
ar
X

iv
:1

10
9.

46
49

v1
  [

m
at

h.
SP

] 
 2

1 
Se

p 
20

11

A NEW SUFFICIENT CONDITION FOR THE UNIQUENESS OF

BARABANOV NORMS

IAN D. MORRIS

Abstract. The joint spectral radius of a bounded set of d×d real or complex
matrices is defined to be the maximum exponential rate of growth of prod-
ucts of matrices drawn from that set. Under quite mild conditions such a
set of matrices admits an associated vector norm, called a Barabanov norm,
which can be used to characterise those sequences of matrices which achieve
this maximum rate of exponential growth. In this note we continue an ear-
lier investigation into the problem of determining when the Barabanov norm
associated to such a set of matrices is unique. We give a new sufficient con-
dition for this uniqueness, and provide some examples in which our condition
applies. We also give a theoretical application which shows that the property
of having a unique Barabanov norm can in some cases be highly sensitive to
small perturbations of the set of matrices.

1. Introduction

Given a bounded set A of d × d matrices over R or C, the joint spectral radius
of A is defined to be the quantity

̺(A) = lim
n→∞

sup
{

‖Ain · · ·Ai1‖
1

n : Ai ∈ A
}

,

a definition introduced by G.-C. Rota and G. Strang in 1960 ([18], subsequently
reprinted in [17]). This limit always exists and is independent of the norm used
(for a proof see e.g. [11]). The joint spectral radius has subsequently been found
to arise in a range of mathematical contexts including control and optimisation
[2, 5, 9], wavelet regularity [7], coding theory [15], and combinatorics [3]. As such,
the properties of the joint spectral radius are the subject of ongoing research in-
vestigation (see for example [1, 4, 5, 6, 8, 10, 14]). This note is concerned with a
theoretical tool associated to the joint spectral radius called the Barabanov norm,
which we now define.

Let us say that a setA of d×d real or complex matrices is reducible if its elements
simultaneously preserve a linear subspace with dimension strictly between 0 and d.
If A is not reducible then it will be called irreducible. An irreducible set of matrices
always has nonzero joint spectral radius (see e.g. [11]). In the article [2], N. E.
Barabanov showed that to any compact irreducible set A of d × d matrices over
R or C, one may associate a norm ||| · ||| on Rd or Cd such that the Bellman-like
equation

(1.1) ̺(A)|||v||| = sup{|||Av||| : A ∈ A}

is satisfied for every vector v. We shall call a norm which satisfies this relation
for every v a Barabanov norm for A. Given any vector v, by iterating the above
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relation it follows that for each n ≥ 1,

̺(A)n|||v||| = sup{|||Ain · · ·Ai1v||| : Ai ∈ A},

and since A is assumed to be compact, it follows that we may extract a sequence
(Aij )

∞

j=1 of elements of A such that |||Ain · · ·Ai1v||| = ̺(A)n|||v||| for every n ≥ 1.

As various researchers have noted (see e.g. [11, 12, 19]), Barabanov norms thus
implicitly encode a description of certain sequences of matrices drawn fromA whose
partial products grow at the maximum possible exponential rate. The problem of
constructing or approximating a Barabanov norm for a given set of matrices has
consequently attracted some recent research interest [13, 14, 16, 19]. In this note
we continue an investigation initiated in [16] into the closely related question of
determing when Barabanov norms are unique. Clearly if a given norm satisfies
(1.1), then any positive scalar multiple of that norm will also satisfy (1.1), so when
saying that a set of matrices has a “unique” Barbanov norm, we shall always mean
only that any two Barabanov norms for that set must be proportional to one another
by a scalar constant.

