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Inverse boundary value problem for Schrödinger equation in two

dimensions

M. Yamamoto∗and O. Yu. Imanuvilov†

Abstract

We relax the regularity condition on potentials of the Schrödinger equation in uniqueness results on
the inverse boundary value problem which were recently proved in [11] and [5].

Let Ω ⊂ R2 be a bounded smooth domain with ∂Ω = ∪Kj=0Σj where Σj are smooth contours and Σ0 is

the external contour. Let ν = (ν1, ν2) be the unit outer normal to ∂Ω and let ∂
∂ν

= ∇ · ν.
In this domain we consider the Schrödinger equation with some potential q:

(∆ + q)u = 0 in Ω. (1)

Let Γ̃ be a non-empty arbitrary fixed relatively open subset of ∂Ω. Denote Γ0 = Int(∂Ω \ Γ̃). Consider
the partial Cauchy data

Cq =
{(

u,
∂u

∂ν

) ∣∣∣∣∣
Γ̃

; (∆ + q)u = 0 in Ω, u|Γ0
= 0, u|Γ̃ = f

}
. (2)

The goal of this article is to improve the regularity assumption on the potential q in the case of arbitrary
subboundary Γ̃ for the uniqueness result in the inverse problem of recovery of potential from the partial data
(2). In the case of Γ̃ = ∂Ω, this inverse problem was formulated by Calderón in [7]. Under the assumption
q ∈ C4+α(Ω) the result was proved in Imanuvilov, Uhlmann and Yamamoto [11]. In Guillarmou and Tzou
[10], the assumption on potentials was improved up to C2+α(Ω).

In particular, in the two-dimensional full Cauchy data case of Γ̃ = ∂Ω, we refer to Astala and Päivärinta
[1], Blasten [2], Brown and Uhlmann [4], Bukhgeim [5], Nachman [14]. In [2], the full Cauchy data uniquely
determine the potential withinW 1

p (Ω) with p > 2. As for the related problem of recovery of the conductivity,
[1] proved the uniqueness result for conductivities from L∞(Ω), improving the result of [14]. We also mention
that for the case of full Cauchy data a relaxed regularity assumption on potential was claimed in [5] but the
proof itself is missing some details.

In three or higher dimensions, for the full Cauchy data, Sylvester and Uhlmann [16] proved the uniqueness

of recovery of conductivity in C2(Ω), and later the regularity assumption was relaxed up to C
3

2 (Ω) in

Päivärinta, Panchenko and Uhlmann [15] and up to W
3

2

p (Ω) with p > 2n in Brown and Torres [3]. For
the case of partial Cauchy data, uniqueness theorems were proved under assumption that a potential of the
Schrödinger equation belongs to L∞(Ω) (see Bukhgeim and Uhlmann [6], Kenig, Sjöstrand and Uhlmann
[13]).

Our main result is as follows

Theorem 1 Let q1, q2 ∈ Cα(Ω) for some α ∈ (0, 1) if Γ̃ = ∂Ω and q1, q2 ∈ W 1
p (Ω) for some p > 2 otherwise.

If Cq1 = Cq2 then q1 = q2.
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The rest part of the paper is devoted to the proof of the theorem. Throughout the article, we use the
following notations.

Notations. i =
√
−1, x1, x2 ∈ R1, z = x1 + ix2, z denotes the complex conjugate of z ∈ C. We identify

x = (x1, x2) ∈ R2 with z = x1 + ix2 ∈ C. ∂z = 1
2 (∂x1

− i∂x2
), ∂z̄ = 1

2 (∂x1
+ i∂x2

), D =
(
1
i
∂x1

, 1
i
∂x2

)
. The

tangential derivative on the boundary is given by ∂~τ = ν2
∂
∂x1

− ν1
∂
∂x2

, where ν = (ν1, ν2) is the unit outer
normal to ∂Ω.

Proof.

First Step.

