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Abstract

We consider the problem of maximizing a non-negative subrawcet functionf : 2V — R, over a ground set
N subject to a variety of packing type constraints includimgiltiple) matroid constraints, knapsack constraints, and
their intersections. In this paper we develop a generaldreonk that allows us to derive a number of new results,
in particular whenf may be anon-monotondunction. Our algorithms are based on (approximately) mézing the
multilinear extensiont” of f [6] over a polytopeP that represents the constraints, and then effectivelydiogrthe
fractional solution. Although this approach has been ussi guccessfully [7. 33,36, 15| 4], it has been limited in
some important ways. We overcome these limitations asvislio

First, we give constant factor approximation algorithmeigximize F' over a down-closed polytope described
by an efficient separation oracle. Previously this was knowly for monotone functions [49]. For non-monotone
functions, a constant factor was known only when the polyteas either the intersection of a fixed number of
knapsack constraints [B6] or a matroid polytopel [50, 43]cdBel, we show thatontention resolution schemase
an effective way to round a fractional solution, even wifeis non-monotone. In particular, contention resolution
schemes for different polytopes can be combined to handléntiersection of different constraints. Via LP duality
we show that a contention resolution scheme for a constiitlated to thecorrelation gap[2] of weighted rank
functions of the constraint. This leads to an optimal commberresolution scheme for the matroid polytope.

Our results provide a broadly applicable framework for m@zing linear and submodular functions subject
to independence constraints. We give several illustraikamples. Contention resolution schemes may find other
applications.

1 Introduction

We consider the meta-problem wfaximizinga non-negative submodular set function subject to indegecelcon-
straints. Formally, lefV be a finite ground set of cardinality, and letf : 2V — R, be a submodular set function
over N[] LetZ C 2V be a downward-closed farﬂﬂ)of subsets ofV. Our problem is themaxgez f(S). We are
interested in independence families induced by naturaliesedul constraints such as matroid constraints, knapsack
constraints, related special cases, and their intersectithroughout this paper we assume tha given via a value
oracle; that is, given a sét C N the oracle returng(S). The functionf could be monotone or non-monot@ne
monotone functions typically allow better approximatiesults.

Submodular function maximization has recently attracteus@erable attention in theoretical computer science.
This is for a variety of reasons, including diverse applama—a prominent application field being algorithmic game
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1A set functionf : 2N — R is submodular ifff (A) 4+ f(B) > f(AU B) + f(AN B) forall A, B C N.

2A family of setsZ C 2% is downward-closed if forany € B C N, B € Z implies thatA € 7.

3 f ismonotondf f(A) < f(B) wheneverd C B.
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theory, where submodular functions are very commonly usedikty functions to describe diminishing returns—and
also the recognition of interesting algorithmic and stovat properties. A number of well-known problems can be
seen as special cases of submodular function maximizakonexample, the APX-hard Max-Cut problem can be
seen as (unconstrained) maximization of the cut funcfior2V — R of a graphG' = (V, E). (Note thatf here is
non-monotone.) Another well-known special case of our f@wohis the Maxk-Cover problem, which can be viewed
asmax{f(5) : |S| < k} wheref(S) = [U;cs 4, is the coverage function for a collection of s¢td;}. Max-k-
Cover is hard to approximate to within a factor(@f— 1/e + ) for any fixede > 0, unlessP = N P [20]. Hence we
focus on approximation algorithﬂls

Classical work in submodular function maximization wasdzhen combinatorial techniques such as the greedy
algorithm and local search. We mention the work of Cornisejbisher, Nemhauser and Wolseyl[18] [42,[25, 41]
from the late 70’s which showed a variety of approximatiomtds whenf is monotone submodular aridis the
intersection of matroid constraints. Recent algorithmarkvhas considerably extended and improved the classical
results. Local-search methods have been identified acplary useful, especially for non-monotone functions.
Some of the recent results include the first constant fagtpraximation for the unconstrained submodular function
maximization probleni[21], and a variety of approximatiesults for knapsack and matroid constrainis [36, 37]. The
greedy algorithm has also been modified and made applicablen-monotone functions [29].

Despite the above-mentioned results, combinatorial tgcies have some limitations: (i) they have not been able to
achieve optimal approximation results, except in the bease of a single cardinality or knapsack constraint([42, 46]
(i) they do not provide the flexibility to combine constrtgrof different types. A new approach which overcomes
some of these obstacles and brings submodular functiomnieedion closer to the world of polyhedral techniques is
via themultilinear relaxation introduced in this context i [6].

A relaxation and rounding framework based on the multilinear relaxation. In this paper we introduce a gen-
eral relaxation and rounding framework for maximizing swolular functions, which builds upon, and significantly
extends, previous approaches. When dealing with lineacqovex) objective functions, a standard paradigm is to
design a linear or convex relaxation whose solution is tleemded via a problem-specific procedure. A difficulty
faced in extending this approach to maximizing a submodutastion f : 2V — R, — which we often interpret as a
function on the vertices of &, 1} hypercube that correspond to incidence vectors — is to findtalde extension
g :[0,1]Y — Ry of f to the full hypercube. The goal is to leverage such an extensas follows. Suppose we
have a polytope’z C [0, 1]V that is a relaxation fof C 2V in the sense thafl; | I € Z} C Pr. We want to
approximately maximize the continuous probleamxyc p, g(x) to find a fractional solutioxx* € Pz that is finally
rounded to a feasible integral solution.

The best-studied extension of a submodular function is théakz extension [39]; however, being a convex func-
tion, itis mostly suitable for submodular function miniration problems. For maximization of submodular functions,
the followingmultilinear extension was introduced inl[6], inspired by the workih [1]:

Fx)=>_ fS) =] -2

SCN i€S  jgs

The valueF (x) is equivalently the expected value pfR) whereR is a random set obtained by picking each element
1 independently with probability,;. We observe that if is modulafl thenF is simply a linear function. In this paper
we focus on the multilinear extension. The two obvious qoastthat arise when trying to build a general relaxation
and rounding framework based on the multilinear extensierttee following. First, can we (approximately) solve the
problemmaxxe p, F'(x)? This question is particularly interesting due to the faet the multilinear extension is in
general not concave (nor convex). Second, can we round iofmatsolution effectively?

Recent work has addressed the above questions in seversl Wwagt, Vondrak[[49] gave a continuous greedy
algorithm that gives an optimél — 1/¢)-approximation for the problemaxycp F'(x) when f is monotone sub-
modular andP is a solvable ponto& Whenf is non-monotone, the picture is less satisfactory. Lee. §86] gave
a local-search based algorithm that gived &1 — ¢)-approximation to maximizé' over the polytope induced by a

4If fis not assumed to be non-negative, even the unconstrainbtepr is inapproximable since deciding whether the optinvatae is positive
or zero requires an exponential number of queries.

SA function is modular iff (A) + f(B) = f(AUB) + f(AN B)forall A, B C N. If fis modular thenf(A) = wo + Y, 4 w; for some
weight functionw : N — R.

6We say that a polytop is solvable if one can do efficient linear optimization ovr



fixed number of knapsack constraints. VondfaK [50] obizhiae.309-approximation for maximizing” over a single
matroid polytope, and this ratio has been recently impraeéd325 [43]. However, no approximation algorithm was
known to maximizeF' over a general solvable polytope

In terms of rounding a fractional solution a natural strategy to preserve the valuggk) in expectation is to
independently round each coordinatep to 1 with probability z; and down ta) otherwise. However, this rounding
strategy does not typically preserve the constraints imgdxyZ. Various dependent rounding schemes have been
proposed. It was shown inl[6] that "pipage rounding” can bedu® round solutions in the matroid polytope with-
out losing in terms of the objective functidn(x) ([15] achieves the same via "swap-rounding”). Inl[33 [3634],
randomized rounding coupled with alteration was used fapsack constraints. More recently,[15] showed concen-
tration properties for rounding in a single matroid polytaphenyf is monotone, and [52] showed concentration for
independent rounding even whé¢ns non-monotone. These led to a few additional results. Detpus progress, the
“integrality gap” ofmax{F(x) : x € P} has been so far unknown even whéis monotone and the intersection
of two matroid polytopes. (We remark that for intersectiohmatroids, combinatorial algorithms are known to yield
good approximation$ [36, 87].) However, even for modularctions—i.e., classical linear optimization—combining
constraints such as matroids and knapsack constraintekadlifficult, and no general result was known that matched
the best bounds one can get for them separately.

In summary, previous results via the multilinear relaxatieere known only for rather restricted cases, both in
terms of approximately maximizing the multilinear extemsiand in terms of effectively rounding fractional soluiso
We next describe the contributions of this paper in this exint

Our contribution at a high level: In this paper we develop a general framework for solving soduter maximization
problems of the formmax{f(S) : S € Z}, wheref : 2V — R, is submodular and C 2 is a downward-closed
family of sets. Our framework consists of the following camngnts.

e Optimizing the multilinear relaxationWe give the first constant factor approximation, with an &ddal neg-
ligible additive error, for the problemax{F(x) : x € P} whereF is the multilinear extension of any non-
negative submodular function, aritlis any down-monotoffesolvable polytope.

e Dependent randomized rounding/e propose a general (dependent) randomized roundingvvarkéor mod-
ular and submodular functions under independence contgnaa what we caltontention resolution schemes
(CR schemes Rounding an approximate maximizer of the relaxatieix{ F'(x) : x € P} via a CR scheme
that is tailored to the given constraints, leads to a satutiith provable approximation guarantee. A key advan-
tage of CR schemes is the ability to easily combine CR schemsigned for different constraints into a CR
scheme for the intersection of these constraints.

e Contention resolution schemeafe present CR schemes for a variety of packing constraimdtiding knapsack
constraints, matroid constraints, sparse packing systeshsnn-restricted packing constraints, and constraints
imposed by an unsplittable flow problem in paths and trees. @RI scheme for the matroid polytope, which
is provably optimaé? is obtained by exploiting a tight connection between CResofs and theorrelation
gap[2] of the associated weighted rank functions. Previolislihe context of matroids, an optimal CR scheme
was only known for the uniform matroid of rari22,23].

The above ingredients can be put together to obtain a rétexand rounding framework leading to a variety of
new results that we discuss in more detail in Sedfion 2. Wensamze some of our results in Taljle 1.

1.1 Maximizing the multilinear extension over a general pojtope

We now give a more detailed description of our technicalltesand the general framework. First, we give a con-
stant factor approximation for the problemmx{F(x) : x € P}, whereF is the multilinear extension of a non-
monotone submodular functighand P is a down-monotone solvable polytope; the monotone casésdi —1/¢)-
approximation[[40] as we mentioned already. The conditibdawn-monotonicity of the polytope is necessary for

A polytope P C [0, 1]V is down-monotone if for atk,y € [0, 1]V, y < x andx € P impliesy € P.
8We would like to highlight that contention resolutions stfes are just one way of rounding a fractional solution. Hetieuse of an optimal
contention resolution scheme does not imply that no bepieroaimation factor can be obtained by a different procedur



|| Constraint type || Linear maximization | Monotone submod. ma>4. Non-negative submod. ma;H.

O(1) knapsacks [1—e[81286] [1—1/e—c[34] 0.325 [0.25 [36]]
k matroids& ¢ = O(1) knapsacks|| 5° [Q(gi) [28,29] | %% [Q(5) [28,129] 2 Q) [28,29]
k-matchoid& ¢-sparse PIP Q&) Q) Qz7)
Unsplittable flow in paths and trees [Q(1) [24]] Q(1) Q(1)

Table 1:Approximation ratios for different types of constraintslasbjective functions. Results in square brackets werequesly
known. The ratios in the last column for non-monotone fuorgiare based onda325 approximation for maximizng the multilinear
relaxation described in the conference version of this pii&d; there is a% — e ~ 0.367-approximation from subsequent work of
[24] which results in improved bounds.

the non-monotone case; it follows from [50] 51] that no canstactor approximation is possible for the matroid base
polytope which is not down-monotone.

The main algorithmic technigue for non-monotone functibas been local search. Fractional local search with
additional ideas has been the tool to solve the continuaaisigam in special cases of polytopes|[36], (50, 43]. Previous
fractional local search method$ ([36] and1[50]) improveduarent solutionx by considering moves along a small
number of coordinates of. The analysis took advantage of the combinatorial streabfithe underlying constraint
(knapsacks or matroids) which was sufficiently simple thazs along a few coordinates sufficed. How do we obtain
an algorithm that works faany polytopeP?

A new insight: Our key high-level idea is simple yet insightful. Any poite P can be written as a convex
combination of the vertices d?. We view the problem ofnax{ F(x) : x € P} as optimizing a submodular function
over the ground set consisting of the (exponentially mamylices of P (duplicated many times in the limit). From
this viewpoint we obtain a new fractional local search pcage: given a current poind, a local swap corresponds to
removing a vertex in the convex combinationxoédnd adding a new vertex @t (with appropriate scalar multipliers).
To implement this efficiently we can use linear optimizatomer P. (We remark that the continuous greedy algorithm
for the monotone casg [49] can also be interpreted with tisight.)

Our algorithms are derived using the above high-level iféanote that when specialized to the matroid polytope
or knapsack polytope which have combinatorial structuve atgorithms become simpler and in fact resemble previ-
ous algorithms. Our algorithms and proofs of approximagjoarantees are in fact simpler than the previously given
proofs for particular polytopes [36, 50,143].

We present two algorithms following this idea. The first altfon is close in spirit to the local-search algorithm
of Lee et al. for knapsack constraints [36] and gives25-approximation. This algorithm, despite having a worse
approximation guarantee then the second one we presemwtsalls to further explain and formalize the above high-
level idea in a clean way. The second algorithm uses some @q&0] for the case of a matroid polytope and gives a
0.309-approximation with respect to the béstegersolution in P.

We would like to mention that subsequently to the confereseesion of this paper, Feldman et al. [24] presented
an improved algorithm to maximize the multilinear extensieading to arfe ! — ¢) ~ 0.367-approximation with
respect to the best integer solution. Their algorithm is @ap&ation of the continuous greedy algoritimi[49]. The
conference version of this paper[16] contained a third andimmore involved algorithm (generalizing the simulated
annealing approach df [43]) that give9)825-approximation, again with respect to the best integertimiun P.

For conciseness, and in view of the recent result§in [24]dweaot include this third algorithm in this paper, and
concentrate on the first two algorithms mentioned in thegutewy paragraph, which allow us to demonstrate the main
new algorithmic insights. We summarize our results in thievang theorem.

Theorem 1.1. Let f be a nonnegative submodular function aRdC R"™ be a solvable down-monotone polytope
satisfying that there is & € (3 )) such that for each coordinatec [n], A-e; € P. thenthere is 0.25—o(1))-
approximation algorithm for the problemax{F( ) : x € P} whereF is the multilinear extension gf. There is also
an algorithm for this problem which returns a solutigre P of valueF (y) > 0.309-max{F(x) : x € Pn{0,1}V}.

We remark that a known limit on the approximabilityiafx{ F'(x) : x € P} is an information theoretic hardness
of 0.478-approximation in the value oracle model, even in the speaise of a matroid polytope[43].



1.2 Contention resolution schemes

We show that a certain natural class of rounding schemesvhagll contention resolution scheméSR schemes
provides a useful and general framework for rounding foaal solutions under submodular objective functions. For
a ground setV, let Pr be a convex relaxation of the constraints imposedZby. 2V, and letx € P;. From

the definition of /', a natural strategy to round a pointis to independently round the coordinates; however, this
is unlikely to preserve the constraints imposedZylet R(x) C N be a random set obtained by including each
element € N independently with probability;. The setR(x) is not necessarily feasible. We would like to remove
(randomly) some elements frof(x), so that we obtain a feasible setC R(x). The property we would like to
achieve is that every elementappears in/ with probability at leastx; for some parameter > 0. We call such

a scheme ¢-balanced contention resolution” fétz. We stress that a-balanced CR scheme needs to work for all
x € Pr. However, often, stronger schemes—i.e. with larger valaes—can be obtained if they only need to work
for all points in a scaled-down versidP; = {b-x | x € Pz} of Pz, whereb € [0,1]. Such schemes, which we
call (b, ¢)-balanced schemes, will prove to be useful when combinings€iemes for different constraints as we will
discuss in Section 11.3. Below is a formal definition of CR suobs. Let suppofk) = {i € N | z; > 0}.

Definition 1.2. Letb,c € [0,1]. A (b, c)-balancedCR schemer for Pz is a procedure that for every € b Pz and
A C N, returns arandomsetr, (A) C A N supporfx) and satisfies the following properties:

(i) mx(A) € Z with probabilityl VA C N,x € bPz, and
(i) forall i € supportx), Pri € nx(R(x)) | i € R(x)] > ¢ Vx € bPz.

