∈ R (1.4)

where δ(j) is the j-th derivative of the Dirac delta (in the sense of distributions).

From now on, we denote the number of unknown coefficients ai,j by C
def
=
∑K

i=1 li, and the overall

number of unknown parameters by R
def
= C + K. Taking moments of f (x) in (1.4), we arrive1 at the

following “confluent Prony” system:

K∑

i=1

li−1∑

j=0

ai,j(k)jξ
k−j
i = mk aij , ξi,mk ∈ C (1.5)

where the Pochhammer symbol (i)j denotes the falling factorial

(i)j = i(i− 1) · . . . · (i − j + 1), i ∈ R, j ∈ N

and the expression (k)jξ
k−j
i is defined to be zero for k > j.

The Prony-type systems appear in various recent reconstruction methods of signals with discontinuities

- see [7, 8, 9, 10, 11, 14, 18, 20, 21, 23, 24, 28, 32, 30]. In particular, Finite Rate of Innovation (FRI)

techniques [19, 31, 46] have spawned a rather extensive literature (see e.g. a recent addition [44]). Usually,

the ξi represent “location” parameters of the problem, such as discontinuity locations or complex frequencies

ξj = eıωj . These variables enter the equations in a nonlinear way, and we call them “nodes”. The coefficients

aij , on the other hand, enter the equations linearly, and we call them “magnitudes”.

While Algebraic Sampling provides exact reconstruction for noise-free data in many cases mentioned

above, a critical issue remains - namely, stability, or accuracy of solution. Stable solution of Prony-type

systems is generally considered to be a difficult problem, and in recent years many algorithms have been

devised for this task (e.g. [6, 25, 26, 33, 34, 36, 38, 42, 45]). Perhaps the simplest version of the stability

problem can be formulated as follows (cf. Definition 3.1, Definition 4.1 and Subsection 1.D).

Assume that the measurements {mk}k=0,...,S−1 are known with some error: mk + εk. Given an estimate

ε = maxk |εk|, how large can the error in the reconstructed model parameters (i.e. |∆ξj | def
= |ξ̃j − ξj | and

|∆ai,j | def
= |ãi,j −ai,j|) be in the worst case in terms of ǫ, number of measurements S and the true parameters

{ξj} , {ai,j}?
In more detail, our ultimate goal may be described as follows:

1. determine the qualitative dependence of the accuracy on the values of the parameters;

2. quantify this dependence as precisely as possible;

1Strictly speaking, this will result in a “real” confluent Prony system.
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3. determine how (and if at all) increasing the number of measurements (i.e. oversampling) improves

accuracy.

1.B. Related work. Matching the ubiquity of Prony-type systems is the impressive body of literature

devoted to both designing methods of solution and analyzing the accuracy/robustness of these methods, see

references above. Although there appears to be no simple answer to the above question of “maximal possible

accuracy”, several important results in this direction are available in the literature, which we now briefly

discuss.

Methods of solution can be roughly divided into three categories (see e.g. [41],[43, Section 4]): direct

nonlinear minimization (nonlinear least squares), recurrence-based methods (such as original Prony’s method

- see Section 2) and subspace methods (such as Pisarenko’s method, MUSIC, ESPRIT, matrix pencils - see

e.g. [38]).

In the framework of statistical signal estimation [27], the subspace methods are known to be more efficient

and robust to noise, mainly due to the fact that the noise is assumed to have certain statistical properties.

The confluent Prony system (1.5) is also known as “polynomial amplitude complex exponential” (PACE)

model. A standard measure of estimator performance is Cramer-Rao (and related) lower bounds (CRB).

These have been recently established for the PACE model in [5] (see also related results for FRI models [15]).

Furthermore, it has been demonstrated that the performance of the generalized ESPRIT algorithm ([4, 6]

and Subsection 5.B) is close to the optimal CRB, therefore we consider it to represent the state of the art in

the subspace methods.

We do not assume any particular statistical model or other structure for either the error terms εk or the

estimation algorithm (such as white noise or unbiasedness). Therefore, the CRB and related lower bounds

cannot provide the full answer to the stability problem as is. Still, it turns out that the stability bounds

developed in this paper resemble the CRB as established in [5], see Subsection 5.A below for details.

Recent papers of Tasche et al. [34, 36] contain some uniform error bounds for solving Prony systems. In

particular, the authors develop the so-called Approximate Prony method, analyze its worst-case error and

numerically compare it with the ESPRIT method (showing similar performance). Although they consider

the non-confluent version of the Prony system (1.1) and analyze only the error in recovering the magnitudes

aj , we believe these results to be an important step towards answering the stability problem as posed above.

See Subsection 5.C below for details.

Very recently, Candes et al. [18] investigated stable solution of Prony systems by total variation mini-

mization under assumptions of minimal node separation, in the context of super-resolution.

Considering all the above, we believe that a full answer to our somewhat rigid l∞ formulation of the

stability problem may contribute to the understanding of limitations of using Prony systems and methods

both in signal processing applications and in function approximation, in particular compressed sensing,

nonlinear Fourier inversion, Finite Rate of Innovation techniques and related problems.

1.C. Notation. In the sequel we use the infinity norm distance

∀x,y ∈ C
n : dist (x,y)

def
= max

1≤i≤n
|xi − yi| ,

and denote by B (a, ε) the ε-ball around a point a ∈ Cn in this norm.
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1.D. Summary of results. In Section 3 we define “best possible point-wise accuracy” as follows. We

consider the “Prony map” PS : CR → C
S which associates to any parameter vector x =

{
{aij}, {ξi}

}
∈ C

R

its corresponding measurement vector y = (m0, . . . ,mS−1) ∈ CS (where the mk are given by (1.5)).

