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Abstract

In 1972, Woodall raised the following Ore type condition for directed Hamilton cycles
in digraphs: Let D be a digraph. If for every vertex pair u and v, where there is no arc
from u to v, we have d+(u) + d−(v) ≥ |D|, then D has a directed Hamilton cycle. By a
correspondence between bipartite graphs and digraphs, the above result is equivalent to the
following result of Las Vergnas: Let G = (B,W ) be a balanced bipartite graph. If for any
b ∈ B and w ∈ W , where b and w are nonadjacent, we have d(w) + d(b) ≥ |G|/2 + 1, then
every perfect matching of G is contained in a Hamilton cycle.

The lower bounds in both results are tight. In this paper, we reduce both bounds by
1, and prove that the conclusions still hold, with only a few exceptional cases that can be
clearly characterized.

Key words: degree sum, Matching alternating Hamilton cycle, Hamilton cycle.

1 Introduction

Hamiltonian problems, and their many variations, have been studied extensively for more than
half a century. The readers could refer to the surveys of Gould ([17] and [18]), Kawarabayashi
([22]) and Broersma ([11]) to trace the development in this field. Recently, approximate solutions
of many traditional Hamiltonian problems and conjectures in digraphs came forth ([24], [23],
[12] and [26]), which are surveyed by Kühn and Osthus ([25]).

Hamiltonicity and related properties are also important in practical applications. For example,
in network design, the existence of Hamilton cycles in the underlying topology of an intercon-
nection network provide advantage for the routing algorithm to make use of a ring structure,
while the existence of a hamiltonian decomposition allows the load to be equally distributed,
making network robust ([9]).

There are lots of degree or degree sum conditions for hamiltonicity. Often, the lower bounds in
such conditions are best possible. However, we could still reduce the bounds and try to identify
all exceptional graphs, that is, the extremal graphs for the conditions. Such kind of research
often leads to the discovery of interesting topology structures. In this paper, we apply this idea
to Woodall’s condition for the existence of directed Hamilton cycles in digraphs.
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Science Foundation of Guangdong Province, China (9451030007003340) and the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China (08KJB110008).
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2 Terminology, notations and preliminary results

In this paper we consider finite, simple and connected graphs, and finite and simple digraphs.
For the terminology not defined in this paper, the reader is referred to [10] and [3].

Let G be a graph with vertex set V (G) and edge set E(G). We denote by ν or |G| the order
of V (G). For u ∈ V (G), we denote by d(u) the degree of u, and N(u) or NG(u) the set of
neighbors of u in G. For a subgraph H of G and a vertex u ∈ V (G − H), we also denote by
NH(u) the set of neighbors of u in H. For any two disjoint vertex sets X, Y of G we denote
by e(X,Y ) the number of edges of G from X to Y . For u, v ∈ V (G), we denote by d(u, v) the
distance between u and v, that is, the length of the shortest path connecting u and v. By uv+
(uv−) we mean the vertices u and v are adjacent (nonadjacent). If a vertex u sends (no) edges
to X, where X is a subgraph or a vertex subset of G, we write u → X (u 9 X). By nK2, we
denote a graph consisting of n independent edges.

Let D be a digraph with vertex set V (D) and arc set A(D), u, v and w distinct vertices
of D. We denote by |D| the order of V (D), d+(u) and d−(u) the out-degree and in-degree
of u, respectively. The degree of u is the sum of its out-degree and in-degree. The minimum
out-degree and in-degree of the vertices in D, is denoted by δ+(D) and δ−(D). We let δ0(D) =
min{δ+(D), δ−(D)}. Let (u, v) denote an arc from u to v. If (u, v) ∈ A(D) or (v, u) ∈ A(D),
we say that u and v are adjacent. If (w, u) ∈ A(D) and (w, v) ∈ A(D), then we say that the
pair {u, v} is dominated, if (u,w) ∈ A(D) and (v, w) ∈ A(D), then we say that the pair {u, v}
is dominating. The complete digraph on n ≥ 1 vertices, denoted by

←→
K n, is obtained from the

complete graph Kn by replacing every edge xy with two arcs (x, y) and (y, x). Without causing
ambiguity, we use In to denote a graph or a digraph consisting of n independent vertices. A
transitive tournament is an orientation of complete graph for which the vertices can be numbered
in such a way that (i, j) is an edge if and only if i < j.

Let C = u0u1 . . . um−1u0 be a cycle in a graph G. Throughout this paper, the subscript
of ui is reduced modulo m. We always orient C such that ui+1 is the successor of ui. For
0 ≤ i, j ≤ m − 1, the path uiui+1 . . . uj is denoted by uiC

+uj , while the path uiui−1 . . . uj is
denoted by uiC

−uj . For a path P = v0v1 . . . vp−1 and 0 ≤ i, j ≤ p − 1, the segment of P from
vi to vj is denoted by viPvj .

A matching M of G is a subset of E(G) in which no two elements are adjacent. If every
v ∈ V (G) is covered by an edge in M then M is said to be a perfect matching of G. For
a matching M , an M -alternating path (M -alternating cycle) is a path (cycle) of which the
edges appear alternately in M and E(G)\M . We call an edge in M or an M -alternating path
starting and ending with edges in M a closed M -alternating path, while an edge in E(G)\M or
an M -alternating path starting and ending with edges in E(G)\M an open M -alternating path.

The following results of Dirac and Ore for the existence of Hamilton cycles in graphs are basic
and famous.

Theorem 2.1. (Dirac, 1952 [15]) If G is a simple graph with |G| ≥ 3 and every vertex of G
has degree at least |G|/2, then G has a Hamilton cycle.

Theorem 2.2. (Ore, 1960 [32]) Let G be a simple graph. If for every distinct nonadjacent
vertices u, v of G, we have d(u) + d(v) ≥ |G|, then G has a Hamilton cycle.

Below are some of their digraph versions.

Theorem 2.3. (Ghouila-Houri, 1960 [16]) Let D be a strong digraph. If the degree of every
vertex of D is at least |D|, then D has a directed Hamilton cycle.

Theorem 2.4. ([3], Corollary 5.6.3) If D is a digraph with δ0(D) ≥ |D|/2, then D has a
directed Hamilton cycle.

Theorem 2.5. (Woodall, 1972 [36]) Let D be a digraph. If for every vertex pair u and v, where
there is no arc from u to v, we have d+(u) +d−(v) ≥ |D|, then D has a directed Hamilton cycle.
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It is not hard to verify that the bounds in above theorems are tight. Nash-Williams [31]
raised the problem of describing all the extremal digraphs in Theorem 2.3, that is, all digraphs
with minimum degree at least |D| − 1, who do not have a directed Hamilton cycle. As a partial
solution to this problem, Thomassen proved a structural theorem on the extremal graphs.