Let Φ = ϕ+ iψ be a holomorphic function on Ω such that ϕ, ψ are real-valued and

Φ ∈ C2(Ω), ImΦ|Γ0
= 0. (3)

Denote by H the set of the critical points of the function Φ. Suppose that this set is not empty, each critical
point is nondegenerate, H ∩ Γ0 = ∅ and

mes (J ) = 0, J = {x; ∂~τψ(x) = 0, x ∈ Γ̃}. (4)

Here ~τ is an unit tangential vector to ∂Ω. Consider the operator Lq(x,D) = −∑2
j=1(Dj + τiϕxj

)2 + q. It is

known (see [12] Proposition 2.5) that there exists a constant τ0 such that for |τ | ≥ τ0 and any f ∈ L2(Ω),
there exists a solution to the boundary value problem

Lq(x,D)u = f in Ω, u|Γ0
= 0 (5)

such that
‖u‖H1,τ (Ω)/

√
|τ | ≤ C‖f‖L2(Ω). (6)

Moreover if f/∂zΦ ∈ L2(Ω), then for any |τ | ≥ τ0 there exists a solution to the boundary value problem (5)
such that

‖u‖H1,τ (Ω) ≤ C‖f/∂zΦ‖L2(Ω). (7)

The constants C in (6) and (7) are independent of τ. Here and henceforth we set

‖u‖H1,τ (Ω) = (‖u‖2H1(Ω) + |τ |2‖u‖2L2(Ω))
1

2 .

Second Step.

Here we will construct complex geometrical optics solutions. Henceforth by oL2(Ω)(
1
τ
), we mean a function

f(ǫ, τ, ·) ∈ L2(Ω) such that limτ→∞ |τ |‖f(ǫ, τ, ·)‖L2(Ω) = 0 for all small ǫ > 0, and by o( 1
τ
), we mean a(ǫ, τ)

such that limτ→∞ |τ ||a(ǫ, τ)| = 0 for all small ǫ > 0.
Let {q1,ǫ}ǫ∈(0,1) be a sequence of smooth functions converging to q1 in W 1

p (Ω) or C
α(Ω) (depending on

the assumption on the regularity of q1) such that q1,ǫ = q1 on H. Let pǫ be the complex geometrical optics
solution to the Schrödinger operator ∆ + q1,ǫ which we constructed in [11]. The function pǫ can be written
in the form:

pǫ(x) = eτΦ(a+ a0,ǫ/τ) + eτΦ(a+ b1,ǫ/τ)

−
(
eτΦ

(∂−1
z (aq1,ǫ)−M1,ǫ)

4τ∂zΦ
+ eτ Φ̄

(∂−1
z (aq1,ǫ)−M3,ǫ)

4τ∂zΦ

)
+ eτϕoL2(Ω)(

1

τ
) as τ → +∞, (8)

where a ∈ C6(Ω) is some holomorphic function on Ω such that Re a|Γ0
= 0. The operators ∂−1

z and ∂−1
z are

given by

∂−1
z g = − 1

π

∫

Ω

g(ζ, ζ)

ζ − z
dξ2dξ1, ∂−1

z g = ∂−1
z g,

Moreover for some x̃ ∈ H, we assume that a(x̃) 6= 0 and a(x) = 0 for x ∈ H \ {x̃}, and the polynomials
M1,ǫ(z) and M3,ǫ(z) satisfy

∂jz(∂
−1
z (aq1,ǫ)−M1,ǫ)(x) = 0, ∂jz(∂

−1
z (aq1,ǫ)−M3,ǫ)(x) = 0, x ∈ H,
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a0,ǫ, a1,ǫ ∈ C6(Ω) are holomorphic functions such that

(a0,ǫ + a1,ǫ)|Γ0
=

(∂−1
z (aq1,ǫ)−M1,ǫ)

4∂zΦ
+

(∂−1
z (aq1,ǫ)−M3,ǫ)

4∂zΦ
.

We look for a solution u1 in the form u1 = pǫ +mǫ. Consider the equation

Lq1(x,D)u1 = Lq1,ǫ(x,D)(pǫ +mǫ) + (q1 − q1,ǫ)(pǫ +mǫ) = Lq1(x,D)mǫ + (q1 − q1,ǫ)pǫ = 0.