Now if instead of y we are given a noisy ỹ ∈ B (y, ε), then this ỹ can correspond to any parameter

vector x̃ ∈ CR for which PS (x̃) ∈ B (ỹ, ε). Therefore we define the best possible accuracy at a point x to

be equal to the maximal (over all ỹ) spread of the preimage of this B (ỹ, ε), that is (see Definition 3.1)

sup
ỹ∈B(y,ε)

1

2
diamP−1

S (B (ỹ, ε)) .

We then simplify the setting by assuming that the number of measurements S equals the number of

unknowns R, and looking at the (local) linear approximation to the Prony map PS. Then the solution error

at some (non-critical) point in the parameter space can be estimated by the local Lipschitz constant of the

(regular) inverse map P−1
S . We derive such simple estimates in Section 4, and compare them to the “global”

accuracy of the original Prony method (derived for completeness in Section 2).

Our main result (Theorem 4.5) can be summarized as follows (all statements are valid for small ε):

1. The stability of recovering a node ξi depends on the separation of the nodes and is inversely pro-

portional to the magnitude of the highest coefficient corresponding to this node (|ai.li−1|), and does

not depend on any other magnitude.

2. For 1 ≤ j ≤ li − 1, the stability of recovering a magnitude ai,j depends on the separation of the

nodes, is proportional to 1 +
|ai,j−1|

|ai,li−1| , and does not depend on any other magnitude. Note that in

fact every magnitude influences only the next highest magnitude corresponding to the same node.

3. The stability of recovering the lowest magnitudes ai,0 is the same for all nodes and it depends only

on the separation of the nodes.

The separation of the nodes is specified in terms of norms of inverse confluent Vandermonde matrices on the

nodes, which is roughly of the same order as some finite power of
∏

1≤i<j≤K |ξj − ξi|−1
.

Our numerical experiments (Section 6) confirm the above theoretical estimates. We also test the per-

formance of two well-known solution methods - namely the recurrence-based Prony method (Section 2) and

the generalized ESPRIT (Subsection 5.B) - in the same setting as above (i.e. high SNR). The results suggest

that:

1. The recurrence-based global Prony method does not achieve the above theoretical limits, and so it

is not optimal even in the case of small data perturbations.

2. The subspace methods (in particular the ESPRIT algorithm) behave better than the Prony method

but still they are not optimal for small perturbations and small sample size.

The “Prony map” approach can in principle be generalized to obtain both global accuracy bounds as well as

study effects of oversampling - by considering the case S > R and taking into account second-order terms in

the Taylor expansion of PS . We discuss these directions in Section 7.

1.E. Acknowledgments. We are grateful to the two anonymous referees, whose comments, suggestions

and references were very helpful.

2. The Prony method. In this section we describe the most basic solution method for the system

(1.5), which is in fact a slight generalization of the (historically earliest) method due to Prony [37]. By

factorizing the so-called “data matrix”, one immediately obtains necessary and sufficient conditions for a

unique solution, as well as an estimate of the numerical stability of the method.
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Most of the results of Section 2 are not new and are scattered throughout the literature. Nevertheless,

we believe that our presentation can be useful for further study of the various singular situations, such as

collision of two nodes.

2.A. The description of the method. The non-trivial part is the recovery of the nodes ξj . Note

that the case of a-priori known nodes has been extensively treated in the literature (see e.g. [1, 35] for the

most recent results). Using the framework of finite difference calculus, one can easily prove the following

result (see [8, Theorem 2.8]).

Proposition 2.1. Let the sequence {mk} be given by (1.5). Then this sequence satisfies the recurrence

relation (of length at most C + 1)

( K∏

i=1

(E−ξi I)
li

)
{mk} = 0

where E is the forward shift operator in k and I is the identity operator.

Corollary 2.2. For all k ∈ N we have the recurrence relation
∑C

j=0 qjmk+j = 0 where q0, q1, . . . , qC

are the coefficients of the polynomial q(x)
def
=
∏K

i=1(x− ξi)
li .

This suggests the following reconstruction procedure2.

Algorithm 1 The Prony method

Let there be given {mk}2C−1
k=0 (where C =

∑K
i=1 li).

1. Solve the linear system (here we set qC = 1 for normalization)







m0 m1 · · · mC−1

m1 m2 · · · mC

.

..
.
..

.

..
.
..

mC−1 mC · · · m2C−2








︸ ︷︷ ︸

def
= MC








q0
q1
.
..

qC−1








= −








mC

mC+1

.

..
m2C−1








(2.1)

for the unknown coefficients q0, . . . , qC−1.

2. Find all the roots of q(x) = xC +
∑C−1

j=0 qix
i. These roots, with appropriate multiplicities, are the

unknowns ξ1, . . . , ξK (use e.g. arithmetic means to estimate multiple roots which are scattered by
the noise into clusters).

3. Substitute the recovered ξi’s back into the original equations (1.5). Solve the resulting overdeter-
mined linear system (C unknowns and 2C equations) with respect to the magnitudes {ai,j} by least
squares method.

Several comments are in order.

1. The number of measurements used in step 1 equals 2C which can be greater than the number of

unknowns R = C+K (equality for order zero Prony system). If more measurements are available, the

linear system (2.1) can be modified in a straightforward way to be overdetermined, and subsequently

solved by, say, the least squares method.