Theorem 2.6. (Thomassen, 1981 [34]) Let D be a strong non-Hamiltonian digraph, with min-
imum degree |D| − 1. Let C be a longest directed cycle in D. Then any two vertices of D − C
are adjacent, every vertex of D − C has degree |D| − 1 (in D), and every component of D − C
is complete. Furthermore, if D is strongly 2-connected, then C can be chosen such that D − C
is a transitive tournament.

Darbinyan characterized the digraphs of even order that are extremal for both Theorem 2.3
and Theorem 2.4.

Theorem 2.7. (Darbinyan, 1986 [13]) Let D be a digraph of even order such that the degree of
every vertex of D is at least |D| − 1 and δ0(D) ≥ |D|/2 − 1. Then either D is hamiltonian or
D belongs to a non-empty finite family of non-hamiltonian digraphs.

We study the extremal graphs of Theorem 2.5 in this paper. Compared with Theorem 2.6
and Theorem 2.7, we can completely determine all the extremal graphs.

For other results on degree sum conditions for the existence of Hamilton cycles in digraphs
see [4], [5], [6], [13], [14], [29], [30], [37], [38], and a good summary in chapter 5 of [3].

Another interesting aspect of directed Hamilton cycle problems is their connection with the
problem of matching alternating Hamilton cycles in bipartite graphs. Given a bipartite graph G
with a perfect matching M , if we orient the edges of G towards the same part, then contracting
all edges in M , we get a digraph D. An M -alternating Hamilton cycle of G corresponds to a
directed Hamilton cycle of D, and vice versa. Hence, Theorem 2.5 is equivalent to the following
theorem.

Theorem 2.8. (Las Vergnas, 1972 [27]) Let G = (B,W ) be a balanced bipartite graph of order
ν. If for any b ∈ B and w ∈W , where b and w are nonadjacent, we have d(w) +d(b) ≥ ν/2 + 2,
then for every perfect matching M of G, there is an M -alternating Hamilton cycle.

Hence, we also determine the extremal graphs for the result of Las Vergnas in this paper.
Theorem 2.8 is an instance of the problem of cycles containing matchings, which studies the

conditions that enforce certain matchings to be contained in certain cycles. Some related works
can be found in [1], [2], [8], [19], [20], [21], [33] and [35]. In particular, Berman proved the
following.

Theorem 2.9. (Berman, 1983 [8]) Let G be a graph on ν ≥ 3 vertices. If for any pair of
independent vertices x, y ∈ V (G), we have d(x) + d(y) ≥ ν + 1, then every matching lies in a
cycle.

Similarly to the above-mentioned works, Jackson and Wormald determined all the extremal
graphs of a generalized version of Berman’s result.

Theorem 2.10. (Jackson and Wormald, 1990 [20]) Let G be a graph on ν vertices and M be
a matching of G such that (1) d(x) + d(y) ≥ ν for all pairs of independent vertices x, y that are
incident with M . Then M is contained in a cycle of G unless equality holds in (1) and several
exceptional cases happen.

We will state our main results and their proofs in the following sections.
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3 Main results

Let m, n ≥ 1 be integers. Let D1 be the set of all digraphs obtained by identifying one vertex

of
←→
K n+1 with one vertex of

←→
K m+1. Let D2 be an arbitrary digraph on n vertices, and take a

copy of In+1. Let D2 be the set of all digraphs obtained by adding arcs of two directions between
every vertex of In+1 and every vertex of D2. Let D3 be as shown in Figure 1, and take a copy

of
←→
K n. Let D3 be the set of all graphs constructed by adding arcs of two directions between vi,

i = 0, 1, and every vertex of
←→
K n, and possibly, adding any of the arcs (v0, v1) and (v1, v0), or

both. Finally, let D4 be the digraph showed in Figure 2. Our main result is as below.

Theorem 3.1. Let D be a digraph. For every vertex pair u and v, where there is no arc from
u to v, we have d+(u) + d−(v) ≥ |D| − 1, then D has a directed Hamilton cycle, unless D ∈ D1,
D2 or D3, or D = D4.

Let G1 be the class of graphs G constructed by identifying an edge of one Km+1,m+1 and one
Kn+1,n+1, and M1 be the set of all perfect matchings of G containing the identified edge. Let
G2 be the class of graphs G, constructed by taking a copy of (n+1)K2 with bipartition (B, W ),
and an arbitrary bipartite graph G2 with bipartition (B1, W1), where |B1| = |W1| = n, which
has at least one perfect matching, then connecting every vertex in B to every vertex in W1, and
every vertex in W to every vertex in B1. Furthermore, letM2 be the set of all perfect matchings
of G, containing all the edges in (n + 1)K2 (shown thick in Figure 3). Let G3 be as shown in
Figure 4, and G3 the set of the graphs G constructed by taking one copy of Kn,n with bipartition
(B,W ), and connecting every vertex in B to w0 and w1, every vertex in W to b0 and b1, and
possibly, adding any of the edges w0b1, w1b0, or both. Let M3 be the set of perfect matchings
of G, containing the thick edges in G3. Finally, we let graph G4 be the graph in Figure 5, and
M4 the perfect matching of it, consisting of the thick edges. We have the following version of
our main theorem.

Theorem 3.2. Let G = (W,B) be a bipartite graph with a perfect matching M , for every vertex
pair w ∈W and b ∈ B, where wb−, we have d(w)+d(b) ≥ ν/2+1. Then G has an M -alternating
Hamilton cycle, unless one of the following holds.

(1) G ∈ G1, and M ∈M1.
(2) G ∈ G2, and M ∈M2.
(3) G ∈ G3, and M ∈M3.
(4) G = G4 and M = M4.

Since the two results are equivalent, we only prove Theorem 3.2 in the next section. Before
that, let’s say a few words on the non-existence of M -alternating Hamilton cycles in the four
exceptional cases. In Case (1), an M -alternating cycle of G must contain the identified edge,
whose endvertices form a vertex cut of G, so G does not have an M -alternating Hamilton cycle.
In Case (2), if there is an M -alternating Hamilton cycle C of G, then the edges on C that belong
to M must be in (n+ 1)K2 and G2 alternately, but there is one more such edge in (n+ 1)K2, a
contradiction. In Case (3), we can not have an M -alternating Hamilton cycle containing both
e0 and e1. Finally in Case (4), the non-existence of any M -alternating Hamilton cycle can be
verified directly.

4 Proof of Theorem 3.2

Let G = (W,B) be a bipartite graph satisfying the condition of the theorem, M a perfect
matching of G. Suppose that G does not have an M -alternating Hamilton cycle. We prove the
theorem by characterizing G.