The scheme is said to eonotondf Pri € mx(A1)] > Pr[i € mx(Az)] whenevei € 4; C A,. A(1,c)-balanced
CR scheme is also called ebalanced CR schemeThe scheme ideterministicif = is a deterministic algorithm
(hencerx(A) is a single set instead of a distribution). It@liviousif 7 is deterministic andrk (A) = my, (A) for all
x,y and A4, that is, the output is independentofind only depends oA. The scheme isfficiently implementablé
7 is a polynomial-time algorithm that given A outputsry(A).

We emphasize that a CR scheme is defined with respect to dispedyhedral relaxatior®; of Z. Note that on
the left-hand side of conditiofiii) for a CR scheme, the pimbty is with respect to two random sources: first the
setR(x) is a random set, and second, the proceadyrés typically randomized. We note that(a c)-balanced CR
schemer can easily be transformed intda-balanced CR scheme; details are given in Seéfion 4.

The theorem below highlights the utility of of CR schemesgwhounding via monotone contention resolution
schemes, one can claim an expectation bound for submoduiatidns. A similar theorem was shown [ [4] for
monotone functions. We state and prove ours in a form seitfablour context.

Theorem 1.3. Letb,c € [0,1], and letf : 2V — R, be a non-negative submodular function with multilinear
relaxation F, andx € b - Pz, wherePr is a convex relaxation fof C 2%. Furthermore, letr be a monotone
(b, ¢)-balancedCR scheme foiPz, and let] = mx(R(x)). If f is monotone then

E[f(I)] = ¢ F(x).

Furthermore, there is a functiony : 2V — 2% that depends orf and can be evaluated in linear time, such that even
for f non-monotone

E[f(ns(1)] = ¢ F(x).

As we will see in Sectiohl4, the functioyy can be chosen to always return a subset of its argument. \\efdohe
call it apruning operation

We observe that several previous rounding procedures fikipg (and also covering) problems rely on the well-
known technique oflteration of a set obtained via independent rounding and are exampl€Roschemes (see
[45,(5,[9,/14[4]). However, these schemes are typicallyvahls in that they do not depend enitself (other than
in picking the random seR), and the alteration is deterministic. Our definition ispined by the “fair contention
resolution scheme” in [22, 23] which considered the speaxzak of contention for a single item. The dependence on
x as well as randomization is necessary (even in this case ant to obtain an optimal scheme. One key question



to consider is whether some given down-monotone polyf@peadmits a “good’(b, ¢)-balanced CR scheme, which
corresponds to having valuestondc that are as close tbas possible.

One natural way to apply @, ¢)-balanced CR scheme to a poihte P; that approximately maximizeE is as
follows. In a first step we scale dowinto obtainz = b - &. By non-negativity and concavity df along non-negative
directions one obtaing'(x) > b - F(&). Applying a(b, ¢)-balanced CR schemeto x leads to a sef = w(R(z))
which, according to Theoreim 1.3, satisfild) > cF(x) > cbF (). This also highlights the motivation why we want
to haveb andc as close td as possible.

As we will show, many natural constraint systems admit g@od)-balanced CR schemes, including matroid
constraints, knapsack constraints, and a variety of pgcikiteger programs. In particular, to deal with the rather
general class of matroid constraints, we exploit a clos@eotion between the existence of CR schemes and a recently
introduced concept, callezbrrelation gap[53].

Contention resolution via correlation gap and an optimal sheme for matroids: Until recently there was no
contention resolution scheme for the matroid polytope;@inaal (b, 1‘5717 )-balanced scheme was previously known
for the very special case of the uniform matroid of rank ari[23]. We note that the recent work of Chawla et al.
[11,[12] implicitly contains &b, 1 — b)-balanced deterministic scheme for matroids; their mtitvefor considering

this notion was mechanism design. In this paper we develaptmal scheme for an arbitrary matrBid

Theorem 1.4. There is an optima(b, 1*5717 )-balanced contention resolution scheme for any matroigitople. More-

over the scheme is monotone and efficiently implementable.

The main idea in proving the preceding theorem is considandomized CR scheme and view it abstractly as
a convex combination of deterministic CR schemes. Thisaallovia LP duality, to show that the best contention
resolution scheme for a constraint system is related to ttiemof correlation gap for weighted rank functions of
the underlying constraint. We reiterate that the schementigpon the fractional solutian that we wish to round;
the alteration of the random sBf(x) is itself a randomized procedure that is tailorect@nd is found by solving a
linear program. We are inspired to make the general cororetticorrelation gap due to the recent work of Yan [53];
he applied a similar idea in the context of greedy postedepordering schemes for Bayesian mechanism design,
improving the bounds of [11,12].

1.3 A framework for rounding via contention resolution scheanes

We now describe our framework for the problemaxgscz f(S). The framework assumes the following: (i) there
is a polynomial-time value oracle faf, (ii) there is a solvable down-monotone polytope that contains the set
{15|S € 7}, and (iii) there is a monotonebalanced contention resolution scheméor Pz. Then we have the
following simple algorithm:

1. Using an approximation algorithm, obtain in polynomialé a pointx* € Pr such that

F(x*) > a -max{F(x)|x € Prn{0,1}V} > a~rgg%<f(5).

2. Round the point* using the CR schemeto obtain] = 7.« (R(x*)), and return its pruned version (I).

Theorem 1.5. The preceding framework gives a randomized)-approximation algorithm fomaxgscz f(S), when-

everf is non-negative submodular,is the approximation ratio fomax{ F(x) | x € Prn{0,1}"} and Pr admits a

monotone-balancedCR scheme. Iff is monotone then the pruning step is not neededlisgfmodular then the ratio
is ¢ and theCR scheme is not even constrained to be monotone.

Proof. We haveF'(x*) > aOPT with OPT= maxgez f(S). Theoreni LB shows th&{ f (n¢(I))] > ¢F(x*), hence
E[f(ns(I))] > acOPT. If f is monotone, the pruning step is not required by Thedrein 1.3.

For modularf, F'(x) is a linear function, and henee= 1 can be obtained by linear programming. Moreover, if
F(x) is a linear function, then by linearity of expectatid],f (/)] > ¢F(x*) without any monotonicity assumption
on the scheme. O

®We also describe théh, 1 — b) scheme in Sectiop 4.4 for completeness. This scheme isairapt computationally advantageous when
compared to the optimal scheme.



For non-monotone submodular functions, Thedrer 1.1 gives0.309; the currently best known approximation
L _¢) ~ 0.367 due to [24]. For monotone submodular functions an optimahiolofo = 1 — % is given in [49].

is (g —
Combining schemes for different constraints: We are particularly interested in the case wien- N, Z; is the
intersection of several different independence systems oeach system corresponds to a different set of constraints
that we would like to impose. Assuming that we can apply thevalframework to eac; separately, we can obtain

an algorithm forZ as follows.

Lemma 1.6. LetZ = N?_, Z; and P = N, Pr,. Suppose eacRz, has a monotoné, c;)-balancedCR scheme. Then
Pz has amonoton@, [ [, ¢;)-balancedCR scheme. In the special case that each elemeht participates in at most

k constraints and:; = ¢ for all i then Pz has a monotoné, ¢*)-balancedCR scheme. Moreover, if the scheme for
each Pz, is implementable in polynomial time then the combined selfemPz can be implemented in polynomial
time.

Therefore, we can proceed as follows. &t be a polytope that is the relaxation f6y. In other words{1s :
S € Z;} is contained inPz,. Let Pz = N, Pyz,. It follows that{1s : S € Z} is contained inPz and also that there
is a polynomial-time separation oracle By if there is one for eacl’z,. Now suppose there is a monotofec;)-
balanced contention resolution scheme gt for some common choice @f It follows from Lemmd1b thaPr
has a monotong, [ [, ¢;)-balanced contention resolution scheme, which can beftraned into a(b [ |, ¢;)-balanced
scheme forPz. We can then apply Theordm1L.5 to obtain a randomizéd |, ¢;)-approximation fommaxgcz f(.S)
wherea depends on whethegtis modular, monotone submodular or non-monotone submodula

In this paper we focus on the framework with a small list offhlgvel applications. We have not attempted to
optimize for the best possible approximation for speciaksa We add two remarks that are useful in augmenting the
framework.

Remark 1.7. Whenever the rounding step of our framework is performed GfRa&cheme that was obtained from a
(b, ¢)-balanced CR scheme—in particular in the context menti@iex/e when combininGR schemes for different
constraints—we can often strengthen the procedure aswslloinstead of approximately solvingaxxe p, F'(x),
we can approximately solueax,c,p, F'(y) to obtainy*, and then directly apply thé, ¢)-balanced scheme tg*,
without transforming it first to ec-balanced scheme. This may be advantageous if the problexyc,p, F(y)
admits a direct approximation better than one obtained kalisg frommaxycp, F'(y). A useful fact here is that the
continuous greedy algorithm for monotone submodular fonst[50,[7] finds for every € [0, 1] a pointy* € bPr
such thatF (y*) > (1 — e~ ) max.ecp, F(x). This is indeed a stronger guarantee than the one obtainefirsty
applying the continuous greedy & to obtainx*, and then used the scaled-down versisti, which leads to a
guarantee of only”(bx*) > bF(x*) > b(1 — e~ 1) maxye p, F(X).

Remark 1.8. A non-negative submodular set functifris also subadditive, that isf(A) + f(B) > f(AU B). In
some settings when considering the probleaxscz f(.5), it may be advantageous to partition the given ground set
N into Ny, ..., Ny, separately solve the problem on ea¥h and then return the best of these solutions. This loses a
factor of h in the approximation but one may be able to obtain a g8&tlscheme for eaclV; separately while it may
not be straightforward to obtain one for the entire $ét

An application of the technique mentioned in Remark 1.8 caridoind in Sectiofi 418, where we use it in the
context of column-restricted packing constraints.

Organization: The rest of the paper is divided into three parts. Some ilitise applications of our framework
are discussed in Sectigh 2. Constant factor approximatgorithms for maximizingF” over a solvable polytope
are described in Sectidld 3. Sectldn 4 discusses the cotistred CR schemes. This include a discussion of the
connection between contention resolution schemes andlaban gap and its use in deriving optimal schemes for
matroids. Furthermore, in the same section, we present 6&hses for knapsack constraints, sparse packing systems,
and UFP in paths and trees.



2 Applications

In this section we briefly outline some concrete results ¢hatbe obtained via our framework. The meta-problem we
are interested in solving imaxgsc7 f(S) whereZ is a downward-closed family over the given groundSeand f is

a non-negative submodular set function oxerMany interesting problems can be cast as special caseadiagen

the choice ofV, Z andf. In order to apply the framework and obtain a polynomialgiapproximation algorithm, we
need a solvable relaxatid?; and a correspondin@, c)-balanced CR scheme. Note that the framework is essentially
indifferent to f as long as we have a polynomial-time value oracle for it. Véedfore focus on some broad classes of
constraints and corresponding natural polyhedral relematand discuss CR schemes that can be obtained for them.
These schemes are formally described in Sefion 4.

Matroids and matchoidstet M = (N, Z) be a matroid constraint oN. A natural candidate foPz is the integral
matroid polytope{z € [0,1]" | z(S) < r(S),S C N} wherer : 2V — Z. is the rank function ofM. We
develop an optima{l — 1/e)-balanced CR scheme for the matroid polytope. More genefalt anyb € (0,1]

we design &b, 1*fob)-balanced CR scheme, which lends itself well to combinatiaith other constraints. The
CR scheme for the matroid polytope extends via Lerimh 1.6dac#se whelT is induced by the intersection of
k matroid constraints olv. A more general result is obtained by considerirgniform matchoids, a common
generalization of-set packing and intersection éfmatroids [38], defined as follows. L&t = (V, N) be ak-
uniform hypergraph; we associate the edges of the hyperguéth our ground sefV. For eachv € V, thereis a
matroid M, = (N,,Z,) overN,, set of hyperedges iV that contairv. This induces an independence faniilyn
N whereZ = {SC N | SNN, € Z,,v € V}. k-uniform matchoids generalize the intersectiork shatroids in that
they allow many matroids in the intersection as long as angglement of the ground set participates in at nitost

them. A natural solvable relaxation f@ris the intersection of the matroid polytopes at eackfia the CR scheme for

the single matroid and Lemnia1.6 we obtai@a(l;f)k)-balanced CR scheme for ahye (0, 1] for k-uniform

matchoids. The choice &f= k%l gives aﬁ-balanced CR scheme for everyuniform matchoid.

Knapsack / linear packing constraintdé:et N = {1,2,...,n}. Given a non-negative: x n matrix A and non-
negative vectob, letZ = {S | A1s < b} wherelg is the indicator vector of sef C N. Itis easy to see that

T is an independence family. A natural LP relaxation for thebpem isP; = {x | Ax < b,z € [0,1]"}. The
width of the system of inequalities is defined &5 = |min, ; b;/A4, ;|. Some special cases of interest are4i)s

a {0, 1}-matrix, (ii) A is column-restricted, that is, all non-zero entries in easlumn are the same and (i) is
k-column sparse, that is at mgshon-zero entries in each column. Several combinatoridilpros can be captured
by these, such as matchings and independent sets in grapphgergraphs, knapsack and its variants, and maximum
throughput routing problems. However, the maximum indejeah set problem in graphs, which is a special case as
mentioned, does not allow ! ~¢-approximation for any fixed > 0, unless P-NP [30]. Therefore attention has
focused on restrictingl in various ways and obtaining upper bounds on the integrgdip of the relaxatio®s when

the objective function is linear. Several of these resuktdmsed on randomized rounding of a fractional solution and
one can interpret the rounding algorithms as CR schemesoW&der a few such results below.

e For a constant number of knapsack constrainis£ O(1)), by guessing and enumeration tricks, one can
“effectively” geta(l — ¢,1 — ¢)-balanced CR scheme for any fixed- 0.

e When A is k-column sparse, there is(a 1 — 2kb)-balanced CR scheme. K has in addition widtiV > 2,
there is ab, 1 — k(2eb)"V~1) CR scheme for any € (0, 1). These results follow from [4].

e WhenA is a{0, 1}-matrix induced by the problem of routing unit-demand patha capacitated path or tree,
thereis ab,1 — O(b)) CR scheme implicit in[5,]9, 14]. This can be extended to theplitiable flow problem
(UFP) in capacitated paths and trees via grouping and sc@ahniques[31,14,13].

Sectior 4 has formal details of the claimed CR schemes. Tdrerether rounding schemes in the literature for
packing problems, typically developed for linear funcpthat can be reinterpreted as CR schemes. Our framework
can then be used to obtain algorithms for non-negative sdbtapset functions. See[iL0] for a recent and illuminating
example.

Approximation algorithms. The CR schemes mentioned above when instantiated withbiiifmrameters and
plugged into our general framework yield several new randethpolynomial-time approximation algorithms for



problems of the formmaxscz f(.5), wheref is non-negative submodular. We remark that these res@t®asome-
what abstract problems and one can obtain more concretiésrbguspecializing them and improving the constants.
We have not attempted to do so in this paper.

e If Z is the intersection of a fixed number of knapsack constraivesachieve &.309-approximation, improving
the (0.2 — ¢)-approximation from[[36] and a receffi.25 — ¢)-approximation[[34]. This is obtained via the
(1 —¢,1 —¢)-balanced CR scheme for a fixed number of knapsack constraint

e If Z is the intersection of &-uniform matchoid and knapsack constraints witha fixed constant, we obtain an

Q(%)-approximation (constant independentpfwhich improves the bound m(,ﬁ) from [28]. We remark
that this is a new result even for linear objective functiov& obtain this by choosinly= Q(1/k) and using
the (b, (1*§7b)k)-balanced CR scheme féruniform matchoids and thél — ¢, 1 — ¢)-balanced CR scheme
for a fixed number of knapsack constraints (this requireparsge preprocessing step).

e If Z is the intersection of &-uniform matchoid and afrsparse knapsack constraint system of widthwe give
an Q(W)-approximation, improving th@(ﬁ) approximation from[[28]. This follows by combining the
CR schemes fak-uniform matchoid and-column sparse packing constraints with a choic@@fﬂ(m).

e \We obtain a constant factor approximation for maximizingoa-imegative submodular function of routed re-
quests in a capacitated path or tree. Previouskp @ approximation was known for linear functions[5[9] 14,

[13].