2. The linear system for the magnitudes has a special “Vandermonde”-like structure (see below), and

so certain efficient algorithms can be used to solve it (e.g. [16, 29]).

The remainder of this section is organized as follows. The Hankel matrix MC is shown to factor into the

2Equivalent derivation of the method is based on Padé approximation to the function I(z) =
∑∞

k=0
mkz

k – see [37] and,
for instance, [39].
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product of a generalized “Vandermonde-type” matrix which depends only on the nodes ξj , with a upper

triangular matrix depending only on the amplitudes ai,j . We also write down explicitly the linear system

for the ai,j (see step 3 in Algorithm 1 above). These calculations lead to simple non-degeneracy conditions

and stability estimates for the Prony method.

2.B. Factorization of the data matrix. Let us start by recalling a well-known type of matrices.

Definition 2.3. For every j = 1, . . . ,K and k ∈ N let the symbol uj,k denote the following 1 × lj row

vector

uj,k
def
=
[
ξkj , kξk−1

j , . . . , (k)lj−1ξ
k−lj+1
j

]
. (2.2)

Definition 2.4. Let U = U(ξ1, l1, . . . , ξK, lK) denote the matrix

U =




u1,0 u2,0 . . . uK,0

u1,1 u2,1 . . . uK,1

. . .

u1,C−1 u2,C−1 . . . uK,C−1



. (2.3)

This matrix is called the “confluent Vandermonde” ([16, 22]) matrix. It has been long known in numerical

analysis due to its central role in Hermite polynomial interpolation. Its determinant is ([40, p.30])

detU =
∏

1≤i<j≤K

(ξj − ξi)
lj li

K∏

µ=1

lµ−1∏

ν=1

ν!. (2.4)

It is straightforward to see that the matrix U defines the linear system for the jump magnitudes ai,j .

Proposition 2.5. Let a be the column vector containing all the magnitudes {ai,j}, i.e.

a
def
= [a1,0, . . . , a1,l1−1, a2,0, . . . , a2,l2−1, . . . , aK,0, aK,lK−1]

T

and m
def
= [m0, . . . ,mC−1]

T . Then we have

U(ξ1, l1, . . . , ξK, lK)a = m. (2.5)

It is known that every Hankel matrix H admits a factorization H = UDUT , where U is given by (2.3)

and D is a block diagonal matrix – see [17]. Using different notations, such a factorization is proved in [4,

Proposition III.7] for the Hankel matrix MC .

Lemma 2.6. For the system (1.5), the matrix MC admits the following factorization:

MC = UBUT (2.6)

where U = U(ξ1, l1, . . . , ξK, lK) is the confluent Vandermonde matrix (2.3) and B is the C×C block diagonal

6



matrix B = diag{B1, . . . , BK} with each block of size li × li given by

Bi
def
=

















ai0 ai1 · · · · · · ai,li−1

ai1

(

li−1

li−2

)

ai,li−1 0

· · · · · · 0
(

li−1

2

)

ai,li−1 0 · · · 0

ai,li−1 0 · · · · · · 0

















. (2.7)

In other words, Bi is a “flipped” upper triangular matrix whose j-th anti-diagonal equals to

aij ·
[
1
(
j
2

)
· · ·

(
j

j−1

)
1
]

for j = 0, . . . , li − 1.

The formula (2.6) is useful because it separates the jump locations {ξi} from the magnitudes {ai,j},
simplifying the analysis considerably.

Theorem 2.7. The system (1.5) for k = 0, 1, . . . , 2C has a unique solution if and only if all the {ξi}’s
are pairwise different and all the {ai,li−1}’s (just the highest coefficients) are nonzero.

Proof. Existence of a unique solution to the system (2.1) is equivalent to the non-degeneracy of MC =

UBUT . Furthermore, the system for the jump magnitudes is given by (2.5). Therefore, existence of a unique

solution to (1.5) is equivalent to the conditions detU 6= 0 and detB 6= 0. The proof is completed by (2.4)

and (2.7).

2.C. Stability estimates. The stability of the Prony method can be estimated by the condition

numbers of the matrices B and U . In particular, we have the following well-known result (e.g. [47]) from

numerical linear algebra.

Lemma 2.8. Consider the linear system Ax = b and let x0 be the exact solution. Let this system be

perturbed:

(A+∆A)x = b+∆b

and let x0+∆x denote the exact solution of this perturbed system. Denote δx = ‖∆x‖
‖x0‖

, δA = ‖∆A‖
‖A‖ , δb = ‖∆b‖

‖b‖

and the condition number κ = ‖A‖‖A−1‖ for some vector norm ‖ · ‖ and the induced matrix norm. Then

δx ≤ κ

1− κ · δA (δA+ δb) . (2.8)

Now we can easily estimate the stability of the Prony method (compare with similar estimates in [4, eq.

(19)]).

Corollary 2.9. Let the measurements {mk} be given with an error bounded by ε. Denote u = κ(U), b =

κ(B). Assume that |ξi| ≤ Ξ for all i = 1, . . . ,K. Then the Prony method recovers the parameters {ξj , ai,j}
with the following accuracy as ε → 0:

|∆ξj | ∼
(
u2bε

) 1

lj +O
(
ε

2

lj

)

|∆ai,j | ∼ C (Ξ) u
(
u2bε

) 1

maxj lj + L.O.T.

where C (Ξ) is a constant depending on the number Ξ.
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Proof. Using the factorization of Lemma 2.6, we obtain that κ (MC) ≤ u2b. Therefore, according to

(2.8) the coefficient vector q = (q0, . . . , qC−1) is recovered with the accuracy

‖δq‖ ∼ κ (MC)

1− κ (MC) δMC

·
(
δMC + δm

)

≤ u2bε

1− u2bε
∼ u2bε+O(ε2).