The following two lemmas will be used in our proof.
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Figure 5: Exceptional graph G4

Lemma 4.1. Let G = (W,B) be a bipartite graph with a perfect matching M . Let C =
u0u1 . . . u2m−1u0 be a longest M -alternating cycle in G, where u2i ∈ W , u2i+1 ∈ B, and
u2iu2i+1 ∈M , 0 ≤ i ≤ m−1. Let b ∈ B, w ∈W be the ending vertices of a closed M -alternating
path P in G − C. Then, for every 0 ≤ i ≤ m − 1, either u2ib− or u2i−1w−. Furthermore, if
b→ C and w → C, then |NC(b)|+ |NC(w)| ≤ m− |P |/2 + 1.

Proof. If there exists 0 ≤ k ≤ m − 1, such that u2kb+ and u2k−1w+, then u2kC
+u2k−1wPbu2k

is an M -alternating cycle longer than C, a contradiction. Thus, for 0 ≤ i ≤ m− 1, either u2ib−
or u2i−1w−.

If b → C and w → C, let u2r ∈ NC(b) and u2s−1 ∈ NC(w) be such that P ′ = u2sC
+u2r−1

is the shortest. Then, there is no neighbor of w and b on P ′. Since C is the longest, we have
|P ′| ≥ |P |. So |NC(w)|+ |NC(b)| ≤ 2 + (|C| − |P ′| − 2)/2 = m− |P ′|/2 + 1 ≤ m− |P |/2 + 1.

Lemma 4.2. Let G be a bipartite graph with a perfect matching M . Let C = u0u1 . . . u2m−1u0
be a longest M -alternating cycle in G, where u2iu2i+1 ∈ M , 0 ≤ i ≤ m − 1. Let C1 be an
M -alternating cycle in G−C. For any vertex set {u2i−1, u2i}, 0 ≤ i ≤ m−1, either u2i−1 9 C1

or u2i 9 C1.

Proof. Suppose there exists 0 ≤ k ≤ m − 1 such that u2k−1 → C1 and u2k → C1. Let b ∈
NC1(u2k) and w ∈ NC1(u2k−1). We can always find a closed M -alternating path, P , as a
segment of C1, connecting b and w. Then u2kC

+u2k−1wPbu2k is an M -alternating cycle longer
than C, contradicting our condition.

In our proof, some important intermediate results are shown as claims.

Claim 1. There is an M -alternating cycle in G whose length is at least ν/2 + 1.

Proof. Let P = u0u1 . . . u2p−1 be a longest closed M -alternating path in G, then, all neighbors
of u0 and u2p−1 in G should be on P .

If u0u2p−1+, then we obtain a cycle C = u0u1 . . . u2p−1u0. Since P is the longest, e(V (C), V (G−
C)) = 0. However, G is connected, so C must be an M -alternating Hamilton cycle and the claim
holds.

If u0u2p−1−, by our condition, d(u0) +d(u2p−1) ≥ ν/2 + 1. Without lost of generality, assume
that d(u0) ≥ d(u2p−1) and let u2i−1 be the neighbor of u0 with the maximum i, 1 ≤ i ≤ p. Then,
i ≥ (ν/2 + 1)/2 and u0Pu2i−1u0 is an M -alternating cycle with length at least 2i ≥ ν/2 + 1.
This proves our claim.

Now let C = u0u1 . . . u2m−1u0 be a longest M -alternating cycle in G, where u2i ∈W , u2i−1 ∈
B and u2iu2i+1 ∈ M . Let G1 = G − C. Denote the neighborhood and degree of v ∈ V (G1) in
G1 by N1(v) and d1(v). By Claim 1, |G1| ≤ ν/2− 1.

Let P1 = v0v1 . . . v2p1−1 be a longest closed M -alternating path in G1, where v2i ∈ W and
v2i+1 ∈ B, 0 ≤ i ≤ p1 − 1. Then N1(v0), N1(v2p1−1) ⊆ V (P1), and d1(v0), d1(v2p1−1) ≤ p1.
Firstly, we prove that v0 → C and v2p1−1 → C.

6



If v0 9 C and v2p1−1 9 C, then d(v0) + d(v2p1−1) ≤ 2p1 ≤ |G1| ≤ ν/2− 1. By the condition
of our theorem, v0v2p1−1+, and we get a cycle C1 = v0v1 . . . v2p1−1v0 in G1. By Lemma 4.2, for
any two vertices u2i−1 and u2i on C, at least one of them, say u2i 9 C1. Then d(u2i) ≤ ν/2−p1.
But then d(u2i) + d(v2p1−1) ≤ ν/2, contradicting the condition of the theorem.

If only one of v0 and v2p1−1, say v0 → C. Let a neighbor of v0 on C be u2j−1, by Lemma 4.1,
u2j sends no edge to P1, so d(u2j) ≤ ν/2− p1, and d(u2j) +d(v2p1−1) ≤ ν/2, again contradicting
the condition of the theorem.

Therefore v0 → C and v2p1−1 → C.

By Lemma 4.1, |NC(v0)|+ |NC(v2p1−1)| ≤ m− p1 + 1. Therefore,

d(v0) + d(v2p1−1) ≤ 2p1 + (m− p1 + 1)

= m+ p1 + 1

≤ m+ |G1|/2 + 1

= ν/2 + 1. (1)

If v0v2p1−1−, then by our condition, d(v0) + d(v2p1−1) ≥ ν/2 + 1 and hence equalities in (1)
hold. But then we must have v0v2p1−1+, a contradiction. So v0v2p1−1+, and we get a cycle
C1 = v0v1 . . . v2p1−1v0.

If G1 − C1 is nonempty, then there exists an edge wb ∈ M ∩ E(G1 − C1), where w ∈ W
and b ∈ B. By the choice of P1, e(V (C1), V (G1 − C1)) = 0. By our condition, d(w) + d(b) +
d(v0) + d(v2p1−1) ≥ 2(ν/2 + 1) = ν + 2. However, by Lemma 4.1, |NC(w)|+ |NC(b)| ≤ m, and
hence d(w) + d(b) ≤ |G1| − 2p1 + m, while d(v0) + d(v2p1−1) ≤ m + p1 + 1 by (1), therefore
d(w) + d(b) + d(v0) + d(v2p1−1) ≤ |G1| + 2m − p1 + 1 = ν − p1 + 1 < ν + 1, a contradiction.
Hence, G1 − C1 must be empty, then |G1| = 2p1 and C1 is an M -alternating Hamilton cycle of
G1.

We claim that every vertex of G1 sends some edges to C. Let v be any vertex in G1. Since
G1 has an M -alternating Hamilton cycle C1, we can choose a closed M -alternating Hamilton
path P1 of G1 starting from v. By above discussion, v sends some edges to C.