3 Solving the multilinear relaxation for non-negative subnodular functions

In this section, we address the question of solving the probhax{F(x) : x € P} whereF is the multilinear
extension of a submodular function. As we already mentioded to [49[7], there is @l — 1/e)-approximation for
the problemmax{F'(x) : x € P} wheneverF is the multilinear extension of a monotone submodular fiemcand

P is any solvable polytope. Here, we consider the maximinatiba possiblynon-monotone submodular function
over a down-monotone solvable polytope. We assume in thanfiolg thatP C [0, 1]V is a down-monotone solvable
polytope andF : [0,1]Y — R, is the multilinear extension of a submodular function. Wesent two algorithms
for this problem. As we noted in the introduction, there isammstant-factor approximation for maximizing non-
monotone submodular functions over general—i.e., notssrdy down-monotone—solvable polytopgs|[50]. The
approximation that can be achieved for matroid base podgap proportional td — 1/~ wherev is the fractional
packing number of bases (s€e][50]), and in fact this traflgesferalizes to arbitrary solvable polytopes; we discuss
this in AppendixA.

3.1 Continuous local-search

Here we present our first algorithm for the problemx{F(x) : x € P}. We remark that in the special case of
multiple knapsack constraints, this algorithm is equimaite the algorithm of([36].

First we consider a natural local-search algorithm thestto find a local optimum foF' in the polytopeP. For a
continuous functio defined over a convex sét C R"”, a pointx € C'is a local optimum (in particular, a maximum),
if g(x) > g(x’) forall x’ € C'in a neighborhood o%. If ¢ is differentiable over”, a first-order necessary condition
for x to be a local maximum is thay — x) - Vg(x) < 0forally € C. If g is in addition a concave function then
this is in fact sufficient fox to be a global maximum. However, in general the first-ordeessary condition is not
sufficient to guarantee even a local optimum. Although siefficconditions based on second-order partial derivatives
exist, it is non-trivial to find a local optimum or to certifhat a given poinik is a local optimum. Our algorithms
and analysis rely only on finding a point which satisfies (agpnately) the first-order necessary condition. Hence,
this point is not necessarily a local optimum in the cladsease. Nevertheless, for notational convenience we refer
to any such point as a local optimum (sometimes such a poiefésred to as a constrained critical point). A simple
high-level procedure to find such a local optimum foix) in P—which does not consider implementability—is the
following. We will subsequently discuss how to obtain ancédfint version of this high-level approach that returns an
approximate local optimum.



Algorithm 3.1. Continuous local search: Initialize := 0. As long as there ig € P such thaty —x) - VF(x) > 0,
movex continuously in the directiogr — x. If there is no sucly € P, returnx.

This algorithm is similar to gradient descent (or ratheeasy; and without considering precision and convergence
issues, it would be equivalent to it. The importance of theipalar formulation that we stated here will become more
clear when we discretize the algorithm, in order to argueitliarminates in polynomial time and achieves a solution
with suitable properties.

The objective functiorF' is not concave; however, submodularity implies that alamgraon-negative directiof’
is concave (se€é [409] 7]). This leads to the following basiertea and its corollary about local optima that we rely on
in the analysis of our algorithms. In the followingV y denotes the vector obtained by taking the coordinate-wise
maximum of the vectorg andy; andx A y denotes the vector obtained by taking the coordinate-wisgmm.

Lemma 3.2. For any two pointsx,y € [0, 1] and the multilinear extensiof’ : [0,1]Y — R of a submodular
function,
(y—x)-VF(x)>FxVy)+ F(xAy)—2F(x).

Proof. By submodularityF is concave along any line with a nonnegative direction vestech agx vVy) — x > 0.
Therefore,
F(xVy) - F(x)
F(xAy) —F(x) < ((xAy) —x) - VF(x),

because of the concavity 6f along directionNx A y) — x < 0. Adding up these two inequalities, we dgéfx Vy) +
FxANy)—2F(x) < ((xVy)+ (xAy) —2x) - VF(x). Itremains to observe théak Vy) + (x ANy) = x+,

which proves the lemma. O

<
<

Corollary 3.3. If xisalocal optimuminP, i.e.(y —x)-VF(x) < Oforally € P, then2F (x) > F(xVy)+F(xAy)
foranyy € P.

3.2 Discretized local search

What follows is a discretization of Algorithin 3.1, which iset one we actually use in our framework. Let =
max{f(¢), f(N — i) : ¢« € N}. Notice thatM is an upper bound on the maximum absolute marginal value of
any element, i.e.M > maxg;|fs(i)| = max{f(i) — f(D), f(N — i) — f(N) : i € N}. By subadditivity, we
have|f(S)| < Mn for all S. It can be also verified easily thag%| <M and|%| < 2M for all i,j (see
[50]). We pick a parameter = n® for some sufficiently large constaat> 3 and maintain a convex combination
X = % ¢, vi, wherev; are certain points i (without loss of generality vertices, with possible repeti). Each
discrete step corresponds to replacing a vector in the earombination by another. Instead of the gradieift (x),
we use an estimate of its coordina@;@ by random sampling. We use the following lemma to controléfrers in
our estimates. '

Lemma 3.4. LetF(x) = % Zthl f(Ry) whereR), is arandom set sampled independently with probabilitied et
H = n?*1,§ = M/n*'and M = max{f(i), f(N —1i) : i € N}. Then the probability thatF"(x) — F(x)| > d is
at most2e /8.

Proof. Let us defineX,, = -7 (f(R;) — F(x)), a random variable bounded byin absolute value. By definition,

E[X,] = 0. By the Chernoff boundPr|| Y5 X,| > t] < 2¢1"/2H (see Theorem A.1.16 ifi[3]). We sét —
n*landt = 1n"*!, and obtairPr[|F(x) — F(x)| > M/n®"'] = Pr]| Zthl Xp| > $noH1] < 2e7 /8, O

Given estimates of'(x), we can also estimatgmﬂi =F(xVe)—F((xVe;)—e)=E[f(R+1i)— f(R—1).
The above implies the following bound.

Corollary 3.5. Let§ = M/n®~ !, If the total number of evaluations fEfand‘g—f; is bounded by:* and each estimate

is computed independently using®*' samples, then with probability at least- O(n’e~"/8) all the estimates are
within &4 additive error .
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The algorithm works as follows. The input to the algorithnaisubmodular functiort given by a value oracle,
and a polytopé® given by a separation oracle.

Algorithm 3.6. Fractional local search. Let = n*, § = M/n*"!. Letx := l ¢, v, and initializev, = 0

for all . Use estimate® F(x) of VF(x) within 44 in each coordinate. As Iong as thereys € P such that
(y —x) - VF(x) > 46n (which can be found by linear programming), we modify= % >4, v; by replacing one
of the vectorsy; in the linear combination by, so that we maximiz€'(x). If there is no sucly € P, returnx.

Lemma 3.7. Algorithm[3.6 terminates in polynomial time with high praiiy.

Proof. We show that if all estimates & F' computed during the algorithm are withir in each coordinate—which
happens with high probability—then the algorithm termésain polynomial time. This implies the lemma since with
high probability, we have that a polynomial number of estesafV F' are indeed all withinté in each coordinate.
Hence, we assume in the following that all estimagds of VF are within+4.

In each step, the algorithm continues only if it findse P such thatly — x) - @F(x) > 46n. SinceVF
approximate$/ F' within 46 in each coordinate, this means tligt— x) - VF(x) > 36n. Denote byx’ a random
vector that is obtained by replacing a random veetdny y, in the linear combinatior = % >4, vi. The expected
effect of this change is

E[P(x) - Fx)] = é;( (x+ 2 -vi) - (o) = LSy v VR

i=1

wherex; is some point on the line betwegrandx+ % (y—v;), following from the mean-value theorem. Since- n*
and the second partial derivativesBfare bounded b M, we get by standard bounds tHa¥ F'(x;) — VF(x)||1 <
% 2M = ZM — 92§n. Using also the fact that — v; € [—1,1]",

E[F() — F(x)) > =3 ((y - vi) - VF(x) — 26n) = on

- ((y =x) - VF(x) = 26n) >

| =
Q|H

using the fact thaty — x) - VF(x) > 3dn. Therefore, if we exchangefor the vertexv; that maximizes our gain, we
gain at least'(x') — F(x) > %671 = —_. Also we have the trivial bounghax F'(x) < n)M; therefore the number

of steps is bounded hy?*~!. O
Lemma 3.8. If x is the output of Algorithria 316, then with high probability

2F(x) > F(xVy)+ F(xAy)—5n
for everyy € P.

Proof. If the algorithm terminates, it means that for every P, (y —x) - @F(x) < 44n. Considering the accuracy
of our estimate of the gradieRtF'(x) (with high probability), this means théy —x) - VF(x) < 5dn. By Lemmd3.R,
we have(y — x) - VF(x) > F(xVy) + F(x Ay) — 2F(x). This proves the lemma. O

3.3 Repeated local search: a 0.25-approximation

Next, we show that how to desigria25-approximation to the multilinear optimization probleningstwo runs of the
fractional local-search algorithm. The following is ougatithm.

Algorithm 3.9. Letx be the output of Algorithin 3.6 on the polytopeDefine@Q = {y € P : y < 1 — x} and letz
be the output of Algorithin 3.6 on the polytaeReturn the better of'(x) and F'(z).

We use the following property of the multilinear extensida submodular function. Let us replace each coordinate
by a[0, 1] interval and let us represent a certain valyef thei'th coordinate by a subset @f, 1] of the corresponding
measure.
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Definition 3.10. LetX € £V, whereL denotes the set of all measurable subsef6,df. We say thaft’ represents a
vectorx € [0, 1]V, if X; has measure; for eachi € N.

From a "discrete point of view”, we can imagine that each dowate is replaced by some large number of elements
M and a value of; is represented by any subset of sie:;. This can be carried out if all the vectors we work with
are rational. In the following, we consider functions onsefis of this new ground set. We show a natural property,
namely that a function derived from the multilinear extemsof a submodular function is again submodular. (An
analogous property in the discrete case was proved1n [40, 36

Lemma 3.11. Let F' : [0,1]Y — R be a multilinear extension of a submodular functjpnDefine a functionF™* on
LN, by F*(X) = F(x), wherex € [0, 1]V is the vector represented By. ThenF* is submodular:

FrAUY)+ FH(XNY) < FYX)+ F* (),
where the union and intersection is interpreted componésg.

Proof. We haveF'(x) = E[f(x)] wherez; = 1 independently with probability,. An equivalent way to generafeis
to choose any set € £V representing, generate uniformly and independently a numbez [0, 1] for eachi € N,
and seti; = 1 iff r; € X;. Since the measure &f; is z;, 2; = 1 with probability exactlyx;. Therefore,

FY(X) = F(x) = E[f(¥)] = E[f({i : i € Xi})].

Similarly,
F*(Y) =E[f({i:ri € Vi})].
This also holds fort U Y andX’ N Y: since(X UY); = X; UY; and(X NY), = X; N Y;, we get

Fr(xXu)Y)=E[f{{i:rie X} U{i:r € Vi})]

and
F(xn))=E[f({i:rmeX}in{i:r eV}

Hence, by the submodularity ¢f
Fr(Xu))+ F(XnY) = Ef{i:meX}tufi:r,eihH)+f{i:r,eX}in{i:r, eV}

[f(
Elf({i:ri € Xi}) + f({i: 1 € Vi})]
F*(X) + F*(y)

IN

From here, we obtain our main lemma - the average of the tvatidraal local optima is at Iea%tOPT.

Lemma 3.12. LetOPT = max{F'(x) : x € P}. Letx be the output of Algorithin 3.6 on polytope andz an output
of Algorithm[3.6 on polytop& = {y € P : y < 1 — x}, with parameter as in Algorithn{3.6. Then with high
probability, 2F'(x) + 2F(z) > OPT— 100n.

Proof. Let OPT= F(x*) wherex* € P. By Lemmd3.8, the output of the algoritharsatisfies with high probability
2F(x) > F(x Vx*) + F(x Ax") — 5dn. 1)

In the restricted polytop@ = {y € P : y < 1—x}, consider the poini* = (x* —x) V0 € Q. Again by Lemma318,
the output of the algorithm satisfies

2F(z) > F(zVz*)+ F(zANz") — 5n. (2)
Now we use a representation of vectors by subsets as debdniizef.[3.10. We choos&’, X*, Z, Z* € LN to

represenk, x*, z, z* as follows: foreach € N, &; = [0, x;), Z; = [x;, x; + z;) (note thaty; +z; < 1), X = [0, z])
andZr = [0, z) = [0, max{z} — z;,0}). Note that X N Z); = () forall i € N.
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Defining F'* as in Lemmd 3.1, we have*(X) = F(x), F*(X*) = F(x*) = OPT, F*(Z) = F(z) and
F*(2*) = F(z*). Using relations likg0, ;) U [0, z¥) = [0, max{x;, z}}), we also gef™ (X U X*) = F(x V x*)
andF*(XNX*) = F(xAx*). Furthermore, we havgt \X;)UZ; = [x;, max{z}, x;+2;}) = [z;, x;+max{z], z; }).
This is an interval of lengtmax{z}, z;} = (zVvz*); and hencéd™ ((X*\ X)U Z) = F(zVz*), where(X*\ X)UZ
is interpreted component-wise.

The property of the first local optimurfil(1) can be thus wrigsR F'(x) > F*(X U X*) + F*(X N X*) — 5dn.
The property of the complementary local optimurh (2) can bigtew as2F(z) > F*((X* \ X) U Z) — 5dn (we
discarded the nonnegative tefffifz A z*) which is not used in the following). Therefor2l'(x) + 2F(z) > F*(X U
X*)+ F*(X NX*) + F*((X*\ X)U Z) — 106n. By Lemmd3ILF™* is submodular. Hence we get

FrXNX) + F((X*\X)UZ) > F(XNX)U X\ X)UZ)
= F*(X*U 2)

(we discarded the intersection term). Finally, using tht laatX N Z = () and again the submodularity 6, we get
FrXUX)+ F(X"UZ) > F(XUX)N(X"UZ)) = F*(Xx")
(we discarded the union term). To summarize,

2F(x) +2F(z) > FF(XUX") + F*(X NX")+ F*((X"\ X)U Z) — 106n
> F (X UX")+ F*(X"UZ)—10in
> F*(X*) — 106n = OPT— 104n.
O

Since the parametérin Algorithm[3.8 is chosen as = 2L for some constant > 3, we obtain the following.

n

Corollary 3.13. For any solvable down-monotone polytopeC [0, 1] and multilinear extension of a submodular
function : [0, 1]V — R, Algorithm[39 finds with high probability a solution of valat least:OPT — O(-24;)
for the problemmax{F'(x) : x € P}.

We remark that in many settings of interest, ORTmax{F(x) : x € P} > M/poly(n) and thus we can
make the additive error small relative to the optimum by dioga large enough. This leads to a multiplicative
(1/4 — o(1))-approximation. A concrete setting of interest is whers not too thin in any dimension, as highlighted
by the following lemma which, together with Corolldry 3 i®plies Theoreri 1]1.

Lemma3.14.Letf : 2V — R>( be a nonnegative submodular function with multilinear egtenf’, and letP? C R"
be a solvable down-monotone polytope satisfying that tisea\ € Q(m) such that for each coordinatec [n],

A -e; € P. Furthermore, [eOPT = max{F'(z) | « € P}, andM = max{f (i), f(N —i):4 € N}. Then

OPT>Q (#(n)) .

Proof. Let: € N. SinceF' is concave along any nonnegative direction arde P, we have

OPT> F(\e;) > AF(e;) = Af(i) Vi€ N. ©)
Furthermore, .
SN =)< Y 1) < FOPT. @
JEN—1
where we used{3) for the last inequality. Equatiéns (3) Eidniply the desired results. O
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3.4 Restricted local search: a 0.309-approximation

Next, we present a modified local-search algorithm whichdemeralization of the algorithm for matroid polytopes
from [50]. We remark that this algorithm is in fact simpleaththe%-approximation from the previous section, in

that it does not require a second-stage complementary $eeaith. Both algorithms work for any down-monotone
polytopeP. However, our analysis of the restricted local-searchrélym is with respect to the best integer solution in
the polytope; we do not know whether the approximation gutaeholds with respect to the best fractional solution.

Algorithm 3.15. Fix a parametet € [0, 1]. Using Algorithni.3.5, find an approximate local optimesrim the polytope
PN 0,4V, Returnx.

We show that with the choice of= (3 — /5), this algorithm achieves a(—1 + v/5) ~ 0.309-approximation
with respect to the optimal integer solutionih

Lemma 3.16. Letx be an output of Algorithin 3.6 oR N [0,¢]". Definew € [0,1]Y byw; = tif z; >t —1/n and
w; = 1if z; <t —1/n. Letz be any point inP and letz’ = z A w. Then with high probability,

2F(x) > F(xVz')+ F(xAz') — 50n>.

We remark that the above inequality would be immediate frammd 3B, iz’ € P N [0,]". Howeverz' is not
necessarily constrained iy, t] .