The parameters ξ1, . . . , ξK are the roots of the polynomial with coefficient vector q, with multiplicities

l1, . . . , lK. Therefore, by the general theory of stability of polynomial roots (see e.g. [47]) it is known that

∆ξj ∼ (δq)
1

lj . The first part of the claim is thus proved.

Now consider the linear system (2.5) for recovering the jump magnitudes. Note that the matrix U is

known only approximately. Again, by (2.8) we have

δa ∼ κ (U)

1− κ (U) δU
(δU + δm) (2.9)

Assuming that |ξj | ≤ Ξ, it is easy to see that δU ∼ C (Ξ)
(
u2bε

) 1

maxj lj . Plugging this value into (2.9) we get

the desired result.

Inverses of confluent Vandermonde matrices and their condition numbers are extensively studied in

numerical linear algebra (e.g. [12, 13, 22])3. In general, κ(U) will grow exponentially with K and will also

depend on the “node separation”
∏

i6=j |ξj − ξj |−1. As for κ(B), we are not aware of a general formula except

for the simplest cases4.

Finally, notice that the stability estimates of Corollary 2.9 suggest that when the Prony method is used,

the parameters of the problem are “coupled” to each other, in the sense that the accuracy of recovering

either a node ξi or a magnitude ai,j will depend on the values of all the parameters at once. This undesired

3In particular, the paper [22, Theorem 3] contains the following estimate for the norm of {U (ξ1, 1, . . . , ξK, 1)}−1 when the
nodes are arbitrary complex numbers:

‖U−1‖∞ ≤ max
1≤i≤K

bi

K∏

j=1,j 6=i

(
1 + |ξj |

|ξi − ξj |

)2

where

bi
def
= max

(

1 + |ξi|, 1 + 2(1 + |ξi|)
∑

j 6=i

1

|ξj − ξi|

)

.

4The following are estimates of the spectral condition numbers.
• For the standard Prony system we have

κ
(
B
)
=

maxj |aj,0|

minj |aj,0|
.

• For multiplicity 1 confluent system, assuming aj,1 6= 0 and denoting µj
def
=

aj,0

aj,1
, brute force calculation gives

κ
(
B
)
=

maxj

√
√
√
√

µ2

j
+2+µj

√

µ2

j
+4

µ2

j
+2−µj

√

µ2

j
+4

minj

√
√
√
√

µ2

j
+2+µj

√

µ2

j
+4

µ2

j
+2−µj

√

µ2

j
+4

.
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behavior is confirmed by our numerical experiments in Section 6.

3. Measurement set and the Prony map. Assume that the number of measurements is S ≥ R

(where R is the overall number of parameters in the confluent Prony system). Then we define MR,S to be

the set5 of all possible exact measurements, i.e.

MR,S
def
=



(m0,m1, . . . ,mS−1) : mk =

K∑

i=1

li−1∑

j=0

ai,j(k)jξ
k−j
i , ai,j ∈ C, ξj ∈ C



 ⊂ C

S .

This MR,S is the image of CR under the “Prony map” PS : CR → CS defined as

PS ({aij}, {ξi}) = (m0,m1, . . . ,mS−1) : mk =

K∑

i=1

li−1∑

j=0

ai,j(k)jξ
k−j
i . (3.1)

Now let x =
{
{aij}, {ξi}

}
∈ CR be an unknown parameter vector and y = PS (x) ∈ MR,S its corre-

sponding exact measurement vector. The absolute error in each measurement is bounded from above by ε,

therefore the actual measurement satisfies ỹ ∈ B (y, ε). Now consider the set

Tỹ,ε
def
= MR,S ∩B (ỹ, ε)

of all possible noise-free measurements corresponding to the given noisy one ỹ. Any algorithm which receives

this ỹ as input will therefore produce worst-case error which is at least

1

2
diamP−1

S (Tỹ,ε)

where P−1
S denotes the full preimage set.

This prompts us to make the following definition.

Definition 3.1. Assign to each one of the parameters {aij}, {ξi} a unique index 1 ≤ p ≤ R. The best

possible point-wise accuracy of solving the noisy confluent Prony system (1.5) with each noise component

bounded above by ε at the point x = ({aij}, {ξi}) ∈ CR with respect to the parameter p is defined to be

ACC (x, ε, p)
def
= sup

ỹ∈B(PS(x),ε)

1

2
diamp P−1

S (MR,S ∩B (ỹ, ε))

where diamp A is the diameter of the set A along the dimension p.

Obviously, ACC (x, ε) will depend on the point x ∈ CR in a nontrivial way because the chart PS

is nonlinear. Calculation of the function ACC may be considered as one possible answer to the stability

problem posed in the Introduction.

4. Local accuracy. Having given the general definition of accuracy, in the remainder of this paper we

restrict ourselves to the “local” setting in the following sense: we assume that ε is small enough so that the

set MR,S can be approximated by the linear part of the Prony map, and furthermore we take S = R so

that the preimage will be given by the usual inverse function. For such an analysis to be valid, it should be

5Formally, MR,S is a projection of the complex algebraic variety defined by the set of the S confluent Prony equations onto
the corresponding S coordinate axes. If all parameters are real-valued, this is a semialgebraic set.
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done at non-critical points of PS so that this map is locally invertible. By definition, the point x is a critical

point of PS if the Jacobian determinant of PS vanishes at x.