For a longest M -alternating cycle C in G, we call the graph G1 = G − C a critical graph
(with respect to C) and a closed M -alternating Hamilton path of G1, P1 = v0v1 . . . v2p1−1, where
v2i ∈ W and v2i+1 ∈ B, a critical path, or a critical edge if |P1| = 2. For a critical path P1,
we can always find u2s−1 ∈ NC(v0) and u2r ∈ NC(v2p1−1), such that P2 = u2sC

+u2r−1 is the
shortest. We let R = u2rC

+u2s−1.
By Lemma 4.2, u2s 9 G1 and u2r−1 9 G1. Further, for any edge u2i−1u2i on R, we must

have e({u2i−1, u2i}, {u2s, u2r−1}) ≤ 1, or we get an M -alternating Hamilton cycle

u2rC
+u2i−1u2sC

+u2r−1u2iC
+u2s−1v0P1v2p1−1u2r.

Hence,

d(u2s) + d(u2r−1) ≤ |P2|+ 2 + (|R| − 2)/2 = |P2|+ |R|/2 + 1. (2)

Moreover,

d(v0) + d(v2p1−1) ≤ 2p1 + 2 + (|R| − 2)/2 = 2p1 + |R|/2 + 1. (3)

So,

d(u2s) + d(u2r−1) + d(v0) + d(v2p1−1) ≤ 2p1 + |P2|+ |R|+ 2 = ν + 2. (4)
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However v0u2r−1− and v2p1−1u2s−, by our condition,

d(u2s) + d(u2r−1) + d(v0) + d(v2p1−1) ≥ 2(ν/2 + 1) = ν + 2. (5)

So all equalities in (2), (3), (4) and (5) must hold. To get equality in (3), v0 (respectively v2p1−1)
must be adjacent to all vertices in V (G1)∩B (respectively V (G1)∩W ). and for any edge u2i−1u2i
on R, e({u2i−1, u2i}, {v0, v2p1−1}) = 1. Therefore, for a critical path P1 = v0v1 . . . v2p1−1, we find
two closed M -alternating paths R and P2 as segments of C, such that V (C) = V (R) ∪ V (P2),
where the ending vertices of R is adjacent to v0 and v2p1−1, respectively, and for any edge
u2i−1u2i /∈ M on R, e({u2i−1, u2i}, {v0, v2p1−1}) = 1, while e(V (P2), {v0, v2p1−1}) = 0. We call
P2 the opposite path, and R the central path for P1.

Furthermore, to get equality in (2), u2s (respectively u2r−1) must be adjacent to all vertices
in V (P2) ∩B (respectively V (P2) ∩W ). In particular u2su2r−1+.

Claim 2. A critical graph G1 is complete bipartite.

Proof. Since C1 is an M -alternating Hamilton cycle of G1, for any vertex v ∈ V (G1), P1 can be
chosen so that it is starting from v. By the equality of (3), v sends edges to every vertex in the
opposite part of G1.

Let G2 = G[V (P2)]. We call G2 the opposite graph. We choose C, G1 and P1 so that the
opposite path P2 is the shortest.

Claim 3. e(V (G1), V (G2)) = 0, and u2s−1 (respectively u2r) is adjacent to every vertex in
V (G1) ∩W (respectively V (G1) ∩B).

Proof. If |G1| = 2 the conclusion holds. We assume that |G1| ≥ 4.
For any closed M -alternating Hamilton path P ′1 of G1 with ending vertices w ∈W and b ∈ B,

we can find an opposite path P ′2 and a central path R′ for P ′1. Since P2 is chosen as the shortest,
|P ′2| ≥ |P2| and |R′| ≤ |R|. Similar to (3) we have

d(w) + d(b) ≤ 2p1 + |R′|/2 + 1 ≤ 2p1 + |R|/2 + 1. (6)

Together with (2), we have

d(u2s) + d(u2r−1) + d(w) + d(b) ≤ ν + 2. (7)

Since u2r and u2s−1 send edges to G1, which has an M -alternating Hamilton cycle, by Lemma
4.2, u2r−1 9 G1 and u2s 9 G1, and hence wu2r−1− and bu2s−. By the condition given,

d(u2s) + d(u2r−1) + d(w) + d(b) ≥ 2(ν/2 + 1) = ν + 2. (8)

Hence all equalities in (6), (7) and (8) must hold. Therefore |R| = |R′|, |P ′2| = |P2|, d(w) =
d(v0) = ν/2 + 1− d(u2r−1) and d(b) = d(v2p1−1) = ν/2 + 1− d(u2s). In other words, all opposite
paths (respectively all central paths) have the same length. Since any vertex in G1 can be an
ending vertex of an M -alternating Hamilton path, all vertices in V (G1) ∩ W have the same
degree ν/2 + 1− d(u2r−1), and all vertices in V (G1)∩B have the same degree ν/2 + 1− d(u2s).

Let b 6= v2p1−1 be a vertex in V (G1) ∩B, assume that b has a neighbor u2r′ on P2. Since G1

is complete bipartite we can always find a closed M -alternating path P ′′1 connecting v0 and b
in G1. (Note that P ′′1 need not to be Hamilton. If b = v1, P

′′
1 can only be the edge v0v1.) Let

P ′′2 = u2sC
+u2r′−1 and R′′ = u2r′C

+u2s−1. For any vertex pair {u2i−1, u2i} on the path R′′, we
have e({u2i−1, u2i}, {u2s, u2r′−1}) ≤ 1, or we get an M -alternating cycle

u2r′C
+u2i−1u2sC

+u2r′−1u2iC
+u2s−1v0P

′′
1 bu2r′ ,

which is longer than C. Therefore,

d(u2s) + d(u2r′−1) ≤ |P ′′2 |+ 2 + (|R′′| − 2)/2 = |P ′′2 |+ |R′′|/2 + 1 < |P2|+ |R|/2 + 1.
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By d(v0)+d(b) = d(v0)+d(v2p1−1) = 2p1 + |R|/2+1, we have d(u2s)+d(u2r′−1)+d(v0)+d(b) <
(|P2| + |R|/2 + 1) + (2p1 + |R|/2 + 1) = ν + 2. However, since u2sb− and u2r′−1v0−, by our
condition, d(u2s) + d(u2r′−1) + d(v0) + d(b) ≥ ν + 2, a contradiction. Hence b, and similarly any
w ∈ V (G1) ∩W , must not have any neighbor on P2. That is, e(V (G1), V (G2)) = 0.