In the earlier article [16] we established a sufficient condition for a finite irre-
ducible set A = {A1, . . . , Am} of d × d matrices over R or C to have a unique
Barabanov norm in the sense defined above. We showed that if A has both the
rank one property and the unbounded agreements property, defined formally in the
next section, then a unique Barabanov norm for A exists. Roughly speaking, the
unbounded agreements property states that there are not “too many” sequences
(Aij )

∞

j=1 ∈ AN such that the sequence of products ̺(A)−n‖Ain · · ·Ai1‖ does not
converge to zero in the limit as n → ∞, while the rank one property states that
for any fixed sequence of matrices, the vector space of all vectors v such that
̺(A)−n‖Ain · · ·Ai1v‖ converges to zero has the largest possible dimension. In this
note we establish a new sufficient condition for the uniqueness of Barabanov norms
which is complementary to the sufficient condition given in [16], and which ap-
plies in certain situations where there is instead a large supply of sequences (Aij )
and vectors v such that ̺(A)−n‖Ain · · ·Ai1v‖ does not converge to zero. The new
condition may also be applied to compact infinite sets of matrices. As direct exam-
ples of the application of the theorem, we exhibit firstly a pair of matrices which
has a unique Barabanov norm but satisfies neither the rank one property nor the
unbounded agreements property (hence not falling within the scope of [16]), and
secondly a countably infinite compact set of matrices which has a unique Bara-
banov norm, but such that every finite subset thereof has an uncountable family of
Barabanov norms which are not proportional to one another.

We also use the main theorem in this note to investigate the robustness with
respect to perturbation of the property of having a unique Barabanov norm. It was
shown in [16] that for every pair of integers r, d ≥ 2, and for K equal to either R or
C, there exists an r-tuple of d×d matrices over K such that every sufficiently small
perturbation of that r-tuple also has a unique Barbanov norm. As an application of
our main theorem, we show that there exists a pair of real 2×2 matrices A with the
following contrasting property: pairs of matrices having a unique Barbanov norm,
and pairs of matrices not having a unique Barabanov norm, both form dense sets in
a small open neighbourhood ofA. The property of having a unique Barabanov norm
is thus shown to be highly sensitive to small perturbations of the set of matrices in
certain cases.
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2. Statement and proof of main theorem

Throughout the rest of this note we use the symbol K as a shorthand to denote
either R or C. Statements which are given in terms of K are thus valid if either of
these two fields is consistently chosen. We use the symbol Md(K) to denote the set
of all d × d matrices over K, which we equip with its usual topology as a normed
vector space. The symbol ‖ · ‖ will be used to denote the Euclidean norm on Kd,
and also the corresponding induced matrix norm on Md(K). The symbol ρ(B) will
be used to denote the ordinary spectral radius of the matrix B.

If A is a compact subset of Md(K) and n ≥ 1 is an integer, we define An :=
{Ai1 · · ·Ain : Ai ∈ A}. We shall say that A is product bounded if the set

⋃

∞

n=1 A
n is

bounded. If ̺(A) is nonzero, we say that A is relatively product bounded if ̺(A)−1A
is product bounded. If A is irreducible then ̺(A) > 0 and A is relatively product
bounded, see for example [11]. If A ⊂ Md(K) is relatively product bounded, then
following F. Wirth in [20] we define the limit semigroup of A to be the set

S(A) :=
∞
⋂

m=1

(

∞
⋃

n=m

̺(A)−nAn

)

⊂ Md(K).

We may now give the formal definition of the rank one property and the un-
bounded agreements property mentioned in the introduction. We say that A has
the rank one property if it is relatively product bounded and every nonzero element
of S(A) is of rank one. The finite set of matrices A = {1, . . . ,m} has the unbounded
agreements property if for every pair of sequences j1, j2 : N → {1, . . . ,m} such that
lim supn→∞

̺(A)−n‖Aji(n) · · ·Aji(1)‖ > 0 for i = 1, 2, and every integer ℓ ≥ 1, there
exist k1, k2 ≥ 0 such that j1(k1+ t) = j2(k2+ t) for all t in the range 1 ≤ t ≤ ℓ. (We
do not define the unbounded agreements property for infinite sets of matrices.)