To summarize, let us give the following definition of the local accuracy which is nothing more than the

first-order Taylor approximation to the inverse function N = P−1
S at a regular point of PS .

Definition 4.1. Assume S = R. Let x = ({aij}, {ξi}) ∈ CR be a regular point of PS and assume

ε to be small enough so that that the inverse function N = P−1
S exists in ε-neighborhood of y = PS (x).

Assign, as before, to each one of the parameters {aij}, {ξi} a unique index 1 ≤ p ≤ R. The best possible local

point-wise accuracy of solving the noisy confluent Prony system (1.5) with each noise component bounded

above by ε at the point x with respect to the parameter p is

ACCLOC (x, ε, p)
def
= sup

ỹ∈B(y,ε)

∣∣∣[JN (y) (ỹ − y)]p

∣∣∣

where JN (y) is the Jacobian of N at the point y and [v]p is the p-th component of the vector v.

In Theorem 4.5 below we estimate the function ACCLOC . The key technical tool is the following fac-

torization of the Jacobian of PS which separates the nonlinear part depending on the nodes {ξj} from the

linear part which depends on the magnitudes {ai,j}.
Lemma 4.2. Let x = ({aij}, {ξi}) ∈ CR. Then

JPS
(x) = U(ξ1, l1 + 1, . . . , ξK, lK + 1) · diag{D1, . . . , DK} (4.1)

where U(. . . ) is the confluent Vandermonde matrix (2.3), and Di is the (li + 1)× (li + 1) block

Di
def
=




1 0 0 · · · 0

0 1 0 · · · ai,0
...

...
...

. . .
...

0 0 0 · · · ai,li−1



. (4.2)

Proof. We have by (3.1)

∂mk

∂aij
= (k)jξ

k−j
i ,

∂mk

∂ξi
=

li−1∑

j=0

aij(k)j(k − j)ξ
k−(j+1)
i =

li∑

j=1

ai,j−1(k)jξ
k−j
i .

The rest of the proof is just a straightforward calculation.

Corollary 4.3. x = ({aij}, {ξi}) ∈ CR is a critical point of PS if and only if at least one of the

following conditions is satisfied:

1. ξi = ξj for any pair of indices i 6= j.

2. ai,li−1 = 0 for any 1 ≤ i ≤ K.

Corollary 4.4. Let x ∈ CR be a regular point of PS. Then the Jacobian matrix of the inverse function

10



N = P−1
S at y = PS(x) is equal to

JN (y) = {JPS
(x)}−1

=
∂(a10, . . . , a1,l1−1, ξ1, . . . , aK,0, . . . , aK,lK−1, ξK)

∂(m0, . . . ,mR−1)

= diag{D−1
1 , . . . , D−1

K } · U−1(ξ1, l1 + 1, . . . , ξK, lK + 1)

where

D−1
i =




1 0 0 · · · 0

0 1 0 · · · (−1)li−1 ai,0

ai,li−1

...
...

...
. . .

...

0 0 0 · · · 1
ai,li−1



. (4.3)

Now we are ready to formulate and prove our local stability result.

Theorem 4.5. Assume S = R. Let x = ({aij}, {ξi}) ∈ Cn be a regular point of PS and assume ε to be

small enough so that that the inverse function N = P−1
S exists in ε-neighborhood of y = PS (x).

Then there exists a positive constant C1 depending only on ξ1, . . . , ξK and l1, . . . , lK such that for all

i = 1, . . . ,K

ACCLOC (x, ε, aij) =





C1ε j = 0

C1ε

(
1 +

|ai,j−1|
|ai,li−1|

)
1 ≤ j ≤ li − 1

,

ACCLOC (x, ε, ξi) = C1ε
1

|ai,li−1|
.

Proof. Express the Jacobian matrix JN (y) as

JN (y) =
[
sT10 . . . sT1,l1−1 tT1 . . . sTn0 . . . sTK,lK−1 tTK

]T

where

sij
def
=
[
∂aij

∂m0

∂aij

∂m1

. . .
∂aij

∂mS−1

]
,

ti
def
=
[

∂ξi
∂m0

∂ξi
∂m1

. . . ∂ξi
∂mS−1

]
.

Let ỹ = (m0 +∆m0, . . . ,mS−1 +∆mS−1) where each |∆mk| < ε. Denote by ‖ · ‖1 the l1 vector norm, i.e.

if v = (vi) is an n-vector then ‖v‖1 def
=
∑n

i=1 |vi|. Then

[JN (y) (ỹ − y)]aij
=

∣∣∣∣
P−1∑

k=0

∂aij

∂mk

∆mk

∣∣∣∣ ≤ ε‖sij‖1,

[JN (y) (ỹ − y)]ξi =

∣∣∣∣
P−1∑

k=0

∂ξi

∂mk

∆mk

∣∣∣∣ ≤ ε‖ti‖1.
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By Corollary 4.4, the matrix JN is the product of the block diagonal matrix D∗ def
= diag{D−1

1 , . . . , D−1
K } with

the matrix U∗ def
= (U(ξ1, l1+1, . . . , ξK, lK+1))−1. Therefore, sij and ti are the products of the corresponding

rows of D−1
i with U∗. Let D−1

i = (d
(i)
k,l) and U∗ = (uk,l). Then:

‖sij‖1 =

P∑

k=1

∣∣∣∣
li+1∑

l=1

d
(i)
j,lul,k

∣∣∣∣ ≤
li+1∑

l=1

|d(i)j,l |
P∑

k=1

|ul,k|

and likewise

‖ti‖1 ≤
li+1∑

l=1

|d(i)li+1,l|
P∑

k=1

|ul,k|.