By (7) there exists a solution to the boundary value problem

Lq1(x,D)mǫ + (q1 − q1,ǫ)pǫ = 0 in Ω, mǫ|Γ0
= 0

such that
‖mǫ‖H1,τ (Ω) ≤ C(ǫ) ∀τ > τ0(ǫ), (9)

where C(ǫ) is independent of τ and
C(ǫ) → 0 as ǫ→ 0.

Since the Cauchy data (2) for potentials q1 and q2, are equal, there exists a solution u2 to the Schrödinger

equation with the potential q2 such that u1 = u2 on ∂Ω and ∂u1

∂ν
= ∂u2

∂ν
on Γ̃. Setting u = u1−u2, we obtain

(∆ + q2)u = (q2 − q1)u1 in Ω, u|∂Ω =
∂u

∂ν
|Γ̃ = 0. (10)

In a way similar to the construction of u1, we construct the complex geometrical optics solution v for
the Schrödinger equation with the potential q2. The construction of v repeats the corresponding steps of the
construction of u1. The only difference is that instead of q1,ǫ and τ , we use q2,ǫ and −τ respectively. We
provide details of the construction of v for the sake of completeness.

Let {q2,ǫ}ǫ∈(0,1) be a sequence of smooth functions converging to sufficiently close to q2 in W 1
p (Ω) or

Cα(Ω) such that q2,ǫ = q2 on H. Let p̃ǫ be the complex geometrical optics solution to the Schrödinger
operator ∆ + q2,ǫ constructed in [11]:

p̃ǫ(x) = e−τΦ(a+ b0,ǫ/τ) + e−τΦ(a+ b1,ǫ/τ)

+

(
e−τΦ

(∂−1
z (aq2,ǫ)−M2,ǫ)

4τ∂zΦ
+ e−τ Φ̄

(∂−1
z (aq2,ǫ)−M4,ǫ)

4τ∂zΦ

)
+ e−τϕoL2(Ω)(

1

τ
), (11)

where M2,ǫ(z) and M4,ǫ(z) satisfy

∂jz(∂
−1
z (aq1,ǫ)−M2,ǫ)(x) = 0, ∂jz(∂

−1
z (aq1,ǫ)−M4,ǫ)(x) = 0, x ∈ H.

and b0,ǫ, b1,ǫ are holomorphic functions such that

(b0,ǫ + b1,ǫ)|Γ0
= − (∂−1

z (aq2,ǫ)−M2,ǫ)

4∂zΦ
− (∂−1

z (aq2,ǫ)−M4,ǫ)

4∂zΦ
.

We look for a solution v in the form v = p̃ǫ + m̃ǫ. Consider the operator

Lq2(x,D)v = Lq2,ǫ(x,D)(p̃ǫ + m̃ǫ) + (q2 − q2,ǫ)(p̃ǫ + m̃ǫ) = Lq2(x,D)m̃ǫ + (q2 − q2,ǫ)p̃ǫ = 0.

By (7) there exists a solution to the boundary value problem

Lq2(x,D)m̃ǫ + (q2 − q2,ǫ)p̃ǫ = 0 in Ω, m̃ǫ|Γ0
= 0

such that
‖m̃ǫ‖H1,τ (Ω) ≤ C(ǫ) ∀τ > τ0(ǫ), (12)

where C(ǫ) is independent of τ and
C(ǫ) → 0 as ǫ→ 0.
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Third Step.

We will prove q1(x̃) = q2(x̃) where a(x̃) 6= 0 and a(x) = 0 for x ∈ H \ {x̃} in the case where q1, q2 ∈W 1
p (Ω).

Denote q = q1 − q2. Taking the scalar product of equation (10) and the function v, we have:

∫

Ω

qu1vdx = 0. (13)

By (9) and (12)

0 =

∫

Ω

qu1vdx =

∫

Ω

qpǫp̃ǫdx+K(ǫ, τ), (14)

where
lim

τ→+∞

τ |K(ǫ, τ)| ≤ C(ǫ), C(ǫ) → 0 as ǫ→ 0. (15)

From (14), (15) and the explicit formulae (8), (11) for the construction of complex geometrical optics solu-
tions, we have ∫

Ω

q(a2 + a2)dx = 0.