For any closed M -alternating Hamilton path P ′1 of G1 with ending vertices w ∈W and b ∈ B,
let P ′2 be an opposite path of it. Since w and b send no edges to P2, P2 must be part of P ′2.
However, all opposite paths have the same length, so |P ′2| = |P2|, and therefore P ′2 = P2. Then,
wu2s−1+ and bu2r+. Since any vertex in G1 can be an ending vertex of a closed M -alternating
Hamilton path of G1, we prove the second part of the claim.

Claim 4. G2 is complete bipartite, and u2s−1 (respectively u2r) is adjacent to every vertex in
V (G2) ∩W (respectively V (G2) ∩B).

Proof. By above discussions, u2su2r−1+ and we have a cycle C2 = u2sC
+u2r−1u2s. Since

e(V (G1), V (G2)) = 0, for every edge u2j−1u2j on P2, where s + 1 ≤ j ≤ r − 1, we can re-
place u2r−1 with u2j−1 and u2s with u2j in (2), (4) and (5), and all equalities must hold. So,
u2j−1 (respectively u2j) must be adjacent to all vertices in V (P2)∩W (respectively V (P2)∩B),
u2j−1u2r+ and u2ju2s−1+, therefore the claim holds.

For convenience we change some notations henceforth. We let |G2| = 2p2 and the vertices of
G2 be v′0, v

′
1, . . . , v′2p2−1, where v′2jv

′
2j+1 ∈M , for 0 ≤ j ≤ p2 − 1, and let R = u0u1 . . . u2r−1.

Now we discuss the situations case by case, with respect to the length of R and the distribution
of edges between R and Gi, i = 1, 2.
Case 1. |R| = 2.

Then R = u0u1. By Claim 3 and Claim 4, For any 0 ≤ i ≤ p1 − 1 and 0 ≤ j ≤ p2 − 1,
u0v2i+1+, u0v

′
2j+1+, u1v2i+ and u1v

′
2j+. Therefore G ∈ G1 and M ∈M1.

Case 2. |R| ≥ 4.

Claim 5. For j = 1, 2, and every edge u2i−1u2i, 1 ≤ i ≤ r − 1, exactly one of u2i−1 → Gj
and u2i → Gj holds. Furthermore, if u2i−1 → Gj (respectively u2i → Gj), it is adjacent to all
vertices in V (Gj) ∩W (respectively V (Gj) ∩B).

Proof. Firstly, we prove that for j = 1, 2 and every edge u2i−1u2i, 1 ≤ i ≤ r − 1, u2i−1 9 Gj
or u2i 9 Gj . By Lemma 4.2, the conclusion holds for G1. Now we prove it for G2. Suppose
to the contrary that there exists 1 ≤ l ≤ r − 1 such that u2l−1 → G2 and u2l → G2, and let
v′2s ∈ NG2(u2l−1) and v′2t+1 ∈ NG2(u2l). If |G2| = 2 or t 6= s, We can find a closed M -alternating
Hamilton path Q of G2 connecting v′2s and v′2t−1, and hence we have an M -alternating Hamilton
cycle

u0Ru2l−1v
′
2sQv

′
2t−1u2lRu2r−1v0P1v2p1−1u0

of G, contradicting our assumption. If |G2| ≥ 4 and t = s, let P ′2 be a closed M -alternating
Hamilton path of G2 − {v′2s, v′2s+1}. Then P ′2 is an opposite path for P1, with the central path
u0Ru2l−1v

′
2sv
′
2s+1u2lRu2r−1, which is shorter than P2, contradicting our choice of P2. Hence

u2i−1 9 G2 or u2i 9 G2, for 1 ≤ i ≤ r − 1.
Arbitrarily choose 0 ≤ l ≤ p1 − 1 and 0 ≤ k ≤ p2 − 1. We have d(v2l) + d(v2l+1) ≤

2p1 + 2 + (|R| − 2)/2 = 2p1 + r + 1 and similarly d(v′2k) + d(v′2k+1) ≤ 2p2 + r + 1. So

d(v2l) + d(v2l+1) + d(v′2k) + d(v′2k+1) ≤ 2p1 + 2p2 + 2r + 2 = ν + 2. (9)

However v2lv
′
2k+1− and v2l+1v

′
2k−, by the condition of the theorem,

d(v2l) + d(v′2k+1) + d(v2l+1) + d(v′2k) ≥ 2(ν/2 + 1) = ν + 2, (10)

and all equalities must hold. To obtain equalities, for j = 1, 2, and every edge u2i−1u2i,
1 ≤ i ≤ r − 1, exactly one of u2i−1 → Gj and u2i → Gj must hold. Furthermore, since l and k
are arbitrarily chosen, we prove that if u2i−1 → Gj (respectively u2i → Gj), it is adjacent to all
vertices in V (Gj) ∩W (respectively V (Gj) ∩B).
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Let 1 ≤ i ≤ r − 1. We define E1 (E′1) to be the set of edges u2i−1u2i, where u2i−1v2j+, for
every 0 ≤ j ≤ p1 − 1 (u2i−1v

′
2k+, for every 0 ≤ k ≤ p2 − 1), and E2 (E′2) to be the set of edges

u2i−1u2i, where u2iv2j+1+, for every 0 ≤ j ≤ p1 − 1 (u2iv
′
2k+1+, for every 0 ≤ k ≤ p2 − 1).

By Claim 5, for every 1 ≤ i ≤ r − 1, u2i−1u2i ∈ E1 ∩ E′1, E1 ∩ E′2, E2 ∩ E′1 or E2 ∩ E′2.
Accordingly, we say that u2i−1u2i is an edge of type I, II, III or IV for G1, G2 and R. Let
the number of edges u2i−1u2i belonging to E1 ∩ E′1, E1 ∩ E′2, E2 ∩ E′1 and E2 ∩ E′2 be t11,
t12, t21 and t22, respectively. We have d(v0) = t11 + t12 + p1 + 1, d(v1) = t22 + t21 + p1 + 1,
d(v′0) = t11 + t21 + p2 + 1 and d(v′1) = t22 + t12 + p2 + 1.

Since equalities hold in (9) and (10), we have d(v2l) + d(v′2k+1) = d(v2l+1) + d(v′2k) = ν/2 + 1
for any 0 ≤ l ≤ p1 − 1 and 0 ≤ k ≤ p2 − 1, Hence

t11 + t22 + 2t12 + p1 + p2 + 2 = d(v0) + d(v′1)

= ν/2 + 1

= d(v1) + d(v′0)

= t11 + t22 + 2t21 + p1 + p2 + 2. (11)

So t12 = t21.
We let t1 = t11, t2 = t22 and t0 = t12 = t21, then t1 + t2 + 2t0 = r − 1.

We summarise some structural results in the form of observations.

Observation 1. If there exists 1 ≤ j < i ≤ r− 1, such that u2i−1u2i ∈ E1 (E′1) and u2j−1u2j ∈
E′2 (E2). Then u2j−1u2i−.