Let ‖ · ‖∞ denote the “maximal row sum” matrix norm – i.e. for any n × n matrix C = (cij) we have

‖C‖∞ def
= maxi=1,...,n

∑n
j=1 |cij |.

Denote C1
def
= ‖U∗‖∞. Then substitute for d

(i)
l,k the actual entries of D−1

i from (4.3) into the above and

get the desired result.

5. Comparison with known results.

5.A. CRB for PACE model. The confluent Prony system (1.5) is equivalent to the PACE model

[4, 5]. The Cramer-Rao bound (CRB) (which gives a lower bound for the variance of any unbiased estimator)

of the PACE model in colored Gaussian noise is as follows (note that the original expressions have been

appropriately modified to match the notations of this paper).

Theorem 5.1 ([5, Proposition III.1]). Let the noise variance be σ2, then6

CRB {ξi} = C2
σ2

|ξi|2 |ai,li−1|2
,

CRB {ai,0} = C3σ
2,

CRB {ai,j} = C4σ
2

(
C5

∣∣∣∣
ai,j−1

ai,li−1

∣∣∣∣
2

+ C6R

{
ai,j−1

ai,li−1

}
+ 1

)
j = 1, 2, . . . , li − 1,

where C2, . . . , C6 are constants depending on the configuration of the nodes {ξi}, while in addition C4, C5, C6

depend on the index j.

As mentioned in Subsection 1.B, there exist several essential differences between our setting and the

statistical signal estimation framework, in particular:

1. no a-priori statistical model of the noise is available;

2. no assumptions on the reconstruction algorithm (estimator) such as unbiasedness are made;

3. measure of performance is the worst-case error rather than estimator variance.

The expressions for the CRB in Theorem 5.1 are very similar to the local point-wise accuracy bounds of

Theorem 4.5. The reason for such similarity is not a-priori clear (although it could be partially attributed to

the fact that both methods require calculation of the partial derivatives of the measurements with respect

to the parameters), and it certainly prompts for further investigation.

6Here R (·) denotes the real part.
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5.B. ESPRIT method. The ESPRIT algorithm is one of the best performing subspace methods

for estimating parameters of the Prony systems with white Gaussian noise. Originally developed in the

context of frequency estimation [43, Section 4.7], it has been generalized to the full PACE model [4], and its

performance has been shown to approach the CRB in the case of high SNR and infinite observation length.

In essence, the ESPRIT (and other subspace methods) relies on the following observations:

1. The range (column space) of both the data matrix MC (2.1) and the confluent Vandermonde matrix

U (2.3) are the same (follows directly from (2.6));

2. the matrix U has the so-called rotational invariance property ([4]):

U↑ = U↓J

where U↑ denotes U without the first row, U↓ denotes U without the last row, and J is a block

diagonal matrix whose i-th block is the li × li Jordan block with the number ξi on the diagonal.

Suppose we knew U , then the matrix J could be found by

J = U↓
♯U↑

(where # denotes the Moore-Penrose pseudo-inverse) and then the nodes ξj could be recovered as the

eigenvalues of J .

Unfortunately, U is unknown in advance, but suppose we had at our disposal a matrix W whose column

space was identical to that of U . In that case, we would have W = UG for an invertible G, and consequently

W ↑ = W↓Φ

where

Φ = G−1JG

which means that the eigenvalues of Φ are also {ξi}. Such a matrix W can be obtained for example from

the singular value decomposition (SVD) of the data matrix/covariance matrix. To summarize, the ESPRIT

method for estimating {ξi}, as used in our experiments below, is as follows.

Algorithm 2 ESPRIT method for recovering the nodes {ξi}.
Let MS be a rectangular n× l Hankel matrix built from the measurements.

1. Compute the SVD MS = WΣV T .
2. Calculate Φ = W

#
↓ W ↑.

3. Set {ξi} to be the eigenvalues of Φ with appropriate multiplicities (use e.g. arithmetic means to
estimate multiple nodes which are scattered by the noise).

Note that the dimensions n, l are not fixed a-priori, but in [6] it is shown that taking n = 2l or l = 2n

results in optimal performance for non-confluent Prony system (1.1).

Since the performance of the ESPRIT method is close to the CRB which, in turn, resembles our local

bounds, we regard the ESPRIT as the best candidate among the “global” solution methods of the confluent

Prony system. It should be noted, however, that the analysis of ESPRIT as presented in [6] suggests a

relatively complicated dependence of the estimator performance on the model parameters for small number
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of measurements S.

5.C. Approximate Prony method. In [36] the authors develop the Approximate Prony method

for solving the system (1.1) (restricting ξj to be of unit length), and analyze its performance for small

measurement errors. In more detail, the model is defined as

h (x) =

M∑

j=1

cj e
ıfjx x ∈ R, cj ∈ C, fj ∈ (−π, π) .

The measurements are given with errors

h̃ (k) = h (k) + ek, k = 0, . . . , 2N

where the number of measurements N satisfies N ≥ 2M + 1. Finally, the coefficients cj are assumed to be

large with respect to the noise level, i.e.

|ek| ≤ ε1 ≪ |cj | .