Computing the remaining terms, we have:

K(ǫ, τ) +
1

τ

∫

Ω

q(a(a0,ǫ + b0,ǫ) + a(a1,ǫ + b1,ǫ))dx+

∫

Ω

q(aae2τiψ + aae−2τiψ)dx

+
1

4τ

∫

Ω

(
qa
∂−1
z (aq2,ǫ)−M2,ǫ

∂zΦ
+ qa

∂−1
z (q2,ǫa)−M4,ǫ

∂zΦ

)
dx

− 1

4τ

∫

Ω

(
qa
∂−1
z (q1,ǫa)−M1,ǫ

∂zΦ
+ qa

∂−1
z (q1,ǫa)−M3,ǫ

∂zΦ

)
dx

+o(
1

τ
) = 0 as τ → +∞. (16)

Since the functions qj are not supposed to be from C2(Ω), we can not directly use the stationary phase
argument (e.g., Evans [8]). Consider two cases. Assume that q ∈W 1

p (Ω) with p > 2. We have

∫

Ω

qRe (aae2τiψ)dx =

∫

Ω

qǫRe (aae
2τiψ)dx +

∫

Ω

(q − qǫ)Re (aae
2τiψ)dx. (17)

We set qǫ = q1,ǫ − q2,ǫ. Taking into account that qj,ǫ = qj on H, j = 1, 2, (4) and using the stationary phase
argument, similar to [11], we compute

∫

Ω

qǫ(aae
2τiψ + aae−2τiψ)dx =

2π(q|a|2)(x̃)Re e2τiImΦ(x̃)

τ |(det ImΦ′′)(x̃)| 12
+ o

(
1

τ

)
as τ → +∞. (18)

For the second integral in (17) we obtain

∫

Ω

(q − qǫ)(aae
2τiψ + aae−2τiψ)dx =

∫

Ω

(q − qǫ)

(
aa

(∇ψ,∇)e2τiψ

2τi|∇ψ|2 − aa
(∇ψ,∇)e−2τiψ

2τi|∇ψ|2
)
dx

=

∫

∂Ω

(q − qǫ)

(
aa

(∇ψ, ν)e2τiψ
2τi|∇ψ|2 − aa

(∇ψ, ν)e−2τiψ

2τi|∇ψ|2
)
dσ

− 1

2τi

∫

Ω

{
e2τiψdiv

(
(q − qǫ)aa

∇ψ
|∇ψ|2

)
− e−2τiψdiv

(
(q − qǫ)aa

∇ψ
|∇ψ|2

)}
dx. (19)

Since ψ|Γ0
= 0 we have

∫

∂Ω

(q − qǫ)aa

(
(∇ψ, ν)e2τiψ
2τi|∇ψ|2 − (∇ψ, ν)e−2τiψ

2τi|∇ψ|2
)
dσ =

∫

Γ̃

(q − qǫ)aa

2τi|∇ψ|2 (∇ψ, ν)(e2τiψ − e−2τiψ)dσ.
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By (4) and Proposition 2.4 in [11] we have that

∫

∂Ω

(q − qǫ)aa

(
(∇ψ, ν)e2τiψ
2τi|∇ψ|2 − (∇ψ, ν)e−2τiψ

2τi|∇ψ|2
)
dσ = o(

1

τ
) as τ → +∞.

The last integral over Ω in formula (19) is o( 1
τ
) and so

∫

Ω

(q − qǫ)(aae
2τiψ + aae−2τiψ)dx = o(

1

τ
) as τ → +∞. (20)

Taking into account that ψ(x̃) 6= 0 and using (26), (20) we have from (16) that

2π(q|a|2)(x̃)
|(det ImΦ′′)(x̃)| 12

+ C̃(ǫ) = 0, (21)

where C̃(ǫ) → +0 as ǫ→ 0. Hence

q(x̃) = 0 if a(x̃) 6= 0 and a(x) = 0 for x ∈ H \ {x̃}. (22)

Since a point x̃ can be chosen arbitrarily close to any given point in Ω (see [11]), we have q ≡ 0, that is, the
proof of the theorem is completed if q1, q2 ∈ W 1

p (Ω).
Fourth Step.