The central result of this note is the following sufficient condition for the unique-
ness of the Barabanov norm:

Theorem 2.1. Let A be a bounded, irreducible nonempty subset of Md(K) such

that the limit semigroup S(A) has the following transitivity property: for every pair

of nonzero vectors v1, v2 ∈ Kd, there exist B1, B2 ∈ S(A) and λ ∈ K such that

B1v1 = λv2 and B2v2 = λ−1v1. Then A has a unique Barabanov norm.

Proof. Since A is irreducible, it admits at least one Barabanov norm. Fix a nonzero
vector v0 ∈ Kd for the remainder of the proof, and suppose that ||| · |||1 and ||| · |||2
are both Barabanov norms for A which give norm 1 to the vector v0. To prove the
theorem it is necessary and sufficient to show that ||| · |||1 must be equal to ||| · |||2.

Let u ∈ Kd be any nonzero vector. Choose B1, B2 ∈ S(A) and λ ∈ K such that
B1v0 = λu and B2u = λ−1v0. Since B1, B2 ∈ S(A), there exist strictly increasing
sequences of natural numbers (n1,j), (n2,j) and sequences of matrices (A1,j), (A2,j)
such that Ai,j ∈ Ani,j for each i = 1, 2 and all j ≥ 1, and limj→∞ ̺(A)−ni,jAi,j =
Bi for i = 1, 2. Since ||| · |||1 is a Barabanov norm for A, for each j ≥ 1 we have

|||v0|||1 = max
{

̺(A)−n1,j |||Av0|||1 : A ∈ An1,j
}

≥ ̺(A)−n1,j |||A1,jv0|||1

and similarly

|||u|||1 = max
{

̺(A)−n2,j |||Au|||1 : A ∈ An2,j
}

≥ ̺(A)−n2,j |||A2,ju|||1.
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Taking the limit as j → ∞ in both of these inequalities and combining the results
yields

1 = |||v0|||1 ≥ |||B1v0|||1 = |||λu|||1 = |λ|.|||u|||1 ≥ |λ|.|||B2u|||1 = |||v0|||1 = 1

and therefore |||u|||1 = |λ|−1. However, we have not used any properties specific
to ||| · |||1 other than its being a Barabanov norm such that |||v0|||1 = 1, and so the
above argument applies in an identical manner to the norm ||| · |||2. We conclude that
|||u|||1 = |||u|||2, and since the vector u is arbitrary we have ||| · |||1 = ||| · |||2 as required.
The proof is complete. �

Remark. When K = R, the most straightforward case in which Theorem 2.1 may
be applied is that in which S(A) contains the special orthogonal group SO(d), or
more generally, when S(A) is simultaneously similar to a semigroup which contains
SO(d). In particular, if ̺(A)−1A contains a collection of matrices which generate
a dense subsemigroup of SO(d) (or which are simultaneously similar to a such a
collection) then Theorem 2.1 may be applied and A has a unique Barabanov norm.
Similar remarks apply to the case K = C and the group SU(d). However, these
cases certainly do not exhaust the possibilities of the theorem: for example, if A
consists precisely of the set of rank one orthogonal projections on R2, then S(A)
contains every real matrix which is equal to the composition of a rotation and an
orthogonal projection, and Theorem 2.1 also applies. Higher-dimensional examples
of this type may of course also be constructed. In any case, Theorem 2.1 is powerful
enough to produce some interesting applications, which we describe in the following
two sections.

3. Examples

In this section we provide some examples of the direct application of Theorem
2.1, before moving on to a theoretical application in the following section. In both
examples we restrict our attention to the case K = R. The first example below
illustrates the contrast between Theorem 2.1 and [16, Theorem 1.5].

Example 1. Define

A1 :=

(

1 0
0 0

)

, A2 :=

(

cos θπ − sin θπ
sin θπ cos θπ

)

and A := {A1, A2}, where θ ∈ R \ Z. Then A is irreducible with ̺(A) = 1, has
neither the rank one property nor the unbounded agreements property, and has a
unique Barbanov norm if and only if θ /∈ Q.