Proof. Considerz’ = z A w as defined above. By down-monotonicity,c P. Also, the coordinates wherg > ¢ are
exactly those where; < ¢ — 1/n. So we havex + %(z’ —x) € PN 0,t]N. By the stopping rule of Algorithfi 3.6,
1
—(z' —x) - VF(x) < 50n.
n

By Lemmd3.2, this implie§'(x V z') + F(x Az') — 2F(x) < (2 — x) - VF(x) < 56n2. O
In the rest of the analysis, we follolw [50].

Definition 3.17. For x € [0, 1]V and X € [0, 1], we define the associated “threshold set"Bs, (x) = {i : z; > A}.

Lemma 3.18. Letx € [0, 1]". For any partitionN = C U C,

F(x) > E[f(T>x(x) N C) U (Tsx(x) N 0))]
where), \' € [0, 1] are independently and uniformly random.

This appears as Lemma A.5 [n[50]. We remark that the rigmidhsde withC' = () or C = N gives the Lovasz
extension off and the lemma follows by comparing the multilinear and Lswvéxtension. For a non-trivial partition
(C,C), the lemma follows by two applications of this fact. The niexhma is exactly as iri [50] for the special case
of a matroid polytope; we rephrase the proof here in our merepl setting.

Lemma 3.19. Assume that € [0, £(3 — /5)]. Letx be an output of Algorithin 3.6 oR N [0, ] (with parameter
a > 4), and letz = 14 be any integer solution i?. Then with high probability,

F(x) > (t—%tQ)f(C)—O< M )

na—3

Proof. DefineA = {i:x; >t—1/n}andletw =t14 +1;,2' = zAw asin Lemm&3.16. Since= 1., we have
7' =tlanc + 1o\ a- By Lemmd 3,16, we get

2F(x) > F(xVz')+ F(xAz') — 50n>. (5)

First, let us analyzé”(x A z). Sincez’ = t14nc + 1oy a andx € [0,#]", we havex Az’ = x A 1. We apply
Lemmd3IB, which states that

F(xAz')=F(xA1lc) > E[f(T>A(x) N CO)].
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Due to the definition of. ,(x), with probabilityt — 1/n we have\ < t — 1/n andT\(x) containsA = {i : x; >
t—1/n}. Then,f(TsA(x) NC) + f(C\ A) > f(C) by submodularity. We conclude that

Fxnz) > (t— 1) (J(C) - F(C\ A)). 6)

n
Next, let us analyzé’(x v z'). We apply Lemm&3.18. We get
F(xVZ)>E[f(Tsx(xVZ)NC)U (Tsx(xVZ)NC)).
The random threshold sets are as follo@s: (x v z') N C = T~ 5(z') is equal toC' with probabilityt, and equal
to C'\ A with probability 1 — ¢, by the definition ofz’. 7w\ (x vV 2') N C = T x(x) N C is empty with probability
1 —t, becausex € [0,¢]V. (We ignore the contribution whef. . (x) N C' # ().) Because\, \’ are independently

sampled, we get
Fxvz)>1-t)(tf(C)+(L-t)f(C\ A)).

Provided that € [0, (3 — v/5)], we havet < (1 —t)2. Then, we can write
F(xVz) > t1 - ) f(C) +tf(C\ A). ()
Combining equation§15).1(6) and (7), we get
2F(x) > F(xVvZ)+F(xAZ)—50n?

> (1= F(C) + 1 FC\ A) + (= D)(F(O) — F(C\ A)) ~ 56m?

(2t —t3)f(C) - O (niwg)

Y

usingdn? = M /n%=3. O

Next, we show how the error term in Lemina 3.19 can be comparétetoptimal value. Note that here we use
the fact that in this section, we compare)tl solutions only. The following Lemma is essentially a spkzédion of
Lemmd3.I4 to the/1 case.

Lemma 3.20. Suppose tha¢; € P for eachi € N. LetOPT = max{F(x) : x € PN {0,1}"} and M =
max;en{f(i), f(N —i)}. ThenOPT > 1M1,

Proof. If M = f(i) for somei € N, then clearyOPT = max{F(x) : x € PN {0,1}"} > M, because
F(e;) = f(i) ande; € P. If M = f(N — i) for somei € N, then consided_,_, f(j) > f(N — i) = M which
holds by submodularity and nonnegativity 6f We havef(j) > %M for somej # i. By the above argument,
OPT > L. O

Clearly, ife; ¢ P, then coordinate; cannot participate in an integer optimumax{F(x) : x € PN {0,1}V}.
We can remove all such coordinates from the problem. Thexgfee can in fact assume thgte P forall i € N.

Corollary 3.21. Assumee; € P forall i € N. Then fort = (3 — \/5), Algorithm[3.I5 with high probability a
1(—1+ V5 — o(1))-approximation for the problemax{F(x) : x € PN {0,1}V}.

4 Contention resolution schemes

In this section we discuss contention resolution schemesdre detail and prove our results on the existence of
contention resolution schemes and their application tonsdular maximization problems.
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4.1 Contention resolution basics

Recall the definition, from Sectidd 1, of(&, ¢)-balanced CR schemefor a polytopePr. We first prove the claim
that a(b, ¢)-balanced CR schemecan be transformed intola-balanced CR scheme as follows. Letx € Pr and

A C N. We definer, (A) as follows. First each element dfis removed independently of the others with probability
1 — b to obtain a random set’ C A. We then setr, (A) = mx(A’). The key observation is that if is a set drawn
according to the distribution induced B(x), thenA’ has a distribution given bf(bx). Hence, for any € N

., _ _ Prli e m (R(x))]  Prli € ne(R(bx))]  bPr[i € my(R(bx))]
Prli € m(R(x)) |1 € RX)| = =5 e el ~ " Piie Rl Prli € ROw))
=bPrfi € mx(R(bx)) | i € R(bx)] > be,

where the last inequality follows from the fact thais (b, ¢)-balanced.

Monotonicity of CR schemes for submodular function maximization:The inequality that relates contention reso-
lution to submodular maximization is given in Theorfen 1.3rAof of this inequality also appears if [4] for monotone
functions without the pruning procedure. Before preseyttie proof, we provide some intuition on why monotonicity
of the CR scheme is needed in the context of submodular famatiaximization, and we specify the pruning proce-
dureny. Itis easy to see that iz has ac-balanced CR scheme then it implies-approximation for maximizing

a linear function overPs. If x is a fractional solution then its value }s , w;z;, wherew; are some (non-negative)
weights; since each elemenis present in the final solution produced by-galanced CR scheme with probability
at leastcz;, by linearity of expectation, the expected weight of a soluteturned by a-balanced scheme is at least
¢y, wix;. More generally, we would like to prove such a bound for angrsadular functionf via F. However,
this is no longer obvious since elements do not appear imikgrely in the rounding scheme; recall tiféaix) is the
expected value of on a set produced by independently including eawlith probability z;. Monotonicity is the
property that is useful in this context, because elemergsnailler sets contribute more to a submodular function than
elements of larger sets.

To prove Theorer 113, we first introduce the claimed prunimcfionr;. To prune a sef via the pruning
functionn, an arbitrary ordering of the elements §fis fixed: for notational simplicity lelV = {1,....n} which
gives a natural ordering. Starting with= () the final set/ = n,(I)—which we called th@runedversion of[—is
constructed by going through all elements/oin the order induced by. When considering an elemeitJ is
replaced by/ + i if f(J+1i)— f(J) > 0.

Proof of Theoreri I]13Let R = R(x) andl = nx(R), and letJ = n;(I) if f is non-monotone and = I otherwise.
Hence, in both cased, is the set returned by the suggested rounding procedure.

Assume thatV = {1,...,n} is the same ordering of the elements as used in the prunimgtipe (in case no
pruning was applied, any order is fine). The main property @tdog pruning is the following. Notice that this property
trivially holds whenyf is monotone.

finli—y(i) >0 VieJ 8
Furthermore, for eache I
finli—y(@) >0 = i€l )
Again, notice that this property holds trivially in the mdane case in which we have= 1.
The main step that we will prove is that for any fixed {1,...,n},
E[f(Jnli]) = f(INi—1])] = cE[f(RN[]) — f(RN[i = 1])]. (10)

We highlight that there are two sources of randomness ovethwhe expectation is taken on the left-hand side of the
above inequality: one source is the randomness in chodsinggtt?, and the other source is the potential randomness
of the CR scheme used to obtain the 5&tom R, which is later deterministically pruned to gét The theorem then
follows from (10) since

E[f(I)] = F0)+D_E[F(INED) = FNE=1)] = FO) +e Y EBIF(RN[) - f(RN[i = 1])] > cE[f(R)).
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Hence, it remains to prove(1L0). Consider first the non-mametase. Here we have

Elf(Jnli]) = f(I N [i = 1])] = E[Lics finpi—n(0)]

= Prli € R] - E[Licsfinji—1)(@) | i € R]

® p1rfi € R - Eflics max{0, fyrp_1(i)} | i € R]

Op, [i € R]-E[Llic; max{0, finji—11(9)} | i € R]

> Pr[i € R] - E[1ie; max{0, frnpi—1)(7)} | i € R] (sincef is submodular)
= Pr[l € R] E[E[ i€l maX{Ov fRﬂ [i—1] (z)} | R] | i€ R]

= Prli € R E[E[Lic; | Blmax{0, frri—)(i)} | i € B,

On the product space associated with the distributiof afonditioned oni € R, both of the termE[1;¢; |
R] andmax{0, frn;;—1)(¢)} are non-increasing functions, because of the monotoniéithe CR scheme used to
obtain7 from R and f being submodular, respectively. Notice that the randomireboth term<[1,-; | R] and
max{0, frn;;—1](4)} stems only from the random sé&, and not from the potential randomness of the CR scheme.
Hence, by the FKG inequality we obtain

Prli € R] - E[E[Lics | Rlmax{0, frry—1)(i)} | i € R]
> Prli € R]-E[lics | i € R] - E[max{0, frrpi—1)(4)} | i € R]
=Prlic R]-Prli € I | i€ R]-E[max{0, frrpi—1)(1)} | i € R]

> cPrli € R] - E[max{0, frni—1)(9)} | i € R]

> cPrli € R] - E[frni—1)(i) | i € R]

= cPr[z € R]-E[frn[i—1(4)]

cE[f(RN[i]) — f(RO[i —1])],
where in the second to last equality we use again the propieaty ;1) (¢) is independent of € R. Hence, this
shows[(ID) as desired, and completes the proof. O

The following subsection on strict CR schemes discusselkenate way of rounding that does not rely on pruning
and is oblivious to the underlying submodular function. Ae fghlight below, such a procedure is useful when the
value of several submodular functions should approximdttelpreserved, simultaneously. However, since we do not
rely on this alternate procedure later, this part can séddfelgkipped.

Strict contention resolution schemes An alternative way to round in the context of non-monotonkensadular
functions, that does not rely on pruning, can be obtaineddiygua stronger notion of CR schemes. More precisely,
we say that db, ¢)-balanced CR schemefor Pz is strict, if it satisfies the second condition of a CR scheme with
equality, i.e.Pr[i € mx(R(x))] = c. We have the following (the proof can be found in Apperidix B).

Theorem 4.1. Let f : 2V — R, be a non-negative submodular function with multilineaaseltion F', andx be a
point in Pz, a convex relaxation fof C 2V. Letw be a monotone and stri¢b, ¢)-balancedCR scheme foz, and
let 7 = mx(R(x)). Then

E[f(1)] > ¢ F(x).

The advantage of using a strict CR scheme compared to agghgérpruning step is that this version of rounding is
oblivious to the underlying submodular functignThis could potentially be useful in settings where onetsrested
in simultaneously maximizing more than one submodulartionc Assume for example thatis a point such that
Fy(x) andF»(x) have simultaneously high values, whéteandF» are the multilinear relaxations of two submodular
functionsf; andf>. Then using a rounding that is oblivious to the underlyingraodular function leads to a randomly
rounded sef satisfyingE|[f1(I)] > cFi(x) andE[f2(I)] > cFa(x).

Any monotone but not necessarily str{ét c)-balanced CR schemecan be transformed into a monotofbec)-
balanced CR scheme that is arbitrarily close to being sasclollows. For each elemente N, one can estimate
the probabilityc, = Pr[i € nx(R(x)) | ¢ € I] > ¢ via Monte-Carlo sampling within a polynomially small error
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(assuming that is a constant). Then we can modify the CR scheme by removang fts output/, elementi € T
with probability 1 — ¢/c,. The resulting scheme is arbitrarily close to being striztl @an be used in place of a
strict scheme in Theorefn 4.1 with a weaker guarantee; inGgtjgins to approximation, the ratio is affected in the
lower-order terms. We omit further details.

Combining CR schemes:Next, we discuss how to combine contention resolution sesgior different constraints.
We consider a constraifit = ﬁﬁ;lL and its polyhedral relaxatioR; = N; Pz,, such thatPz, has a monoton@, ¢;)-
balanced CR schem#. We produce a contention resolution schenfer Z which works with respect to the natural
combination of constraint relaxations — an intersectiothefrespective polytope3;,. This ensures that the relaxed
problem is still tractable and we can apply our optimizafiamework.

In case some elemenis C N are not part of the constraiif, we assume without loss of generality thanever
removes elements iP, i.e., 7L (A) N D = AN D foranyx € bPz, andA C N. The combined contention resolution
schemer for P is defined by

mx(A) = () 7h(A) for AC N,x € bPr.

A straightforward union bound would state that the combiseftemer is (b, 1 — )", (1 — ¢;))-balanced forPx.
Using the FKG inequality, we obtain a stronger result in ggtting, namely &b, [ |, ¢;)-balanced scheme. Moreover,
if each constraint admits @, ¢)-balanced scheme and each element participates in atkmaststraints, then we
obtain a(b, ¢*)-balanced scheme. This is the statement of Lerimia 1.6 whicpresee here using the combined
schemer defined above.

Proof of Lemm&l6Let us consider the< k constraints that elementparticipates in. For simplicity we assume
k = 2; the general statement follows by induction. For notaticoavenience we definB = R(x), I; = 7. (R) and
_[2 = F)QC(R)
Conditioned onk, the choices ofy, I> are independent, which means that
Prie hNL |Rl=Prlich &icly|R|=Prjicl, | R|Prfi € I | R)].
Taking an expectation ovét conditioned on € R, we get
Prie 1 NIy |i€ R|=Eg[Prlie 1 NIy | R]|i€ R|=Eg[Pr[i € I, | R]Prfi € Is | R] | i € R].

BothPr[i € I | R] andPr[i € I1 | R] are non-increasing functions & on the product space of sets containingo
by the FKG inequality,

Er[Prlie I, | R|Pr[i € I1 | R]|i € R| > Eg[Pr[i € Iy | R] | i € R|-Eg[Pr[i € Is | R] | i € R].
Since these expectations are simply probabilities camtiiil oni € R, we conclude:
Prie1Nlyli€e R >Prliel |i€ R|Prlic I | i€ R].
Monotonicity of the above scheme is also easily implied:siderj € 77, C T C N, then

Pr[j € I|R =T\ = [[Prlj € LIR=T1] > [[Prlj € LIR = To] = Pr[j € I|R = Ty].

where the inequality follows from the fact that each of thieesnes is monotone. The polynomial time implementabil-
ity of the composed scheme follows easily from the polyndiiize implementability ofr! andz2. O

4.2 Obtaining CR schemes via distributions of deterministicCR schemes

We now describe a general way to obtain CR schemes relyingn duiPaapproach. More precisely, we will observe
that any CR scheme can be interpreted as a distribution @terrdinistic CR schemes. Exploiting this observation,
we formulate an exponential-sized LP whose optimal satutiarresponds to an optimal CR scheme. The separation
problem of its dual then gives a natural characterizatiaritfe existence of strong CR schemes, which can be made
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algorithmic in some interesting cases including matroidstmints, as we show in Sectibn14.4. Furthermore, in
Sectiorl 4.B, we will use this point of view to draw a connettioa recently introduced concept, known as correlation
gap.

Recall the formal definition of CR schemes given in DefinifioB, in particular the differences between oblivious,
deterministic and general (randomized) schemes. Firshaotethat the simplest CR schemes are the oblivious ones.
An oblivious scheme does not dependsoand is deterministic; hence it is essentially a single magpi: 2V — T
that givenA C N returns a setr(A) such thatr(A) € A andw(A) € Z. Several alteration based schemes are
oblivious — see[[b, 14] for some examples. A typical oblid@acheme fixes an ordering of the element&ofthat
depends on the combinatorial propertieg}fit starts with an empty set’, and considers the elements4fccording
to the fixed order and adds the current elemig¢atthe setd’ if A’ U {i} € Z, otherwise it discards Finally it outputs
A’. These greedy ordering based insertion schemes are easilyte be monotone. A deterministic CR scheme is
more general than an oblivious scheme in that the output eperdl onx; in other words, for eaclk € Pz, 7« is
a mapping fron2? to Z. The advantage or need for such a dependence is demondtyateatroid polytopes. Let
P(M) be the convex hull of the independent sets of a matfeidoblivious schemes cannot givecbalanced CR
scheme for any constaat However, we can show that for ahye [0, 1] a good deterministic CR scheme exists: for
anyx € Py, there is an orderingx that can be efficiently computed fromsuch that a greedy insertion scheme
based on the ordering, gives a(b, 1 — b)-balanced scheme. Such a schemebfets 1/2 is implicitly present in
[17], however for completeness, we give the details of oheste in Sectiof 414. The algorithm n]10] for geometric
packing problems was reinterpreted as a deterministic Giense following our work; it is also based on computing
an ordering that depends enfollowed by a greedy insertion procedure via the computeldiong (see also more
recent work[[19]). Such ordering based deterministic sawane easily seen to be monotone.