Proof. If u2j−1u2i+, we obtain an M -alternating Hamilton cycle

u0Ru2j−1u2iRu2r−1v
′
0P2v

′
2p2−1u2jRu2i−1v0P1v2p1−1u0

(u0Ru2j−1u2iRu2r−1v0P1v2p1−1u2jRu2i−1v
′
0P2v

′
2p2−1u0),

contradicting our assumption.

Observation 2. If there exists 1 ≤ i ≤ r−2, such that u2i−1u2i ∈ E1 and u2i+1u2i+2 ∈ E2, then
u2iu2i+1 is a critical edge, |G1| = |G2| = 2, and exactly one of u2iv

′
1+ and u2i+1u0+ (u2i+1v

′
0+

and u2iu2r−1+) holds.
If there exists 1 ≤ i ≤ r − 2, such that u2i−1u2i ∈ E′1 and u2i+1u2i+2 ∈ E′2, then u2iu2i+1 is

a critical edge, |G1| = 2, and exactly one of u2iv1+ and u2i+1u0+ (u2i+1v0+ and u2iu2r−1+)
holds.

Proof. Suppose there exists 1 ≤ i ≤ r − 2, such that u2i−1u2i ∈ E1 and u2i+1u2i+2 ∈ E2, then
u2iu2i+1 is a critical edge with respect to the M -alternating cycle

u0Ru2i−1v0P1v2p1−1u2i+2Ru2r−1v
′
0P2v

′
2p2−1u0,

where P1 is an opposite path. Since G1 is critical, |G1| = 2. Since |P1| = 2, and P2 is the
shortest opposite path, |G2| = 2. Since u0v

′
1 (u2r−1v

′
0) are on a central path for the critical

edge u2iu2i+1 and the opposite path v0v1, exactly one of u2i+1u0+ and u2iv
′
1+ (u2i+1v

′
0+ and

u2iu2r−1+) holds.
Now suppose there exists 1 ≤ i ≤ r − 2, such that u2i−1u2i ∈ E′1 and u2i+1u2i+2 ∈ E′2. Then

u2iu2i+1 is a critical edge with respect to the M -alternating cycle

u0Ru2i−1v
′
0P2v

′
2p2−1u2i+2Ru2r−1v0P1v2p1−1u0,

where P2 is an opposite path. Since G1 is critical, |G1| = 2. Since u0v1 (u2r−1v0) are on a
central path for the critical edge u2iu2i+1 and the opposite path P2, exactly one of u2i+1u0+
and u2iv1+ (u2i+1v0+ and u2iu2r−1+) holds.
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Observation 3. If there exists 1 ≤ i < k < j ≤ r− 1, such that u2i−1u2i ∈ E1 (E′1), u2j−1u2j ∈
E2 (E′2), u2k−1u2k ∈ E′2 (E2) and u2k−1u0+, then u2iu2j−1−.

Proof. If u2iu2j−1+, we obtain an M -alternating Hamilton cycle

u0Ru2i−1v0P1v2p1−1u2jRu2r−1v
′
0P2v

′
2p2−1u2kRu2j−1u2iRu2k−1u0,

contradicting our assumption.
By symmetry, the claim holds under the other situation.

Claim 6. |G1| = 2.

Proof. Suppose |G1| ≥ 4. By Observation 2, there does not exist 1 ≤ i ≤ r − 1, such that
u2i−1u2i ∈ E1 (E′1) and u2i+1u2i+2 ∈ E2 (E′2). Therefore, there can not exist i < j, such that
u2i−1u2i ∈ E1 (E′1) and u2j−1u2j ∈ E2 (E′2). In other words, there exits an integer 0 ≤ k1 ≤ r−1
(0 ≤ k2 ≤ r − 1), such that for all i ≤ k1 (j ≤ k2), u2i−1u2i ∈ E2 (u2j−1u2j ∈ E′2) and for all
i > k1 (j > k2), u2i−1u2i ∈ E1 (u2j−1u2j ∈ E′1). It is easily seen that t0 = 0 and k1 = k2. We let
k = k1 = k2.

Suppose that t1, t2 6= 0, or equally, 1 ≤ k ≤ r − 2. Consider the vertices u2k−1 and u2k+2.
By Observation 1, for all j ≥ k + 1, u2k−1u2j−, and for all j ≤ k, u2k+2u2j−1−. Particularly,
u2k−1u2k+2−. But then we have d(u2k−1) ≤ k + 1, d(u2k+2) ≤ r − k and d(u2k−1) + d(u2k+2) ≤
r + 1 < ν/2 + 1, contradicting our condition.

Suppose one of t1 and t2, say t1 = 0. Then for 1 ≤ i ≤ r − 1, d(u2i−1) ≤ r. Moreover
d(v0) = p1 + 1, so d(u2i−1) + d(v0) ≤ r + p1 + 1 < ν/2 + 1 but v0u2i−1−, a contradiction.

So we must have |G1| = 2.

Claim 7. Either t0 = 0, or t1 = t2 = 0.

Proof. Suppose that t0 > 0, and one of t1 and t2 is greater than 0. Without lost of generality,
we may assume that t1 ≥ t2, and so t1 > 0.

Let u2i−1u2i ∈ E1 ∩ E′1, 1 ≤ i ≤ r − 1, be such that i is the maximum. Then by our
condition, d(u2i) + d(v1) ≥ ν/2 + 1. Hence, d(u2i) ≥ ν/2 + 1 − d(v1) = ν/2 + 1 − (t2 +
t0 + 2) = t1 + t0 + ν/2 − r. By Observation 1, u2i can not be adjacent to any u2j−1, where
u2j−1u2j ∈ E2∪E′2 and j < i. Hence u2i sends at least t1+t0+ν/2−r−(t1+1) = t0+ν/2−r−1
edges to {u2r−1} ∪ {u2j−1 : u2j−1u2j ∈ E2 ∪ E′2, j > i + 1}. Since t0 > 0 and ν/2 − r ≥ 2,
u2i → {u2j−1 : u2j−1u2j ∈ E2 ∪ E′2, j > i + 1}, so there exists at least one u2j−1u2j such that
j > i+ 1 and u2j−1u2j ∈ E2 ∪ E′2.

By our choice of u2i−1u2i, u2i+1u2i+2 ∈ E2 ∪ E′2. If u2i+1u2i+2 ∈ E2, then by Observation 2,
u2iu2i+1 is a critical edge, and exactly one of u2iv

′
1+ and u2i+1u0+ holds. By u2i−1u2i ∈ E′1 we

have u2iv
′
1−, therefore u2i+1u0+. If u2i+1u2i+2 ∈ E′2, then again by Observation 2, u2iu2i+1 is a

critical edge, and exactly one of u2iv1+ and u2i+1u0+ holds. By u2i−1u2i ∈ E1 we have u2iv1−,
hence u2i+1u0+.