Proof. Let us first establish the properties of A for general θ ∈ R \ Z. Since θ /∈ Z

the matrix A2 does not preserve any one-dimensional subspace of R2, and therefore
A is irreducible. It is straightforward to see that max{‖A‖ : A ∈ An} = 1 for every
n ≥ 1 and consequently ̺(A) = 1. In particular A is product bounded. Every
accumulation point at infinity of the sequence (An

2 )
∞

n=1 has rank two, and so A
does not have the rank one property. Since limn→∞ ‖An

i ‖ = 1 for both i = 1 and
i = 2 the unbounded agreements property is also not satisfied.

Let us now consider those properties which depend on whether or not θ ∈ Q. If
θ /∈ Q then every rotation matrix in M2(R) is an accumulation point of (An

2 )
∞

n=1,
and so S(A) contains the group of rotation matrices. It follows easily that A meets
the hypotheses of Theorem 2.1 and has a unique Barabanov norm. Conversely, let
us suppose that θ ∈ Q. Let ||| · ||| be any norm whose unit ball is invariant under
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rotation through angle θπ and such that |||(x, 0)T ||| ≤ |||(x, y)T ||| for all x, y ∈ R. The
former property ensures that |||A2v||| = |||v||| = ̺(A)|||v||| for every v ∈ R2, and the
latter property ensures that |||A1v||| ≤ |||v||| = ̺(A)|||v||| for every v, so in particular
any such norm is Barabanov. If K ⊂ R2 is a compact convex set with nonempty
interior which is symmetrical with respect to rotation about the origin through
angles θπ and π, and such that there exists a vertical tangent to K at all of its
boundary points which lie on the horizontal axis, then K is the unit ball of a norm
which has the required properties. It is clear that uncountably many such sets exist
which are not related to one another by scalar multiplication, and we conclude that
A has uncountably many Barabanov norms. �

The following example shows that the uniqueness of Barbanov norms can be a
quite delicate phenomenon:

Example 2. Let us define a compact subset of M2(R) by

A :=

{(

1 0
0 1

)}

∪

{(

cos π
2n − sin π

2n

sin π
2n cos π

2n

)

: n ≥ 1

}

.

Then every nonempty subset of A has joint spectral radius equal to one, is product
bounded, and does not have the rank one property. Every subset of A with at least
two elements is irreducible, and finite subsets of A which have at least two elements
do not satisfy the unbounded agreements propery. Every infinite subset of A has
a unique Barabanov norm, but every finite nonempty subset of A has uncountably
many Barabanov norms.

Proof. Let B ⊆ A be a nonempty subset. It is clear that sup{‖B‖ : B ∈ Bn} = 1
for all n ≥ 1 so that ̺(B) = 1 and B is product bounded, and it is also clear that
S(B) contains the identity matrix so that the rank one property is not satisfied.
If B has at least two elements then it includes a rotation matrix with no real
eigenvalues, and hence B is irreducible. Since limn→∞ ‖Bn‖ = 1 for every B ∈ B,
the unbounded agreements property is not satisfied when B is finite and contains
at least two elements. Since every element of B preserves the Euclidean norm, that
norm is a Barabanov norm for B.

Let us now consider the uniqueness or otherwise of Barabanov norms for B.
Suppose first that B is infinite. In this case there exist infinitely many positive
integers q such that B includes the matrix of rotation through angle π/2q. If q is
such an integer, then in particular it follows that S(B) contains the group of all
rotations through angles of the form kπ/2q. Since q may be taken arbitrarily large
it follows that S(B) contains every rotation by a dyadic rational multiple of π, and
since S(B) is closed we conclude that SO(2) ⊆ S(B). Theorem 2.1 therefore applies
and the Euclidean norm is the unique Barbanov norm of B.