In contrast to deterministic schemes, general (randorhi@&Ischemes are such that(A) is arandomfeasible
subset ofA. Randomization is necessary to obtain an optimal result @leen considering contention for a single
item [22,23]. For the time being, we do not require the CR su®to be monotone; this is a point we discuss later. A
non-oblivious(b, ¢)-balanced CR scheme deterministic or randomized, can dependw@and hence it is convenient
to view it is a collection of separate schemes, one for each bPr. They are only tied together by the uniform
guarantee. In the following we will fix a particulax and focus on finding the best schemegfor it. As we already
discussed, ifr is deterministic, themr, is a mapping fron2" to Z. We observe that a randomized schemes a
distribution over deterministic schemes; note that heramdagnoring computational issues as well as monotonicity.
We formalize this now. Call a mappingfrom 2V to Z valid if #(4) C A YA C N. Let ®* be the family of all
valid mappings fron2™¥ to Z. Any probability distribution\;), ¢ € ®* induces a randomized schemgas follows.

For a setA, the algorithmry first picks¢ € ®* according to the given probability distribution and therpuisg(A).
Conversely, for every randomized schemegthere is an associated probability distribut{og ), ¢ € ®* 9. Based on
the preceding observation, one can write an LP to expregstfidem of finding a CR scheme that(is ¢)-balanced
for x with a value ofc as high as possible. More precisely, for edch ®*, we defingy, , = Pr[i € ¢(R)], where, as
usual,R := R(x) is obtained by including eache N in R with probabilityx,, independently of the other elements.
Thus, for a given distributiori\y) sc s+, the probability that the corresponding CR schemereturns a setrx(R)
containing;, is given by _ ;5. ¢;,6\». Hence, the problem of finding the distribution, ) -c- that leads to &b, c)-
balanced CR scheme farwith ¢ as high as possible can be formulated as the following lipeagram (LP1), with
corresponding dual (DP1).

max ¢
(LP1) st Dsear Gipre = Xic ViEN
Dgear Ao = 1
Ag > 0 Voed
min p
op1y) St ety < p Vol
ienXiyi = 1
yi = 0 VieN

10_et k be an upper bound on the number of random bits usedbyFor any fixed string- of k random bits, lety” be the valid mapping from
2N to 7 generated by the algorithmy with random bits set te. The distribution where for eachthe probability assigned " is 1/2F is the
desired one.
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In general we may also be interested in a restricted set opinge® C ®*. In the above LP we can repladé
by @ to obtain the bestthat can be achieved by taking probability distributionsroxalid mappings i®. Letc(x, @)
be the optimum value of the LP for a givarand a setb C ®*. It is easy to see tha{x, ) < ¢(x, ®*) for any ®.
From the earlier discussion(x, ®*) is the best scheme for. We summarize the discussion so far by the following.

Proposition 4.2. There exists &b, ¢)-balancedCR scheme fo; iff infxepp, c(x, P*) > c.

Proving the existence of &b, ¢)-balancedCR scheme:To show thatP; has a(b, ¢)-balanced CR scheme we need
to show that(x, ®*) > ¢ for all x € bPz. By LP duality this is equivalent to showing that the optimuatue of the
dual (DP1) is at leastfor all x. We first reformulate the dual in a convenient form so thavimmgpa lower bound on
the dual optimum reduces to a more intuitive question. Wethan address the issue of efficiently constructing a CR
scheme that nearly matches the lower bound.

Below we will useR to denote a random set obtained by picking eaeh N independently with probability;
and use probabilities and expectations with respect torétmdom process. The optimum value of the dual can be
rewritten as:

C Sawm . SouPlico®]  Er|[Tieum¥]
min max —————————— = Inin max =mimmax ——————————————————
Y20 6€®* ) XYy Y20 6€®* Y v XY Y20 p€®* Y o n XY

For any fixed weight vectoy > 0 we claim that
max Er Z yi| =Er lsgr%f’igezzyi] ;
i€p(R) €S

which follows by considering the specific mappipgs ©* that for eachd C N setsp(A) = maxarca arez y(A).
Thus, the dual optimum value is

. Er [maxscr.ser Y ics i
min
y=20 Dien Xili
The above expression can be explained as an “integrality afap’s for a specific rounding strategy; here the
problem of interest is to find a maximum weight independenitsé. The vectory corresponds to weights avi. The
vectorx corresponds to a fractional solutionti’z (it is helpful here to think ob = 1). Thus} _, \, x;y; is the value
of the fractional solution. The numerator is the expectddesaf a maximum weight independent setfin Since we
are minimizing ovely, the ratio is the worst case gap between the value of an adtEgasible solution (obtained via
a specific rounding) and a fractional solution.
Thus, to prove the existence of(& c)-balanced CR scheme it is sufficient (and necessary) to ghateor all
y > 0andx € bPr

: (11)

Erx [maxscr.ser Y ics Vil

> c.
ZieN XilYi

Constructing CR schemes via the ellipsoid algorithm:We now discuss how to efficiently compute the best CR
scheme for a givew by solving (LP1) via the dual (DP1). We observe that, ®*), the best bound for a given
x, could be smaller than the boumrd It should not be surprising that the separation oracletierdual (DP1) is
related to the preceding characterization. The separatixcie for (DP1) is the following: givep and weight vector

y, normalized such tha} ; x;y; = 1, check whether there is any € ®* such that) ;.\ ¢i.¢y: > p and if so
output a separating hyperplane. To see whether there idatedoconstraint, it suffices to evaluatexxgco- gi,0i
and compare it withu. Following the previous discussion, this expression isstpE z ) [mangR,SGI Dics yz}
One can accurately estimate this quantity as follows. JFivst sample a random sét using marginals given by
x. Then we find a maximung-weight subset of? that is contained irZ. This gives an unbiased estimator, and
to get a high-accuracy estimate we repeat the process safficimany times and take the average value. Thus, the
algorithmic problem needed for the separation oracle igrthgimum weight independent set problem forgiven
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weightsy on N and a4 C N output a maximum weight subset dfin Z. The sampling creates an additive eream
estimatingE r(x) [maxS;R,SEI dics yi] which results in a corresponding loss in finding the optimoiatson value

w* to (DP1). To implement the ellipsoid algorithm we also nefirtd a separating hyperplane if there is a violated
constraint. A natural strategy would be to output the hyfaem corresponding to the violating constraint found
while evaluatingmaxgca- g5,y However, we do not necessarily have the exact coefficignigor the constraint
since we use random sampling. We describe in Se€flon C ofgheralix the technical details in implementing
the ellipsoid algorithm with sufficiently accurate estiembbtained from sampling. For now assume we can find a
separating hyperplane corresponding to the most violaiedtraint. The ellipsoid algorithm can then be used to find
a polynomial number of dual constraints that certify that tlual optimum is at leagt* — ¢ wherep* is the actual
dual optimum value. By strong duality* = ¢(x, ®*). We then solve the primal (LP1) by restricting it to the vales
that correspond to the dual constraints found by the eliipalgorithm. This gives a primal feasible solution of value
c(x, ®*) — ¢ and this solution is the desired CR scheme. We observe taairimal can be solved efficiently since
the number of variables and constraints is polynomial; hesewe do not have the precise coefficiegts but we
can use the esimates that come from the dual — see S&dtion<tinTimarize, an algorithm for finding a maximum
weight independent set i, together with sampling and the ellipsoid algorithm, canuked to efficiently find a
(b, e(x, ®*) — e)-balanced CR scheme wherés an error tolerance; the running time depends polynoyndallthe
input size and /e. The proof can be easily adapted to show thatapproximation for the max-weight independent
set problem gives & - ¢(x, ®*) — e CR scheme.

Monotonicity: The discussion so far did not consider the issue of monatgn@ne way to adapt the above approach
to monotone schemes is to defieao be the family of all deterministic monotone CR schemessoide (LP1) re-
stricted to®. A deterministic scheme is monotone if it has the property that ¢(A) implies thati € ¢(A’) for all
A’ C A. Distributions of deterministic monotone schemes cefitajield a monotone CR scheme. Interestingly, it is
not true that all monotone randomized CR schemes can beneldtas distributions of deterministic ones. Now the
question is whether we can solve (LP1) restricted to moretiierministic schemes. In general this is a non-trivial
problem. However, the ellipsoid-based algorithm to corapiik, ®*) that we described above gives the following
important property. In each iteration of the ellipsoid altfon, the separation oracle uses a maximum-weight inde-
pendent set algorithm faf to find a violating constraint; this constraint correspotada deterministic schemgthat
is obtained by specializing the algorithm to the given weiggttory. Therefore, if the maximum-weight indepen-
dent set algorithm is monotone, then all the constraintegead in the ellipsoid algorithm correspond to monotone
schemes. Since we solve the primal (LP1) only for the scheyaesrated by the separation oracle for the dual (DP1),
it follows that there is an optimum solution to (LP1) that isliatribution over monotone schemes! In such a case
c(x, ®*) = ¢(x,®) and there is no loss in using monotone schemes. For matfoédgreedy algorithm to find a
maximum weight independent set is a monotone algorithms;Tfon matroids, the above approach of solving (DP1)
and (LP1) can be used to obtain a close to optimal monotbng-balanced CR scheme. It remains to determine
the value of the optimat and we analyze it in Sectidn 4.4. It may be the case that tlsame imonotone maximum
weight independent set algorithm for some giZersay the intersection of two matroids. In that case we caranse
approximate montone algorithm instead.

We summarize the above discussions in the following theorem

Theorem 4.3. There is a(b, c)-balancedCR scheme fotPz iff E g [maxscr.sez D eg¥i] = ¢, yix; for all

x € bPr andy > 0. Moreover, if there is a polynomial-time deterministic @lighm to find a maximum weight
independent set iff, then for anyb ande > 0, there is a randomized efficiently implementafdle* — ¢)-balanced
CR scheme forPr wherec* is the smallest value of such that there is &b, ¢)-balancedCR scheme forPz; the
running time is polynomial in the input size ainge. In addition, if the maximum-weight independent set aloniis
monotone, the resultingGR scheme is monotone.

Before leveraging the above theorem to design close to apt@R schemes for matroids, we highlight an inter-
esting connection between CR schemes and a concept knavanrakation gap This connection is a further insight
that we gain through the linear programs (LP1) and (DP1).
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4.3 Connection to correlation gap

In this section we highlight a close connection between GRis®es and a concept knownasrelation gap[2]. The
correlation gap is a function on set functions that measuresmuch the expected value of a set function with respect
to some random input can vary, if only the marginal prob&esiof the input are fixed. We first show how one can
naturally extend this notion to sefsC 2V. Then, by exploiting the dual LP formulation of CR schemeR1} we
present a close relationship of the notion of correlatiop, graterpreted in terms of constraints, and the existence of
strong CR schemes.

Definition 4.4. For a set functionf : 2V — R_, thecorrelation gajs defined as

()~ e EYOECO)

xelo.v  fr(x) 7

whereR(x) is a random set independently containing each elerheiith probabilityz;, and
fH(x) = max{Zasf(S) : Zasls = X,Zas =1,as >0}
s s 5

is the maximum possible expectationfadver distributions with expectatian Furthermore, for a class of functions
C, the correlation gap is defined by(C) = inf tc¢ (f).

In other words, the correlation gap is the worst-case ratavben the multilinear extensidi(x) = E[f(R(x))]
and the concave closurg" (x). We remark that we define the correlation gap as a number|0, 1], to be in line
with the parametet in our notion of a(b, c)-balanced CR scheme (the higher the better). The definitif®]iuses
the inverse ratio.

The relationship between CR schemes and correlation gsegsaas follows.

Definition 4.5. For Z C 2V, we define the correlation gap a$Z) = infxep; y>0 ﬁE[maxng,Sez > ies Vil
whereR = R(x) contains elementindependently with probability; .

The reason we call this quantity a correlation gap (considdDefinition[4.4), is that this quantity is equal to the
correlation gap of theveighted rank functiosorresponding t@ (see Lemm&4]7 below).

Theorem 4.6. The correlation gap of is equal to the maximumsuch thatZ admits ac-balancedCR scheme.

Proof. The correlation gap df is equal to the optimum value of (DP1). By LP duality, this el to the optimum
of the primal (LP1), which is the best value ©for which there is a-balanced CR scheme. O

The following lemma shows a close connection between thelation gap of a solution s&tand the correlation
gap of the respective rank function. More precisely, thealation gap ofZ corresponds to the worst (i.e. smallest)
correlation gap of the respective rank function over allgi¢ivectors.

Lemma 4.7. For Z C 2V and weight vectoly > 0, let 7y (R) = maxgscp, ser > ics yi denote the associated
weighted rank function. Theq(Z) = infy > k(ry).

Proof. Using the notationr, (R) for the weighted rank function with weighgs, the correlation gap of can be
rewritten as<(Z) = infxep, y>o0 w, whereR(x) contains elements independently with probabilitieswWe

i XilYi
first observe that for any € Pr, we have*;f (x) = >, xu;. Hence, letx € Pz, and consider a convex combination
X =Y gerasls, Y as =1, a5 > 0with 7 (x) = > g7 asy(S). Since the weighted rank function of a feasible

setS € 7 is simply its weight we obtain

ry(x) =Y asy(S) =y Y asls=y-x=y xiy;

SeT Sez 7
as claimed. Therefore,
(@)= g EEO o Eby (G
xEPLY>0 ) XY x€Pr,y>0 1y (x)
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To prove the claim it remains to show that

. Efry(RX)] _ . Elry(R(x))]
xelyzlgzo ry (%) _xe[O,llI]ljg,yZO ry(x) (12)

Lety > 0. We will prove [12) by showing that for any poist € [0, 1] there is a poink’ € Pr with x’ < x
(coordinate-wise), and satisfying (x') > r(x). Sincer, is monotone, we then obtal[ry (R(x))]/r} (x) >

E[ry (R(x))]/r (x'), showing that the infinum ovex on the right-hand side of (12) can indeed be restricted to the
polytopePI letx = Yscnasls, Dogey s = 1,as > 0 be a convex combination of such that) (x) =

Y sy asry(S). ForeveryS C N, letI(S) C S be a maximum weight independent set, henges) = y(1(5)).

The pointx’ = 3¢y aslys) Clearly satisfie’ < x, and furthermore

ry(x) > Z ( Z aW>ry(S) = Z agry(S) = (x).

SET \WCN,[(W)=S SCN
O
4.4 Contention resolution for matroids
In this section we prove the following theorem on CR schermesiatroids.
Theorem 4.8. For any matroidM = (N,Z) onn elements there exists (d;, ﬁ)-balancedCR scheme for

the polytopeP(M).

We later address monotonicity of the scheme and consteuaipects. To prove Theorédml4.8 we rely on the
characterization formalized in Theoréml4.3. It sufficesrtavp forx € b- Pr and any non-negative weight vector>
0 thatEp [maxscr sez D jes¥il = €D ien Tivi, With ¢ = ﬂ whereR contains each € N independently
with probabilityz; andx € b - Pz. For a given weight vectay > 0 on N and a setS C N let r,(S) denote the
weight of a maximum weight independent set containes;im other words-, is the weighted rank function of the
matroid M. Restating, it remains to prove

E[Ty (R)] > ————"— Z Yili, (13)

It is well-known that a simple greedy algorithm can be usecotmputery (.S) (in fact an independent sét C S
of maximum weight with respect tg): Start withS’ = (), consider the elements 6fin non-increasing order of their
weighty; and add the current elemeinto S’ if S’ + i is independent, otherwise discard

To show [IB), which is a general property of weighted matraitk functions, we prove a more general result
that holds for any non-negative monotone submodular fanctrhe main ingredient for this is a lower bound on the
multilinear extension, which is stated in Lemia4.10. Alslig weaker form of Lemm&4.10, which we state as
Lemma4.D, will be presented first, due to its consice prodife fproof of Lemm&4.10 is deferred to the appendix.
Both lemmas can be seen as an extension of the property thabthelation gap for monotone submodular functions

is1—1/e[6].