Now let q ∈ Cα(Ω) with some α ∈ (0, 1) and ∂Ω = Γ̃.
We recall the following classical result of Hörmander [9]. Consider the ”oscillatory integral operator”

Tτf(x) =

∫

Ω

e−τiψ(x,y)a(x, y)f(y)dy,

where ψ ∈ C∞(R2 × R
2) and a(·, ·) ∈ C∞

0 (R2 × R
2). We introduce the following matrix

Hψ = {∂2xiyj
ψ}.

Theorem 2 Suppose that detHψ 6= 0 on supp a. Then

‖Tτ‖L2→L2 ≤ C

τ
.

Consider our holomorphic function Φ(x, y) = (x1+ ix2− (y1+ iy2))
2+ i.We set ψ(x, y) = 2(x1−y1)(x2−

y2)− 1. Then

Hψ(x, y) =

(
0 −2
−2 0

)

and detHψ(x, y) = −4. Then the condition in Theorem 2 holds true.
We set a(x, y) = χ(x)χ(y) where χ ∈ C∞

0 (Rn) and χ|Ω ≡ 1. Then, by Theorem 2, there exists a constant
C independent of τ such that

‖Tτ‖L2→L2 + ‖T−τ‖L2→L2 ≤ C/τ. (23)

Setting f = (q − qǫ)aaχΩ by (23) we have

‖Tτf‖L2(Ω) + ‖T−τf‖L2(Ω) ≤ C(ǫ)/τ, C(ǫ) → 0 as ǫ→ +0. (24)

Therefore, by (24), in the ball B(x̃, δ) ≡ {x; |x− x̃| < δ}, there exists a sequence of points y(τ) such that

|(Tτ )f(y(τ))|+ |(T−τ )f(y(τ))| ≤
Cǫ

τδ2
. (25)
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Let y(τ) = (y1(τ), y2(τ)) → ŷ(ǫ) as τ → +∞. By the stationary phase argument taking into account that
ψ(x̃, x̃) = −1, we have

∫

Ω

(qǫ − (qǫ − q)(y(τ))Re{aae−2τiψ(y(τ),x)}dx =
2π(q|a|2)(ŷ(ǫ))Re e2τi

τ
+ o

(
1

τ

)
. (26)

From (16), (26), (25) we obtain

2π(q|a|2)(ŷ(ǫ))Re e2τi + C̃(ǫ) = 0, (27)

where limτ→+∞|C̃(ǫ)| → +0 as ǫ→ 0. Therefore as ǫ goes to zero, we have

q(x̂) = 0.

Here x̂ ∈ B(x̃, δ) such that ŷ(ǫ) → x̂ as ǫ → +0. Since δ > 0 and x̃ are chosen arbitrarily, we conclude that
q ≡ 0 in Ω. Thus the proof of the theorem is completed. �
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[1] K. Astala and L. Päivärinta, Calderón’s inverse conductivity problem in the plane, Ann. of Math., 163
(2006), 265–299.

[2] E. Blasten, The inverse problem of the Shrödinger equation in the plane. A dissection of Bukhgeim’s

result. ArXiv 1103.6200

[3] R. Brown and R. Torres, Uniqueness in the inverse conductivity problem for conductivities with 3/2
derivatives in Lp, p > 2n, J. Fourier Analysis Appl. 9 (2003), 1049–1056.

[4] R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem with less regular conductiv-

ities in two dimensions, Comm. Partial Differential Equations, 22 (1997), 1009–1027.

[5] A. Bukhgeim, Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl.,
16 (2008), 19–34.

[6] A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differ-
ential Equations, 27 (2002), 653–668.

[7] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its

Applications to Continuum Physics, 65–73, Soc. Brasil. Mat., Rı́o de Janeiro, 1980.

[8] L. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 2000.
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Revista Matemática Iberoamericana, 19 (2003), 57-72.

[16] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann.
of Math., 125 (1987), 153–169.

7