Now we discuss different situations of u2i+1u2i+2.
If u2i+1u2i+2 ∈ E2 ∩ E′2, let j > i + 1 be such that u2iu2j−1+, u2j−1u2j ∈ E2 ∪ E′2. By

Observation 3, u2iu2j−1−, a contradiction.
If u2i+1u2i+2 ∈ E1∩E′2 or E2∩E′1, without lost of generality, we may assume that u2i+1u2i+2 ∈

E1 ∩ E′2. Since u2iu2i+1 is a critical edge and u2i+1v0+, by Observation 2, we have u2iu2r−1−.
For j > i + 1, where u2j−1u2j ∈ E2, by Observation 3, u2iu2j−1−. Therefore u2i sends at least
t0 + ν/2− r− 1 ≥ t0 + 1 edges to {u2j−1 : u2j−1u2j ∈ E1 ∩E′2, j > i+ 1}. However, the number
of such u2j−1 is at most t0, a contradiction.

Case 2.1. t0 = 0.
Without lost of generality, we may assume that t1 > 0, and let u2i−1u2i ∈ E1 ∩ E′1.
If there exists u2j−1u2j , j < i, such that u2j−1u2j ∈ E2 ∩ E′2, then u2j−1u2i− by Observation

1.
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If there exists u2j−1u2j , j > i+1, such that u2j−1u2j ∈ E2∩E′2, then there exists i ≤ k ≤ j−1,
such that u2k−1u2k ∈ E1∩E′1 and u2k+1u2k+2 ∈ E2∩E′2. By Observation 2, u2ku2k+1 is a critical
edge, and since u2k+1v0− and u2kv1−, we have u2ku2r−1+ and u2k+1u0+. By Observation 3,
u2iu2j−1−.

Hence, for all u2j−1u2j ∈ E2 ∩ E′2, j 6= i+ 1, u2iu2j−1−. So, d(u2i) ≤ t1 + 2. But then

ν/2 + 1 ≤ d(u2i) + d(v1) ≤ t1 + 2 + t2 + 2 = (ν − 2p2 − 2− 2)/2 + 4 = ν/2− p2 + 2. (12)

Since p2 ≥ 1, all equalities must hold, hence p2 = 1 and 2r − 1 = ν − 5. Furthermore, to get
d(u2i) = t1 + 2, we must have the following.

(a) u2i+1u2i+2 ∈ E2 ∩ E′2, hence u2i−1u2i 6= uν−7uν−6.
(b) u2iu2j−1+, for all u2j−1u2j ∈ E1 ∩ E′1.
(c) u2iuν−5+.
By (a), t2 ≥ 0, and similarly, for any u2i−1u2i ∈ E2 ∩ E′2, we can prove the following.
(d) u2i−3u2i−2 ∈ E1 ∩ E′1, hence u2i−1u2i 6= u1u2.
(e) u2i−1u2j+, for all u2j−1u2j ∈ E2 ∩ E′2.
(f) u2i−1u0+.
So, the edges u2i−1u2i, 1 ≤ i ≤ ν/2−3, belong to E1∩E′1 and E2∩E′2 alternatively. Moreover,

u1u2 ∈ E1∩E′1 and uν−7uν−6 ∈ E2∩E′2. Hence we must have ν = 4n+2, for some integer n ≥ 2,
u4j+1u4j+2 ∈ E1∩E′1 and u4j+3u4j+4 ∈ E2∩E′2 for 0 ≤ j ≤ n−2. The vertex set {u4j+1, u4j+2 :
0 ≤ j ≤ n − 2} ∪ {v0, v′0, u4n−3}, as well as {u4j+3, u4j+4 : 0 ≤ j ≤ n − 2} ∪ {v1, v′1, u0},
induce complete bipartite subgraphs, respectively.

Let B1 = {u4j+1 : 0 ≤ j ≤ n− 1}, W = {u4j+2 : 0 ≤ j ≤ n− 2} ∪ {v0, v0′}, B = {u4j+3 : 0 ≤
j ≤ n − 2} ∪ {v1, v′1} and W1 = {u4j : 0 ≤ j ≤ n − 1}. By above discussion, there can be no
more edge between B and W . But we can add edges between B1 and W1 freely, to obtain all
graphs G ∈ G2, with M ∈M2.

Case 2.2. t1 = t2 = 0. Since t1 + t2 + 2t0 = r − 1, we have r = 2t0 + 1 and r must be odd.
If there exists 1 ≤ i ≤ r − 2, such that u2i−1u2i ∈ E1 ∩ E′2 and u2i+1u2i+2 ∈ E2 ∩ E′1

(u2i−1u2i ∈ E2 ∩ E′1 and u2i+1u2i+2 ∈ E1 ∩ E′2), we say that an A-change (B-change) occurs at
u2i−1. If there exist i and j, such that 2 ≤ i+1 < j ≤ r−2, and there is an A-change (B-change)
occurs at u2i−1 and a B-change (A-change) occurs at u2j−1, we say that a change couple occurs
at (u2i−1, u2j−1).
Case 2.2.1. |G2| ≥ 4.

There can not be any A-change, or by Observation 2, |G1| = |G2| = 2. To avoid any A-change,
for 1 ≤ i ≤ (r − 1)/2, u2i−1u2i ∈ E2 ∩ E′1 and for (r + 1)/2 ≤ i ≤ r − 1, u2i−1u2i ∈ E1 ∩ E′2.

Suppose that r = 3. It is not hard to see that u0u3− and u2u5−, while each of u0u5 and u1u4
can be exist or not. Hence we obtain all the graph in class G3, except those with n = 1.

If r ≥ 5, then ur−1ur is a critical edge, with central path ur+1Ru2r−1v0v1u0Rur−2 and opposite
graph G2 (Figure 6). Consider the edge v1u0 and u1u2 on the central path. We have v1ur−1+,
u0 → G2, u1 → G2, and by Claim 7, u2ur+. But then an A-change occurs at v1, a contradiction.
Case 2.2.2. |G2| = 2.

Then ν = 4n+ 6, for some n ≥ 1. For n = 1, it is not hard to verify that G ∈ G3, M ∈ M3,
and we obtain all graphs in G3 together with Case 2.2.1. For n = 2, it can be checked that
G = G4, M = M4. Henceforth we assume that n ≥ 3, and then r = 2n+ 1 ≥ 7.

We call G1 and G2 a critical edge pair with central path R. Since we have discussed all other
cases, we may assume that for every critical edge pair and the central path, every edge of the
central path that is not in M is of type II or III.