Lemma 4.9. If f: 2V — R, is a monotone submodular functiof,: [0,1]V — R, its multilinear extension, and
f+:1]0,1]V — R, its concave closure, then for ahy= [0, 1] andp € [0, 1],

Fb-p) > (1—e")f(p)

Proof. We use another extension of a monotone submodular functédimed in [6]:
J*(p) = min ( )+ Zplfs )
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It is shown in [6] thatf*(p) > f*(p) forall p € [0,1]"V. Consider the function(t) = F(tp) for ¢t € [0,1], i.e. the
multilinear extension on the line segment betwemdp. We prove that)(¢) satisfies a differential equation similar
to the analysis of the continuous greedy algorithin [7], WwH&ads immediately to the statement of the lemma. We
have

do

— =P VF(tp) = szaxl

=E[f(R+1) — f(R—1)] > E[fr(:)], whereR is a
random set sampled mdependently with probabllmgs t;i (seel[7] for more details). Therefore,

Z 8:01 ZPiE[fR(i)] = E[ZPifR(i)] = E[f*(p) — f(R)]
by the definition off*(p). Finally, E[f(R)] = F(tp) = ¢(t), hence we obtain the following differential inequality:

do
L= ) - olt)

xtp

xtp_

under the initial conditiom(0) > 0. We solve this as follows (e'¢(t)) = e'p(t) + et% > e f*(p) which implies
that

b
o) = 0(0) + [ e )= (= 1) (o).
Considering that(b) = F(bp) andf*(p) > f*(p), this proves the lemma. O

A more fine-grained analysis leads to the following streeg#u version of Lemnia4.9, whose proof can be found
in AppendiXB.

Lemma 4.10. If f : 2V — R, is a monotone submodular functiofi,: [0, 1]V — R, its multilinear extension, and
f+:1]0,1]V — R, its concave closure, then for ahy= [0, 1] andp € [0, 1],

Pop) > (1= (1-2)") 7 o).

Lemmal[4.ID implies[(13), and therefore completes the prédheoren{4.B, by setting = r, andb - p =
X. Notice that the multilinear extension of evaluated ak is E[ry (R)]. Furthermorery(p) = > .y yipi =
> ien Yist if pisin the matroid polytope. Hence we obtdin](13):

L

= - Z Yili.

i€EN

Elry (R)]

Y

Theoreni 4B also shows that an efficient algorithm for coingut, results in an efficiently implementable near-
optimal CR scheme. It is well-known that a simple greedy algm can be used to computg (.S) (in fact an
independent set’ C S of maximum weight): Start witlt” = (), consider the elements 6fin non-increasing order
of their weight and add the current elemetn S’ if S’ 44 is independent, otherwise discardVioreover, it is easy to
see that this algorithm is monotone — the ordering of the el@mby weight does not depend on the$eaind hence
if an element is included when evaluating, (A) then it will be included in evaluating, (B) for any B ¢ A. We
thus obtain our main result for CR schemes in the context dfaitss by combining Theorefn 4.3 for a choicecof

satisfyinge < wn with Theoreni4B, and by using the inequality— 2)" < e~ — %.

UThis |nequal|ty can be obtained by observing that = + ””— < e *forz € [0,1], and hencgl — )” < (e*Z — in 22 )™ Lety =e =

andz = 3— for simplicity. One can easily check that forthese valueg ahdz we have(y — 2)" < y™ —ny" 1z + ”2 y" 222, Expanding
the last expression and using> 2, since the inequality is trivially true foz = 1, the desired inequality follows.
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Corollary 4.11. For any matroidM, andx € b - Pz, there is an efficiently implementadla : )—balanced and
monotoneCR scheme.

As shown by the following theorem, the CR schemes that carbbered according to Corollafy 411 are, up to
an additivez, asymptotically optimal.

Theorem 4.12. For any b € (0, 1], there is no(b, ¢)-balanced CR scheme for uniform matroids of rank one:on
byn

elements withe > %

Proof. Let M = (N, Z) be the uniform matroid of rank overn = | N| elements, and consider the poit b - Pr

given byz; = b/nfori € N. Let R be a random set containing each elemeatN independently with probability

x;. The expected rank at is given by

E[r(R)] = 1 —Pr[R=0] = 1 — (1 - 9) . (14)
n
Moreover, any(b, ¢)-balanced CR scheme returning a ket 7 satisfies
) be
E[|I] = Z Pr[i € I] > Z — =be. (15)
ieN ieEN
Sincel is an independent subset Bfwe haveE[r(R)] > E[|I|], and the claim follows by{14) anf{lL5). O

A simple (b, 1 —b)-balancedCR scheme:Here we describe a sub-optin{al 1 —b)-balanced CR scheme for matroid
polytopes. Its advantage is that ideterministi¢c simpler and computationally less expensive than the gpcheme
that requires solving a linear program. Moreover, Lenim&4hht is at the heart of the scheme, is of independent
interest and may find other applications. A similar lemma imdgpendently shown in [11] (prior to our work but in

a different context). LeiM = (N, Z) be a matroid. Fot C N recall that-(.S) is the rank ofS in M. The span of a
setS denoted by spdty) is the set of all elementse N such that:(S + i) = r(S5).

Lemma 4.13.If M = (N,Z) is a matroid,x € P(M), b € [0,1] and R a random set such th&tr[i € R] = bx;,
then there is an elemeiy such that®r[ip € spanR)] < b.

Proof. Letr(S) = max{|I| : I C S & I € T} denote the rank function of matroitf = (N, 7). Sincex € P(M),
it satisfies the rank constraint$s) < r(S). ForS = spar{R), we get

z(spartR)) < r(spanR)) = r(R) < |R|.

Recall thatR is a random set wheier[i € R| = bz;. We take the expectation on both sides:

E[z(spaf{R))] = le Pr[i € spar{R)], andE[|R|] = ZPr[z’ €R]= bel

Therefore,
> aiPrfi € spaiR)] < b w;.
i€EN i€EN
This implies that there must be an eleménsuch thaPr[iy € sparfR)] < b. O

We remark that the inequaliy’, z; Pr[i € spar{R)] < E[|R|] has an interesting interpretation:xfe P(M),
we sampleR with probabilitiesz;, then letS = spar{R) and sample agai’ C S with probabilitiesz;, then
E[|S’|]] < E[|R|]. We do not use this in the following, though.

Theorem 4.14. For any matroidM and anyb € [0, 1], there is a deterministi¢h, 1 — b)-balancedCR scheme.

25



Proof. Let x € P(M) and sampleR with probabilitiesbz;. We define an ordering of elements as follows. By
Lemmd4.1B, there is an elemeptsuch thatr[i € spar{R)] < b. We placei, at the end of the order. Then, singe
restricted taV \ {io} is in the matroid polytope aM \ {io}, we can recursively find an ordering by the same rule. If
the elements are labeldd2, ..., |N| in this order, we obtain tha&r[i € spa{R N [i])] < b for everyi. In fact, we
are interested in the event thas in the span of the preceding elemeri®s, [i — 1]. This is a subset oR N [i], and
hence

Prli € spaffR N [i — 1])] < Pr[i € spafR N [i])] < b.

The CR scheme is as follows:
e SampleR with probabilitiesbz;.
e Foreachelementif i € R\ sparfR N [i — 1]), then include it inl.

Obviously, (I N[i]) = (I N[i —1]) + 1 whenever € I, sor(I) = |I| andI is an independent set.

To bound the probability of appearanceipbbserve that the appearance of elements in1] is independent of
the appearance dfitself, and hence the eventsc R andi ¢ spartR N [i — 1]) are independent. As we argued,
Pr[i € spartR N [i — 1])] < b. We conclude:

PrlicI|ic R]=Prli ¢ spafRN[i —1])] >1—b.
O

To implement the scheme we need to make Leinmd 4.13 algodtiWe can accomplish it by random sampling.
Fix an element. Pick a random seR and check ifi € spar{R); repeat sufficiently many times to obtain an accurate
estimate ofPr[i € spar{R)]. We note that although the scheme itself is determinista=ame find an ordering of the
elements, the construction of the ordering is randomizedtdthe estimation dPr[: € sparfR)] via sampling.

4.5 Contention resolution for knapsacks

Here we sketch a contention resolution scheme for knapsatdt@ints. This essentially follows from known tech-
niques; we remark that Kulik, Shachnai and Tarmir [34, 35ketmbhow to round a fractional solution to the problem
max{F(x) : x € P} for any constant number of knapsack constraints and anynegative submodular function,
while losing a(1 — ¢) factor for an arbitrarily smalt > 0. Our goal is to show that these techniques can be imple-
mented in a black-box fashion and integrated in our framkwor

Let N = {1,2,...,n} and letay, as, ..., a, € [0, 1] be sizes of the: items. The independence system induced
by a single knapsack constraint’&= {5 : ) .. s a; < 1} and its natural relaxation has a variablefor 1 <i <n
and is defined a®r = {x € [0,1]" : >, a;x; < 1}. We refer to this as the knapsack polytope.

We prove the following lemma.

Lemma 4.15. For anyb € (0,1/2) there is is a monoton@, 1 — 2b)-balancedCR scheme for the knapsack polytope.
If, for somes € (0, 3), a; < 6 for1 < i < n, then for anyb € (0, --) there is a monotoné, 1 — (2eb)1=9)/%)-

)
balancedCR scheme. Further, for ang < 20 < ¢ < % if a; < ¢ for1 < ¢ < n then there is a monotone

(1—e,1— e 2/9)-palancedCR scheme.

Proof. The CR scheme is the same for all the cases and works as folgivenx € b - Pr we sampleR with
probabilitiesz,. To obtain/ from R we sort the items fronR in an order of decreasing size and $&b be the largest
prefix of this sequence that fits in the knapsack. Equivalenwt consider the items froiR in an order of decreasing
size and add the current item faf it maintains feasibility in the knapsack, else we disciardt is easy to see that this
scheme is monotone.

First, we consider the general case where there are nat&sis on the item sizes. L&k,ig = {i € N | a; > 1/2}
be the big items iV and letNsmai = N \ Npig be the small items. The probability of at least one big elerbeing
in R is at mostb since

Pr[Npig N R # 0] < Z x; <2 Z a;x; < 20b.
1€ Npig 1€ Npig
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The first inequality is via the union bound, the second inétyia using the fact that; > 1/2 for all big items, and
the third inequality follows fronx € b - Pr. ThusPr[Npig N R = (0] > 1 — 2b.

Fix somej € N. We need to lower bourielr[j € I | j € R] wherel is the output of the CR scheme we described.
First consider the case thats big. Since all big items are considered before any snat iy is accepted if it is the
unique big item inR. Since items are included iR independently, we have

Prj € 1|5 € R] > Pri(Nug\ (J)) N R=01j € R] = Pr[(Nuig\ {j}) N R =] > Pr[Nug N R = 0] > 1 — 2b.

Now we consider the case thats small. Sincer; < 1/2, j will be accepted it(R \ {j}) < 1/2. ForanyS C N,
we haveE[a(S N R)| = > ,cqa; Prli € R] < 3. ga;r;. InparticularE[a(R)] < >,y a;w; < b. By Markov's
inequality,Pr[a(R \ {j}) > 1/2] < Pr[a(R) > 1/2] < 2b. Therefore each small item is accepted with probability at
leastl — 2b. The same analysis holds for a simpler CR scheme based odariny of elements itk in which all big
items are considered before any small item.

Now we consider the case that for< i < n, a; < J for some parametef < 1/2. Fix somej € N. lItis
clearthatj € I'if j € R andZieR\{j} a; < 1 — 0. Conditioned orj € R, the probability of this event is at least
1—=Pr[},cpa; > 1—0]. We upper boun@®r[ _,_ a; > 1—¢] via Chernoff bounds. Let; be the indicator random
variable fori to be chosen i?; Pr[Y; = 1] = z;. LetY = . a;Y;. We haveE[Y] = . a;z; < b < 1—06 by
feasibility ofx. We are interested iRr[Y > 1 -] = Pr[} ], a; > 1 —0]. We can assume th&{Y'] = b by adding
dummy elements if necessary; this can only incréag® > 1 — 4.

We use the standard Chernoff bouRt{Z > (1 + a)u] < (e®/(1+ a)'**)" whereZ is a sum of random
variables in[0, 1] andp = E[Z]. To apply this bound to our setting, we consider=Y/§ = >, a;Y; /6 = > . Z;
whereZ; = «,;Y;/0 is a random variable if0, 1] sincea; < §. Thus,Pr[Y > 1 — 4] = Pr[Z > (1 + a)E[Z]] <

(e*/(1 + a)t*)" wherey = E[Z] = b/d and(1 + a) = (1 — §)/b. Usingé < 1, we obtain that

(o) b\ (1-0)/8

—8 <
PrlY > 1— 4] (1+a

Finally, let's consider the case where- 1 —canda; < < § < i for all . Here we use the Chernoff-Hoeffding

boundPr[Z > (1 + a)u] < e=*"#/3 for o € (0,1) and Z being a sum of random variables boundedhy]. We
estimate the probability that conditioned pr R, all of R fits in the knapsack. Sineg; < ¢ < 5, this probability is

Pr[Zai§1|j€R ZPr[ Z ai§1—6/2].

i€R i€R\{j}

We haveE([} ;3 @il = 2ien(jy @i < 1 — e We can in fact assume that= E[} ", z\;; @il =1 —¢€ by
adding dummy elements that can only increase the probabflibverflowingl — ¢/2. Applying the Chernoff bound
for random variables bounded byafter rescaling as above), we obtain

Pr Z a; >1—¢€/2| <Pr Z a; > (1+¢/2)p| < e/ (120) — o~ /)
i€ R\{j} i€ R\{j}

O

The(l —¢,1— e*”(sz/‘;))-balanced CR scheme is directly applicable only if the itézesare relatively small
compared to the knapsack capacity. However, standard ematioretricks allow us to apply this scheme to general
instances as well. This can be done for any constant numberapisack constraints. We formulate this as follows.

Corollary 4.16. For any constant > 1 ande > 0, there is a constant, (that depends only o#) such that for any
submodular maximization instance involvikdgnapsack constraints (and possibly other constraintelis a sefl”
of at mostny elements and a residual instance on the remaining elemanksthat

e Any«-approximate solution to the residual instance togetheéhi is ana(1 — ke)-approximate solution to
the original instance.
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e Inthe residual instance, each knapsack constraint admfis-ae, 1 — ¢)-balancedCR scheme.

Proof. Givene > 0, letd = O(e?/log(1/¢)) andny = 1/(d¢). SelectT’ greedily from the optimal solution, by
picking elements as long as their marginal contributiort ie@astocOPT; note thatT'| < ny. We define the residual
instance so that is feasible in the residual instance$fJ T is feasible in the original instance. The objective funatio
in the new instance ig defined by setting(S) = f(S U T) for each setS C N \ T’; note thaty is a non-negative
submodular function if is. In addition, in the residual instance we remove all eleimehose size for some knapsack
constraint is more thaf - » wherer is the residual capacity. The number of such elements in pdatk can be at
most1/4 and hence they can contribute at me&#PT; we forgo this value for each knapsack. We obtain a residu
instance where all sizes are at méswvith the capacities normalized fo By Lemmd4.1b, each knapsack admits a
(1—e,1—e /D)= (1—¢,1—¢)-balanced CRS. O

An advantage of this black box approach is that knapsacki@nts can be combined arbitrarily with other types
of constraints. They do not affect the approximation ratgmiicantly. However, the enumeration stage affects the
running time by arO(n"°) factor.

4.6 Sparse packing systems

We now consider packing constraints of the tyfre < b, wherex € {0,1}" is the indicator vector of a solution.
We can assume without loss of generality that the right-tsade isb = 1. We say that the system issparse, if
each column ofd has at mosk nonzero entries (i.e., each element participates in at lbtisear constraints). The
approximation algorithms inJ4] can be seen to give a coitaresolution scheme fdr-sparse packing systems.

CR scheme fork-sparse packing systems:

e We say that element participates in constraint if a;; > 0. We call an elemeni big for this constraint, if
a;; > 1/2. Otherwise we call elemeritsmallfor this constraint.

e SampleR with probabilitiesz;.

e For each constraint if there is exactly one big element i that participates in, mark all the small elements
in R for this constraint for deletion; otherwise check whethér_ a;; > 1 and if so, mark all elements
participating ini for deletion.

e Definel to be R minus the elements marked for deletion.
Based on the analysis inl[4], we obtain the following.

Lemma 4.17. For anyb € (0, 5-), the above is a monotorié, 1 — 2kb)-balancedCR scheme fok-sparse packing
systems.