Now let us suppose that B ⊂ A is finite and nonempty. If B consists only
of the identity matrix then every norm on R2 is preserved by B and hence is
Barabanov. Otherwise, let n be the largest integer such that B contains the matrix
corresponding to rotation through angle π/2n. If K ⊂ R2 is a compact convex
set with nonempty interior which is invariant under rotation through angle π/2n,
then it is invariant under the action of every element of B. To each such K there
corresponds a norm on R2 which has K as its unit ball, hence is invariant under
every element of B and therefore is Barabanov. Since there exist uncountably many
compact convex sets K which are invariant under rotation through angle π/2n and
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are not pairwise similar, we conclude that B has uncountably many Barabanov
norms. �

4. A theoretical application

Following the notation of [16], let us use the symbol O2(R
2) to denote the set of

all ordered pairs of 2 × 2 real matrices, which we equip with the topology arising
from the natural identification of this space with M2(R) ⊕ M2(R). In [16] we
showed that O2(R

2) contains a nonempty open set U with the property that for
every (A1, A2) ∈ U , the set A = {A1, A2} has a unique Barabanov norm. For
matrix pairs belonging to U , therefore, the property of having a unique Barabanov
norm is robust with respect to sufficiently small perturbations of either or both of
the matrices comprising the pair. This result naturally leads one to ask whether
this phenomenon is typical: is the set of all (A1, A2) ∈ O2(R

2) such that {A1, A2}
has a unique Barabanov norm open, or does it contain an open set which is dense
in O2(R

2)? The following result answers both questions negatively, and shows that
the uniqueness of Barabanov norms can be sensitive to small perturbations in quite
a strong manner:

Theorem 4.1. There exists a nonempty open set V ⊂ O2(R
2) such that the sets

V1 := {(A1, A2) ∈ V : {A1, A2} has a unique Barabanov norm}

and

V2 := {(A1, A2) ∈ V : {A1, A2} does not have a unique Barabanov norm}

are both dense in V.

Proof. Let A2 be a rotation matrix which does not have real eigenvalues, and let
A1 be any matrix such that ‖A1‖ < ‖A2‖ = 1. We will take V to be a suitably
small neighbourhood of (A1, A2).

For each δ > 0 let Bδ denote the open ball about the origin in M2(R) which
has radius δ with respect to the spectral norm. Since the eigenvalues of A2 are
simple, we may choose ε > 0 small enough that there exist continuous functions
E : Bε → C, V : Bε → C2 such that for all C ∈ Bε, E(C) is a strictly complex
eigenvalue of the real matrix A2+C with corresponding complex eigenvector V (C).
SinceA2+C is real, the complex conjugates of E(C) and V (C) are also an eigenvalue
and an eigenvector respectively. Since E(C) is strictly complex it is not equal to

E(C), and consequently the associated eigenvectors V (C) and V (C) are linearly
independent over C. It follows from this that the real and imaginary parts of V (C)
are a linearly independent pair of vectors with respect to R. For each C ∈ Bε

let us now define S(C) to be the invertible real matrix with first column given by
ℑ(V (C)) and second column given by ℜ(V (C)). An elementary calculation shows
that S(C)−1(A2 + C)S(C) is precisely the real matrix of rotation through angle
argE(C) multiplied by the positive scalar factor |E(C)| = ρ(A2 + C). For each
C ∈ Bε define a norm ‖ · ‖C on R2 by ‖v‖C := ‖S(C)−1v‖ for every v ∈ R2. It
is easily seen that ρ(A2 + C)−1(A2 + C) is an isometry of R2 with respect to this
norm, and in particular ‖A2 + C‖C = ρ(A2 + C). Since A2 is a rotation matrix,
a direct calculation shows that S(0) is proportional to the identity and therefore
‖ · ‖0 is a scalar multiple of the Euclidean norm on R2.

Let us now define

V :=
{

(B1, B2) ∈ O2(R
2) : B2 −A2 ∈ Bε and 0 < ‖B1‖B2−A2

< ρ(B2)
}

.
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Clearly V contains (A1, A2), and since S : Bε → M2(R) is continuous, V is open. We
claim that (B1, B2) ∈ V has a unique Barabanov norm if and only if the eigenvalues
of ρ(B2)

−1B2 are not roots of unity. An easy perturbation argument shows that
pairs (B1, B2) ∈ V such that the eigenvalues of B2 have irrational arguments, and
pairs such that the eigenvalues of B2 have rational arguments, are both dense in
V . It follows that establishing this claim is sufficient to complete the proof of the
theorem.