The proposed solution method is as follows.

Algorithm 3 Approximate Prony method.

1. Build the Hankel matrix H̃ ∈ C
2N−L,L from the measurements where L is an upper bound on the

number of nodes. Compute singular value decomposition of H̃ , and take the smallest nonzero singular
value and its singular vector v = (vi) . Finally, compute the roots of the polynomial p (z) =

∑L
i=0 viz

i.
These are the approximations of {fj} .

2. Find {cj} by solving an overdetermined Vandermonde linear system.

The stability analysis of the APM is performed only for the step 2 above, assuming that the frequencies

{fj} have been recovered with high accuracy. [36, Theorem 5.2] gives the following estimate:

|cj − c̃j | ∼
√
NM

∣∣∣fj − f̃j

∣∣∣max
k

|hk|+max
k

|∆hk| . (5.1)

While missing explicit analysis of step 1 above (however, the actual numerical accuracy of this step was

shown in [34] to be comparable to the performance of the ESPRIT method) and dealing with single poles

only, these results may provide an important insight as to the dependence of the accuracy on the number of

measurements N , as well as to the applicability of the Vandermonde inversion for recovering the magnitudes

(the errors in fact increase with N !) In addition, the authors notice that the accurate recovery of the

magnitudes depends greatly on a sufficient accuracy of recovering the nodes, and this fact is also reflected

in our numerical experiments (Section 6).

6. Numerical experiments. In our numerical experiments we had two distinct goals:

1. Numerically investigate the “best possible local accuracy” of inverting (1.5) as a function of the

various parameters of the problem, and compare the results with the predictions of Theorem 4.5.

2. Ascertain whether there exist some regular patterns in the behavior of the global solution methods

(Prony and ESPRIT) in a similar “local” setting, and compare their performance to the optimal one.

14



6.A. Experimental setup.

1. Given K, d, choose the jumps ξ1, . . . , ξK ∈ [0, 1] and the magnitudes a1,0, . . . , aK,d−1 ∈ [−1, 1].

2. Change one or more of the parameters according to a particular experiment.

3. Calculate the perturbed moments m̃k = mk + εk where mk is given by (1.5) and εk ≪ 1 (on the

order of 10−10) are randomly chosen.

4. Invert (1.5) with the right hand side given by m̃k by one of the three methods:

(a) Nonlinear least squares minimization (using MATLAB’s lsqnonlin routine) with the initial

guess being very close to the true parameter values. This is our simulation of the “local” setting.

(b) Global Prony method - Algorithm 1.

(c) ESPRIT method - Algorithm 2.

5. Calculate the absolute errors |∆ξj | =
∣∣∣ξj − ξ̃j

∣∣∣ and |∆ai,j | = |ai,j − ãi,j |.
In all the experiments we took K = 2. All solution methods were applied to the same moment sequence

{mk}. The number of measurements is the minimal necessary for exact inversion, namely R for least squares

and 2C both for Prony and ESPRIT.

6.B. Results.

6.B.1. Changing the highest coefficient. In the first set of experiments, we checked how the recon-

struction errors |∆ξi| , |∆ai,j | depend on the magnitude of the highest coefficient |ai,li−1|. The results are

presented in Figure 6.1 on page 16 (a-c).

For both least squares and ESPRIT (but not for Prony), the inverse proportionality |∆ξi| ∼ 1
|ai,li−1|

is

seen in Figure 6.1 on page 16 (a), (c), matching the theoretical predictions of Theorem 4.5.

For LS and ESPRIT, the errors |∆ai,j | seem to be unaffected by the increase in |ai,li−1|. This can

be explained very well by the formula |∆ai,j | ∼ 1 +
|ai,j−1|

|ai,li−1| so that indeed |∆ai,j | should remain close to

constant as |ai,li−1| → ∞.

The Prony method’s performance with respect to the recovery of the magnitudes actually degrades with

the increase in |ai,li−1|. Although both Prony and ESPRIT use the same method for the recovery of the

magnitudes, it appears that the initial error in recovering the nodes, which is significantly smaller in ESPRIT

(see Subsection 6.B.3 below), influences this step greatly - in accordance with the predictions of [36, 34] (see

also discussion in Subsection 5.C).

In addition, the Prony method fails to separate recovery of a node and its magnitudes (say ∆ξ1,∆a1,j)

from the highest magnitude associated with another node (e.g. |a2,l2−1|) - these results are not shown for

saving space.

6.B.2. Changing coefficient other than the highest. In the second set of experiments, we changed

the magnitude of some coefficient other than the highest, i.e. ai,j for j < li − 1. The results are presented

in Figure 6.1 on page 16 (d-f).

For the least squares method, the dependence of |∆ai,j | on the “previous” magnitude |ai,j−1| for j 6= 0 is

consistent with the formula |∆ai,j | ∼ 1+
|ai,j−1|

|ai,li−1| - such a behavior should be visible when |ai,j−1| ≫ |ai,li−1|,
as can indeed be noticed in Subfigure 6.1d. In addition, the other magnitudes and the jumps are unaffected,

as predicted.

On the contrary, neither Prony nor ESPRIT succeed in confining the influence of |ai,j−1| only to the

recovery of the next magnitude |∆ai,j | . In particular, |∆ξ1| increases with |a1,0| in both of them. The error

in all the magnitudes grows with |a1,0|, as opposed to the least squares where only |∆a1,1| is increased.
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Figure 6.1: (a-c): Dependence of the reconstruction error on the magnitude of the highest coefficient, degree = 2.