Proof. Letx = b -y withy € [0,1]", Ay < 1. Consider a fixed elemerit. It appears inR with probabilityz .
We analyze the probability that it is removed due to sometcaimé where it participates. First, note that whether big
or small, elemenj* cannot be removed due to a constraiiitthe remaining elements have size less tha®, i.e. if
Z]ER\{] -y @i < 1/2. This is because in this case, there is no other big elemetitipating in7, and elemenj* is
either big in which case it survives, or it is small and t@neR a;; < 1,1.e. the constraint is satisfied.

Thus it remains to analyze the event, Ler\(je) %ij = 1/2 Note that this is independent of itejt appearing in
R. By the feasibility of;x, E[3"p\ 1+ @ij] = 222, wjai; < b. By Markov's inequality,Pr[3° ¢ o (1 @ij >
1/2] < 2b. So an element is removed with probability at m@stfor each constraint where it participates. By the
union bound, it is removed by probability at mQgth.

O
Recall the notion of width for a packing systemi: = Lmaxl o - |, whereuq;; are the entries of the packing matrix

(recall that we normalize the right-hand side tokbe- 1). Assumlng that’” > 2, one can use a simpler CR scheme
and improve the parameters.

CR scheme fork-sparse packing systems of widthV:
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e SampleR with probabilitiesz;.

e For each constraintfor which}" ._ . a;; > 1, mark all elements participating irfor deletion.

JER
e Definel to be R minus the elements marked for deletion.

Lemma 4.18.For anyb € (0, o), the above is a monotorie, 1 —k(2eb)"” ~!)-balancedCR scheme for any-sparse
system of packing constraints of widfh > 2.

Proof. Again, letx = by withy € [0, 1]V, Ay < 1. Letus consider an elemejitand a constraintthat;’ participates
in. If we condition onj’ being present ik, we haveu; = E[ZJER\{J.,} aij | j" € R} =3, aijzi; < b. By the
width property, we have;;; < 1/W < 1/2. We use the Chernoff bound for a sukhof independeni0, 1] random
variables withy = E[X]: Pr[X > (1+6)u] < (e /(1+8)" ) < (e/(148)) 01 with 146 = (1 — agjr)/pi >
1/(2b). Since our random variables are bounded®ynax a;;], we obtain by scaling

Pr Zaij>1|j'€R =Pr Z aij>1—aij/
JER jer\{j"}

e (14-0)ps / max a;j a Y —_—
< - < 2 b —aij/ max aq; < 2 b - .
<(155) < (20t) < (20t)

Therefore, each element is removed with probability at nist)"V' —* for each constraint where it participates ]

We remark that &-sparse packing system can be viewed as the intersectionltpha knapsack constraints on the
elements where each element participates in at moenstraints. One can use the composition lemma (Lemnha 1.6)
and the CR-schemes for a single knapsack constraint giveamynd 4. 15 to obtain CR-schemes fesparse packing
systems. The schemes that we described and analyzed alndve seen as direct implementations of the composition
approach.

4.7 UFP in paths and trees

We consider the following routing/packing problem. LBt= (V, E) be a capacitated tree with. denoting the
capacity of edge € E. We are giverk distinct node pairsity, ..., syt with pairi having a non-negative demand
d;. We assume that the instance satisfies the no-bottleneckticon that is,d,.x = max; d; < Upin = Ming Ue.
We say that an instance is a unit-demand instandg # 1 for eachi € N andu, is a non-negative integer for each
ec FE.

Let N = {1,...,k}, and fori € N, we denote by); C F the edges on the unique path betwseandt; in T'.
We say thatS C N is routableif, when routingd; units of flow froms; to ¢; over@); for eachi € S, then the total
flow on any edge is at mostu.. More formally,S is routable if

Z d; <u., Ve€kE.
1€S:e€Q);

We are interested in finding a routable $2{C N that maximizes some weight function . The case of linear
weights was considered in[14]. Here, a weight> 0 is given for: € N, and the goal is to find a routable setC N
that maximizes ~,_ s w;. A constant factor approximation has been presented feipttublem([14], and moreover it
is known that the problem is APX-hard even for unit-demanbunit-weights[[2]7].

We are interested in more general submodular weights.ZLet {S C N | Sisroutablé. The problem we
consider ismaxgscz f(S), wheref is a given non-negative submodular function. We present as€feme for this
problem that implies a constant factor approximation tiyfoour framework. We start by presenting a CR scheme for
unit demands, which we then extend to general demands.

A natural (packing) LP relaxation fdP; has a variable; € [0, 1] for each pair and a constrainzi:eeQi dix; <
u, for each edge; recall thatQ; is the set of edges on the uniqsiet; path inT'.

CR scheme for unit-demands:
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RootT arbitrarily. Let depth of paig;¢; be the depth of the least common ancestoy; @&ndt; in T'.

Let R C N be random set obtained by including eaéhdependently with probabilityz; .
Let] = (.

Consider pairs iR in increasing order of depth.
— Addito I'if T U {i} is routable, otherwise reject

e Output/.

The techniques in 9, 14] give the following lemma.
Lemma 4.19. For anyb € (0, --) the above is 4b, 1 — 2% )-balancedCR scheme.

Proof. Letx € b - Pz. Consider a fixed paii* and letv be the least common ancestorsgf and¢;- in the rooted
treeT'; note thatv could be one ofs;« or ¢;«. Let P be the unique path ifl" from v to s;« and P’ be the path
from v to ¢;-. Without loss of generality assume that# s;- and henceP is non-empty. We wish to upper bound
Prfi* ¢ I | i* € R], thatis, the probability that" is rejected conditioned on it being included in the randoin se
R. The reason that* gets rejected is that at least one edge P U P’ is already full from the pairs that have been
accepted intd prior to considering*. We upper bound the probability of this event happening éones edge inP
and use a symmetric argument .

Letey,eo,. .., e, bethe edges i fromwv to s;-. Let&; be the event that gets rejected at;, that is, the capacity
of ¢; is full wheni* is considered for addition td. Note that these events are correlated. We claim the fatigwi
if 5 > handu., > uc, then&; happens only if;, happens. The reason for this is the order in which the pairs in
R are considered for insertion. Whehis considered, the only pairs inserted/imprior to it are those whose depth
is no larger, and hence the total capacity used on an edgead®s as we traverse the patfirom v to s;. Thus, to
analyze the probability of rejection it suffices to considesubsequence ef, eo, . . ., e, Starting withe; such that the
capacity of the next edge in the sequence is strictly smédkar the previously added one. For notational simplicity
we will therefore assume that, > ue, > ... > u, > 1.

LetS; = {i #4* | e € Qi} be the set of pairs other thanthat contaire in their pathQ;. Let&’ be the event that
RN Sj| > ue;. Itis easy to see thdtr[€;] < Pr€]]. Since;x is a feasible solution to the LP relaxation we have
Ziesj x; < bue,. Letting X; be the eventthatec R, andX = Ziesj X, we havePr[EJ’-] = Pr[X > u,,]. Since
X is the sum of independefit, 1] random variablesy;, and has expectatidn..,, we obtain by standard Chernoff
bounds:

Pr(€]] = Pr[X > ue,] < (e7/(1+6) ) < (e/(1+5)) T,

wherey = bu,; andd = 1/b — 1. HencePr[€]] < (eb)“*s. Taking the union bound over all edges in the path, the

probability of rejection of* on some edge i is at mostzg?:l(eb)“ej < 3202 (eb)t = +22-, where the inequality

is due to the fact that the edge capacities are strictly @sarg and lower bounded dy and the equality is due to the
fact thateb < 1 (recall thatb € (0, 3—16)). By a union bound oveP and P’ we have that the probability af being

rejected conditioned on it being iR is at mostfff;b. O

CRscheme for general demandsA CR scheme for general demands can be obtained as follovedifgar program

Py is a packing LP of the formix < b, x € [0, 1] whereA is column-restricted (all the non-zero values in a column
have the same value). For such column-restricted packbegen programs (CPIPs), when demands satisfy the no-
bottleneck assumption, one can use grouping and scalihgiteees first suggested by Kolliopoulos and Stéin [31]
(see also[[14]) to show that the integrality gap for a CPIPhwittrix A is at most a fixed constant factor worse than
that of the underlying-1 matrix A’ (obtained fromA by placing al in each non-zero entry). Note that in the context of
the UFP problem, the matrix corresponds to the problem with arbitrary demands whilerth&ix A’ corresponds to
the one with unit-demands. One can use the same groupingalistechniques to show that a monotdhel — b')-
balanced CR scheme fet' can be used to obtain a monotqaé6, (1 — ') /2)-balanced CR scheme far. We give

a proof in Sectiol 418, see Theorem 4.20. Using this generalezsion theorem and Lemima4.19, one can obtain a
(b,b")-balanced CR scheme for UFP in trees for some sufficientlyl $matabsolute constantsandd’. This suffices
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to obtain a constant factor approximation for maximizingammegative submodular function of routable requests
in a capacitated tree. However, thig/6, (1 — v’)/2)-balanced CR scheme does not allow composition with other
constraints via Lemn{a’.6 sin¢e— v’) /2 does not tend to zero everbifdoes. However, Theordm 4120 gives a more
refined statement that is helpful in applications in lighRefmark1.B.

Without the no-bottleneck assumption, the linear prograsdn((n) integrality gap even for UFP on paths [9].
One can still apply the grouping and scaling techniquesawitthe no-bottleneck assumption under a mild restriction;
we refer the reader t0 [13].

4.8 Column-restricted packing constraints

Here we consider CR schemes for CPIPs. We follow the notéitam [14]. Let A be an arbitraryn x n {0,1}-
matrix, andd be ann-element non-negative vector with) denoting thejth entry ind. Let A[d] denote the matrix
obtained by multiplying every entry of columiin A by d;. A CPIP is a problem of the forrmax wx, subject to
Ald]x < b,x € {0,1}™. Note that all non-zero entries it[d] for any given column have the same value and hence
the name column-restricted. Here we are interested in sdblaoobjective functions and the goal is obtain a CR
scheme for the polytopB; induced by the relaxatiod[d]x < b, x € [0, 1]™. Instead of focusing on the polytope for

a givend andb, we consider the class of polytopes induced byiail

Theorem 4.20. Suppose there is a monotofig 1 — 5’) CR scheme for the polytopéx < b,z € [0, 1]™ for every
b € Z, whereA is {0, 1}-matrix. Then there is a monoto8/6, (1 — 8')/2)-balancedCR scheme for the polytope
Aldlx < b,z € [0,1]" for all d,b such thatd,,.x = max;d; < byin = min;b;. Moreover there is a monotone
(8/6,1 — B')-balancedCR scheme if altl; < by,in/3 orifall d; > byin/3.

We sketch the proof of the above theorem which follows theigiteg and scaling ideas previously usedin [31, 14].
We have chosen some specific constants in the theorem foligijmp One can obtain some generalizations and
variations of the above theorem via the same ideas.

Let N = {1,...,n} be a ground set corresponding to the columns. Gikéar integerh > 0 we letN, = {j €
N | dj € (dmax/3"", dmax/3"]}. We think of the columns iV, aslarge and the rest asmall The overall idea is
to focus either on the large demands or the small demandsedver, we will see that small demands can be treated
independently within each groul,,. Letz be a feasible solution to the systedifd]x < b,x € [0, 1]". For integer
h > 0 we letz" denote the vector obtained fromas follows: z" = z;/6 if j € N}, andz" = 0 otherwise. The
vectorz” restricts the solutiom to elements inV,, and scales it down by a small constant factor. We also define a
corresponding vectds” whereb” = [A;z"] for each rowi. We have the following lemma which is a restatement of
corresponding statements from [31] 14].

Lemma 4.21. For h > 0, lety" € {0,1}" be a feasible integral solution tdx < b",x € [0, 1]* such thaty; = 0 if
zl! = 0. ThenA[d]y’ <band},., Aldly" <b.

Proof. Fix someh and consider thé-th row of A[d]y" which is equal to}_
guantity as follows:

ien, i Aizyl'. We upper bound this

dmax . e
> diAyyl < o > Aiy! (from definition of N,)
JEN JENK
dmax g ege
< b (feasibility of y™)
dmax . el .
< S > Ayl (definition ofb” and usingla] < 1 + a)
JENR
dmax . e
< S > Aijz/6 (from definition ofz")
JENR
dmax 1 .
< 3h + 5 Z Aijdjzj (dj > dmax/3h+1 fOI’] S Nh).

JENR
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For h = 0 we need a slight variant of the above where we replalcdy max{1,2 5"
max{1,2a}. Then we obtain that

Z dJAwy? S max{dmax, Z Aijdjzj} S bi,
JENo JEN,

ieNo A;;2l} sincefa] <

sinCedmax < bmin andz is feasible. Thusi[d]y® < b.
For the second part of the claim, consider a iow

d 1
h max
DD diAyyt < Y | g D Audiz
h>1j€ENy h>1 JEN
dmax 1
< Dot )5 D Audiz
h>1 h>1 " jEN,

< dmax + b’L

- 2 2

< b

The penultimate inequality is from the feasibility ®f and the last inequality is from the assumption ttigt, <
bmin- O

With the above claim in place we can describe the CR schenraatkin the theorem. Let be a feasible solution
and letz" for b, > 0 be constructed from as described above.

CR scheme:

e For eachh > 0 independentlyun the(33, 1 — 3’)-balanced CR scheme for the polytope < b", z € [0,1]”
with fractional solutionz” to obtain integral vectorg”, h > 0.

o With probability1/2 outputy?, otherwise outpu}_, -, yh.

We claim that the above scheme is a monotg#s, (1 — 5’)/2)-balanced CR scheme. Note that we use the
unit-demand scheme in a black-box fashion. First, we oleseiv Lemmd 4.21 that the output of the scheme is a
feasible integral solution. An alternative descriptiorttoé scheme is as follows. We are given a paint %z with

€ [0,1]", Az < b. Obtain a sef? C N by independently sampling eaghe N with probabilityz; = 3/6 - z;.
Let R, = RN N;. For eachh obtainl;, C R;, as the output of the scheme fdiy < b",y € [0,1]" given the
random setR;,. With probability 1/2 output! = I, otherwise outpuf = Up>1I,. Forj € N, we have that
Prjje I, | je€ Ry >1—p" FurtherPr[j € I'| j € I] = 1/2 by the choice of the algorithm in the second step.
ThereforePr[j € I | j € R] > (1 — 3')/2. Itis easy to verify the scheme is monotone.

Further, if we only have large demands or only small demamels the second step is not necessary and hence we
obtain a(3/6, (1 — ’))-balanced CR scheme.
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A Approximation for general polytopes

In this section, we formulate an approximation result fa¢ groblemmax{F(x) : x € P} whenP is a general
solvable polytope (not necessarily down-monotone). Téssliit is included only for the sake of compleness; we do
not have any concrete applications for it. Our result gdirms(while losing a factor of 4) the result for matroid base
polytopes from[[50], which states that%al — % — o(1))-approximation can be achieved, provided that the fraation
base packing number is at leastvherev € [1,2]. As observed in[50], the fractional base packing numbendat
leastv is equivalent to the conditioR N [0, %]N # (. This is the condition we use for general polytopes. We state
algorithm only in its continuous form; we omit the discretibn details.

Algorithm A.1. Lett € [0,1] be a parameter such thdt N [0,¢]™ # 0. Initialize x € P N [0,¢]" arbitrarily. As
long as thereisy € PN [0, 3(1 +t)]" such thaty — x) - VF(x) > 0 (which can be found by linear programming),
movex continuously in the directioy — x. If there is no sucly € PN [0, (1 + ¢)]"V, returnx.

Note that even though we requikan [0, ¢V # (), the local search works inside a larger polytdpe|0, %(1 +1)] V.
This is necessary for the analysis.

Theorem A.2. For any solvable polytope such th# N [0,¢]Y # 0, Algorithm[Al approximates the problem
max{F(x) : x € P} within a factor of§ (1 — ¢).

Proof. The algorithm maintains the invariarte P N [0, %(1 +t)]¥. Suppose that the algorithm returns a point
Then we know that for every € PN [0,1(1 + ¢)]V, (y — x) - VF(x) < 0. We use a particular point defined
as follows: Letx* be the optimum, i.eF(x*) = max{F(x) : x € P}, and letx, be any point inP N [0, ], for
example the starting point. Then we define- %(x0+x*). By convexity, we havg € P, and sincex* € [0, 1], we
also havey € [0, 3(1+¢)]"V. Therefore, by the local-search condition, we hawe- x) - VF(x) < 0. By Lemmd3.R,

2F(x) > F(xVy)+ F(xAy)> F(xVy).
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Letx’ = xVy. The pointx’ has the following propertiest’ = x V 1 (xo + x*) > 3x*, and alsac’ € [0, 3 (1 +t)]V.
Consider the ray%x + &% — —x *) parameterized by > 0. Observe that th|s ray has a posmve direction in all
coordinates, and it is p055|ble to go beygnd 1 and still stay insidé0, 1]V in particular, for¢ = 1+t we get a point

IX* + 1—+t(x —3x%) < 1—+tx € [0, 1], Using this fact, we can expreséas a convex combination:
1+¢ 1 2 1 1-¢t 1
/ - . _ * - / _ * - .= *
X' =— (2x +1+t(x 2x))—|— x
(the reader can verify that this is an identity). By the catityeof F' in positive directions, we get

14+t 1 2 1 1-—t 1
o 58 (- ) 50 ().