Let there be a change couple occurs at (u2i−1, u2j−1). Without lost of generality, sup-
pose that an A-change occurs at u2i−1 and a B-change occurs at u2j−1, then u2iu2i+1 and
u2ju2j+1 are critical edges. Since u2iu2i+1 and v1v0 is a critical edge pair, with the central path
u2i+2Ru2r−1v

′
0v
′
1u0Ru2i−1, by our assumption, u2j−1u2j and u2j+1u2j+2 are of type II or III. By
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. . .

ur+2 u2r-1 v0 v1 u0 ur-3 ur-2

v'1 v'0
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. . .

v'2p2-2

Figure 6: Contradiction in Case 2.2.1

u2jv1+ and u2j+1v0+, we have u2j−1u2i+ and u2j+2u2i+1+. Similarly, we have u2i−1u2j+ and
u2i+2u2j+1+. However, we get an M -alternating Hamilton cycle

u0Ru2i−1u2ju2j+1u2i+2Ru2j−1u2iu2i+1v
′
0v
′
1u2j+2Ru2r−1v0v1u0

then, a contradiction. Therefore, there must not be any change couple.

By symmetry, we may assume that u1u2 ∈ E1 ∩ E′2, and let r0 > 0, r1 > r0 and r2 ≥ r1 be
such that u1u2, . . ., u2r0−1u2r0 ∈ E1 ∩E′2, u2r0+1u2r0+2, . . ., u2r1−1u2r1 ∈ E2 ∩E′1, u2r1+1u2r1+2,
. . ., u2r2−1u2r2 ∈ E1 ∩ E′2 and if u2r2+1u2r2+2 exists, u2r2+1u2r2+2 ∈ E2 ∩ E′1.

If r1−r0 ≥ 2 and r2−r1 ≥ 1, then a change couple occurs at (u2r0−1, u2r1−1), a contradiction.
Hence, r1 − r0 = 1 or r2 = r1.

If r1 − r0 = 1, then r2 > r1, and the edge u2r2+1u2r2+2 exits. If r2 − r1 ≥ 2, a change couple
occurs at (u2r1−1, u2r2−1), a contradiction. Therefore r2 = r1 + 1. Moreover, if any B-change
occurs at u2j−1 where j ≥ r2 + 1, we obtain a change couple (u2r0−1, u2j−1), again leading
to a contradiction. Hence, we must have u2r2+1u2r2+2, . . . , u2r−3u2r−2 ∈ E2 ∩ E′1, and then
r0 = (r − 3)/2, r1 = (r − 1)/2 and r2 = (r + 1)/2.

Then ur+1ur+2 and v1v0 is a critical edge pair, with the central path ur+3Ru2r−1v
′
0v
′
1u0Rur.

Again we may assume that the edge of the central path not in M are of type II or III. Consider
the edges ur−4ur−3 and ur−2ur−1, Since ur−4v0+ and ur−1v1+, we must have ur−3ur+2+ and
ur−2ur+1+. Since r ≥ 7, 2r − 3 > r + 3. Consider the edges u2r−3u2r−2. Since v1u2r−2+, we
must have u2r−3ur+1+. But then we find a change couple occur at (u2r−3, ur−4), a contradiction
(Figure 7).

u2r-1

ur+2

v1 v0

v'0

ur+1

ur+3 v'1 u0 urur-1ur-2ur-3ur-4u2r-2u2r-3

Figure 7: Critical pair ur+1ur+2 and v1v0

If r2 = r1, then u1u2, . . . , ur−2ur−1 ∈ E1∩E′2 and urur+1, . . . , u2r−3u2r−2 ∈ E2∩E′1. Then,
ur−1ur and v0v1 is a critical pair, with the central path ur+1Ru2r−1v

′
0v
′
1u0Rur−2. For the edges
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u2i−1u2i with (r+3)/2 ≤ i ≤ r−1, v1u2i+, so we must have u2i−1ur−1+. For the edges u2i−1u2i
with 1 ≤ i ≤ (r − 3)/2, v0u2i−1+, so we must have u2iur+. For the edge u2r−1v

′
0 and v′1u0, we

have u2r−1v0+, v′0ur+, v′1ur−1+ and u0v1+. Thus we reach a same config with the case that
r1 − r0 = 1.

5 Final Remarks

Most of the degree sum conditions for Hamilton problems care about independent vertex
sets. In our work, we try to strengthen the condition of our main theorem, by replacing “for
every vertex pair u and v, where there is not arc from u to v”with “for every vertex pair u and
v”. Naturally, if the former condition guarantees hamiltonicity without exception, then such
a strengthening brings nothing. But in the case where there are exceptions, we do find some
differences. Let D′1 be a subset of D1, in which n = m. Let D′3 be a subset of D3, where n = 1.
We have the following result.

Theorem 5.1. Let D be a digraph. If for every vertex pair u and v, we have d+(u) + d−(v) ≥
|D| − 1, then D has a directed Hamilton cycle, unless D ∈ D′1, D2 or D′3, or D = D4.

As a corollary, we can improve the Ore condition as well. Given a (undirected) graph G, if
we replace every edge uv ∈ E(G) with two arcs uv and vu, we have a digraph D. Applying
Theorem 3.1 on D, we obtain the following result.

Let n,m ≥ 1, and G5 be the set of graphs obtained by identify one vertex of a complete graph
Km+1 and one vertex of a complete graph Kn+1, where n, m ≥ 1. Let G6 be the set of all
graphs obtained by joining every vertex of a graph In+1 to every vertex of an arbitrary graph
on n vertices.

Corollary 5.2. Let G be a graph. If for every distinct nonadjacent vertex pair u and v, we have
d(u) + d(v) ≥ |G| − 1, then G has a Hamilton cycle, unless G ∈ G5, or G ∈ G6.

A slightly stronger result can be found in [28]. There is only one exceptional class, for it
considers only 2-connected graphs.

Theorem 5.3. (Li, Li and Feng, 2007) Let G be a 2-connected graph with |G| ≥ 3. If d(u) +
d(v) ≥ |G| − 1 for every pair of vertices u and v with d(u, v) = 2, then G has a Hamilton cycle,
unless |G| is odd and G ∈ G6.

Stimulated by above results, we conjecture that the lower bound of degree sum in the following
result can be reduced by 1, with some exceptional cases.

Theorem 5.4. (Bang-Jensen, Gutin and Li, 1996 [5]) Let D be a strong digraph such that for
every pair of dominating non-adjacent and every pair of dominated non-adjacent vertices {u, v},
we have min{d+(u) + d−(v), d−(u) + d+(v)} ≥ |D|. Then D has a directed Hamilton cycle.
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