For the rest of the proof let us fix an arbitrary pair of matrices (B1, B2) ∈ V .
Define C := B2 −A2 ∈ Bε. It is straightforward to see that sup{‖B‖C : B ∈ Bn} =
ρ(B2)

n for every n ≥ 1 and therefore ̺(B) = ρ(B2). Since ρ(B2)
−1B2 is an isometry

of R2 with respect to the norm ‖·‖C , and ‖B1‖C < ρ(B2) = ̺(B), it follows directly
that ‖ · ‖C is a Barabanov norm for B.

Let us suppose first that the eigenvalues of ρ(B2)
−1B2 are not roots of unity. In

this case ρ(B2)
−1S(C)−1B2S(C) is a matrix corresponding to rotation through an

irrational angle. It follows that every rotation matrix is a limit point at infinity of
the sequence (̺(B)−nS(C)−1Bn

2 S(C))∞n=1, and so S(C)−1S(B)S(C) contains the
group of rotation matrices. We deduce that B satisfies the hypotheses of Theorem
2.1 and conclude that ‖ · ‖C is the unique Barabanov norm of B.

Now let us suppose instead that the eigenvalues of ρ(B2)
−1B2 are roots of

unity. Similarly to examples 1 and 2 in the previous section, there exist uncount-
ably many norms on R2 which are preserved by the rational-angle rotation matrix
ρ(B2)

−1S(C)−1B2S(C) and are not proportional to one another or to the Euclidean
norm. Modifying these norms by composition with S(C)−1 as in the definition of
the norm ‖ · ‖C , we obtain an uncountable family of norms on R2 which are pre-
served by ρ(B2)

−1B2 and are not proportional to one another or to ‖ · ‖C . Let
||| · ||| be any such norm. We will show that for every sufficiently small real number
κ > 0, the norm on R2 given by |||v|||

∗
:= ‖v‖C + κ|||v||| is a Barabanov norm for B.

By repeating this procedure using a different norm ||| · ||| which is also preserved by
ρ(B2)

−1B2, or indeed by simply varying the constant κ within its permitted range,
it is clear that we may obtain an uncountable family of Barabanov norms for B
which are not pairwise proportional to one another.

Given a norm ||| · ||| on R2 which is preserved by ρ(B2)
−1B2, then, let us define

ξ := ρ(B2)
−1‖B1‖C ∈ (0, 1), choose a constant K > 1 such that K−1‖v‖C ≤ |||v||| ≤

K‖v‖C for all v ∈ R2, and let κ > 0 be small enough that 1 +Kκ < ξ−1. Define
|||v|||

∗
:= ‖v‖C + κ|||v||| for all v ∈ R2. Clearly |||B2v|||∗ = ρ(B2)|||v|||∗ = ̺(B)|||v|||

∗
for

every v ∈ R2, and so to prove that ||| · |||
∗
is a Barabanov norm for B it is sufficient

to show that |||B1|||∗ ≤ ρ(B2) = ̺(B). For each v ∈ R2 we have

|||B1v|||∗ = ‖B1v‖C + κ|||B1v|||

≤ (1 +Kκ)‖B1v‖C

≤ ξρ(B2)(1 +Kκ)‖v‖C

= ξρ(B2)

(

1 +

(

K −
1

K

)

κ

)

‖v‖C +
ξρ(B2)κ

K
‖v‖C

< ρ(B2)‖v‖C + ξρ(B2)κ|||v|||

< ρ(B1)|||v|||∗,

and it follows that |||B1|||∗ < ρ(B2) so that ||| · |||
∗
is a Barabanov norm for B as

claimed. This proves the claim and hence completes the proof of the theorem. �
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