As we argued;x* + 1—+t (x' — 3x*) € [0,1]", so we can just lower-bound the respective valué tand we obtain
1-1 1 1-1
> — x*) > —
Finally, our solution satisfies

1 1t 1-—-t¢
FxVy)= §F(x/) > —F(x")= ——O0PT.

F(x) > > —3 3

B Missing proofs of Sectior 4

Proof of Theorem[4.1

Proof. As observed in the proof of Theoreiln {11.3), it suffices to sH@@) (assuming an arbitrary ordering of the
elementsV = {1,...,n}). Let us take the expectation in two steps, first dveonditioned onR, and then over:

Ef(IN[])—fUN[i—1))] = Er[Er[lierfrap-1(i) | R]]
= Eg[Pr[i € I'| B] fraji—1(9)]-
Note thatPr[i € I | R] can be nonzero only if € R, therefore we can restrict our attention to this event:
E[f(IN[i]) = fIN[i = 1))] = Prli € R] - E[Pr[i € I | R]fgri-1(é) | i € R].

On the product space associated with the distributioR obnditioned ont € R, bothPr[i € I | R] and frn;—1) ()
are non-increasing functions, due kdoeing monotone with respect #, and f being submodular. Therefore, the
FKG inequality (se€[3]) implies that

EnlPrli € 1| Rlfne (i) i€ BRI > EnlPlic | ) |i€ Rl-Exlfngy(i) i€ R
= Prliel|ie Rl E[frnp—1(i)].

since the marginal valugz ;1) (¢) does notdepend anc R. By the(b, ¢)-balanced propertr[i € I | i € R] > ¢;
in addition, f is either monotone or we assume thafi € I | ¢ € R] = c¢. In both casesPr[i € I | i €
R] - E[frnji-11(2)] > ¢ E[frapi—1)(2)]. We summarize:

EfIN[]) - fUIN[i-1)] = Prli € R]- cE[frngi—1 ()]
= cE[f(RN[i]) - f(RN[i —1])].

Therefore,
E[f(I)]:f((Z))—i—ZE[f(Iﬁ[i]) FIN[i—=1)] > £ +CZE F(RNTi]) = f(RN[i —1])] = cE[f(R)].

O
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Proof of Lemmal4.10

To prove Lemmb4.10 we use a property of submodular funcpicesented i [48], which is stated below as Lerhma B.1.

Lemma B.1([48]). Letf : 2" — R, be a monotone submodular function, aAd, ..., 4,, C N. For eachj € [m]
independently, sample a random subdetq;) which contains each element df with probability ¢;. LetJ be a
random subset din] containing each elemepite [m] independently with probability;. Then

E[f(Al(CIl) U"'UAW(QW))] > E |:f (U Aj)} .

LemmdB.2 below is a generalization of Lemma 4.270n [48]. Wiofe the same proof technique as used’inl [48].
The lemma contains two statements. The first is a simplegrst that may be of independent interest. The second,
which can be seen to be a slightly stronger version of thediesement, turns out to imply Lemnia{4.10), as we will
show in the following.

Lemma B.2. Let f : 2V — R, be a monotone submodular function, adg, ..., 4,, € N. For eachj € [m]
independently sample a random subsé{(q;) which contains each element df; with probability ¢;. Letq =

> i1 qj- Then
ELF(An(a) U U An(an)] = ¢ (1= (1= 7)) D aif (4

| =

Furthermore form > 2 and anys, t € [m] with s # ¢,

E[f(Al (Lh)u U Am(Qm))]

1 q— qsq: m—1
> - S om-—1 B .
_q—Qﬂt<1 (1 7n—1) )( qsqr min{ f(A A¢}+§:% )

Proof. Observe that the first statement is a consequence of thedseoen it suffices to add an arbitrary additional
set A,,+1 with probability ¢,,,+1 = 0 to the family of sets and invoke the second part of the lemnth wi= 1 and
t = m + 1. Hence, we only prove the second part of the lemma.

By Lemma[B.1 it suffices to estimate|f(U;c;A4;)], whereJ is a random subset dfn| containing element
j € [m] independently of the others with probabiligy. Assumef(A4;) > --- > f(A,,) and without loss of
generality we assume> s. We define fork € [m],

Je = {I C [m] | min(I) = k}.

By monotonicity off, we havef (U;esA;) > f(Ag) if J € Ji. Hence,

m m 7j—1
Elf(UjesA)] <Y PrlJ € Zilf(A) =Y F(A)g [ - a).
j=1 j=1 =1
Thus, it suffices to prove
m J—1 m—1 m
S F(A)g [0 - a) > — (1 - (1 - %) ) (—qsqtﬂAt) + quf(Aj)> . (18)
= g 1 q — 4sqt m =

Since the above inequality is linear in the parameférs; ), it suffices to prove it for the special cagéd;) = --- =
f(4A)=1andf(A4,+1)=--- = f(A,) = 0 (A general decreasing sequencef¢fl ;) can be obtained as a positive
linear combination of such special cases.) Hence, it resitaiprove

T m—1 T

1 q —d4s9q
Z%Hl—q« P— <1_(1—m7_1t> ) (—1r2t-pspt+§ qg‘)7 (17)
j=1 = s

J=1
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wherel, >, is equal tol if » > ¢ and0 otherwise. To prové (17) we distinguish two cases depermiinghether- < ¢
orr >t.

Caser < t: Expanding the left-hand side ¢f{17), we obtain
1 T
ZqJH 1—q) —1—H<1—qj)21— 1==> 4|
j=1 ¢=1 =1 j=1

using the arithmetic-geometric mean inequality. Finaling concavity o, (z) = 1 — (1 — £)" and¢,.(0) = 0, we
get

q — 4sqt q — qsqt

m—1 r
1 q—qsqt>
= I—11-— aj,
q — qsqe ( ( m—1 ; ’

where the last inequality follows from the fagt(x) is decreasing im and by using: < m — 1. Notice that we used
the fath;:1 q; < q — gsq; for the first inequality in the reasoning above, which holteesr < ¢ and therefore

D14 < 4= < q— qsqs-

Caser > t: As in the previous case we start by expanding the left-hatelaf[17. This time we bundle the two
terms(1 — ¢s) and(1 — ¢;) when applying the arithmetic-geometric mean inequality.

T
1 < 21U 214
- 1—;2% = qu > 6rlg — 4:00) T > 61 (g — gear) T
=

T

ZqJH l—q)=1-JJa-g)=1-(0-q)0-a) [] O-q)
=1

=1 Jj=1 JE[r]
3¢ {s:t}
r—1
1
>1- 1—m —qSQt-l-ZQj
The remaining part of the proof is similar to the previousecas
r—1 -
K kA

—qsqt + Z i—195
1—|1- —qqt + 45 =¢r | —qsr + >0 | = br1(g — qogy) ————2——

r—1 e P 9~ qsqt

G5t + D51 4
q — 4sqt

1 . (1 q—qsqt>m_l o +2T:q
— - - - t j )
4= qsqr m—1 e

again using concavity af,._; and the fact thab,_1 (¢ — ¢sq:) is decreasing im. This finishes the proof of(17) and
thus completes the proof of the lemma. O

> Om-1(q — qsqr)

Leveraging Lemm&aBI]2 we are now ready to prove Lerimal 4.10. atfllrthat for a nonnegative submodular
functionf : 2¥ — R, andp € [0,1]", its concave closur¢™ is defined by

f1(p) = max Zagf(S)’asz()VSgN, Zaszl, Z as =p;Vie N
SCN SCN SCN,ieS
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Proof of Lemm&4.10Consider a basic solutidia;, A;) ;[ t0 the linear program that defings (p), i.e., f*(p) =
Yoo f(Ay), with A; € Noay > 0forj € [m], 3370, o = landy ;. ;ca, @ = p; fori € N. Notice that
since we chose a basic solution and the LP defirfifigp) only hasn + 1 constraints apart from the nonnegativity
constraints, we have: < n + 1. Let R(bp) be a random subset &f containing each elemente N independently
with probabilitybp;. We distiguish two cases depending on whethex n orm = n + 1.

Casem < n: Consider the random set
A= 4,0-0y),
JE[m]

where A, (ba;) is a random subset @f containing each elemente N with probability be;, independently of the
others. Notice that the distribution of is dominated by the distribution d®(bp) since A contains each element
1 € N independently with probability

Prlic Al=1- [ A =baj)<1-|1= > ba; | =bp; =Prli € R(bp)).

J€[m] J€[m]
i€A; i€A;

HenceF (bp) > E[f(A)], and we can use the first statement of Lenthma B.2 to obtain

1 P AR b\™
F(bp) > E[f(A)] > =—— |1 - |1 - ————= bajf(A) > (1—-(1—— f*(p),
(0p) > ELF(4)] > - baj( ( = )),;_1: = (1= (1= 1) ) )

j=1

usingZ;.”:1 a; = 1 and the fact tha%% is decreasing in.. The proof of this case is completed by observing
that(1 — (1 — £)™) is decreasing im andm < n.
Casem = n + 1: SinceA; C N for j € [n+ 1] and|N| = n, there must be at least one shtthat is covered

by the remaining sets, i.ed; C U c[n41),j4¢ A;. Furthermore les € [n + 1]\ {t} be the index minimizinga,. We
define probabilitieg; for j € [n + 1] as follows

{baj if § 4t
q; =

b P
1_%38 if j =1¢.

We follow a similar approach as for the previous case by ctmmsig the random set

A= 4)
j€lm]

Again, we first observe that is dominated by the distribution @(bp). For anyi € N\ A; the analysis of the previous

case still holds and shovia[i € A] < Pr[i € R(bp)]. Consider now an elemente A,. LetA,, A;,,..., A, be

all sets in the family(A4;) ;c[,+1) that containi. By our choice ofA;, there is at least one other set containinge.,

r > 1. Using

ba asSogy
(=)= a5 = (1= 725 ) (= pa5) =7 1= b — by,
we obtain
Prli€ Al =1 (1—g)(1 — ;) [[(1 = 45) = 1 = (1 — by — bay,) [[ (1 = baxz)
=2 =2

<1-|[1- > ba; | =bp; =Prli € R(bp)].

JE[n+1]
iEAj
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Therefore, we again havé(bp) > E[f(A)]. Notice thaty = Z;’Ll g, satisfies

bOé n+1 n+1

t

¢ =bar— T~ + Y boy = qsqi + Y bay = qsqi + b.
S g=1 j=1

We apply the second statement of Lenima B.2 to the faly(q;)) ;c[n+1] @and use the above fact to obtain

1 q— qsqt n ) n+1
F(bp) > ELf(4)) > (1-(1-2=22)) (—qsqt min{f(4,), £ (40} + Y qu<Aj>)

q — 4sqt n

1 (1 (1-2) ) (oA £} + (0= b £ +07 )

P (- (0 %)) (~0eef(A0) + (@ — bo) F(A) + b5 ().

Y

The claim follows by observing that¢; = q; — bay. O

C Details in constructing CR schemes via the ellipsoid algorithm

Here we give the technical details that are involved in samgphnd approximately solving (DP1) and (LP1) from
Sectiorf 4.R. First a short reminder of the primal and duablenm.

max ¢
L) St LecwGiods = xe VieN
Ypearro = 1
A = 0 Voeodr
min p
ZiEN Xy = 1
vy > 0 VieN

We start by observing that we can obtain strong estimatesofor any¢ € ®*. We assume that is given as an
oracle and can therefore be evaluated in constant time.

Proposition C.1. Let¢ € ®* andi € N. An estimatej; 4 of ¢; 4 whose error is bounded byex; with high
probability can be obtained in time polynomialsinand %

Proof. We call asetS C N\ {i} good if i € ¢(S U {i}). We have

¢i,p = Prli € 9(R)] = Pr[i € RandR \ {i} is good
=Pr[i € R]-Pr[R\ {i} isgood = z; - Pr[R\ {i} is good.

Notice that we can estimat&[R \ {i} is good up to an error oft-e with high probability by a standard Monte Carlo
approach, where we draw samplegd{{i}. This can be done in time polynomialainandé and leads to the claimed
estimatej; 4 by the above formula. O

We now discuss how these estimates can be used to obtain-apteaal solution to (DP1) by employing the
ellipsoid method with a weak separation oracle. After thatshow how a near-optimal solution to (LP1) can be
obtained. Notice that Propositidn €.1 can easily be usedtaim estimates; ,, of ¢;  that satisfy with high prob-
ability ¢; » € [gi,6 — €4,¢:,0): it Suffices to consider an estimafgy of ¢; » that satisfies with high probability
Gi,¢ € (41,6 — 54, Gi,p + 52;] @nd to defingy; ¢ = G;,» — 5. In the following, we assume that all used estimajies
satisfyq; » € [¢i.6 — €24, qi,4]. We can obtain this with high probability through PropasifiC.1 since the ellipsoid
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that we will apply in the following only uses a polynomial nber of such estimates. Notice that these estimates are
“pessimistic” estimates fag; 4, i.e., replacingy;  in (LP1) by these estimates leads to a lower optimal valubef t
LP.

Furthermore, to simplify the exposition, we will assumettfoa any given weight vectoy € RY we can find a
CR scheme € ®* maximizing} . ¢: ¢y:. The following discussion works also if we can only find a CRene
¢ that approximately maximizes this expression.

To apply the ellipsoid algorithm to (DP1) we design a weakasafion oracle (see Chapter 4 [n[32]). As a
reminder, the weak separation oracle has to provide thewolly guarantees. Given is a nonnegative vegtcr
(vi)ien satisfying) ;. v x;y; = 1, and a valug.. The weak separation oracle has to provide either a feaditde
solution(y’, ) with " < u + ¢, or a hyperplane separatiiig, ) from all feasible dual solutions. Givenand,
let ¢ € ®* be the CR scheme that maximize$ . v ¢i¢yi- If 3,y Gioys < p, our weak separation oracle returns
the dual solutior(y, i + €). This solution has objective valye+ ¢ as desired and is indeed feasible since for any
(b/ c q)*’

S Gy <Y Gy <D (Gt ey =+ > Gigyi < pte

i€EN iEN iEN i€EN

If > ,cn Gi.oyi > p, OUr weak separation oracle returns the separating hyaeggiven by the constraiga, —1) -
(z,v) < 0 wherea is an-dimensional vector with coefficients = ¢; 4 for 1 < i < n (note that that (DP1) has—+ 1
variables corresponding g, . . ., y, andu). First, this hyperplane indeed cuts off the solutign). Furthermore,
if (y’, ") is a feasible dual solution then it satisfies the constramuesy; , < ¢; ¢:

S Govi <Y aieyi < 1,

€N i€EN

where the second inequality in the above follows from felisitof (y’, 1/). Hence, we obtained a weak separation
oracle for (DP1), and the ellipsoid method can thereforemeine a feasible solutiofy, 1) to (DP1) of value<
u*+2¢e, wherep* is the value of an optimal dual solution. Note that sifigeu) is feasible, we have* < u < p*+2e
(see[[32)).

Let (DP1") be the linear program obtained from (DP1) by onbnsidering constraints corresponding to CR
schemes) that were used in the ellipsoid algorithm while construgtine nearly optimal solutioty, 1) of (DP1),
which satisfieq: < p* 4 2e. Furthermore, we replace all terms, by their estimates; , in (DP1’). Hence, the
feasible region of (DP1’) consists of all separating hyperps that were generated during the ellipsoid algorithm.
Notice that (DP1’) is a relaxation of (DP1) since our esti@sasatisfyg; » < ¢; 4. Hence, the optimal valug’ of
(DP1) satisfieg)’ < p*. The ellipsoid algorithm actually certifies the approxiroatguality of the generated solution
(1, y) by comparing against the best solution satisfying the geadrconstraints, i.e.,

< p + 2e.

Let (LP1’) be the dual of (DP1’), and I€&\’, ¢’) be an optimal solution to (LP1’), which can be efficientlyetatined
since (LP1’) has polynomial size. We retutN’, ¢’) as the solution to (LP1). First, notice th@t', ¢’) is feasible for
(LP1) sinceg;,¢ < ¢;,4. Furthermore,

=y >p—2>p" —2=c* — 2,

where the two equalities follow by strong duality.
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