(d-f): Dependence of the reconstruction error on the magnitude of the “previous” coefficient, degree = 1.
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Figure 6.2: Reconstruction error as ε → 0, degree = 2.
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Figure 6.3: Dependence of the reconstruction error on the order of the model.

6.B.3. Dependence on the measurement error. In the next experiment, we kept all the parameters

constant and changed the magnitude of the error maxk εk. The results are presented in Figure 6.2 on page

17. The ESPRIT performs slightly better than Prony, but both of them are worse than the optimal least

squares. Note however that the asymptotic error (the slope) is O (ε) in spite of the fact that both algorithms

involve extraction of multiple roots which should decrease the accuracy to O
(
ε

1

d

)
where d is the order of the

pole. This phenomenon can be explained by the effect of averaging the clustered roots (see [4, Proposition

V.3]).

6.B.4. Dependence on the model order. Next, we checked the dependence of the reconstruction

error on the model order D
def
= maxi=1,...,K li. The results are presented in Figure 6.3 on page 17. The

reconstruction error for all the parameters grows exponentially in D for all the methods.

6.B.5. Dependence on the node separation. Finally, we checked the dependence of the reconstruc-

tion error on the distance between the two nodes |ξ2 − ξ1|. The results are presented in Figure 6.4 on page

17
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Figure 6.4: Dependence of the reconstruction error on the node separation.

18. For all the three methods, the results are consistent with

|∆ξi| , |∆ai,j | ∼ |ξ2 − ξ1|−D
.

6.C. Conclusions. In the numerical experiments we have investigated the “best possible local accuracy”

via the least squares method, comparing it both with the theoretical results of Theorem 4.5 and with the

performance of two “global” solution techniques, namely Prony and ESPRIT methods, for small perturbations

(high SNR). Our results suggest that:

1. The numerical behavior of the solution in the case of small data perturbations indeed exhibits the

patterns predicted by Theorem 4.5, in particular the qualitative dependence of the reconstruction

error on the values of the parameters of the problem.

2. The Prony solution method largely fails to separate the parameters which could be separated in

theory. Furthermore, its performance actually degrades when the highest coefficient |ai,li−1| is

increased. ESPRIT separates the parameters better than Prony, but is still worse than optimal.

3. In terms of absolute reconstruction error, ESPRIT is better than Prony but still worse than the

optimal LS.

4. In terms of dependence of the reconstruction error on the model order and the node separation, both

Prony and ESPRIT behave close to the predicted law, namely exponential increase in the order and

polynomial increase in the separation distance.

7. Discussion. We believe that the analytically approach of this paper has the potential to provide

relatively complete answer to several important questions related to stable solution of Prony-type systems,

as briefly discussed below.

The numerical experiments suggest that the least squares method approximates the optimal “local”

behavior very well. However, it is well-known that a very accurate initial approximation is required in order

to find the global minima. It is customary to use one of the global solution methods to obtain such an initial

value. Further analysis of the Prony sets MR,S may provide explicit conditions for such an initialization to

be sufficiently close to the true solution.

The general case S ≥ R should be well-understood in order to estimate the feasibility of taking more

18



measurements than strictly needed (oversampling). Without assumptions on the noise, it is not a-priori

obvious that averaging should improve the accuracy in any way. Again, such an understanding is hopefully

achievable via the investigation of MR,S with S ≫ R.

In practice it is often the case that neither the number of nodes K nor the numbers {li} are known a-priori,

but only their upper bounds. In this case, given a noisy measurement vector, more than one “explanation” is

possible for this data, in which case a good reconstruction algorithm needs somehow to select the “optimal”

configuration. One possible way to achieve this goal is to characterize, for each configuration of the system

(i.e.
{
K, {li}Ki=1

}
), the “stable regions” of the corresponding measurement sets MR,S , for which the accuracy

function ACC does not exceed a predefined upper bound. Based on the initial measurement ỹ ∈ CS and the

error bound ε, an algorithm would choose the closest “stable measurement set”, i.e. select a configuration

for which the local accuracy is optimal. Using this approach, collision of two nodes ξi, ξj can in principle be

handled in a stable way by substituting the configuration
{
K, {li}Ki=1

}
with {K − 1, {l1, . . . , li + lj , . . . , lK}}

once the measurement vector leaves the stability region associated with the former configuration. In this

regard, we note that such a singular behavior has been studied in [48] (see also [33]), where it is shown that if

the solution is represented in the basis of divided differences, then the inverse operator is uniformly bounded

with respect to the corresponding expansion coefficients. Analogous developments for extraction of multiple

roots of polynomials [49] might be very relevant as well.

In order to achieve the above goals, we propose to compute the function ACC as accurately as possi-

ble. For that purpose, more detailed analysis of the Prony map7 is necessary. In particular, its essential

nonlinearity should be quantified using the second-order terms in the Taylor expansion.

In addition to (1.5), other generalizations of the basic Prony system (1.1) appear in applications. One

such extension arises in Eckhoff’s method [21] for reconstructing piecewise smooth functions from Fourier

coefficients. There, an additional parameter appears: namely, the measurements mk are given starting from

some large index k = M . In [11], we have presented an algorithm for solving this system with high accuracy

(in the sense of asymptotic rate of convergence as M → ∞.) However, the question of “maximal possible

accuracy” for this problem is still open. It will be most desirable to reinterpret those results in the sense of

global stability bounds for Prony-like systems.
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